
Iterative Regularized Policy Optimization with Imperfect Demonstrations

Xudong Gong 1 2 Dawei Feng 1 2 Kele Xu 1 2 Yuanzhao Zhai 1 2

Chengkang Yao 3 Weijia Wang 3 Bo Ding 1 2 Huaimin Wang 1 2

Abstract
Imitation learning heavily relies on the quality
of provided demonstrations. In scenarios where
demonstrations are imperfect and rare, a preva-
lent approach for refining policies is through on-
line fine-tuning with reinforcement learning, in
which a Kullback–Leibler (KL) regularization
is often employed to stabilize the learning pro-
cess. However, our investigation reveals that on
the one hand, imperfect demonstrations can bias
the online learning process, the KL regulariza-
tion will further constrain the improvement of
online policy exploration. To address the above
issues, we propose Iterative Regularized Policy
Optimization (IRPO), a framework that involves
iterative offline imitation learning and online re-
inforcement exploration. Specifically, the pol-
icy learned online is used to serve as the demon-
strator for successive learning iterations, with a
demonstration boosting to consistently enhance
the quality of demonstrations. Experimental vali-
dations conducted across widely used benchmarks
and a novel fixed-wing UAV control task con-
sistently demonstrate the effectiveness of IRPO
in improving both the demonstration quality and
the policy performance. Our code is available at
https://github.com/GongXudong/IRPO.

1. Introduction
Imitation Learning (IL) (Zheng et al., 2022) is a paradigm
in which an agent acquires task proficiency by imitating
the behavior of a demonstrator or expert. Unlike reinforce-
ment learning (RL) (Sutton & Barto, 2018), which relies
on trial and error, IL offers distinct advantages in sample

1College of Computer, National University of Defense Technol-
ogy, Changsha, Hunan, China 2State Key Laboratory of Complex
& Critical Software Environment, Changsha, Hunan, China 3Flight
Automatic Control Research Institute, AVIC, Xian, Shanxi, China.
Correspondence to: Dawei Feng <davyfeng.c@qq.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

efficiency, making it a prevalent choice for applications in
games (Silver et al., 2016; Vinyals et al., 2019) and control
systems (Shukla et al., 2020; Oh et al., 2023). However,
the efficacy of IL crucially depends on the availability of
a substantial number of high-quality demonstrations (Kim
et al., 2013; Wu et al., 2019). In practical scenarios, only a
limited supply of imperfect demonstrations is often accessi-
ble, due to factors such as inexperience, fatigue, or unnec-
essary operations by demonstrators (Sasaki & Yamashina,
2020; Hedlund-Botti & Gombolay, 2023). Consequently,
policies learned through IL tend to be constrained by the
quality of these imperfect demonstrations (Brown et al.,
2020). The challenge at hand lies in devising methodologies
to extract superior policies from such imperfect demonstra-
tions, which constitutes a pivotal obstacle in IL research
(Sasaki & Yamashina, 2020; Xu et al., 2022).

A promising approach to address the aforementioned chal-
lenge involves further refining the policy acquired through
offline IL with online learning, such as RL (Kim et al., 2013;
Wu et al., 2019; Huang et al., 2022). In this offline-to-online
approach, the primary objective during offline learning is
to maximize the likelihood of actions (Pomerleau, 1991) or
the occupancy measure (Ho & Ermon, 2016). However, a
notable distinction arises when transitioning from offline to
online learning, as the objective of online learning (Sutton
& Barto, 2018) shifts towards maximizing cumulative re-
wards in the task environment. This difference in objectives
introduces instability into the transition process (Vinyals
et al., 2019; Baker et al., 2022). To mitigate this instability,
distance-based regularizations, often employing KL diver-
gence (Rohatgi & Saleh, 2015; Vieillard et al., 2020), are
commonly incorporated into the optimization objective of
online learning (Vinyals et al., 2019; Baker et al., 2022;
Ramrakhya et al., 2023). The regularization term plays a
crucial role in stabilizing the training process by constrain-
ing differences between two policies (Rudner et al., 2021).

Despite its success, the offline-to-online learning approach
encounters two significant challenges when dealing with
imperfect demonstrations. Over-constrained Exploration
due to KL Regularization: One notable issue arises in the
form of over-constrained exploration during online learning,
induced by the KL regularization (Over-constrained explo-
ration). This regularization method imposes limitations on

1

https://github.com/GongXudong/IRPO

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0 1 2 3 4
env steps 1e8

0.0

0.2

0.4

0.6

su
cc

es
s r

at
e iteration 2

begins

iteration 3
begins

iteration 4
begins

iteration
1
2
3
4

Figure 1. Left: The KL regularization, denoted as DKL(π1, π
0
1), introduces the over-constrained exploration problem, limiting the upper

bound of ∥J(π1)− J(π0
1)∥. Imperfect D0 induces the primacy bias problem, constraining the enhancement of J(π1). IRPO makes π∗

1 to
serve as the demonstrator for successive learning iterations to roll out D′

1, with a data boosting D1 ← D0 ↑ D′
1 to consistently enhance

the quality of demonstrations. High quality D1 mitigates both the two above problems. Right: Performance of IRPO on the fixed-wing
attitude control task. IRPO converges the policy to a higher performance with each iteration.

the exploration of the online policy, resulting in a restricted
improvement in the expected return of the policy compared
to the policy derived offline from imperfect demonstrations.
Primacy Bias Problem in the Online Learning Process:
Another challenge manifests as the primacy bias problem
in the online learning process. This bias, recognized as a
tendency to over-fit to early or low-quality experiences, has
been identified as a detriment to the overall learning process
in RL (Nikishin et al., 2022). The bias introduces a con-
straint on the enhancement of the policy’s expected return.
The presence of these two problems is substantiated through
theoretical analysis and experiment validation.

To address the aforementioned issues, we introduce the
Iterative Regularized Policy Optimization (IRPO) method
in this paper. IRPO adopts a dual-pronged strategy, em-
ploying iterative training and demonstration boosting to
enhance demonstration quality. Specifically, iterative train-
ing capitalizes on the policy learned online, utilizing it as the
demonstrator for the subsequent training iteration. Simul-
taneously, demonstration boosting utilizes demonstrations
generated by the online-learned policy to consistently en-
hance demonstration quality. The utilization of high-quality
demonstrations is pivotal in resolving both of the afore-
mentioned issues. Fig. 1 presents the overview of IRPO.
We conduct extensive experiments across diverse complex
tasks, including articulated-body control (Tunyasuvunakool
et al., 2020), robotic arm control (Gallouédec et al., 2021),
and fixed-wing Unmanned Aerial Vehicle (UAV) attitude
control. Our results illustrate that IRPO efficiently learns
well-performing policies from imperfect demonstrations.
Our contributions are succinctly summarized as follows:

• We provide an exhaustive examination of the primary
challenges that arise during offline IL to online RL with
imperfect demonstrations. Our contribution includes
a theoretical analysis focused on the over-constrained

exploration problem and an empirical investigation on
both issues through carefully designed experiments.

• We propose the IRPO, a framework comprised of two
integral components: iterative training and demonstra-
tion boosting. These components synergistically ad-
dress both the over-constrained exploration and pri-
macy bias problems concurrently.

• We systematically assess the efficacy of IRPO across
diverse and complex tasks, encompassing articulated-
body control, robotic arm control, and fixed-wing UAV
control. Our results demonstrate that IRPO exhibits a
consistent ability to enhance policy and demonstration
quality over successive iterations.

2. Related Work
Learn from imperfect demonstrations: IL proves effec-
tive in learning policies from demonstrations; however, the
efficacy of the acquired policy is intricately tied to the qual-
ity of the provided demonstrations. Consequently, various
approaches have been proposed to adapt IL to imperfect
demonstrations. Some of these approaches necessitate ad-
ditional information pertaining to demonstrations, such as
annotations on non-optimality (Grollman & Billard, 2012;
Wu et al., 2019; Wang et al., 2021b), or comparisons be-
tween distinct demonstrations (Ibarz et al., 2018; Brown
et al., 2019). In contrast, others involve the fine-tuning of
policies through online interactions with environments (Kim
et al., 2013; Hester et al., 2018; Jing et al., 2020; Tsurumine
& Matsubara, 2022; Ball et al., 2023). Given that the former
category of approaches places an increased burden on the
demonstrator, our study concentrates on the latter category.

Fine-tune policy by online learning with regularization:
During the transition from offline to online learning, the shift
in objective from imitating the demonstrator to maximizing

2

Iterative Regularized Policy Optimization with Imperfect Demonstrations

cumulative rewards from environments introduces training
instability. To mitigate this, AlphaStar (Vinyals et al., 2019),
VPT (Baker et al., 2022), and PIRLNav (Ramrakhya et al.,
2023) incorporate KL regularization into the online learn-
ing objective. This integration aims to balance the original
objective of RL, which is optimality, with the stability objec-
tive of KL regularization (Li et al., 2023). To accentuate the
original RL objective during training (Schmitt et al., 2018),
some works adjust the strength of regularization or the refer-
ence policy to alleviate the imposed constraint. Schmitt et al.
(2018); Agarwal et al. (2022); Shenfeld et al. (2023) employ
a strategy of annealing the strength of KL regularization dur-
ing training. In a different approach, Li et al. (2023) grad-
ually evolve the reference policy with the learning policy,
enhancing the performance of the reference policy and, con-
sequently, indirectly relaxing the constraint strength. While
these methods prove effective with high-quality demonstra-
tions, they overlook the impact of imperfect demonstrations
on the learning process, as highlighted in (Nikishin et al.,
2022). Furthermore, our analysis also reveals that the KL
regularization constrains the policy’s exploration, resulting
in a limited improvement in policy performance compared
to the imperfect demonstrator.

Cognitive bias in RL: The primacy bias, a well-explored
cognitive bias in human learning, refers to individuals often
forming generalizations based on initial facts and paying
less attention to subsequent ones (Marshall & Werder, 1972).
Nikishin et al. (2022) extends this concept to the learning
process of RL. The study reveals that over-fitting to early
or low-quality experiences can detrimentally impact the
overall RL learning process. Notably, Nikishin et al. (2022)
observes that demonstrations from primed policies prove
sufficient to train an improved policy, presenting a practical
solution: periodic reinitialization of some policy parameters
while preserving the replay buffer. This observation prompts
our consideration that fine-tuning policies learned offline
with imperfect demonstrations may be susceptible to the
primacy bias problem. Moreover, leveraging the primed
policy can provide high-quality demonstrations, serving as a
potential remedy to mitigate the impact of the primacy bias.

3. Background and Notation
Reinforcement learning can be described by the Markov
Decision Process (MDP) (Sutton & Barto, 2018). We con-
sider the Episodic RL, which is modeled by finite-horizon
MDP: M = ⟨S,A, T , r, γ,H⟩, where S,A, γ ∈ (0, 1], H
are the state set, action set, discount factor, and the time
horizon length respectively; T : S × A → ∆(S) is the
transition probabilities, where ∆(X) denotes the probabil-
ity distribution over a set X ; r : S × A → R is the re-
ward function. RL aims to find a policy π : S → ∆(A)
that can maximize the expected return, calculated by ei-

ther the expected sum of discounted rewards JRL(π) =

E
[∑H−1

t=0 γtr(st, at)|π, T
]

or the expected average of re-
wards JRL(π) = E

[
1
H

∑H−1
t=0 r(st, at)|π, T

]
. If the policy

is parameterized by θ, then θ∗ = argmax
θ

JRL(πθ).

When fine-tuning a pre-trained policy with RL, it frequently
results in performance drops without regularization (Wang
et al., 2023b). In order to stabilize the fine-tuning pro-
cess, the regularization between the training policy and the
pre-trained policy π0, of which KL is the most frequently
utilized, is utilized to extend the objective of RL (Vieillard
et al., 2020):

Jo2o(π) = E
[H−1∑

t=0

γt
(
r(st, at)−λlog(

π(at|st)
π0(at|st)

)
)]
. (1)

Imitation learning is a data-driven, sample-efficient
method for learning policies by imitating demonstra-
tors (Belkhale et al., 2023). IL assumes access to a
dataset DE = (τ1, . . . , τN) of N demonstrations. τi =
{(s1, a1), . . . , (sTi

, aTi
)} is a sequence of length Ti of state-

action pairs sampled by the demonstrator πE(·|st) through
environment dynamics T (·|st, at). The objective of IL is to
learn a policy πθ : S → ∆(A) parameterized by θ fromDE .
Behavioral cloning (Pomerleau, 1991) is a widely applied IL
method, which learns the imitation policy by optimizing a
supervised loss to maximize the likelihood of demonstrator
actions (Sasaki & Yamashina, 2020):

L(θ) = −E(s,a)∼DE
[log πθ(a|s)]. (2)

which optimizes the following objective under finite state-
action pairs from demonstrator (Belkhale et al., 2023):

L(θ) = Es∼dπE
(·)
[
DKL

(
πE(·|s), π(·|s)

)]
= −Es∼dπE(·),a∼πE(·|s)

[
log πθ(a|s)

]
+ C,

(3)

where dtπ(s
′) =

∫
s,a
dt−1
π (s)π(a|s)T (s′|s, a) ds da and

dπ = 1
H

∑H−1
t=0 dtπ denote the distribution of states at time

step t if execute π from time step 0 to t− 1 and the average
distribution of states over H time steps, C is the entropy of
the demonstrator state-action distribution, which is constant
with respect to θ.

4. Methodology
Here, we first show that the KL regularization over-
constrains the exploration of the policy. Then, we provide a
detailed exposition of the IRPO.

4.1. The Over-Constrained Exploration Problem

In imitation learning, action divergence serves as a metric
quantifying the discrepancy between the learned policy and

3

Iterative Regularized Policy Optimization with Imperfect Demonstrations

the demonstrator, denoted as Df (π(·|s), πE(·|s)). Biases
in algorithms or demonstrations, such as mismatched action
representations or inadequate demonstration quantity, can
lead to discrepancies in action divergence (Belkhale et al.,
2023). Integrating action divergence into optimization objec-
tives helps align the action distribution of the learned policy
with that of the demonstrator. Belkhale et al. (2023) delve
into the relationship between the policy’s action divergence
and state distribution divergence, proposing:

Lemma 4.1 ((Belkhale et al., 2023)). Given a policy π, a
demonstrator πE , and an environment horizon length H ,
the difference in the state visitation distribution between π
and πE can be bounded by:

DKL(dπ, dπE) ≤ 1
H

∑H−1
t=0 (H − t)D

s∼dtπ
KL

(
π(·|s), πE(·|s)

)
.(4)

Lemma 4.1 implies that the KL divergence between the state
visitation distributions of two policies is constrained by the
expected KL divergence between their action distributions
over the state distribution of the first policy. In the specific
context of finite-horizon MDP with a reward function that
depends only on states, we further elucidate the connection
between the difference in the policy’s expected return and
the action divergence in Theorem 4.2.

Theorem 4.2. Given a finite-horizon MDP ⟨S,A, T , r, γ,
H⟩, in which the reward function depends only on states
r : S → R, and a demonstrator πE , for any policy π,
the difference in the average of expected return with πE is
bounded by the KL divergence between π and πE:

|J(π)− J(πE)| ≤ maxs |r(s)|
√
2HDs∼dπ

KL

(
π(·|s), πE(·|s)

)
.(5)

The proof for Theorem 4.2 relies on Pinsker’s inequality
(Fedotov et al., 2003) and Lemma 4.1 (provided in detail in
Appendix A). While the incorporation of KL regularization
between policies π and πE in policy optimization aims to
confine the policy’s exploration for training stabilization,
Theorem 4.2 reveals that it simultaneously restricts the rel-
ative improvement of J(π) over J(πE) in the context of
finite-horizon MDP with a reward function dependent only
on states. When the demonstrator πE is imperfect, J(π) is
bounded by Eq. 5, preventing it from reaching the optimal
J(π∗). To substantiate the practical implications of Theo-
rem 4.2, we conduct numerous experiments across various
tasks. Detailed results can be found in Section 5.3.

4.2. The Proposed IRPO Method

The analysis presented in Section 4.1 highlights two pri-
mary factors contributing to the over-constrained explo-
ration problem: (1) The low expected return of the demon-
strator, J(πE). (2) The KL-regularization-determined max-
imum improvement in policy’s expected return over the

demonstrator, maxs |r(s)|
√
2HDs∼dπ

KL

(
π(·|s), πE(·|s)

)
.

While the stabilizing effect of KL regularization during train-
ing is acknowledged, relaxing it does not consistently yield
high-performance policies, particularly in challenging tasks.
The results corresponding to this observation are detailed
in Section 5.3. Consequently, our attention turns to mitigat-
ing the over-constrained exploration problem by addressing
the imperfect demonstrator πE . It is crucial to note that in
the KL regularization term DKL(π(·|s), πE(·|s)), the sec-
ond term, πE , represents the policy learned offline from
imperfect demonstrations, not the actual demonstrator that
generates the demonstrations. Thus, the root cause of the
over-constrained exploration problem is attributed to imper-
fect demonstrations. Meanwhile, the primacy bias problem
also stems from learning from imperfect demonstrations.

To this end, IRPO is specifically designed to alleviate
both the over-constrained exploration problem and the pri-
macy bias problem by enhancing demonstration quality. It
achieves this by utilizing the policy learned online as the
demonstrator for the subsequent training iteration and con-
sistently improving demonstration quality with data rolled
out by the aforementioned demonstrator. IRPO is detailed
in Algorithm 1.

Algorithm 1 Iterative Regularized Policy Optimization
(IRPO) method

Require: demonstrations DE , number of iteration: K
Ensure: π∗

1...K

1: D0 ← DE

2: for all k ∈ 1 . . .K do
3: train π0

k by Eq. 6 on Dk−1

4: πk ← π0
k

5: optimize πk by Eq.7 with the imitation policy as π0
k

to get the π∗
k

6: sample with π∗
k to get D′

k

7: update demonstrations Dk ← Dk−1 ↑f D′
k

8: end for

For clarity, we distinguish between different generations of
policies in IRPO as follows: in the kth iteration, π0

k refers to
the imitation policy learned by IL from Dk−1, πk refers to
the policy being optimized for online learning, and π∗

k refers
to the policy obtained after the online learning optimization
is completed. Additionally, Dk refers to the demonstrations
optimized in the kth iteration, and ↑f is the demonstration
update operator, which will be introduced in the following.
IRPO learns offline policy π0

k and online policy π∗
k with:

π0
k ← argmin

π
−E(s,a)∼Dk−1

[log π(a|s)], (6)

π∗
k ← argmax

π
E
[H−1∑

t=0

γt
(
r(st, at)−λklog(

π(at|st)
π0
k(at|st)

)
)]
,

(7)

4

Iterative Regularized Policy Optimization with Imperfect Demonstrations

where λk is the strength of KL regularization used in the kth

iteration. In the following, we analyze the two components
of IRPO in detail.

Iterative training is specifically crafted to enhance the
expected return of the imitation policy, denoted as J(π0

k),
aiming to alleviate the over-constrained exploration problem.
If π∗

k is directly employed as the reference policy for KL
regularization in the subsequent iteration, π0

k+1, then the al-
teration in the policy’s expected return can be characterized
by Theorem. 4.3.

Theorem 4.3. Define πk as the policy obtained the kth
iteration by optimizing the objective:

πk ← argmax
π

E

[
H−1∑
t=0

γt

(
r(st, at)−λ log

(π(at|st)
πk−1(at|st)

))]
,

π0 is the pre-trained policy. Let vλmax := rmax+λ ln |A|
1−γ , ϵj

is the approximation error of value function at jth iteration,
then:

|J(πk)−J(π∗)| ≤ 4

1− γ

∥∥∥∥ 1

k + 1

k∑
j=0

ϵj

∥∥∥∥+ 8

1− γ

vλmax

k + 1
, k ∈ N.

The proof of Theorem. 4.3 is detailed in Appendix. B. The-
orem 4.3 demonstrates that the difference in expected re-
turn between the learned policy and the optimal policy is
constrained, and this difference diminishes as the iteration
progresses. In other words, Theorem. 4.3 signifies that the
policy’s expected return can be progressively improved with
iterative training.

While maintaining the online policy π∗
k as the reference pol-

icy π0
k+1 aids in mitigating the over-constrained exploration

problem, it does not alter the demonstrations, leaving the
primacy bias problem unresolved. The value of this iterative
approach lies in the theoretical potential for continuous im-
provement in the policy’s expected return. In practice, it is
more effective to leverage the policy learned online to assist
subsequent training iterations by rolling out demonstrations,
as described in the following.

Demonstration boosting is designed to enhance the demon-
stration quality. The imperfections in demonstrations intro-
duce primacy bias to the online learning process through π0

k.
Nikishin et al. (2022) assert that primacy bias is not a failure
to collect proper data per se but rather a failure to learn from
it. Therefore, we involve the policy learned online in the
next training iteration by rolling out demonstrations. Specif-
ically, after obtaining π∗

k from the kth iteration, we roll out
demonstrations D′

k with π∗
k and update demonstrations as

Dk ← Dk−1 ↑f D′
k. For demonstration D and a trajectory

τ , the demonstration update operator ↑f is defined:

D ↑f τ =

{
D \ τ ′ ∪ {τ}, if∃ τ ′, s.t.f(τ ′) < f(τ)
D, else ,

where f(τ) is the indicator function, which can be the sum
of reward R(τ) =

∑H−1
t=0 rt collected by τ , the smoothness

of τ (Mysore et al., 2021), the length of τ , the difficulty
of goal finished by τ , etc. When the right-hand side of the
operator is a set of demonstrations D′ = {τ1, τ2, · · · , τm},
the update operator is defined as D ↑ D′ = ((D ↑ τ1) ↑
τ2 · · ·) ↑ τm.

The demonstration update operator guarantees that the aver-
age quality described by f over D ↑f D′ is no less than that
of D. The quality improvement of demonstrations helps to
mitigate both the over-constrained exploration problem and
the primacy bias problem. Therefore, the ideal indicator
function should express the same optimization objective
as the reward function. This alignment ensures that the
demonstrations and the policy are optimized in the same
direction during iterative training, thus enabling IRPO to
achieve its best performance. Nevertheless, our experiments
reveal that IRPO exhibits robustness to the design of the
indicator function, with even simple indicator functions
yielding impressive results, as detailed in Section 5.6 and
Appendix F.

5. Experiments
5.1. Experimental Setups

We conduct experiments encompassing three distinct control
tasks. Articulated-body control: Halfcheetah and Hopper
tasks on the MuJoCo physics engine with D4RL (Fu et al.,
2020) datasets. Robotic Arm Control: Modified Reach
task (Gallouédec et al., 2021) on the Bullet physics engine
with demonstrations generated by a PID controller. Fixed-
wing UAV Attitude Control: Attitude control task in a
self-designed fixed-wing UAV environment with demonstra-
tions generated by a PID controller and human play data
(Wang et al., 2023a). All four tasks are finite-horizon MDPs
with reward functions that fully or substantially satisfy the
conditions outlined in Theorem 4.2. The demonstrations
utilized in these experiments are imperfect. Further details
are available in Appendix C.

It is crucial to acknowledge that the extent of fluctuation
during the transition from offline IL to online RL is con-
tingent upon various factors, encompassing environmental
dynamics, demonstrations, offline and online learning al-
gorithms, among others. In our specific experimental set-
tings: Halfcheetah exemplifies single-goal easy-transition
tasks. Hopper represents single-goal hard-transition tasks.
Reach portrays multi-goal easy-transition tasks. Attitude
control characterizes multi-goal hard-transition tasks. For
supporting experimental evidence delineating the distinc-
tions among these four tasks, please refer to Appendix C.3.6.
The inclusion of this diverse set of tasks in our experiments
is deliberate, aiming to demonstrate the broad applicability

5

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Table 1. Comparisons on different tasks. The expected return of policy is shown for Halfcheetah, Hopper, and Reach, while the success
rate is for the attitude control task. All results of IRPO come from the second training iteration. The mean and variance are shown over 5
random seeds. Optimal values are highlighted in bold, and sub-optimal values are underlined.

Method Venue Operation on KL Halfcheetah Hopper Reach Attitude control

BC Neural computation (1991) - 4967.05±36.88 1673.42±175.23 -42.68±1.26 0.17±0.01
AlphaStar Nature (2019)

fixed 6690.12±597.12 2641.55±207.13 -10.39±1.92 0.38±0.02VPT NeurIPS (2022)
PIRLNAV CVPR (2023)

Reincarnating RL NeurIPS (2022) annealed 6850.23±679.10 2586.6±276.5 -9.34±2.54 0.30±0.02TGRL ICML (2023)
PROTO ArXiv (2023) EMA 6954.97±606.67 2656.11±222.7 -7.36±2.07 0.32±0.01

IRPO (Ours) - iterative 7678.4±60.81 3044.7±48.65 -5.32±0.43 0.54±0.01
Average improvement over 3 baselines (%) 10.40 14.63 38.72 42.11

and versatility of the IRPO.

5.2. Main Results

We evaluate IRPO against the following baselines: (1)
IL+RL with fixed regularization: This method involves
fine-tuning the policy learned offline by IL with KL-
regularized RL in the online learning stage. Commonly
employed in approaches like AlphaStar, VPT, PIRLNAV, etc.
(2) IL+RL with annealed regularization: This method
incorporates an annealed KL regularization during train-
ing to gradually shift the focus of policy optimization to-
wards the original RL objective (such as Reincarnating RL
(Agarwal et al., 2022), TGRL (Shenfeld et al., 2023)). (3)
IL+RL with exponential moving average (EMA) reg-
ularization: This method employs a fixed KL regular-
ization while applying an exponential moving average to
the reference policy by the current training policy, i.e.,
π0
k ← απ0

k+(1−α)πk, α ∈ [0, 1] (such as PROTO (Li et al.,
2023)). Implementation details are provided in Appendix D.

Table 1 presents the results on the four tasks. Notably, IRPO
outperforms all three baseline algorithms across all four
tasks. This suggests that IRPO exhibits effectiveness in
learning superior policies from imperfect demonstrations
and exhibits applicability across a diverse range of tasks,
regardless of their complexity in transitioning from offline
to online. We also present an analysis on the convergence
rate of IRPO against the aforementioned baselines in Ap-
pendix G.3.2. The underlying reasons for this superiority
are elaborated in the subsequent sub-sections.

5.3. KL Regularization Over-Constrains the Policy’s
Exploration

To support Theorem 4.2, we train policies on the four tasks
with different KL regularization. Stability in the training
process is observed with stronger KL regularizations, as
depicted in the results illustrated in Fig. 8 (Appendix G.1)
and Fig. 12 (Appendix G.3). It is noteworthy that while

Table 2. KL(π, π0) and J(π) from training with different
strengths of KL regularization. The mean and variance are shown
over 5 random seeds. Optimal values are highlighted in bold, and
sub-optimal values are underlined.

Task λ KL(π, π0) J(π)

H
al

fc
he

et
ah +∞ 0.0±0.0 4967.04±36.88

100 0.06±0.01 5708.93±80.10
10−1 1.28±0.13 6690.12±597.12
10−2 6.76±0.88 7392.39±897.89
10−3 28.07±24.49 7411.44±836.34

H
op

pe
r

+∞ 0.0±0.0 1673.42±175.23
100 0.09±0.02 2619.40±209.39
10−1 1.61±0.10 2641.55±207.13
10−2 8.35±1.31 2046.55±853.14
10−3 40.13±18.72 1626.12±770.63

R
ea

ch

+∞ 0.0±0.0 -42.68±1.25
100 0.21±0.10 -41.61±0.73
10−1 4.74±0.68 -10.39±1.92
10−2 9.47±0.41 -2.89±0.13
10−3 41.62±5.31 -3.00±0.19

A
tti

tu
de

C
on

tr
ol +∞ 0.0±0.0 0.169±0.004

100 0.08±0.01 0.164±0.004
10−1 1.88±0.44 0.225±0.031
10−2 9.53±0.84 0.362±0.018
10−3 34.91±2.62 0.383±0.016
10−4 136.06±27.82 0.268±0.069

KL regularization enhances training stability, it simultane-
ously imposes constraints on policy improvement. Table 2
provides a detailed examination of KL values and policy
returns on the four tasks under different regularizations (We
also present a graphical representation of the table’s content
for intuitive understanding in Appendix E). The first two
columns illustrate the relationship between regularization
strength and KL values. Stronger regularization leads to
policies closely resembling the imitation policy, character-
ized by small KL values. Conversely, weaker regularization
results in policies significantly deviating from the imitation

6

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

500

1000

1500

2000

2500

3000

m
ea

n
re

tu
rn

iteration
1
2

(a) Hopper

0.0 0.5 1.0 1.5 2.0
env steps 1e8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

su
cc

es
s r

at
e

iteration
1
2
3
4

(b) Attitude control task

Figure 2. The return of policy trained by IL+RL without KL regu-
larization under varying levels of demonstration quality. Demon-
strations from later iterations are of superior quality compared to
those from earlier iterations, as detailed in Section 5.5.

policy, evident in large KL values. Consequently, the KL
regularization primarily constrains the exploration space
relative to the imitation policy.

The final two columns illustrate the relationship between
KL values and the policy’s return. For small KL values,
an increase in the KL value corresponds to an increase in
the policy’s return. This observation suggests that the KL
value acts as an upper bound on the policy’s return, and
judiciously increasing the KL value can relax this upper
bound, aligning with Theorem 4.2. However, as the KL
value becomes excessively large, the policy’s return dimin-
ishes, accompanied by an escalation in return variance. We
hypothesize that, in such cases, the limiting factor for policy
optimization is no longer the relaxed upper bound but rather
the expanded optimization space introduced by the larger
KL value, making the search for superior policies near the
imitation policy more challenging.

5.4. Imperfect Demonstrations Induce the Primacy Bias
for Online Learning

To demonstrate the emergence of the primacy bias problem
during the online learning stage, we train imitation policies
using IL with demonstrations of varying qualities. Subse-
quently, we initialize the policy with the imitation policy
and fine-tune it without KL regularization. Experiments
are conducted on Hopper and attitude control, representing
challenging tasks in the transition from offline to online
learning. The demonstrations are sourced from different
iterations of IRPO, with later iterations producing higher-
quality demonstrations compared to earlier iterations, as
detailed in Section 5.5.

Fig. 2 illustrates that demonstrations of higher quality corre-
spond to superior offline and online learning policies. The
leftmost points in both charts of Fig. 2 depict the perfor-
mance of offline learning, indicating that higher-quality
demonstrations correspond to better performance of the
imitation policy. Given that the only distinction between

online learning iterations is the policy initialization, the re-
sults from both the Hopper and attitude control experiments
indicate that initializing the online learning policy with a
higher-performing imitation policy leads to superior online
learning performance. This observation implies that higher-
quality demonstrations mitigate the primacy bias problem
during online learning.

5.5. IRPO Improves Policy’s Expected Return
Progressively

To illustrate the effectiveness of IRPO, we present an analy-
sis of the quantity and quality of demonstrations, as well as
the policy performance during iterations of attitude control
tasks in Fig.3. Fig. 3a shows that demonstrations progres-
sively cover an increasing number of goals as IRPO iterates.
Fig. 3b shows that demonstrations progressively encompass
more challenging goals as IRPO iterates. Fig. 3c shows that
both offline and online-learned policies exhibit an increas-
ing capability to achieve more goals. Additionally, online
learning contributes to the policy’s capability to achieve
more goals within a single iteration. Fig. 3d shows that
both offline and online-learned policies exhibit an improved
capability to achieve increasingly challenging goals. Addi-
tionally, online learning contributes to the policy’s capability
to achieve more difficult goals within a single iteration.

To summarize, Fig. 3a and 3b suggest that IRPO can pro-
gressively improve demonstration quality as training iter-
ates. Higher demonstration quality helps to mitigate: (1)
The over-constrained exploration problem. The data illus-
trated in the blue charts of Fig. 3c and 3d indicates that a
higher quality of demonstrations contributes to obtaining a
higher-performance offline learning policy. According to
Theorem 4.2, improving J(π0

k) leads to an enhancement
in J(π∗

k). This relationship is also evident in the orange
charts of Fig. 3c and 3d, displaying a similar upward trend
with the blue ones. (2) The primacy bias problem. Fig. 2b
illustrates that when online learning fine-tunes the policy
without KL regularization, the better the offline learning pol-
icy performs, the better the online learning policy performs.
This observation indicates that high-quality demonstrations
contribute to mitigating the primacy bias problem. Exper-
iments on Reach show similar conclusions. The relevant
results are listed in Appendix G.2.

5.6. Ablation Study

In this section, we answer the following questions about
ablation study: (1) Does iteration with rolling out data per-
form better than iteration with remaining policy? (2) How
many demonstrations should be rolled out for the next it-
eration? (3) Which part of goal space should be focused
on rolling out demonstrations for multi-goal problems? (4)
How to set the strength of KL regularization for different

7

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.2 0.4 0.6 0.8 1.0
goal difficulty

0

200

400

600

800

1000

1200

1400

1600

#g
oa

ls
in

 d
em

on
st

ra
tio

n

iteration
4
3
2
1
all goals

(a) histogram of goals on goal dif-
ficulty

1 2 3 4
iteration

0.2

0.4

0.6

0.8

1.0

go
al

 d
iff

icu
lty

(b) distribution of goal difficulty
of new-added trajectories

1 2 3 4
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

su
cc

es
s r

at
e

algorithm
BC
IRPO

(c) number of goals finished by
BC and IRPO

1 2 3 4
iteration

0.2

0.4

0.6

0.8

1.0

go
al

 d
iff

icu
lty

algorithm
BC
IRPO

(d) distribution of difficulty of
goals finished by BC and IRPO

Figure 3. Changes in the quantity and quality of demonstrations and performance of policies during iterations. The columns labeled ”all
goals” in the leftmost graph refer to the distribution of all goals discretized with the method detailed in C.3.5 over goal difficulty. The goal
difficulty is detailed in Appendix C.3.4. Results come from experiments on attitude control over 5 random seeds.

2 3 4
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

su
cc

es
s r

at
e

policy initialization
*
k

k

(a) Success rate of policies with
different remains for the next iter-
ation.

10% 50% 100%
fraction of 0

E

0.0

0.1

0.2

0.3

0.4

0.5

su
cc

es
s r

at
e

algorithm
BC
IRPO

(b) Success rate of policies with
different quantity of demonstra-
tions.

easy medium hard
goal difficulty covered by demonstrations

0.0

0.1

0.2

0.3

su
cc

es
s r

at
e

algorithm
BC
IRPO

(c) Success rate of policies with
demonstrations from different part
of goal distribution.

1 2 3 4
iteration

+

100

10 1

10 2

10 3

10 4

0

0.17 0.37 0.42 0.43

0.16 0.45 0.49 0.52

0.22 0.54 0.68 0.72

0.36 0.51 0.62 0.61

0.38 0.48 0.57 0.66

0.27 0.46 0.56 0.59

0.26 0.48 0.44 0.56 0.2

0.3

0.4

0.5

0.6

0.7

(d) Success rate of policies with
different strength of KL regular-
izations in different iterations.

Figure 4. Ablation studies of IRPO. Results come from experiments on attitude control over 5 random seeds.

iterations? (5) How does the indicator function influence the
performance? (6) How well does IRPO perform on easily
accessible imperfect demonstrations, such as human play
data?

Data is more valuable than policy for the next training
iteration. To better understand how IRPO raises the upper
bound of policy optimization through iterative training or
what should remain for the next iteration, we design the
following experiments: (1) Remain π∗

k for the next itera-
tion. Specifically, we initialize πk+1 with π∗

k, then fine-tune
πk+1 by RL with KL regularization DKL(πk+1, π

∗
k). (2)

Remain Dk for the next iteration. The training process is
identical to that of IRPO. As Fig. 4a shows, iteration with
rolling out data contributes to achieving higher policy re-
turns. Although π0

k+1 may exhibit lower performance than
the remaining policy π∗

k, as indicated by Fig. 3c, it is cru-
cial to recognize that π0

k+1 is derived from higher-quality
demonstrations. Consequently, it is less affected by the
primacy bias problem, contributing to improved policy per-
formance through online learning. This implies that the data
rolled out by the policy learned online contributes more to
enhancing policy returns than the policy itself.

Roll out as many demonstrations as possible. To assess
the impact of the quantity of demonstrations on IRPO, we

train policies using 10% and 50% of DE and compare them
with the policy trained using all DE . Figure 4b illustrates
that increasing the quantity of demonstrations leads to better
policy performance. This implies that, when employing
IRPO, it is beneficial to sample as many demonstrations as
possible in each iteration.

Roll out demonstrations in areas with dense goal distri-
bution. To assess the impact of the distribution of goals in
demonstrations on IRPO, we train policies with demonstra-
tions on the three goal sets defined in Appendix. C.3.4. The
results indicate that the policy trained with the medium goal
set performs better than the easy and hard ones. Consider-
ing the fact that the majority of goals are distributed around
medium difficulty (Fig. 3a), we conclude that demonstra-
tions in areas with a dense goal distribution contribute to
better performance in IRPO.

Relax the KL regularization when demonstration quality
improves. To determine the appropriate strength of regu-
larization in the iteration of IRPO, we train policies with
various regularization strengths. Fig. 4d shows that for the
first iteration, where demonstration quality is relatively low,
a smaller regularization strength of 10−3 results in the best
performance. Conversely, for the last three iterations, where
demonstration quality is relatively high, a larger regulariza-

8

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Table 3. Comparison between different indicator functions on the attitude control task. smooth(τ) indicates the smoothness of trajectory τ
(Mysore et al., 2021), and length(τ) indicates the length of trajectory τ . The negative dense reward function described in Appendix C.3.3
is employed for all experiments. Results come from experiments over 5 random seeds.

f(τ)
Demonstration

(quantity ↑)
Demonstration

(trajectory length ↓)
Demonstration

(trajectory smooth ↓)
Policy

(success rate ↑)
Policy

(trajectory length ↓)
Policy

(trajectory smooth ↓)
no f(τ) 24924 193.61±128.29 7.23±5.53 0.43±0.01 285.32±131.95 17.12±16.61

f(τ) = −smooth(τ) 24924 132.07±60.37 5.76±6.35 0.42±0.05 221.27±122.67 12.74±10.58
f(τ) = −length(τ) 24924 124.64±53.07 7.42±6.38 0.54±0.01 224.88±120.59 40.94±36.61

reference: demonstrations
and policy in 1st iteration 10184 281.83±149.48 2.11±2.21 0.38±0.02 223.14±131.06 11.01±11.74

Table 4. Performance of IRPO on human play data. Results come
from experiments over 5 random seeds. Note: demonstrations in
the 1st iteration come from human and PID, while the demonstra-
tions used in the 2nd iteration are optimized by IRPO.

Data Source Iteration
Demonstration

(quantity ↑)
Demonstration

(trajectory length ↓)
Policy

(success rate ↑)
Human Play 1 613 143.71±23.91 0.29±0.02
Human Play 2 21014 133.96±51.57 0.36±0.03

PID 1 10184 281.83±149.48 0.38±0.02
PID 2 24924 124.64±53.07 0.54±0.01

tion strength of 10−1 results in the best performance. This
suggests that the strength of KL regularization should be
increased as the quality of demonstrations improves.

IRPO demonstrates robustness to the setting of indicator
functions. To assess the impact of indicator function on
IRPO, we train policies with different indicator functions
and show results with Table 3. It is evident from the results
that both not using an indicator function and using simple
indicator functions, while differing in the extent to which
they enhance the performance of the policy, still lead to
a certain degree of improvement (We provide a detailed
analysis of the experiments related to the indicator function
in Appendix F). This suggests that IRPO can effectively
enhance the quantity and quality of the demonstrations with
a simple indicator function or even without an indicator
function.

IRPO performs well on human play data. To showcase
the performance of IRPO on easily accessible imperfect
demonstrations, we collect human play data (with the de-
tailed collection method documented in Appendix G.3.1),
and compare IRPO’s performance on human play data with
that on PID-generated demonstrations. The results are pre-
sented in Table 4. As shown, despite the relatively small
quantity of human play data, which constitute only about
6% of the PID demonstrations, they exhibit higher quality.
The trajectories from human play are approximately 51%
of the length of those from the PID controller. Despite this,
IRPO is able to nearly optimize the demonstrations from
human play to a level indistinguishable from that of the PID
demonstrations by the second iteration. Specifically, the
demonstration from human play is only 15.7% less than

that from the PID, with trajectory lengths being only 7.5%
longer. In terms of policy performance, the IRPO algorithm
also demonstrates a consistent improvement in performance
when trained on human play demonstrations.

6. Conclusion and Limitations
The paper introduces the Iterative Regularized Policy Op-
timization (IRPO) method for addressing challenges in IL
arising from imperfect demonstrations. Theoretical analysis
and experimental verification expose the limitations of con-
ventional online fine-tuning with KL regularization when
demonstrations are imperfect. Two major issues, namely
over-constrained exploration and primacy bias, are identi-
fied as intrinsic issues associated with imperfect demonstra-
tions. IRPO employs iterative training and demonstration
boosting to enhance demonstration quality. Iterative training
progressively improves the policy’s expected return, while
demonstration boosting involves rolling out demonstrations
with the online policy to mitigate both over-constrained
exploration and primacy bias problems. Theoretical sup-
port for IRPO’s effectiveness is provided through Theorems
and Lemmas, complemented by empirical evidence from
experiments on diverse tasks.

Some limitations should be addressed in future work. Firstly,
the design of the indicator function in the demonstration
boosting mechanism relies on our understanding of the task.
Although our experiments demonstrate that even without or
with very simple indicator functions, the iterative training
of IRPO is beneficial, it remains an open question whether
a more carefully designed indicator function could lead
to faster convergence and better-performing policies. Sec-
ondly, while we believe that IRPO is a general framework
for RL training based on imperfect demonstrations, our ex-
perimental validation has been limited to on-policy RL. It
is still unclear whether IRPO is applicable to off-policy RL
settings.

Acknowledgements
This work was supported by the National Key R&D Program
of China (No. 2021ZD0112904).

9

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Impact Statement
IRPO, integrating imitation learning and reinforcement
learning, adeptly tackles challenges presented by imper-
fect data, extending the applicability of both paradigms.
Furthermore, IRPO emerges as an efficient learning method-
ology, demonstrating proficiency in acquiring high-quality
policies for complex problems. It is essential to underscore
that IRPO enhances data quality iteratively throughout its
training process, underscoring the paramount importance
of data in the machine learning domain. Nevertheless, it is
important to note that the data sampled by IRPO may not
align perfectly with human demonstrations, introducing a
potential risk of misuse.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,

and Bellemare, M. Reincarnating reinforcement learn-
ing: Reusing prior computation to accelerate progress.
Advances in Neural Information Processing Systems, 35:
28955–28971, 2022.

Baker, B., Akkaya, I., Zhokov, P., Huizinga, J., Tang, J.,
Ecoffet, A., Houghton, B., Sampedro, R., and Clune,
J. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information
Processing Systems, 35:24639–24654, 2022.

Ball, P. J., Smith, L., Kostrikov, I., and Levine, S. Effi-
cient online reinforcement learning with offline data. In
International Conference on Machine Learning, 2023.

Belkhale, S., Cui, Y., and Sadigh, D. Data quality in imita-
tion learning. Advances in neural information processing
systems, 2023.

Brown, D., Goo, W., Nagarajan, P., and Niekum, S. Extrap-
olating beyond suboptimal demonstrations via inverse re-
inforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR,
2019.

Brown, D. S., Goo, W., and Niekum, S. Better-than-
demonstrator imitation learning via automatically-ranked
demonstrations. In Conference on robot learning, pp.
330–359. PMLR, 2020.

Fedotov, A. A., Harremoës, P., and Topsoe, F. Refinements
of pinsker’s inequality. IEEE Transactions on Information
Theory, 49(6):1491–1498, 2003.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Gallouédec, Q., Cazin, N., Dellandréa, E., and Chen, L.
panda-gym: Open-source goal-conditioned environments

for robotic learning. 4th Robot Learning Workshop: Self-
Supervised and Lifelong Learning at NeurIPS, 2021.

Gleave, A., Taufeeque, M., Rocamonde, J., Jenner, E.,
Wang, S. H., Toyer, S., Ernestus, M., Belrose, N., Em-
mons, S., and Russell, S. imitation: Clean imitation learn-
ing implementations. arXiv:2211.11972v1 [cs.LG], 2022.
URL https://arxiv.org/abs/2211.11972.

Grollman, D. H. and Billard, A. G. Robot learning from
failed demonstrations. International Journal of Social
Robotics, 4:331–342, 2012.

Hedlund-Botti, E. and Gombolay, M. C. Investigating learn-
ing from demonstration in imperfect and real world sce-
narios. In Companion of the 2023 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, pp. 769–
771, 2023.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband,
I., et al. Deep q-learning from demonstrations. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Huang, Z., Wu, J., and Lv, C. Efficient deep reinforcement
learning with imitative expert priors for autonomous driv-
ing. IEEE Transactions on Neural Networks and Learn-
ing Systems, 2022.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences and
demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Jing, M., Ma, X., Huang, W., Sun, F., Yang, C., Fang, B., and
Liu, H. Reinforcement learning from imperfect demon-
strations under soft expert guidance. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
pp. 5109–5116, 2020.

Kim, B., Farahmand, A.-m., Pineau, J., and Precup, D.
Learning from limited demonstrations. Advances in Neu-
ral Information Processing Systems, 26, 2013.

Li, J., Hu, X., Xu, H., Liu, J., Zhan, X., and Zhang, Y.-
Q. Proto: Iterative policy regularized offline-to-online
reinforcement learning. arXiv preprint arXiv:2305.15669,
2023.

Marshall, P. H. and Werder, P. R. The effects of the elimi-
nation of rehearsal on primacy and recency. Journal of
Verbal Learning and Verbal Behavior, 11(5):649–653,
1972.

10

https://arxiv.org/abs/2211.11972

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K.
Regularizing action policies for smooth control with rein-
forcement learning. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1810–1816.
IEEE, 2021.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International conference on machine learn-
ing, pp. 16828–16847. PMLR, 2022.

Oh, H., Sasaki, H., Michael, B., and Matsubara, T. Bayesian
disturbance injection: Robust imitation learning of flex-
ible policies for robot manipulation. Neural Networks,
158:42–58, 2023.

Pomerleau, D. A. Efficient training of artificial neural net-
works for autonomous navigation. Neural computation,
3(1):88–97, 1991.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Ramrakhya, R., Batra, D., Wijmans, E., and Das, A. Pirlnav:
Pretraining with imitation and rl finetuning for objectnav.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 17896–17906,
2023.

Rohatgi, V. K. and Saleh, A. M. E. An introduction to
probability and statistics. John Wiley & Sons, 2015.

Rudner, T. G., Lu, C., Osborne, M. A., Gal, Y., and Teh, Y.
On pathologies in kl-regularized reinforcement learning
from expert demonstrations. Advances in Neural Infor-
mation Processing Systems, 34:28376–28389, 2021.

Sasaki, F. and Yamashina, R. Behavioral cloning from noisy
demonstrations. In International Conference on Learning
Representations, 2020.

Schmitt, S., Hudson, J. J., Zidek, A., Osindero, S., Doersch,
C., Czarnecki, W. M., Leibo, J. Z., Kuttler, H., Zisserman,
A., Simonyan, K., et al. Kickstarting deep reinforcement
learning. arXiv preprint arXiv:1803.03835, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shenfeld, I., Hong, Z.-W., Tamar, A., and Agrawal, P. Tgrl:
An algorithm for teacher guided reinforcement learning.
In International Conference on Machine Learning, pp.
31077–31093. PMLR, 2023.

Shukla, D., Keshmiri, S., and Beckage, N. Imitation learning
for neural network autopilot in fixed-wing unmanned
aerial systems. In 2020 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 1508–1517.
IEEE, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tsurumine, Y. and Matsubara, T. Goal-aware generative ad-
versarial imitation learning from imperfect demonstration
for robotic cloth manipulation. Robotics and Autonomous
Systems, 158:104264, 2022.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

Vieillard, N., Kozuno, T., Scherrer, B., Pietquin, O., Munos,
R., and Geist, M. Leverage the average: an analysis of
kl regularization in reinforcement learning. Advances
in Neural Information Processing Systems, 33:12163–
12174, 2020.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wang, C., Fan, L., Sun, J., Zhang, R., Fei-Fei, L., Xu,
D., Zhu, Y., and Anandkumar, A. Mimicplay: Long-
horizon imitation learning by watching human play. In
Conference on Robot Learning, pp. 201–221. PMLR,
2023a.

Wang, S., Yang, Q., Gao, J., Lin, M. G., CHEN, H., Wu,
L., Jia, N., Song, S., and Huang, G. Train once, get
a family: State-adaptive balances for offline-to-online
reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023b.

Wang, X., Song, J., Qi, P., Peng, P., Tang, Z., Zhang, W.,
Li, W., Pi, X., He, J., Gao, C., et al. Scc: An efficient
deep reinforcement learning agent mastering the game
of starcraft ii. In International conference on machine
learning, pp. 10905–10915. PMLR, 2021a.

Wang, Y., Xu, C., Du, B., and Lee, H. Learning to weight
imperfect demonstrations. In International Conference
on Machine Learning, pp. 10961–10970. PMLR, 2021b.

11

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Wu, Y.-H., Charoenphakdee, N., Bao, H., Tangkaratt, V.,
and Sugiyama, M. Imitation learning from imperfect
demonstration. In International Conference on Machine
Learning, pp. 6818–6827. PMLR, 2019.

Xu, H., Zhan, X., Yin, H., and Qin, H. Discriminator-
weighted offline imitation learning from suboptimal
demonstrations. In International Conference on Machine
Learning, pp. 24725–24742. PMLR, 2022.

Zheng, B., Verma, S., Zhou, J., Tsang, I. W., and Chen, F.
Imitation learning: Progress, taxonomies and challenges.
IEEE Transactions on Neural Networks and Learning
Systems, (99):1–16, 2022.

12

Iterative Regularized Policy Optimization with Imperfect Demonstrations

A. Proof of Theorem 4.2
Proof.

|J(π)− J(πE)|

=

∣∣∣∣∑
s

dπ(s)r(s)−
∑
s

dπE (s)r(s)

∣∣∣∣
≤ max

s
|r(s)|

∑
s

|dπ(s)− dπE (s)|

= max
s
|r(s)| · ∥dπ − dπE∥1

≤ max
s
|r(s)|

√
2DKL(dπ, dπE)

≤ max
s
|r(s)|

√√√√2
1

H

H−1∑
t=0

(H − t)D
s∼dtπ
KL

(
π(·|s), πE(·|s)

)

≤ max
s
|r(s)|

√√√√2
1

H

H−1∑
t=0

HD
s∼dtπ
KL

(
π(·|s), πE(·|s)

)
= max

s
|r(s)|

√
2HDs∼dπ

KL (π(·|s), πE(·|s))

In the above proof, Pinsker’s inequality is utilized for the second inequality, and Lemma 4.1 is applied for the third. It is
noteworthy that the provided proof is applicable to cases where the expected return is computed either as the expected sum
of rewards or the expected sum of discounted rewards, with only variations in constants.

B. Proof of Theorem 4.3
We begin by presenting Lemma B.1 (Li et al., 2023), which provides the performance bound of iterative policy regularization.

Lemma B.1 ((Li et al., 2023)). Define Qk as the action-value of policy πk obtained the kth iteration by optimizing the
Objective:

πk ← argmax
π

E

[
H−1∑
t=0

γt

(
r(st, at)− λ log

(π(at|st)
πk−1(at|st)

))]
, (8)

π0 as the pretrained policy and Q0 the corresponding action-value. Let vλmax := rmax+λ ln |A|
1−γ , vmax := v0max, ϵj is the

approximation error of value function at jth iteration, then:

∥Q∗ −Qk∥∞ ≤
2

1− γ

∥∥∥∥ 1

k + 1

k∑
j=0

ϵj

∥∥∥∥+
4

1− γ

vλmax

k + 1
, k ∈ N.

Then we give the proof of Theorem 4.3.

Proof. Suppose the optimal policy π∗ and the corresponding action-value Q∗, the initial state s0, then the optimal return is
J(π∗) = Q∗(s0, a

∗), where a∗ = π∗(s0) = argmaxaQ
∗(s0, a). For the policy πk trained with Eq. 8 in the kth iteration

and a prediction error ∆, we discuss the difference in J(πk) and J(π∗):

(1) ∀a ∈ A \ a∗, if Qk(s0, a) = Q∗(s0, a) + ∆ ≤ Q∗(s0, a
∗)−∆ = Qk(s0, a

∗), then πk will select a∗ and obtains the
return Q∗(s0, a

∗), which means J(πk) = J(π∗);

(2) ∃a ∈ A \ a∗, if Qk(s0, a) = Q∗(s0, a) + ∆ ≥ Q∗(s0, a
∗)−∆ = Qk(s0, a

∗), then πk will select a and obtains the
return Q∗(s0, a), and |J(πk)− J(π∗)| = |Q∗(s0, a)−Q ∗ (s0, a∗)| ≤ 2∆.

13

Iterative Regularized Policy Optimization with Imperfect Demonstrations

The prediction error is bounded: ∆ ≤ ∥Q∗ −Qk∥∞. With Lemma B.1, we have:

|J(πk)− J(π∗)| ≤ 4

1− γ

∥∥∥∥ 1

k + 1

k∑
j=0

ϵj

∥∥∥∥+
8

1− γ

vλmax

k + 1
, k ∈ N.

C. Experimental Tasks
C.1. Halfcheetah and Hopper

We employ Halfcheetah-medium-v2 and Hopper-medium-v2, as defined by D4rl. Both tasks fall under finite MDPs with a
maximum step limitation of 1000.

C.1.1. REWARD FUNCTION

The reward function of Halfcheetah-medium-v2 is defined as reward = forward reward − ctrl cost, where
forward reward = forward reward weight ∗ (x-coordinate before action − x-coordinate after action)/dt
and ctrl cost = ctrl cost weight ∗ sum(action2).

The reward function of Hopper-medium-v2 is defined as reward = healthy reward + forward reward − ctrl cost,
where healthy reward is a scalar defined by the hopper’s state and forward reward and ctrl cost is the same as
Halfcheetah-medium-v2.

The reward functions of Halfcheetah and Hopper depend mainly on states and partially on the gain of action to penalize
the agent if it takes too large actions. As the penalties are usually at least one order of magnitude smaller than rewards
based on states, the reward functions of Halfcheetah and Hopper substantially satisfy the applicability of Theorem 4.2. We
experiment on Halfcheetah and Hopper to demonstrate that Theorem 4.2 empirically applies to these reward functions.

C.1.2. DEMONSTRATIONS

The corresponding datasets of Halfcheetah-medium-v2 and Hopper-medium-v2 are imperfect as they are sampled by: first
training a policy online using Soft Actor-Critic (SAC), early-stopping the training, and collecting 1M samples from this
partially-trained policy (Fu et al., 2020). The demonstrator policy’s performance is about one-third of that of a well-trained
SAC policy (Fu et al., 2020).

C.2. The Reach Task

We use the end-effector displacement control mode, in which the action corresponds to the displacement of the end-effector,
provided by panda-gym.

C.2.1. REWARD FUNCTION

The reward function of Reach is defined as r = 0 if reaches the goal, else r = −1. It’s a kind of sparse reward that
encourages the agent to reach the goal as quickly as possible. It depends only on states, satisfying the applicability of
Theorem 4.2.

C.2.2. TERMINATION CONDITION

The definition of the Reach task is the same as panda-gym except that: (1) a more precise termination condition is used:
the parameter goal range is changed from 0.3 to 0.01. (2) a larger goal space is used: the parameter distance threshold
is changed from 0.05 to 0.3. Besides, the task has a max step limitation of 50. This version of Reach is more difficult for
learning policy.

14

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Table 5. Parameters used to discretize the goal space
(a) Reach

min max ∆

x -0.15 0.15 0.02
y -0.15 0.15 0.02
z 0 0.3 0.02

#goals: 4096

(b) Attitude control

min max ∆

v 100 300 10
µ -85 85 5
χ -170 170 5

#goals: 50715

C.2.3. DEMONSTRATIONS

The goal space is discretized with parameters listed in Table 5a. Given the desired position (dx, dy, dz) and the current
position (x, y, z) of the end-effector, the action (ax, ay, az) is calculated by the following PID controller

ax = ηx(dx − x)
ay = ηy(dy − y)
az = ηz(dz − z)

(9)

where ηx, ηy, ηz are the coefficient of the proportional corresponding to x, y, z. In experiment, we set ηx, ηy, ηz all to 1.5.

The above PID controller samples 2621 trajectories from 4096 goals with an average length of 43.03. These 2621 successful
trajectories form the DE . DE are imperfect: firstly, the quantity of demonstrations is limited with only about 64% goals
successfully sampled; secondly, the quality of demonstrations is low as a well-trained policy can usually finish the goal
within 5 steps.

C.3. The Fixed-Wing UAV Attitude Control Environment

The fixed-wing UAV’s attitude control task is to target its velocity vector to a target velocity vector.

C.3.1. STATE AND ACTION SPACE

The state consists of pitch angle θ, roll angle ϕ, yaw angle ψ, flight path azimuth angle χ, flight path elevator angle µ,
altitude h, roll angular velocity p, true airspeed v, and goal (vg, µg, χg). The action consists of ail, ele, rud, pla, which
denotes the actuator position of the aileron, elevator, rudder, and power level actuator.

C.3.2. TRANSITION

The action (ail, ele, rud, pla) is sent to the Flight Dynamics Model (FDM) to get the next state with the F-16 model. The
episode terminates when triggers one of the following two conditions: (1) if v, µ, χ is close to (vg, µg, χg) within error of
ev, eµ, eχ; (2) if does not trigger the first condition for Tmax steps.

C.3.3. REWARD FUNCTION

The reward function is designed as

rg,t = −(wv
∥v⃗t − v⃗g∥v

σv
+ wd

∥v⃗t − v⃗g∥d
σd

), (10)

where wv ∈ [0, 1], wd ∈ [0, 1], wv + wd = 1.0 are weight factors for velocity and direction, σv, σd are scaling factors for
velocity and direction, ∥.∥v calculates the difference in modulus of two velocity vectors, and ∥.∥d calculates the difference
in direction of two velocity vectors. The above reward function depends only on states, satisfying the applicability of
Theorem 4.2.

15

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

0

2000

4000

6000

8000

10000

m
ea

n
re

tu
rn

algorithm
BC
BC+RL
RL

(a) Halfcheetah

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

0

500

1000

1500

2000

2500

m
ea

n
re

tu
rn

algorithm
BC
BC+RL
RL

(b) Hopper

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

50

40

30

20

10

0

m
ea

n
re

tu
rn algorithm

BC
BC+RL
RL

(c) Reach

0.0 0.5 1.0 1.5 2.0
env steps 1e8

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

su
cc

es
s r

at
e algorithm

BC
BC+RL
RL

(d) Attitude control

Figure 5. Comparison among BC, RL, and BC+RL on the four tasks.

Table 6. Characteristics of the four experimental tasks.

Task Task goal Transition fluctuation

Halfcheetah single-goal small
Hopper single-goal large
Reach multi-goal small

Attitude control multi-goal large

C.3.4. GOAL DIFFICULTY

In order to evaluate the quality of demonstrations in the following sections, we introduce the goal difficulty

dv(g, v0) = αv + (1− αv)
|vg − v0|

|vmax − vmin|
, (11)

where αv ∈ [0, 1) is a base value of difficulty for v. And the same is for dµ(g, µ0) and dχ(g, χ0). Consequently, the
difficulty of the goal is defined as d(g, v0, µ0, χ0) = dv(g, v0) · dµ(g, µ0) · dχ(g, χ0), which describes the magnitude of
changes in the UAV’s state variables.

Based on Eq. 11, we sort all goals based on their difficulty and define the following three goal sets: the easy goal set,
comprising the 100 simplest goals; the medium goal set, consisting of goals with difficulty values ranked between 3000 and
3100; and the difficult goal set, comprising goals with difficulty values ranked between 7000 and 7100.

C.3.5. DEMONSTRATIONS

A PID controller is used to sample trajectories. For convenience, the goal space is discretized with parameters listed in Table
5b. Of the 50715 discretized goals, 10184 trajectories are successfully sampled with an average length of 282.01. These
10184 successful trajectories form the DE . DE are imperfect: firstly, the quantity of demonstrations is limited with only
about 20% goals successfully sampled; secondly, the quality of demonstrations is low as a well-trained policy can usually
finish the goal within 150 steps.

C.3.6. COMPARISON ABOUT DIFFICULTY IN TRANSITION FROM OFFLINE TO ONLINE ON THE FOUR TASKS

To show the differences of the four tasks, we compare BC, RL, and BC+RL (train an imitation policy with BC first, then
fine-tune this policy with RL without regularization) and show the results in Fig. 5. Note that the degree of fluctuation in the
transition from offline to online is determined by various factors, including environment dynamics, demonstrations, offline
learning objectives, online learning objectives, and so on. In our settings, the four tasks have different training process. For
the two single-goal problems, the return of policy can be directly improved by RL on Halfcheetah but suffers a drop and
can never be recovered to the original level on Hopper. This suggests that Hopper is more challenging than Halfcheetah in
our settings when transitioning from offline to online. For the two multi-goal problems, the return of policy can be directly
improved by RL on Reach but suffers a drop and can be recovered to the original level through a long time of training on the
attitude control task. This suggests that attitude control is more challenging than Reach in our settings when transitioning
from offline to online.

Table. 6 summarizes the characteristics of the four tasks in our settings: (1) Halfcheetah represents single-goal and easy-

16

Iterative Regularized Policy Optimization with Imperfect Demonstrations

Table 7. Parameters used in BC
(a) Halfcheetah & Hopper

Parameter Value

l2 weight 10−4

ent weight 10−2

batch size 256
epochs 100

(b) Reach

Parameter Value

l2 weight 10−4

ent weight 10−2

batch size 256
epochs 10

(c) Attitude control

Parameter Value

l2 weight 0
ent weight 10−2

batch size 4096
epochs 300

Table 8. Parameters used in PPO
(a) Halfcheetah & Hopper

Parameter Value

ent coef 10−4

gamma 0.98
gae lambda 0.92

lr 10−4

batch size 64
train steps 1.25× 106

rollout process num 1
n steps 256

n epochs 5
use sde True

normalize advantage True

(b) Reach

Parameter Value

ent coef 10−4

gamma 0.98
gae lambda 0.92

lr 10−4

batch size 64
train steps 1.25× 106

rollout process num 1
n steps 256

n epochs 5
use sde True

normalize advantage True

(c) Attitude control

Parameter Value

ent coef 10−2

gamma 0.995
gae lambda 0.95

lr 10−4

batch size 4096
train steps 5× 108

rollout process num 64
n steps 2048

n epochs 5
use sde True

normalize advantage True

transition tasks that are easy to optimize without a drop or can be easily recovered from a drop when transitioning from
offline to online learning; (2) Hopper represents single-goal and hard-transition tasks that suffer a drop and are hard to
recover from a drop when transitioning from offline to online learning; (3) Reach represents multi-goal and easy-transition
tasks with a similar optimization process as Halfcheetah; (4) Attitude control represents multi-goal and hard-transition tasks
with a similar optimization process as Hopper. We experiment with these four different tasks to show the broad applicability
of IRPO.

D. Implementation Details
Behavioral Cloning (BC) (Pomerleau, 1991) is employed for offline learning and Proximal Policy Optimization (PPO)
(Schulman et al., 2017) for online learning. The Imitation framework (Gleave et al., 2022) is utilized to implement the BC
algorithm, with parameters detailed in Table 7, while the Stable Baselines3 framework (Raffin et al., 2021) is used for PPO
with parameters listed in Table 8. A fully connected network of size 256× 256 is employed for Halfcheetah, Hopper, and
Reach tasks. For attitude control, a 128× 128 fully connected network is used for the first and second training iterations,
and a larger architecture of 256× 256× 128× 128× 64 for the third and fourth iterations. The Tanh activation function is
applied throughout all training processes.

As offline imitation learning only learns a policy network, we add a warm-up for the value network at the beginning of
online learning (Wang et al., 2021a; Ramrakhya et al., 2023). When the learning transitions from offline to online, we first
freeze the policy parameter and train the value network with online samples until it converges, then proceed with the normal
RL training. For the parameter λ, we use 10−1 for all the iterations for Halfcheetah, Hopper, and Reach, 10−3 for the first
iteration of Attitude control, and 10−1 for the last three iterations.

E. An Intuitive Explanation of Theorem 4.2
In this section, we present two sets of figures to better illustrate the conclusions related to Theorem 4.2.

In our scenario, as the expert policy πE is imperfect, we aim for J(π) to outperform J(πE) as much as possible. Theorem 4.2

17

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0 10 20 30 40 50
KL(, E)

0

10

20

30

40

J(
)

J(
E)

seed
1
2
3
4
5

(a) Reach

0 25 50 75 100 125 150 175
KL(, E)

0.00

0.05

0.10

0.15

0.20

J(
)

J(
E)

seed
1
2
3
4
5

(b) Attitude Control

Figure 6. Relationship between KL(π, π0), and J(π)− J(πE).

inf 100 10 1 10 2 10 3

0

10

20

30

40

J(
)

J(
E)

0

10

20

30

40
KL

(
,

E)

(a) Reach

inf 100 10 1 10 2 10 3 10 4

0.00

0.05

0.10

0.15

0.20

J(
)

J(
E)

0

20

40

60

80

100

120

140

160

KL
(

,
E)

(b) Attitude Control

Figure 7. Relationship between λ, KL(π, π0), and J(π)− J(πE). Results come from experiments over 5 random seeds.

indicates that the KL divergence DKL(π, πE) will constrain the improvement in J(π) over J(πE), with a maximum

improvement of maxs |r(s)|
√

2HDs∼dπ

KL (π(·|s), πE(·|s)).

Firstly, we employ line graphs to directly depict the relationship between J(π)− J(πE) and DKL(π, πE). Fig. 6a presents
the results on Reach. It is evident that as the DKL(π, πE) increases, the improvement in J(π) relative to J(πE) becomes
more pronounced. Secondly, we utilize a combined graph, as depicted in Fig. 7a, where the KL regularization strength
λ is used as the abscissa. The box graph illustrates the relationship between λ and J(π) − J(πE), while the line graph
shows the relationship between λ and DKL(π, πE). The result shows that as λ decreases, DKL(π, πE) increases, and
the improvement in J(π) relative to J(πE) also increases correspondingly. In summary, the above experimental results
corroborate the validity of the relationship expressed in Theorem 4.2 between J(π)− J(πE) and DKL(π, πE).

Furthermore, we present results on Attitude Control in Fig. 6b and 7b. There is a slight discrepancy in the results compared
to the Reach task. As the KL divergence DKL(π, πE) increases, the improvement in J(π) relative to J(πE) initially
increases and then diminishes. The experimental analysis is consistent with the last paragraph of Section 5.3.

F. Discussion on Indicator Function
The design of f(τ) is aimed at consistently enhancing the quality of demonstrations, thereby addressing the over-constrained
exploration and primacy bias problems that arise from imperfect demonstrations. In our experiments, for the two single-goal
tasks, Halfcheetah and Hopper, we directly replace the demonstrations without employing f(τ). For the two multi-goal tasks,
Reach and Attitude Control, we use the opposite number of trajectory length as the f(τ). Below, we offer a comprehensive
explanation of the points discussed above.

Firstly, the design of f(τ) only influences multi-goal tasks. For single-goal tasks represented by Halfcheetah and Hopper,
if we optimize a policy from π to π∗ such that the expected return satisfies J(π∗) > J(π), then under the same conditions
for generating demonstrations, trajectories produced by π∗ will have a higher expected return and are thus better suited
as new demonstrations. For multi-goal tasks like Reach and Attitude Control, although the expected return may satisfy

18

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

4000

5000

6000

7000

8000

m
ea

n
re

tu
rn

inf
1
0.1
0.01
0.001

(a) Halfcheetah, iteration=1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

6000

6500

7000

7500

8000

8500

m
ea

n
re

tu
rn

inf
1
0.1
0.01
0.001

(b) Halfcheetah, iteration=2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

500

1000

1500

2000

2500

3000

m
ea

n
re

tu
rn

inf
1.0
0.1
0.01
0.001

(c) Hopper, iteration=1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

1500

1750

2000

2250

2500

2750

3000

m
ea

n
re

tu
rn

inf
1.0
0.1
0.01
0.001

(d) Hopper, iteration=2

Figure 8. Training process with different strength of regularizations on Halfcheetah and Hopper. The curves are smoothed by the
gaussian filter1d function from scipy with simga=5. Results come from experiments over 5 random seeds.

Eg[J(π
∗)] > Eg[J(π)], for a specific goal ĝ, the trajectory τ∗ĝ produced by π∗ may not be better than the trajectory τĝ

produced by π. Therefore, the indicator function f(τ) primarily plays a role in multi-goal tasks.

Secondly, f(τ) does not impact the quantity of demonstrations and only affects the quality of demonstrations, as
trajectories that can complete new goals should always be added to demonstrations. Therefore, even if it is challenging to
design a reasonable f(τ) in conjunction with the task, IRPO can still benefit from the increased number of demonstrations
without f(τ), and the iterative training will obtain policies with continuously improved performance.

Thirdly, a simple design for f(τ) can effectively assist IRPO in iterative training. In our experiments, since the
demonstrations consist of only state-action pairs without rewards, we employ the opposite number of trajectory length as
f(τ) (shorter trajectories receive higher scores). Although this is not directly aligned with the 0-1 sparse rewards and the
dense rewards in the range of [-1, 0] used in our experiments, it implicitly expresses the same optimization objective: to
achieve the goal as quickly as possible.

Lastly, we conduct experiments to support the above points on the challenging multi-goal task, Attitude Control,
comparing the performance with (1) no f(τ), (2) f(τ) = −length(τ), and (3) f(τ) = −smooth(τ) (where a smaller value
of smooth(τ) indicates a smoother trajectory, with the negative dense reward function as described in Appendix C.3.3).
The results are presented in Table 3.

From the results obtained, it can be observed that: (1) The quantity of demonstrations in all three sets of experiments is the
same, all increased from 10184 to 24924, confirming that f(τ) does not affect the quantity of demonstrations as we have
stated. (2) When f(τ) is not used, the average length of the demonstrations is the longest, and the smoothness is almost
identical to that with f(τ) = −length(τ). This indicates that the quality of the demonstrations is the poorest among the
three groups of experiments. Despite this, IRPO is still able to improve the policy’s success rate through iterative training,
increasing it from 0.38 to 0.43. (3) For f(τ) = −smooth(τ), as f(τ) pursues a goal that is not consistent with the reward
function, while it significantly improves the smoothness of the demonstrations, the resulting policy has a limited increase in
success rate. (4) For f(τ) = −length(τ), as f(τ) pursues a goal that is consistent with the reward function, the resulting
policy has the highest success rate.

In summary, although the design of f(τ) is expected to align with the reward function, the analysis and experimental results
indicate that even without using f(τ) or with a very simple f(τ), IRPO can effectively enhance the quantity and quality of
the demonstrations, leading to the capability of learning well-performing policies.

G. More Results
G.1. Results on MuJoCo

Fig. 8 shows the training curve of IRPO with various strengths of KL regularizations in different iterations on Halfcheetah
and Hopper.

G.2. Results on Panda-Gym

Fig. 9 shows the training curve of IRPO with various strengths of KL regularizations in different iterations on Reach.

Fig. 10 illustrates the progressive expansion of demonstration coverage over training iterations. The increasing number of

19

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

40

30

20

10

0
m

ea
n

re
tu

rn inf
1.0
0.1
0.01
0.001

(a) Reach, iteration=1

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

12

10

8

6

4

m
ea

n
re

tu
rn

inf
1.0
0.1
0.01
0.001

(b) Reach, iteration=2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
env steps 1e6

8

7

6

5

4

3

m
ea

n
re

tu
rn

inf
1.0
0.1
0.01
0.001

(c) Reach, iteration=3

Figure 9. Training process with different strength of regularizations on Reach. Results come from experiments over 5 random seeds.

xgoal

0.10
0.05

0.00
0.05

0.10

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(a) DE

xgoal

0.15 0.10 0.050.00
0.05

0.10
0.15

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(b) D1

xgoal

0.15 0.10 0.050.00
0.05

0.10
0.15

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0

10

20

30

40

50

(c) D2

Figure 10. Goal space coverage of demonstrations in Reach.

xgoal

0.15 0.10 0.050.00
0.05

0.10
0.15

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(a) π∗
1 (IRPO, iteration=1)

xgoal

0.15 0.10 0.050.00
0.05

0.10
0.15

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

(b) π∗
2 (IRPO, iteration=2)

xgoal

0.15 0.10 0.050.00
0.05

0.10
0.15

y go
al

0.15
0.10

0.05
0.00

0.05
0.10

0.15

z g
oa

l

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0

10

20

30

40

50

(c) π∗
3 (IRPO, iteration=3)

Figure 11. Goal space coverage of policies in Reach.

points reflects the expanding range of goals covered by demonstrations as IRPO iterates. Notably, the deepening color of the
points signifies shorter trajectories, indicative of improving data quality throughout the training process.

Fig. 11 shows the performance of the policy during training iterations. The policies from the initial three iterations
demonstrate the ability to complete nearly all goals. However, as training progresses, the color of the points deepens,
indicating that the policies achieve faster task completion, showcasing the iterative improvement facilitated by IRPO.

20

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.5 1.0 1.5 2.0
env steps 1e8

0.0

0.1

0.2

0.3

0.4

su
cc

es
s r

at
e

inf
1.0
0.1
0.01
0.001
0.0001

(a) iteration = 1

0.0 0.5 1.0 1.5 2.0
env steps 1e8

0.1

0.2

0.3

0.4

0.5

su
cc

es
s r

at
e

inf
1.0
0.1
0.01
0.001
0.0001

(b) iteration = 2

Figure 12. Training process with different strengths of regularizations on attitude control. The curves are smoothed by the gaussian filter1d
function from scipy with simga=5. Results come from experiments over 5 random seeds. Note that before smoothing, all curves share the
same starting point, which is the performance of the pre-trained policy, also referred to as the left endpoint of the ‘inf’ curve.

Figure 13. Four trajectories from human play data. Results come from experiments over 5 random seeds.

G.3. Results on Fixed-wing Environment

Fig. 12 shows the training curve of IRPO with various strengths of KL regularizations in different iterations on Attitude
Control.

G.3.1. EXPERIMENTS ON HUMAN PLAY DATA

We provide further experiment results on human demonstrations below. We collecte demonstrations from human experts,
totaling 18 trajectories. It is important to emphasize that these trajectories are not generated with the specific purpose of
completing an Attitude Control task. Instead, they represent ”play data” (Wang et al., 2023a), derived from experts freely
interacting with the environment. Fig. 13 presents screenshots of four such trajectories.

From these 18 trajectories, we extract a total of 613 Attitude Control demonstrations, which corresponds to approximately
2.5 hours of data. We train policies with IRPO on these human play demonstrations and compare their performance with
policies trained on demonstrations generated by the PID controller. The results of this comparison are presented and
analyzed in Section 5.6.

G.3.2. COMPARISON OF CONVERGENCE RATE BETWEEN IRPO AND BASELINES

Fig. 14 shows the training curves for IRPO (two iterations) and baselines on the Attitude Control task. On the one hand,
the results indicate that IRPO demonstrates a faster convergence rate when achieving similar levels of policy performance
compared to all baselines. On the other hand, the results suggest that IRPO requires fewer interaction steps to achieve
the same level of policy performance compared to the baselines. Additionally, even when not considering the final policy
performance, IRPO demonstrates faster convergence rate than both the annealed and EMA methods. Although IRPO
does exhibit a certain advantage in convergence rate, its overarching advantage is its ability to converge to a policy that
outperforms all the baselines.

For the above results, we give the following analysis. The annealed and EMA methods converge relatively slower during
training because they modify the KL regularization strength λ and the KL reference policy π0

k, respectively, which is
equivalent to optimizing a dynamic objective. In contrast, the fixed method, which does not change the optimization
objective, converges faster. Each iteration of IRPO is essentially akin to the fixed method. Therefore, IRPO has a certain

21

Iterative Regularized Policy Optimization with Imperfect Demonstrations

0.0 0.5 1.0 1.5 2.0
env steps 1e8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

su
cc

es
s r

at
e

algorithm
fixed
annealing
ema
IRPO

Figure 14. Training curves of IRPO and baselines on the Attitude Control. Results come from experiments over 5 random seeds.

advantage in convergence rate compared to the annealed and EMA methods. Although IRPO has a slight disadvantage in
convergence rate compared to the Fixed method, it significantly improves the performance of the policy.

22

