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Abstract
Probabilistic time series modeling based on gen-
erative models has attracted lots of attention be-
cause of its wide applications and excellent perfor-
mance. However, existing state-of-the-art models,
based on stochastic differential equation, not only
struggle to determine the drift and diffusion coef-
ficients during the design process but also have
slow generation speed. To tackle this challenge,
we firstly propose decomposable denoising dif-
fusion model (D3M) and prove it is a general
framework unifying denoising diffusion models
and continuous flow models. Based on the new
framework, we propose some simple but efficient
probability paths with high generation speed. Fur-
thermore, we design a module that combines a
special state space model with linear gated atten-
tion modules for sequence modeling. It preserves
inductive bias and simultaneously models both lo-
cal and global dependencies. Experimental results
on 8 real-world datasets show that D3M reduces
RMSE and CRPS by up to 4.6% and 4.3% com-
pared with state-of-the-arts on imputation tasks,
and achieves comparable results with state-of-the-
arts on forecasting tasks with only 10 steps.

1. Introduction
Time series modeling is very important because of its wide
applications in various domains such as intelligent system
monitoring, user behavior analysis and smart healthcare.
With the increasing complexity of modern systems, tradi-
tional sequence modeling methods like ARIMA (Shumway
et al., 2017) can not satisfy the requirements. Recently, deep
learning-based methods have made significant progress with
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the development of hardware. Among these methods, prob-
abilistic time series modeling methods have attracted lots of
attention because they can explicitly model the data distri-
bution and noise.

Generative models learn data distribution by constructing
a probability path (Shaul et al., 2023) between predefined
target distribution and data distribution. ScoreSDE (Song
et al., 2020) proposes a general framework for describing the
probability path based on the stochastic differential equation
(SDE). However, in order to obtain the SDE correspond-
ing to a certain probability path, we need to determine the
drift and diffusion coefficients through the expectation and
variance of the SDE, which may be difficult to calculate.
In addition, the generative speed of ScoreSDE is very slow
because it requires thousands of steps for simulating reverse
SDE for high sampling quality. Many training-free meth-
ods based on high-order ODE solvers (Bao et al., 2022; Lu
et al., 2022) have been proposed for fast simulation of the
reverse SDE. However, few of them consider constructing
new probability paths that combine high generation speed
and sampling quality. Therefore, designing generative mod-
els that combines accurately data distribution modeling and
high generation speed remains challenging.

Modeling of both local and global dependencies within
a sequence is of great importance for generative models-
based time series modeling tasks. Linear state space models
(SSMs) (Gu et al., 2021), which introduce strong inductive
bias on local dependencies, have been proved very effec-
tive for long-term sequence modeling. CSDI (Tashiro et al.,
2021) uses self-attention modules to extract global infor-
mation by modeling interactions at each step. However,
the quadratic complexity and the weak inductive bias of
attention make the training process expensive and slow to
converge. In addition, above methods cannot simultaneously
model local and global dependencies. Therefore, designing
sequence modeling modules that combine low computa-
tional complexity, well inductive bias and dependencies
modeling is challenging.

In order to address the issues mentioned above, we firstly
propose decomposable denoising diffusion model (D3M).
It’s a general framework that directly builds generative mod-
els based on the explicit solutions of the linear SDE. Com-
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pared with ScoreSDE (Song et al., 2020), the connection
between D3M and the probability path is more clear. It
can be decomposed and learned by two separate processes:
signal dissipation process and noise injection process. Sec-
ondly, D3M unifies existing two large classes of generative
models: denoising diffusion models (DDMs) and continu-
ous flow-based generative models. Based on the framework,
we design some new generative models with high generation
speed and sampling quality. Thirdly, we combine exponen-
tial moving average (EMA), a special state space model
with linear gated attention modules for sequence modeling.
It preserves inductive bias, low complexity and simultane-
ously models both local and global dependencies. Fourthly,
we evaluate D3M on probabilistic time series imputation
and forecasting tasks. The experimental results show that
D3M reduces RMSE and CRPS by up to 4.6% and 4.3%
compared with state-of-the-arts on imputation tasks and
achieves comparable results with state-of-the-art methods
on forecasting tasks with only 10 steps.

2. Related works
2.1. Generative models

Probabilistic time series modeling methods have achieved
great performance for various time series modeling tasks
recently. The integration of variational autoencoders (VAEs)
and Kalman filters (Krishnan et al., 2015), Gaussian process
(Fortuin et al., 2020) and RNN (Fraccaro et al., 2016) have
made great progress in various tasks. Flow-based generative
models (Kobyzev et al., 2020) are also adopted by many
methods (Rasul et al., 2020; De Brouwer et al., 2019). Re-
cently, denoising diffusion models (Ho et al., 2020) have
attracted lots of attention. They directly estimate the proba-
bility density with an unknown normalizing constant (Song
& Kingma, 2021), also called energy function. Song et al.
(2020) propose using linear SDEs to model the probability
path between data and target distribution. DDM (Huang
et al., 2023) also proposes SDE-based diffusion models
based on a specific noise schema. Recently, many diffusion
models (Yang et al., 2023; Lin et al., 2023) have been pro-
posed for further improvement of data distribution modeling
and speed acceleration.

2.2. Time series modeling

Time series modeling has attracted lots of attention in recent
years because of its wide applications in various domains
such as network traffic analysis and intelligent system mon-
itoring. Some methods (Chen et al., 2018; Salvi et al., 2022;
Kidger et al., 2020; Li et al., 2020) combine neural networks
and continuous differential equations to model temporal
dependencies. The training process based on the adjoint
sensitivity method is very slow. TCN (Yan et al., 2020;
van den Oord et al., 2016) adopts multi-layer dilated con-

volution to solve the problem mentioned above. Recently,
structured state space models (SSMs) (Gu et al., 2021; 2022)
have achieved great success for long sequence modeling.
TIDER (Liu et al., 2022) decomposes time-series data into
trend, seasonality, and noise terms based on matrix factor-
ization. In addition, attention-based methods (Zhou et al.,
2021; Du et al., 2023) have been proved very effective espe-
cially on large sequence datasets. However, the quadratic
complexity makes the training and inference process very
expensive. Recently, many methods (Alcaraz & Strodthoff,
2022; Kollovieh et al., 2024) that combine diffusion models
have achieved great performance.

3. Methodology
In this section, we firstly introduce D3M, the general frame-
work for building generative models. Then, we introduce
the network architecture for sequence modeling.

3.1. Decomposable denoising diffusion model

Without loss of generality, given a general linear SDE as

dXt = f(t)Xtdt+ g(t)dW t, (1)

where t ∈ [0, 1], W t is the standard Wiener process,
f(t)Xt and g(t) are drift and diffusion coefficients. Then
the explicit solution of Eq. (1) is

Xt = e
∫ t
0
f(s)dsX0 +

∫ t

0

e
∫ t
s
f(r)drg(s)dW s, (2)

where X0 is the initial state. Detailed derivation can be
found in chapter 4 of Applied SDEs (Särkkä & Solin, 2019).
It’s obvious that the expectation of the second term in Eq. (2)
is 0. If we want to build a probability path that evolves from
data distribution to target Gaussian distribution N (µ,Σ),
the first term and the variance of the second term in Eq. (2)
should approach to µ and Σ when t → 1. Actually, many
existing proposed score-based generative models (SGMs)
based on SDEs (Song et al., 2020; Karras et al., 2022) design
generative models following the above rules. However, the
design of new generative models based on the SDE in Eq.
(1) is inconvenient and not intuitive because f and g that
satisfy the constraints mentioned above may be difficult to
calculate. Why not directly build generative models based
on the explicit solution of linear SDEs? This is exactly the
inspiration of this paper.

3.1.1. FORWARD AND REVERSE PROCESS

For the simplicity of symbols, we can rewrite Eq. (2) as the
general form of the explicit solution of linear SDEs,

Xt =X0 +

∫ t

0

h(s)ds︸ ︷︷ ︸
Signal dissipation

+

∫ t

0

l(s,W s)dW s︸ ︷︷ ︸
Noise injection

. (3)
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Table 1. Possible selections for h(t) or H(t) and l(t,W t) or βt for D3M.

TYPE h(t) Ht CONSTRAINT 1 CONSTRAINT 2

CONSTANT µ−X0 (µ−X0)t H0 = 0 H1 = µ−X0

LINEAR at+ b at2

2 + bt H0 = 0 a
2 + b = µ−X0

TRIGONOMETRIC a sin πt
2 X0 + b − 2a

π cos πt
2 + bt+ c − 2a

π + c = 0 b+ c = µ−X0

EXPONENTIAL eat + b eat/a+ bt+ c 1/a+ c = 0 ea/a+ b+ c = µ−X0

TYPE l(t,W t) βt CONSTRAINT1 CONSTRAINT2

SQRT L
√
t Σ0 = 0 Σ1 = Σ

LINEAR
√
2LW t t Σ0 = 0 Σ1 = Σ

POLY.
√
3Lt

√
t3 Σ0 = 0 Σ1 = Σ

TRIGONOMETRIC – sin πt
2 Σ0 = 0 Σ1 = Σ

EXPONENTIAL L(eW t−0.5t)/
√
e− 1

√
(et − 1)/(e− 1) Σ0 = 0 Σ1 = Σ

where h and l are two vector functions. The first two terms
called signal dissipation process correspond to the first term
in Eq. (2). The last term called noise injection process
corresponds to the second term in Eq. (2). Different from
DDM, the diffusion term can be any functions. Denote
Ht =

∫ t

0
h(t)dt,

∫ t

0
l(s,W s)dW s ∼ N (0,Σt), then it’s

easy to obtain the probability path of Eq. (3) is

q(Xt|X0) ∼ N (X0 +Ht,Σt). (4)

In this paper, we set the target distribution as N (µ,Σ),
where Σ is positive definite and can be factorized as Σ =
LLT . In addition, assume that Σt = Σβ2

t for simplicity,
where βt is a scalar function. In order to build generative
models, we should select proper h and l such that lim

t→0
Ht =

0, lim
t→1

Ht = µ−X0, lim
t→1

βt = 1, lim
t→0

βt = 0.

Compared with previous models based on SDEs (Song et al.,
2020) and ODEs (Lipman et al., 2022; Albergo & Eric,
2023), building generative models based on Eq. (3) is more
convenient because it’s easy to designHt and l that satisfy
the above constraints. We list some possible selections for
these terms in Table 1. Note that we only need to know
one of h(t) andHt for signal dissipation process and one
of l(t,W t) and (βt,Σ) for noise injection process to build
generative models.

For the reverse process, given the forward probability path
in Eq. (4) and time interval ∆t, we can calculate the condi-
tional distribution q(Xt|Xt−∆t) as

q(Xt|Xt−∆t)∼N (Xt−∆t+Ht−Ht−∆t,Σ(β2
t−β2

t−∆t)). (5)

Then according to the Bayesian formula, it’s easy to obtain
that q(Xt−∆t|Xt,X0) also follows a Gaussian distribution
N (M ,P ), where

P =
β2
t−∆t(β

2
t − β2

t−∆t)

β2
t

Σ, (6)

M =Xt −Ht +Ht−∆t −
β2
t − β2

t−∆t

βt
Lε, (7)

Explicit solution of 

SDEs

0
( | )

t
q X XSDE ODE

(11)

(8) (9) (12)

(10)

(2) (13)

Figure 1. Connections between D3M and existing models.

ε ∼ N (0, I). Detailed derivation process can be found in
Appendix A.1.

3.1.2. UNIFIED FRAMEWORK FOR CONTINUOUS FLOWS
& DIFFUSION MODELS

When l(t,W t) = 0, Eq. (3) is exactly the solution of ODEs.
Many ODE-based generative models can be implemented
under such conditions. Actually, D3M is a general frame-
work that unifies two large classes of generative models:
ODE-based flow models (Lipman et al., 2022; Liu et al.,
2023; Albergo & Eric, 2023; Heitz et al., 2023) and SDE-
based diffusion models (Song et al., 2020; Lee et al., 2021).

Theorem 3.1. If the probability path of a certain gen-
erative model is q(Xt|X0) ∼ N (αtX0, β

2
t I), where

lim
t→0

αt = 1, lim
t→0

βt = 0, then D3M is equivalent to existing

ODE-based flow models and SDE-based denoising diffusion
models with proper settings ofH(t) and l(s,W s).

Proof: For the following probability path: q(Xt|X0) ∼
N (αtX0, β

2
t I), where t ∈ [0, 1], lim

t→0
αt = 1, lim

t→0
βt = 0,

it has been proved by VDM (Kingma et al., 2021) that
q(Xt|X0) is governed by the SDE

dXt = f(t)Xtdt+ g(t)dW t, (8)

where

f(t) =
d logαt

dt
, g2(t) =

dβ2
t

dt
− 2

d logαt

dt
β2
t . (9)
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Table 2. The settings that make D3M share the same probability path with original methods.
NAME Ht β2

t TARGET DIST. PARAMETERS

VP SDE (SONG ET AL., 2020) (e−
1
2

∫ t
0
β(s)ds − 1)X0 1− e−

∫ t
0
β(s)ds N (0, I) β(t) = 0.01 + 19.9t

PRIORGRAD (LEE ET AL., 2021) (e−
1
2

∫ t
0 β(s)ds−1)(X0−µ)−µ 1− e−

∫ t
0
β(s)ds N (0,Σ) µ,Σ = f(X0)

VE SDE (SONG ET AL., 2020) 0 σ2
t − σ2

0 N (0, σ2
1I) σt = 0.01 ∗ 5000t

FLOWMAT. (LIPMAN ET AL., 2022) −tX0 (σ + (1− σ)t)2 N (0, I) σ = 1e− 4
RECFLOW (LIU ET AL., 2023) −tX0 t2 N (0, I) –
STO. INT. (ALBERGO & ERIC, 2023) (cos π

2 t− 1)X0 sin2 πt
2 N (0, I) –

Substitute Eq. (8) and Eq. (9) into Eq. (2), we can get the
coefficients in D3M are

Ht = (
αt

α0
− I)X0, l(s,W s) =

αtg(s)

αs
. (10)

In addition, ScoreSDE (Song et al., 2020) also proposes
probability flow ODE that shares the same probability path
with Eq. (8), that is

dXt

dt
= f(t)Xt −

1

2
g2(t)∇Xt log qt(Xt). (11)

Substitute Eq. (9) into this equation and we can get

dXt

dt
=

d logαt

dt
Xt+

1

2
[
dβ2

t

dt
−2

d logαt

dt
β2
t ]
Xt − αtX0

β2
t

=
β̇t

βt
(Xt − αtX0) + α̇tX0.

(12)
Compare Eq. (12) and Eq. (3), it’s easy to obtain that

Ht=

∫ t

0

β̇t

βt
(Xt−αtX0)+α̇tX0dt, l(s,W s)=0.

(13)
In the end, the connections between D3M and existing gen-
erative models built on SDEs and ODEs are shown in Fig. 1.
D3M provides a new perspective to build various generative
models. It indicates that existing generative models based
on SDEs and ODEs can be transferred to D3M with proper
settings of Ht and l(s,W s) from the arrows pointing to
D3M in Fig. 1. Furthermore, the generative models con-
structed based on SDEs, ODEs or explicit solutions of SDEs
are equivalent to each other as long as their probability paths
are the same. Besides, the variance of target distribution of
above models is limited to diagonal matrix, the target distri-
bution of D3M is more general and can be any multivariate
Gaussian distribution N (µ,Σ).

Based on Theorem 3.1, we list the settings that make D3M
share the same probability path with original methods in
Table 2. Note that some target distributions in Table 2 have
been approximated. For example, the target distribution of
VE SDE (Song et al., 2020) should be N (X0,σ

2
1I). Since

σ1 is big enough, it can be approximated by N (0,σ2
1I),

which is consistent with the original paper. It’s obvious
that D3M is a general framework for existing SDE-based
denoising diffusion models and ODE-based flow models.

Algorithm 1 Unconditional training procedure of D3M.
Input: Dataset D, target distribution N (µ,Σ).

1: Select h(t) and l(t,W t) or βt.
2: Set ψ = [coefficients of h(t)]
3: while not converged do
4: SampleX0 from D.
5: s ∼ Uniform(0, 1), ε ∼ N (0, I).
6: CalculateHs and βs, obtain L with Σ = LTL.
7: Xs =X0 +Hs + βsLε
8: ψθ, εθ = Netθ(Xs, s).
9: Calculate loss L(θ) according to Eq. (14).

10: Take gradient descent step on ∇θLθ

11: end while

Algorithm 2 Unconditional sampling procedure of D3M.

1: Initialization: X1 ∼ N (µ,Σ),Σ = LTL, t = 1,∆t
2: while t > 0 do
3: ψθ, εθ = Netθ(Xt, t).
4: CalculateHθ

t =
∫ t

0
h(s)dt based on ψθ.

5: Calculate the meanM and variance P according to
Eq. (7) and Eq. (6).

6: Denote the standard deviation as p = P 1/2.
7: Xt =M + εp, ε ∼ N (0, I).
8: t = t−∆t.
9: end while

Output: X0

3.1.3. LOSSES, TRAINING AND SAMPLING

Given Eq. (7), we need to determine Ht and ε at each
step in the reverse process. Different from Flow Matching
(Lipman et al., 2022), we do not directly learn the vector
field h(t). Denote the list of coefficients of h(t) as ψ. For
example, ψ = [a, b] when the type of h(t) is Linear in
Table 1. Then we directly construct networks ψθ to match
ψ, that is LSD = ∥ψθ −ψ∥2.

As for the noise ε in Eq. (7), we construct a network εθ
to learn ε, that is LNM = ∥εθ(Xt)− ε∥2. It is similar
with the loss function in DDPM (Ho et al., 2020). We can
also use score matching loss (Hyvärinen & Dayan, 2005)
or denoising score matching loss (Vincent, 2011) for the
learning of the noise injection process. Actually, we can
prove that
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Figure 2. (a) shows the overall architecture of Netθ when used for conditional generation tasks like time series forecasting and imputation.
(b) shows the architecture of a single block of EMA and linear gated attention-based WaveNet.

Theorem 3.2. If the probability path of the forward process
follows Eq. (4) and the learned ψθ = ψ, then the losses
mentioned above (Hyvärinen & Dayan, 2005; Vincent, 2011;
Ho et al., 2020) are equivalent to each other with proper
settings of weighting functions.

We defer the proof in Appendix A.2. In this paper, we set
the loss of D3M as the weighted sum of LNM and LSD,

Lθ = ω1LNM + ω2LSD, (14)

where ω1 and ω2 are weighting functions. In this paper, we
use a single neural network Netθ with two output branches
to simultaneously learn ψθ and εθ. The design of Netθ for
sequence modeling can be found in Section 3.2.

The general training and sampling process of D3M are
shown in Algorithm 1 and Algorithm 2. In addition, we
also design a weighted incremental sampler when the type
of h(t) is Constant. Besides, we find that LSD can not
guarantee that the learned coefficients satisfy the constraints
in Table 1. In order to solve this problem, we propose some
modified samplers to ensure the constraints are satisfied in
Appendix A.3.

3.2. Network architecture of Netθ

Various sequence modeling tasks like forecasting and impu-
tation can be viewed as the conditional generation process
of D3M. Therefore, we design Netθ as Fig. 2. It comprises
two branches, with the outputs of these branches ψθ and εθ
separately. Furthermore, these two branches share shallow
features extracted from EMA and linear gated attention-
based WaveNet. As shown in Fig. 2 (b), the backbone of
the network is WaveNet (van den Oord et al., 2016). Differ-
ent from existing architecture, we firstly use a special state
space model, EMA, to model the temporal and local depen-
dencies. Then we use time-oriented and feature-oriented

linear gated attention modules to further extract information
across time and features from different channels. This en-
semble of components collectively equips the network with
adaptability, flexibility, and high-performance capabilities,
enabling it to effectively support a variety of tasks.

3.2.1. EMA

Exponential moving average strategy is one of the common
methods for sequence modeling. Actually, it can be viewed
as a special state space model (SSM) (Ma et al., 2022).
Firstly, set the input of the SSM as the linear transformation
of xk ∈ Rd, that is uj

k = ξjx
j
k, ξj ∈ Rh,uj

k ∈ Rh,
j ∈ {1, 2, · · · , d}. Then, consider the following SSM,

hj
k = λj⊙uj

k+(1−λj⊙δj)⊙hj−1
k , yj

k = ηT
j h

j
k, (15)

where ηj ,λj , δj ∈ Rh. λ is the weighting factor that
controls the weights of previous and current observations. δ
is the damping factor where each element is between 0 and
1. η is a matrix that transforms the h-dimensional states to
single-dimensional output. ⊙ represents Hadamard product.
Denotem = (1−λ⊙δ), then combine the SSM from all d
channels and with proper derivation, we can get y1:k = K ∗
x1:k+η

TmT⊙h0, where ∗ represents convolution operator,
K = (ηT (λ⊙ξ),ηT (m⊙λ⊙ξ), · · · ,ηT (mk ⊙λ⊙ξ)).
K can be easily computed by the Vandermonde product
and the convolution can be efficiently computed according
to the convolution theorem. Furthermore, compared with
S4, the damped EMA does not need the Hippo framework
(Gu et al., 2020) for the initialization of the state matrices.

3.2.2. LINEAR GATED ATTENTION

In this paper, we use time and feature-oriented linear gated
attention (Hua et al., 2022) to model temporal and feature de-
pendencies. The z-dimensional shared representations from
sequential input are computed as Z = fsilu(FC1(y1:k)).
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fsilu is the self-gated activation function, FC1 is a fully
connected layer. Then the query, key and value can be calcu-
lated asQ =WQ ⊙Z + bQ,K =WK ⊙Z + bK ,V =
fsilu(FC2(x1:k)), where WQ,WK , bQ, bK are learnable
parameters. Q,K ∈ Rk×z,V ∈ Rk×v .

Then the output of the attention is O = f2
relu(QKT +

bpos)V , where frelu is ReLU function, bpos is the po-
sition embedding. The output of the gated attention is
sent to a gated unit, that is γ = fsilu(FC3(y1:k)), r =

fsigmoid(FC4(y1:k)), Ĥ = fsilu(FC5(y1:k) + FC6(γ ⊙
O)),H = r⊙ Ĥ + (1− r)⊙x1:k. FC∗ are all fully con-
nected layers. fsigmoid is the sigmoid activation function.

In this paper, we use single-head attention because it has
been proved γ ⊙ O is equivalent to multi-head attention
under proper conditions (Ma et al., 2022). Then, we can
split the queries, keys and values into n = k/c chunks,
where c is a small number that represents the chunk length.
With this method, the complexity of the gated attention will
reduce to linear, that is O(nc2) = O(kc).

4. Experiments
We use probabilistic time series imputation and forecasting
tasks to evaluate the proposed model.

4.1. Probabilistic time series imputation

4.1.1. DATASETS AND EXPERIMENTAL SETTINGS

For time series imputation tasks, we use the PhysioNet
Challenge 2012 and Air quality for evaluation. Detailed
description of these datasets can be found in Appendix B.1.

In addition, we denote the samples from data distribution
as X0. We use the mask matrix M to indicate whether
each element in the time series is observable. Then we
randomly select any time t in [0, 1] and calculateXt based
on the masked initial value X0 ⊙M . We set the input
for Netθ as [X0 ⊙ M ,Xt,M ]. The condition term is
the collection of some extra covariates like embeddings of
observed time and embeddings of features. The number of
steps for inference is set as 10 for all experiments. We use
the first two types of h(t) and βt in Table 1 for evaluation
because their probability paths are very simple. We set
µ = 0,Σ = I for simplicity. For D3M with Linear type
for h(t), we set a = −X0, b = −X0

2 . The settings for
weighting function in the loss can be found in Appendix C.1.
We use the grid-search method for the hyper-parameters
of EMA and linear gated attention module. Specifically,
we set candidates of h as {8, 12, 16}, candidates of z as
{32, 64, 96}, candidates of v as {128, 160, 256}. The batch
size and epochs are set as 16 and 300, separately. In addition,
we use a multi-step learning rate scheduler which decays the
learning rate at 75% and 90% of all epochs. In the inference

Table 3. Comparing RMSE for probabilistic time series imputation
tasks (lower if better). The mean and standard error are reported
by three runs.

Method Physionet Air quality
10% missing 50% missing 90% missing

V-RIN 0.637±0.021 0.712 ±0.018 0.934±0.012 40.02±1.03
BRITS 0.619±0.018 0.701±0.021 0.847±0.021 24.28±0.65
SSGAN 0.607±0.034 0.758 ±0.025 0.830±0.009 –
RDIS 0.635±0.018 0.747 ±0.013 0.922±0.018 37.25±0.31
CSDI 0.531±0.009 0.668±0.007 0.834±0.006 19.21±0.13
CSBI 0.547±0.019 0.649 ±0.009 0.837±0.012 19.07±0.18
SSSD 0.459±0.001 0.632±0.004 0.824±0.003 18.77±0.08
TS-Diff 0.523±0.016 0.679±0.009 0.845±0.007 19.06±0.14
SAITS 0.461±0.009 0.636±0.005 0.819±0.002 18.68±0.13
TIDER 0.486±0.006 0.659±0.009 0.833±0.005 18.94±0.21
D3M(Constant-Sqrt) 0.438±0.003 0.615±0.012 0.814±0.002 18.19±0.18
D3M(Constant-Linear) 0.441±0.002 0.618±0.007 0.803±0.003 18.13±0.23
D3M(Linear-Sqrt) 0.481±0.004 0.645±0.006 0.815±0.001 20.79±0.17
D3M(Linear-Linear) 0.447±0.002 0.646±0.007 0.810±0.002 20.85±0.14

Table 4. Comparing CRPS for probabilistic time series imputation
tasks (lower is better). The mean and standard error are reported
by three runs.

Method Physionet Air quality
10% missing 50% missing 90% missing

GP-VAE 0.582±0.003 0.796±0.004 0.998±0.001 0.402±0.009
V-RIN 0.814±0.004 0.845±0.002 0.932±0.001 0.534±0.013
CSDI 0.242±0.001 0.336±0.002 0.528±0.003 0.108±0.001
CSBI 0.247±0.003 0.332 ±0.003 0.527±0.006 0.110±0.002
SSSD 0.233±0.001 0.331±0.002 0.522±0.002 0.107±0.001
TS-Diff 0.249±0.002 0.348±0.004 0.541±0.006 0.118±0.003
D3M(Constant-Sqrt) 0.223±0.001 0.327±0.003 0.520±0.001 0.106±0.002
D3M(Constant-Linear) 0.229±0.003 0.325±0.002 0.514±0.003 0.102±0.001
D3M(Linear-Sqrt) 0.236±0.002 0.328±0.001 0.516±0.002 0.128±0.003
D3M(Linear-Linear) 0.231±0.003 0.332±0.002 0.511±0.003 0.129±0.001

process, we set the number of generated samples as 100 for
all datasets.

4.1.2. BASELINES AND METRICS

We divide existing time series imputation methods into two
categories. The first category is deterministic imputation
methods which can only generate deterministic outputs for
certain inputs: BRITS (Cao et al., 2018), RDIS (Choi et al.,
2023), SSGAN (Miao et al., 2021), TIDER (Liu et al., 2022),
and SAITS (Du et al., 2023). The second category of meth-
ods are probabilistic imputation methods: GP-VAE (Fortuin
et al., 2020), V-RIN (Mulyadi et al., 2021), CSDI (Tashiro
et al., 2021), CSBI (Chen et al., 2023), SSSD (Alcaraz &
Strodthoff, 2022), and recently proposed TS-Diff (Kollovieh
et al., 2024). For deterministic methods, we adopt root mean
square error (RMSE) for comparison. For probabilistic im-
putation methods, we use RMSE and continuous ranked
probability score (CRPS) for evaluation, which is a com-
mon metric used that assess the congruence between the
estimated probability distribution and observed values.

4.1.3. RESULTS

The comparison of D3M and the methods mentioned above
are shown in Table 3 and Table 4. We report the mean
and standard values of these methods and all the results
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Figure 3. Examples of probabilistic imputation for Physionet with
missing rate 50% and Air quality. The red points represent ob-
served data, the blue points represent ground truth values to be
imputed. The median values of imputations are shown in line. 50%
of distribution intervals are shown in the shade.
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Figure 4. The effect of number of samples for prediction (Lower
is better).

are obtained by three runs. We give 4 variants of D3M for
time series imputation tasks. Note that D3M(type1-type2)
represents we use type1 for h(t) and type2 for βt. The best
results for each dataset are shown in bold while the second
best are marked with underline.

Compared with V-RIN and BRITS that adopt recurrent units
for time series imputation, our method incorporate EMA
into linear gated attention modules so that it can simultane-
ously model local dependencies and global dependencies.
Compared with GP-VAE, V-RIN and SSGAN, CSDI signif-
icantly improves the imputation performance. In addition,
CSBI adopts Schrödinger bridge algorithm for sequence
modeling. SSSD and TS-Diff are also diffusion models
for imputaion. It indicates the superiority of DDMs over
other generative models. However, CSDI requires 50 to 100
steps for inference, CSBI requires 100 steps for inference.
In addition, the quadratic complexity of attention used in
CSDI and CSBI makes the training speed slow. Compared
with CSDI and CSBI, our method requires only 10 steps
for the generative process. In addition, the EMA module
used in our methods introduces well inductive bias and the
complexity of EMA and gated attention mechanism are all
linear. In our experiments, D3M reduces the inference time
by up to 87.7% compared with CSDI. Under the settings
of missing ratios 10%, 50%, 90% on Physionet and Air
Quality, it reduces RMSE by 4.6%, 2.7%, 2.0% and 2.9%
separately and it reduces CRPS by 4.3%, 1.9%, 2.1% and
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Figure 5. The effect of number of steps for prediction (Lower is
better).

Table 5. Ablation experiments of D3M (Constant-Sqrt) on Phys-
ionet with missing rate 0.5.

EMA TIME GATED ATT. FEAT. GATED ATT. RMSE CRPS

1.055 0.740
✔ 0.915 0.586

✔ 0.714 0.434
✔ ✔ 0.636 0.330

✔ 0.649 0.348
✔ ✔ 0.628 0.332
✔ ✔ 0.621 0.329
✔ ✔ ✔ 0.615 0.327

4.6% separately. It suggests that D3M can estimate the prob-
ability distribution more accurately than other probabilistic
methods. Among the four variants, we can observe that the
choice of h(t) has a greater impact on performance com-
pared with the choice of βt. In addition, we should select
type Constant for h(t) for settings with missing rates of
10% and 50%.

As shown in Fig. 3, we compare the imputation results
of CSDI and D3M (Constant-Linear) for different settings.
There are two typical missing patterns shown in these two
figures: random missing and block missing. It’s obvious
that our method can provide more accurate estimation of
the values to be imputed in these two scenarios compared
with CSDI. More results can be found in Appendix C.2.

4.1.4. ABLATION EXPERIMENTS

In addition, we also explore the impact of some important
hyperparameters on the performance. Fig. 4 shows the ef-
fect of the number of samples on imputation performance.
With the increasing of the number of samples, the imputa-
tion performance becomes better. All the four variants of
D3M are better than CSDI. In addition, D3M which selects
Constant type for h(t) performs better than Linear, which
is consistent with the results in Table 3 and 4. Fig. 5 shows
the effect of the number of sampling steps on imputation
performance. It’s obvious that our methods already obtain
reasonable imputation results with only 2 steps while CSDI
requires at least 30 steps. Furthermore, all of our methods
perform better than CSDI. The RMSE obtained by D3M
based on Constant type for h(t) is significantly better than
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Table 6. Comparion of CRPSsum of the methods on six real-world datasets (lower is better). All the values are obtained by 10 runs.
Method Exchange Solar Electricity Traffic Taxi Wikipedia

GP scaling 0.010±0.000 0.364±0.009 0.024±0.001 0.075±0.001 0.176±0.026 1.413±0.962
GP Copula 0.007±0.001 0.341±0.022 0.023±0.004 0.079±0.003 0.213±0.013 0.089±0.002
Transformer-MAF 0.005±0.003 0.308±0.011 0.0209±0.003 0.058±0.002 0.182±0.001 0.065±0.002
TimeGrad 0.006±0.001 0.287±0.020 0.0206±0.001 0.049±0.006 0.114±0.02 0.050±0.002
TLAE 0.007±0.001 0.302±0.028 0.037±0.001 0.071±0.006 0.128±0.007 0.217±0.005
TimeLAR 0.006±0.001 0.318±0.002 0.033±0.002 0.052±0.002 0.123±0.009 0.221±0.003
ScoreGrad(VP SDE) 0.006±0.001 0.268±0.021 0.0192±0.001 0.043±0.004 0.102±0.006 0.041±0.003
ScoreGrad(sub-VP SDE) 0.006±0.001 0.256±0.015 0.0194±0.001 0.041±0.004 0.101±0.004 0.043±0.002
ScoreGrad(VE SDE) 0.007±0.001 0.277±0.011 0.0199±0.001 0.037±0.003 0.104±0.009 0.046±0.002
CSDI 0.007±0.001 0.304±0.012 0.0214±0.008 0.039±0.006 0.124±0.002 0.049±0.002
CSBI 0.009±0.002 0.287±0.021 0.0219±0.007 0.049±0.002 0.119±0.003 0.062±0.007
SSSD 0.006±0.001 0.241± 0.014 0.0196±0.001 0.037±0.002 0.103±0.004 0.043±0.003
TS-Diff 0.009±0.002 0.257±0.009 0.0223±0.006 0.053±0.003 0.127±0.006 0.067±0.008
D3M(Constant-Sqrt) 0.005±0.001 0.252±0.013 0.0198±0.002 0.030±0.002 0.106±0.001 0.051±0.005
D3M(Constant-Linear) 0.006±0.001 0.208±0.018 0.0192±0.004 0.034±0.001 0.097±0.001 0.047±0.003

the others. However, the CRPS obtained by these 4 vari-
ants are similar. More experimental results can be found in
Appendix C.2.

We also do some ablation experiments to analyze the effect
of EMA, time and feature-oriented linear gated attention
modules on the performance and the results are shown in
Table 5. When only one module is used for sequence mod-
eling, D3M based on EMA performs best. It indicates that
the inductive bias induced by the special state space model
is reasonable and effective. In addition, all the models with
time-oriented gated attention modules obtain better imputa-
tion results than those without this module. It suggests the
importance of global dependencies modeling for sequence
modeling. Furthermore, the feature-oriented gated attention
module also improves the imputation performance, which
indicates the importance of modeling data correlation across
different channels. The best result is obtained when all
three modules are integrated together. It implies that these
modules are different and useful for imputation tasks.

4.2. Probabilistic time series forecasting

4.2.1. DATASETS AND EXPERIMENTAL SETTINGS

We also evaluate D3M on autoregressive probabilistic time
series forecasting tasks. We use six real-world datasets
for evaluation: Exchange, Solar, Electricity, Traffic, Taxi
and Wikipedia. All of these datasets can be obtained from
GluonTS (Alexandrov et al., 2020). All the covariates are
known for all the periods of prediction. Detailed properties
of these datasets can be found in Appendix B.2.

We denote the future data as X0. The condition term for
Netθ are features extracted from historical data. Similar
to previous studies (Rasul et al., 2021), a two-layer GRU
is used for feature extraction because we mainly focus on
the comparison of DDMs. In addition, due to the high
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Figure 6. Examples of probabilistic forecasting for Electricity
based on D3M (Constant-Linear).

dimensionality of features, we remove attention blocks for
memory usage saving. The batch size and epochs are set as
64 and 300 separately.

We select following competitive methods for comparison:
GP Scaling, GP Copula (Salinas et al., 2019), Transformer-
MAF (Rasul et al., 2020), TLAE (Nguyen & Quanz, 2021),
TimeLAR (Zhang & Dai, 2022), TimeGrad (Rasul et al.,
2021), ScoreGrad (Yan et al., 2021), CSDI, CSBI, SSSD,
and TS-Diff. Two variants of D3M are used for comparison.
Similar to previous studies, we use CRPSsum to evaluate the
compatibility between estimated distribution and observed
future values.

4.2.2. RESULTS

The comparison between D3M and baselines are shown
in Table 6. TimeGrad adopts denoising diffusion proba-
bilistic models and obtains good results. ScoreGrad adopts
SDE-based DDMs and achieves impressive results on Elec-
tircity, Taxi and Wikipedia. SSSD combines S4 and DDPM
and obtain impressive results on Solar and Wikipedia. D3M
achieve 13.6% and 18.9% improvement on Solar and Traffic.
It obtains comparable results with ScoreGrad on Electricity,
Taxi and Exchange with only 10 steps. Furthermore, com-
pared with ScoreGrad, D3M reduces the inference time by
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approximately 90%. It indicates D3M can combine high
generation speed and prediction accuracy. In addition, we
also compare the NRMSEsum of the methods based on dif-
fusion models in Appendix C.3.

As shown in Fig. 6, we give some examples of probabilistic
forecasting on Electricity based on D3M (Constant-Linear).
The blue and green lines represent the observations and
median predictions. We also give 50% and 90% prediction
intervals. It shows that most observed values are within
50% prediction intervals, which indicates the effectiveness
of our method. More experimental results can be found in
Appendix C.3.

5. Conclusion
In this paper, we propose D3M, which directly builds gen-
erative models based on explicit solutions of SDEs. It can
be decomposed and learned by two separate processes: sig-
nal dissipation process and noise injection process. It’s a
general framework that unifies two existing large classes
of generative models: denoising diffusion models and con-
tinuous flow-based models. Then we design some new
generative models that combine high generation speed and
high sampling quality. In addition, we adopt a module
that combines EMA with linear gated attention modules
for sequence modeling. It preserves well inductive bias,
low computational complexity and local and global depen-
dencies modeling capabilities. Our method reduces RMSE
and CRPS by up to 4.6% and 4.3% compared with state-
of-the-arts on imputation tasks and achieves comparable
results with state-of-the-arts on forecasting tasks with only
10 steps.
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A. Proofs and derivations
A.1. Derivation of the reverse process

Firstly, we verify the forward transition probability. The covariance matrix can be factorized as Σt = LL
Tβ2

t , then

Xt =X0 +Ht +Lβtε

:=X0 +Ht−∆t +Ht −Ht−∆t +Lβt−∆tε1 +L
√
β2
t − β2

t−∆tε2

=Xt−∆t +Ht −Ht−∆t +L
√
β2
t − β2

t−∆tε2

(16)

where ε, ε1, ε2 ∼ N (0, I). Therefore, q(Xt|Xt−∆t) ∼ N (Xt−∆t +Ht −Ht−∆t,Σt −Σt−∆t). We can calculate the
reverse process according to the Bayesian formulas, that is

q(Xt−∆t|Xt,X0) =
q(Xt−∆t|X0)q(Xt|Xt−∆t)

q(Xt|X0)
∼ N (M ,P ), (17)

Then, according to formulas (2.113) to (2.117) in pattern recognition and machine learning (Bishop & Nasrabadi, 2006),
substitute Eq. (16) into Eq. (17), it’s easy to obtain the covariance matrix P of q(Xt−∆t|Xt,X0)

P = (Σ−1/β2
t−∆t +Σ−1/(β2

t − β2
t−∆t))

−1

=
β2
t−∆t(β

2
t − β2

t−∆t)

β2
t

Σ,
(18)

the expectationM of q(Xt−∆t|Xt,X0) is

M =
β2
t−∆t(β

2
t − β2

t−∆t)Σ

β2
t

Σ−1

β2
t − β2

t−∆t

(Xt −Ht +Ht−∆t) +
β2
t−∆t(β

2
t − β2

t−∆t)Σ

β2
t

Σ−1

β2
t−∆t

(X0 +Ht−∆t)

=
β2
t−∆t

β2
t

(Xt −Ht +Ht−∆t) +
(β2

t − β2
t−∆t)

β2
t

(X0 +Ht−∆t),

(19)

SubstituteX0 =Xt −Ht −Lβtε into Eq. (19), we can get

M =X0 −Ht +Ht−∆t +
(β2

t − β2
t−∆t)L

βt
ε, (20)

where ε ∼ N (0, I).

A.2. Proof of theorem 3.2

If the learned ψθ = ψ, it means that we can obtain Ht accurately. Then we firstly rewrite the noise matching loss for
learning the noise injection process as

LNM = ∥εθ(Xt)− ε∥2 , (21)

whereXt =X0 +Ht + βtLε, ε ∼ N (0, I), εθ is parameterized by a neural network. Given the probability path in Eq.
(4), it’s easy to calculate the score function as

∇Xt log q(Xt|X0) =
∇Xt

q(Xt|X0)

q(Xt|X0)
= −Σ−1

β2
t

(Xt −X0 −Ht). (22)

In addition, we can get ε = L−1(Xt − X0 − Ht)/βt according to Eq. (4). Then Eq. (22) can be simplified as
∇Xt

log q(Xt|X0) = −L−1ε
βt

. Similarly, we can parameterize the learned score function sθ in a similar form, that is

sθ = −L−1εθ

βt
. Then according to Eq. (22), the score matching loss proposed in (Hyvärinen & Dayan, 2005) can be written

as
LSM = ∥sθ −∇Xt

log q(Xt|X0)∥2

=
∥∥sθ(Xt) +Σ−1/β2

t (Xt −X0 −Ht)
∥∥2

=
∥Σ−1∥
β2
t

∥εθ − ε∥2 =
∥Σ−1∥
β2
t

LNM ,

(23)
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Algorithm 3 Unconditional sampling procedure of D3M when ht = µ−X0.

1: Initialization: X1 ∼ N (µ,Σ),Σ = LTL, t = 1,∆t
2: while t > 0 do
3: ψθ, εθ = Netθ(Xt, t).
4: X̃0 =Xt −Ht − βtLεθ.
5: ψnew

θ = [wtψθ[0] + (1− wt)(µ− X̃0), ].
6: CalculateHθ

t =
∫ t

0
h(s)dt based on ψnew

θ .
7: Calculate the meanM and variance P according to Eq. (7) and Eq. (6).
8: Denote the standard deviation as p = P 1/2.
9: Xt =M + εp, ε ∼ N (0, I).

10: t = t−∆t.
11: end while
Output: X0

For the denoising score matching loss (Vincent, 2011), denote Y t =
α0Xt

αt
. Then according to Eq. (10), we have

Y t =X0 +
βtα0

αt
Lε (24)

Then the denosing score matching loss can be simplified as

LDSM =

∥∥∥∥ϕθ(Y t)−
∂ log q(Y t|X0)

∂Y t

∥∥∥∥2
=

∥∥∥∥ϕθ(Y t)−
Σ−1(X0 − Y t)

β2
t α

2
0/α

2
t

∥∥∥∥2
(25)

If we parameterize ϕθ in a similar manner with ∂ log q(Y t|X0)
∂Y t

, then LDSM can be simplified as

LDSM =

∥∥∥∥L−1εθ(Xt)

βtα0/αt
− L−1ε

βtα0/αt

∥∥∥∥2 =
∥Σ−1∥α2

t

β2
t α

2
0

LNM , (26)

Therefore, under the above conditons, score matching loss (Hyvärinen & Dayan, 2005), denoising score matching loss
(Sohl-Dickstein et al., 2015) and noise matching loss (Ho et al., 2020) are equivalent to each other with proper weighting
functions.

A.3. Derivation of modified samplers

When h(t) = µ−X0, ψ = [µ−X0]. We can firstly useXt to estimate X̃0 firstly. Then we can use the weighted sum of
X̃0 and ψθ[0] (the first element of ψθ) to generate h(t). The modified sampler is shown in Algorithm 3. The steps marked
in blue are the modifications compared with Algorithm 2. The wt in line 5 is a monotonically decreasing function from 1 to
0.

When the type of h(t) = at + b is ”Linear”, there are two parameters to estimate. However, simultaneously learning
these two parameters can not guarantee that the constraint 2 in Table 1 can always be satisfied. Instead, we only learn the
parameter a in the training process. Then, we use Constraint 2 in Table 1 to calculate b.

For the forward process, we have

Xt =X0 +
a

2
t2 + bt+ βtLε

=X0 +
a

2
t2 + (µ−X0 −

a

2
)t+ βtLε

= (1− t)X0 +
a

2
t2 + (µ− a

2
)t+ βtLε,

(27)
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Algorithm 4 Unconditional sampling procedure of D3M when ht = at+ b.

1: Initialization: X1 ∼ N (µ,Σ),Σ = LTL, t = 1,∆t
2: while t > 0 do
3: aθ, εθ = Netθ(Xt, t).
4: Get X̃0 according to Eq. (28).
5: Clamp X̃0 to proper range.
6: bθ = µ− X̃0 − aθ

2 .
7: ψθ = [aθ, bθ].
8: CalculateHθ

t =
∫ t

0
h(s)dt based on ψθ.

9: Calculate the meanM and variance P according to Eq. (7) and Eq. (6).
10: Denote the standard deviation as p = P 1/2.
11: Xt =M + εp, ε ∼ N (0, I).
12: t = t−∆t.
13: end while
Output: X0

Table 7. Properties of the six datasets for probabilistic time series forecasting.

NAME DIMENSION RANGE FREQUENCY TIME STEPS PREDICTION STEPS

EXCHANGE 8 R+ DAY 6071 30
SOLAR 137 R+ HOUR 7009 24
ELECTRICITY 370 R+ HOUR 5833 24
TRAFFIC 963 (0, 1) HOUR 4001 24
TAXI 1214 N 30-MIN 1488 24
WIKIPEDIA 2000 N DAY 792 30

We use the constraint a
2 + b = µ−X0 in the second line of Eq. (27). Then we can obtain the estimated initial state as

X̃0 =
Xt − a

2 t
2 − (µ− a

2 )t− βtLεθ

1− t+ eps
, (28)

where eps is a small enough positive constant. In the experiments, we set eps = 1e− 6 to avoid numerical problems. In
addition, we also clamp the estimated X̃0 to proper range. The modified samplers are shown in Algorithm 4. The steps
marked in blue are the modifications compared with Algorithm 2.

Similarly, for other h(t) with n parameters, we can choose n− 1 of these parameters to construct ψ. Then in the sampling
process, we can use the learned n− 1 parameters and the constraints in Table 1 to calculate the last parameter. This method
can ensure the constraints are satisfied properly. We leave the derivation for the other cases in Table 2 as an exercise for
readers.

B. Datasets
B.1. Probabilistic time series imputation

In this paper, we use the following two datasets that widely used for time series imputation for evaluation.

1. PhysioNet Challenge 2012 (Silva et al., 2012) is a 35-dimensional multivariate time series dataset that records irregular
measurements for the first 48 hours in ICU. Similar to the processing method of (Cao et al., 2018; Che et al., 2018),
we aggregate data to one point per hour. The missing rate of the dataset is about 80%. We randomly mask a certain
proportion (10%, 50%, 90%) of the data as the test data set.

2. Air quality (Yi et al., 2016) is a 36-dimensional multivariate time series dataset which records hourly PM2.5 measure-
ments for 12months. The missing rate of the dataset is about 13%. The ground truth values at the missing points are
known and we use them as the test data set.
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Figure 7. Examples of probabilistic imputation for Physionet with missing rate 10%, 50%, 90% and Air quality. The red points represent
observed data, the blue points represent ground truth values, the green line represent the median values of imputations and green areas
covers 50% of distribution intervals.

B.2. Probabilistic time series forecasting

The properties of the datasets used for probabilistic time series forecasting are shown in Table 7. It shows the dimension,
range of value, frequency, total time steps and prediction steps for each dataset. These datasets have already been collected
and preprocessed in GluonTS (Alexandrov et al., 2020). In the experiments, we firstly transform the value to the proper
range by dividing the mean of historical data. Then we rescale the generated samples to the original value in the generative
process.

C. Experiments and results
In this section, we give some extra experimental results. We analyze the influence of some important hyperparameters and
give some imputation and forecasting examples on each dataset based on D3M.

C.1. Settings of weighting functions of loss

There is a significant difference in the numerical values of each channel in time series data. Similar to previous methods,
normalization is performed by dividing the original value by the mean term in probabilistic forecasting tasks. In order to
balance the two terms in the loss, we set ω1 = 1, ω2 = (LNM/LSD).detach() in most experiments.

C.2. Probabilistic imputations

As shown in Fig. 7, we give some typical imputation examples for different experimental settings based on D3M (Constant-
Linear). The red points are observed data and the blue points are the values to be imputed. The first three figures shows the
imputation results when the missing rate of the Physionet is different. It shows that our method can accurately estimates
masked values when the missing rate gradually increases. In addition, as shown in the second rows of images, out method
can still give a reasonable estimation of masked data when the missing rate is high. The median predictions indicate that
D3M can accurately interpolate the missing values for probabilistic time series imputation tasks and 50% prediction intervals
can well cover the distribution of missing values.

In addition, we give the effect of the number of samples on performance with different experimental settings in Fig. 8. With
the increasing of sampling numbers, the imputation performance get better. The effect of the number of steps for prediction
with different settings are shown in Fig. 9. It’s obvious that D3M can already obtain competitive results with only 2 steps.
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Figure 8. The effect of number of samples for prediction(Lower is better).
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Figure 9. The effect of number of steps for prediction(Lower is better).

Therefore, our method can significantly reduce the inference time compared with existing sequence modeling methods
based on denoising diffusion models.

C.3. Probabilistic forecasting

We also compare the NRMSEsum for probabilistic time series forecasting tasks and the results are shown in Table 8. Our
method achieves 6.6%, 6.9% improvements on NRMSEsum on Solar and Traffic compared with existing methods. In
addition, it obtains comparable results with ScoreGrad and SSSD on Electricity, Taxi and Exchange. Besides, TS-Diff,
SSSD and ScoreGrad are probabilistic methods based on DDPM and ScoreSDE. They require hundreds of steps in the
prediction process while D3M (Constant-Sqrt/Linear) only requires 10 steps.

In addition, we give some forecasting examples of D3M (Constant-Linear) on different datasets. The forecasting results are
shown in Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14. The median prediction shows that our method can obtain accurate
forecasting results on each datasets. In addition, the 90% prediction interval can accurately cover the possible range of data.

Table 8. Comparion of NRMSEsum of the methods on six real-world datasets (lower is better). All the values are obtained by 3 runs.
Method Exchange Solar Electricity Traffic Taxi Wikipedia

TimeGrad 0.011±0.001 0.611±0.018 0.038±0.002 0.069±0.002 0.209±0.004 0.076±0.001
ScoreGrad (VP SDE) 0.013±0.002 0.598±0.016 0.033±0.004 0.066±0.003 0.184±0.006 0.064±0.002
ScoreGrad (sub-VP SDE) 0.011±0.001 0.572±0.015 0.035±0.003 0.065±0.001 0.186±0.004 0.062±0.003
ScoreGrad (VE SDE) 0.013±0.001 0.597±0.019 0.040±0.003 0.060±0.002 0.189±0.008 0.069±0.002
CSDI 0.016±0.001 0.634±0.017 0.044±0.005 0.061±0.004 0.236±0.003 0.071±0.002
CSBI 0.018±0.002 0.617±0.013 0.049±0.003 0.070±0.003 0.227±0.004 0.089±0.005
SSSD 0.012±0.001 0.559±0.012 0.035±0.002 0.058±0.002 0.190±0.006 0.064±0.002
TS-Diff 0.017±0.002 0.568±0.007 0.046±0.004 0.082±0.003 0.232±0.006 0.087±0.003
D3M(Constant-Sqrt) 0.009±0.001 0.576±0.010 0.039±0.002 0.054±0.002 0.194±0.004 0.073±0.004
D3M(Constant-Linear) 0.012±0.002 0.522±0.011 0.034±0.003 0.059±0.001 0.181±0.003 0.068±0.003
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Figure 10. Forecasting results based on D3M (Constant-Linear) on Exchange.
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Figure 11. Forecasting results based on D3M (Constant-Linear) on Solar.
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Figure 12. Forecasting results based on D3M (Constant-Linear) on Traffic.
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Figure 13. Forecasting results based on D3M (Constant-Linear) on Taxi.
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Figure 14. Forecasting results based on D3M (Constant-Linear) on Wikipedia.
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