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Abstract
We consider the prediction of general tensor prop-
erties of crystalline materials, including dielectric,
piezoelectric, and elastic tensors. A key chal-
lenge here is how to make the predictions sat-
isfy the unique tensor equivariance to O(3) group
and invariance to crystal space groups. To this
end, we propose a General Materials Tensor Net-
work (GMTNet), which is carefully designed to
satisfy the required symmetries. To evaluate our
method, we curate a dataset and establish evalua-
tion metrics that are tailored to the intricacies of
crystal tensor predictions. Experimental results
show that our GMTNet not only achieves promis-
ing performance on crystal tensors of various or-
ders but also generates predictions fully consistent
with the intrinsic crystal symmetries. Our code
is publicly available as part of the AIRS library
(https://github.com/divelab/AIRS).

1. Introduction
Tensor properties of crystalline materials are fundamental in
advancing various technological sectors, leading to signifi-
cant innovations in device development. These properties
span multiple orders, encompassing atomic charge (order
0), atomic force (order 1), dielectric tensor (order 2), piezo-
electric tensor (order 3), elastic tensor (order 4), and beyond.
Dielectric materials, characterized by dielectric tensors, are
crucial in modern technologies ranging from computer mem-
ory to sensors and communication circuits (Petousis et al.,
2016). Piezoelectric materials, notable for their significant
piezoelectric coefficients, find extensive use in actuators,
sensors, and energy-harvesting devices (Mahapatra et al.,
2021). Materials with higher-order optical tensors play an
essential role in developing novel optics and quantum tech-
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nologies (Xiao et al., 2020; Wang & Qian, 2020).

Accurately predicting these tensor properties is key to dis-
covering new crystals with desirable characteristics. First-
principles methods, such as density functional theory (DFT),
have facilitated the prediction of various properties within
an acceptable error margin compared to traditional labo-
ratory experiments (Petousis et al., 2016). However, DFT
methods are often resource-intensive, particularly for high-
order tensor properties of large crystals, mainly due to the
need for self-consistent electronic and ionic relaxation with
explicit representations of electronic wavefunctions.

To address these challenges, recent advances have leveraged
machine learning (ML) techniques (Ying et al., 2021; Liu
et al., 2022; Gong et al., 2023), such as descriptor-based Au-
tomatminer (Dunn et al., 2020) and graph neural networks
like MEGNET (Chen et al., 2019), for efficient prediction of
single-value properties invariant to 3D rotations and transla-
tions. Nevertheless, these approaches generally overlook the
inherent anisotropy of most crystal systems and the tensorial
nature of their macroscopic properties, which are not E(3)
invariant and take the form of matrices with dimensions 3n,
where n denotes the tensor order.

Concretely, the dielectric tensor ε ∈ R3×3 of a crystal
plays a pivotal role in determining its response to exter-
nal electrical fields. Through the relation D = εE, this
tensor dictates the electric displacement vector D ∈ R3

when an electric field E ∈ R3 is applied. Crucially, the
dielectric tensor adapts to the crystal’s orientation. A rota-
tion of the crystal structure by R ∈ R3×3 with |R| = ±1
leads to a corresponding rotation of ε, represented as
RεRT . A similar transformation rule applies to the piezo-
electric tensor e ∈ R3×3×3, where e′ijk transforms to∑

ℓmn RiℓRjmRkneℓmn. Ideal ML models should inher-
ently capture this anisotropy and these equivariance rules
when predicting crystal tensor properties.

Furthermore, the intrinsic symmetries of crystals signifi-
cantly influence their tensor properties. Different crystal
systems exhibit unique tensor characteristics, determined
by their crystal class or space group. For instance, crys-
tals in the cubic system possess dielectric tensors with only
non-zero diagonal elements that are identical (εxx = εyy =
εzz), and zero for off-diagonal elements (εij = 0 for i ̸= j).
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In contrast, orthorhombic systems feature non-zero diago-
nal elements that are independent of each other. Triclinic
crystals display a more complex dielectric tensor where all
nine elements of the 3× 3 matrix are non-zero.

Therefore, for both physical consistency and practical ap-
plications, it is essential for ML methods to predict tensor
properties that fully respect the intrinsic symmetries of ar-
bitrary crystals. However, how to naturally enforce ML
methods to incorporate intrinsic symmetries of crystals and
satisfy tensor formats across various crystal systems and
space groups is challenging and unsolved.

To address these challenges, our work focuses on the pre-
diction of key crystal tensor properties including dielec-
tric, piezoelectric, and elastic tensors. The contributions
of this work are summarized as follows. (1) We propose
a general equivariant graph neural network that captures
the anisotropy nature and the unique equivariance of crys-
talline materials tensor properties, GMTNet. (2) GMTNet
produces tensor predictions that respect the intrinsic symme-
tries present in various crystal systems. (3) We have curated
a dataset encompassing dielectric, piezoelectric, and elastic
tensors, along with establishing robust evaluation metrics
specifically tailored for ML-based predictions of general
tensor properties. (4) Our work includes detailed proofs and
methodological guidance aimed at achieving tensor equivari-
ance and adherence to crystal symmetry constraints, serving
as a valuable resource for future research in this field.

2. Preliminaries and Background
2.1. Crystal Structures and Tensor Properties

Crystal structures. Following notations in Yan et al.
(2022), a crystal structure is characterized by a unit cell
containing a set of atoms, which repeats indefinitely in
three-dimensional space along three periodic lattice vec-
tors. It is mathematically represented by M = (A,P,L),
where A = [a1,a2, · · · ,an] ∈ Rda×n denotes the da-
dimensional feature vectors of n atoms within the unit
cell. P = [p1,p2, · · · ,pn] ∈ R3×n encapsulates the 3D
Euclidean positions of these n atoms. The lattice matrix
L = [ℓ1, ℓ2, ℓ3] ∈ R3×3 defines the three periodic lattice
vectors, representing the repeating patterns of the unit cell
in three-dimensional space. The infinite structure of a given
crystal M = (A,P,L) is formalized as

P̂ = {p̂i|p̂i = pi + k1ℓ1 + k2ℓ2 + k3ℓ3, k1, k2, k3 ∈ Z,
i ∈ Z, 1 ≤ i ≤ n},

Â = {âi|âi = ai, i ∈ Z, 1 ≤ i ≤ n},

where P̂ denotes the positions of atoms and their infinite
replicates in the 3D space, and Â corresponds to the feature
vectors for each atom and its replicas.

Crystal tensor properties. In general, the physical prop-
erties are naturally defined as the responses of materials
under external fields/perturbations. In this work, we fo-
cus on three crystal tensor properties; namely dielectric,
piezoelectric, and elastic tensors. The dielectric tensor ε
correlates the externally applied electric field E ∈ R3 to
the electric displacement field D ∈ R3 within the mate-
rial, expressed as Di =

∑
j εijEj with ε ∈ R3×3 and

i, j ∈ {1, 2, 3}. The piezoelectric tensor e ∈ R3×3×3

relates the applied strain ϵ ∈ R3×3 to the electric dis-
placement field D ∈ R3 within the material, formulated as
Di =

∑
jk eijkϵjk with i, j, k ∈ {1, 2, 3}. Lastly, the elas-

tic tensor C ∈ R3×3×3×3 connects the applied strain tensor
ϵ ∈ R3×3 to the stress tensor σ ∈ R3×3 within the material,
depicted by σij =

∑
kℓ Cijkℓϵkℓ with i, j, k, ℓ ∈ {1, 2, 3}.

These tensors play pivotal roles in understanding and pre-
dicting the mechanical and electrical behavior of crystals
under different conditions.

2.2. Symmetry Constraints of Crystal Tensor Properties

O(3) group. The O(3) group encompasses all rotations and
reflections in 3D space. It is mathematically represented
by R ∈ R3×3, |R| = ±1. In the context of crystal tensor
properties, when applying an O(3) group transformation
to a crystal structure, from M = (A, P, L) to M′ = (A,
RP, RL), the properties of the crystal tensor change ac-
cordingly. This change can be mathematically described as
ε′ = RεRT . In practical terms, this means that the rela-
tionship between an externally applied electric field E ∈ R3

and the resultant electric displacement field D ∈ R3, which
is typically defined as D = εE, will be altered under the
rotation transformation. Specifically, the electric field and
electric displacement field transform to RE and RD, re-
spectively. This leads to a new relationship as RD = ε′RE.
Rearranging this equation, we obtain D = RTε′RE, which
confirms that the transformed dielectric tensor after rotation
is ε′ = RεRT . This transformation principle extends sim-
ilarly to other crystal tensors. For instance, the piezoelec-
tric tensor transforms as e′ijk =

∑
ℓmn RiℓRjmRkneℓmn,

and the elastic tensor follows the transformation C ′
ijkℓ =∑

pqrs RipRjqRkrRℓsCpqrs.

Crystal space group. Crystal space group transformations
encapsulate the spatial symmetries inherent in crystal struc-
tures. Mathematically, these transformations can be repre-
sented by a rotation-reflection matrix R ∈ R3×3, where
|R| = ±1, combined with a translation vector b ∈ R3,
implying that the transformation of M = (A, P, L) to
M′ = (A, RP+ b, L) transforms the inner unit cell struc-
ture back to itself, albeit with a reindexed arrangement.

By Neumann’s Principle, a fundamental tenet in crystal
physics, the symmetry observed in any physical property
of a crystal must mirror the spatial symmetry of the crystal
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Figure 1. Overview of GMTNet. GMTNet takes crystal structures represented as M = (A,P,L) as input to predict crystal tensor
properties of various orders. It comprises four modules: symmetry-informed crystal graph construction, crystal-level equivariant
feature extraction, equivariant tensor property prediction, and symmetry enforcement. GMTNet is carefully designed to generate tensor
predictions adhere to the intrinsic symmetries of the input crystal structures. We also include visualizations of crystal structures and
tensors with different orders belonging to various crystal systems. These visualizations, generated using matplotlib (Hunter, 2007) and
MTEX (Bachmann et al., 2010), illustrate the correlation between crystal symmetries and tensor property complexities.

structure itself. This principle suggests that the response
of a crystal property to an external perturbation, such as
an electric field, maintains its symmetry under space group
transformations. For instance, considering the dielectric
tensor, when an arbitrary electric field E ∈ R3 is sub-
jected to any transformation R within the crystal’s space
group, the resulting electric displacement field D transforms
accordingly, maintaining the symmetry as RD = εRE.
This indicates that rotating the external electric field by an
operation of the space group yields a correspondingly ro-
tated response in the electric displacement field. By using
RiD = εRiE where Ri is in the crystal’s space group, it
can be seen D = RT

i εRiE, and ε = RT
i εRi, or equiv-

alently ε = RiεR
T
i . This relationship imposes specific

constraints on the elements of the ε matrix, leading to the
presence of zero elements and multually dependent elements
in certain positions of the matrix, with a detailed demonstra-
tion provided in Appendix A.1.

In summary, crystal tensor properties change accordingly
when rotating or reflecting the crystal structure and have
symmetry constraints, e.g., ε = RiεR

T
i with Ri in the crys-

tal’s space group for dielectric tensors. These constraints are
the direct consequence of symmetry, which is not only true
for all crystal tensor properties, but also critical to be obeyed
when developing ML-based tensor property predictions.

3. Method
In this section, we describe our material tensor network,
termed GMTNet, aiming at predicting crystal tensor proper-

ties. GMTNet is designed to address two fundamental ques-
tions: (1) How can a ML pipeline be structured to ensure
that the predicted tensors adapt appropriately under O(3)
transformations across various tensor properties? (2) How
can symmetry constraints be integrated into the pipeline
to ensure that the output tensors inherently adhere to the
corresponding constraints? To initiate this discussion, we
first establish a formal definition of crystal tensor property
prediction task, followed by the demonstration of GMTNet.

Definition 3.1 (Crystal Tensor Property Prediction). The
task of crystal tensor property prediction involves predicting
the Tensor properties of crystals, such as the dielectric tensor
ε ∈ R3×3, piezoelectric tensor e ∈ R3×3×3, and elastic
tensor C ∈ R3×3×3×3. These properties are predicted in
their tensor matrix forms, using the crystal structure M =
(A, P, L) as the input.

GMTNet presents a general end-to-end machine learning so-
lution tailored for the prediction of crystal tensor properties.
It consists of four core modules: a symmetry-informed crys-
tal graph construction module, a crystal-level equivariant
feature extraction module, an equivariant tensor property
prediction module, and a symmetry enforcement module.
The overall framework is visually represented in Fig. 1.

3.1. Symmetry-informed Crystal Graph Construction

To predict crystal tensor properties adhere to intrinsic sym-
metries, we introduce the symmetry-informed crystal graph
construction module. This module is responsible for trans-
forming a given crystal structure M = (A, P, L) into a
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corresponding crystal graph representation.

Requirements for atom-level features. As elucidated in
Sec. 2.2, crystal symmetry underscores the interconnected
relationships between atoms within the crystal. Specifically,
for a space group transformation in the crystal defined by
R ∈ R3×3, |R| = ±1, and a translation vector b ∈ R3,
if atom i in M is mapped to atom j in the transformed
structure M′ = (A, RP+ b, L), then atoms i and j must
be of the same type (an E(3) invariant feature) and exhibit
correspondingly rotated forces (an O(3) equivariant fea-
ture). Therefore, atom-level features extracted via machine
learning should also adhere to these physical symmetry con-
straints to ensure accurate and meaningful predictions.

Crystal graph construction. To satisfy the above require-
ments for atom-level features, we construct crystal graphs
in the following manner. For a given crystal structure
M = (A,P,L), where A = [a1,a2, · · · ,an] ∈ Rda×n,
we create n nodes representing atoms and their periodic du-
plicates in 3D space. Each node i is associated with node fea-
ture ai and positions p̂i, defined as pi+k1ℓ1+k2ℓ2+k3ℓ3,
with k1, k2, k3 ∈ Z. The neighbors of each node are de-
termined within a radius r, established by the distance to
the k-th nearest neighbor. Edges are formed between nodes
within this radius, with edge features capturing the relative
positions. Concretely, given the k-th nearest neighbor m
with position pm, r = Euclidean(pm − pi), and for any
node j with position p′

j = pj + k1ℓ1 + k2ℓ2 + k3ℓ3 that
satisfies Euclidean(p′

j −pi) ≤ r, an edge will be built from
node j to i with edge feature νji = p′

j−pi. If there are mul-
tiple positions of node j within the radius, multiple edges
will be built from j to i. This graph construction method
ensures compliance with atom-level feature requirements.

Node and edge feature embedding. Following previ-
ous works (Choudhary & DeCost, 2021; Yan et al., 2022),
node type features are embedded into 92-dimensional
CGCNN (Xie & Grossman, 2018) feature representations.
Edge features νji are transformed into a combination of
their magnitude, ||νji||2, and normalized direction, ν̂ji.
The magnitude is further mapped to a potential-like term,
−c/||νji||2, encoded using radial basis function (RBF) ker-
nels, as suggested in previous works (Lin et al., 2023).

3.2. Crystal-level Equivariant Feature Extraction

Focusing on crystal tensor properties such as dielectric,
piezoelectric, and elastic tensors, we introduce the crystal-
level equivariant feature extraction module. This module
is responsible for extracting crystal-level equivariant fea-
tures from crystal graphs. These features are pivotal for the
subsequent prediction of tensor properties.

Requirements for crystal-level features. In line with Neu-
mann’s Principle, it is essential that the extracted crystal-

level features retain the same spatial symmetry characteris-
tics as the original crystal structure. This alignment ensures
that the features accurately reflect the inherent symmetries
of the crystal, which is crucial for the precise prediction of
tensor properties.

Node invariant feature updating. Node invariant features
are updated using the state-of-the-art Comformer (Yan et al.,
2024) invariant layers. Specifically, messages are trans-
mitted from a neighboring node j to node i by utilizing
node features (f j , f i) and edge feature (fe

ji); subsequently,
these messages from all neighbors are aggregated to up-
date f i. The message from node j to i is formed by the
query qji = LNQ(f i), key kji = (LNK(f i)|LNK(f j)),
and value features vji = (LNV (f i)|LNV (f j)|LNE(f

e
ji)),

where LNQ,LNK ,LNV ,LNE denote the linear transforma-
tions. We derive the corresponding message by the follow-
ing operations:

αji =
qji ⋆ ξK(kji)√

dqji

,

msgji =sigmoid(BN(αji)) ⋆ ξV (vji),

(1)

where ξK , ξV represent nonlinear transformations applied
to key and value features, and the operators ⋆ and | denote
the Hadamard product and concatenation. BN refers to the
batch normalization layer, and dqji

indicates the dimension-
ality of qji. Then, node feature f i is updated as follows,

msgi =
∑
j∈Ni

msgji, f
new
i = ξmsg(f i + BN(msgi)),

(2)
with ξmsg denoting the softplus activation function.

Equivariant message passing. We then obtain atom-level
high rotation order features (ℓ > 0) by the widely-used
tensor field network (TFN) (Thomas et al., 2018), renowned
for its efficacy in achieving 3D rotation, reflection, and
permutation equivariance. Following conventions of Yu
et al. (2023), the TFN layer employs the tensor product
⊗ to amalgamate two irreducible representations, u and
v, each characterized by distinct rotation orders ℓ1 and ℓ2.
This fusion process leverages the Clebsch-Gordan (CG)
coefficients (Griffiths & Schroeter, 2018), resulting in a new
irreducible representation with rotational order ℓ3:

(uℓ1⊗vℓ2)ℓ3m3
=

ℓ1∑
m1=−ℓ1

ℓ1∑
m2=−ℓ1

CG(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)

uℓ1
m1

vℓ2m2
,

(3)
where the CG matrix is denoted as CG, ℓ ∈ N, with the con-
dition |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2, and m ∈ N represents the
m-th element in the irreducible representation, constrained
by −ℓ ≤ m ≤ ℓ. Analogous to the TFN, our proposed
equivariant layer comprises both filter and convolution mod-
ules. Within the filter module, spherical harmonic filters Y
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are applied to the directional edge feature ν̂ji and integrated
with the invariant edge feature fe

ji to form messages from
node j to node i represented as F as,

F
(ℓin,ℓf )
c,m (fe

ji, ν̂ji) = ξ(ℓin,ℓf )
c (fe

ji)Y
ℓf
m (ν̂ji), (4)

where ξc represents a nonlinear layer corresponding to chan-
nel index c. The convolutional module then aggregates
neighboring messages to the center node i through tensor
product as,

f ℓout
i,c =

∑
j∈Ni

(F (ℓin,c,ℓf )(fe
ji, ν̂ji)⊗ f ℓin

i )ℓout , (5)

adhering to the constraint |ℓin − ℓf | ≤ ℓout ≤ ℓin + ℓf . The
stacking of multiple layers of this mechanism allows for the
extraction of high rotation order features at the atomic level.

Equivariant crystal-level feature extraction. After ob-
taining high rotation order equivariant node features, the
crystal-level equivariant features are aggregated as follows,

Gℓ =
1

n

∑
1≤i≤n

f ℓ
i . (6)

A detailed analysis confirming that these crystal-level equiv-
ariant features meet the pre-established requirements is pre-
sented in Appendix A.3.

3.3. Equivariant Tensor Property Prediction

Constructing tensor predictions such as dielectric, piezo-
electric, and elastic tensors in matrix forms that satisfy all
crystal symmetry constraints and O(3) equivariance is non-
trivial. Rather than directly employing crystal-level equiv-
ariant features to construct matrices, our approach simulates
the physical responses that these properties represent.

Let’s take dielectric tensor ε as an example. It characterizes
the electric displacement field response D ∈ R3 of a crystal
under an external electric field E ∈ R3, with D = εE. We
predict an O(3) equivariant electric displacement D by treat-
ing E as a conditional input and utilizing tensor products.
This approach effectively simulates the interaction between
the electrical field E and the crystal. The implementation
employs a tensor product layer as

D =
∑
ℓG

(GℓG ⊗EℓE=1)ℓD=1, (7)

where E and D are vectors of rotation order ℓ = 1. The
dielectric tensor is subsequently derived by calculating the
gradient ε = ∂D

∂E .

This approach ensures that the predicted dielectric tensor
inherently adheres to the required equivariance properties.
The versatility of this module extends to other crystal tensor

properties, each conforming to their unique equivariance
criteria. The corresponding modules for piezoelectric and
elastic tensors are developed as follows:

• Piezoelectric tensor: strain ϵ is a 3 × 3 tensor that
consists of irreducible representations with rotation
order 0, 1, and 2. The corresponding tensor product is
D =

∑
ℓG

∑
ℓϵ
(GℓG ⊗ ϵℓϵ)ℓD=1, and e = ∂D

∂ϵ .

• Elastic tensor: strain ϵ and stress σ are 3 × 3 tensor
that consist of irreducible representations with rotation
order 0, 1, and 2. The corresponding tensor product is
σℓσ =

∑
ℓG

∑
ℓϵ
(GℓG ⊗ ϵℓϵ)ℓσ , and C = ∂σ

∂ϵ .

3.4. Crystal Symmetry Enforcement Module

It is worth noting that GMTNet already satisfies both O(3)
tensor equivariance and space group constraints using
components demonstrated in Sec. 3.1, Sec. 3.2, and Sec. 3.3,
including symmetry-informed crystal graph construction,
crystal-level equivariant feature extraction, and equivariant
tensor property prediction. Additionally, we aim to build
a robust system that satisfies O(3) tensor equivariance and
space group constraints not only for ideal crystal inputs
and message passing without numerical errors but also for
realistic crystal inputs and message passing operations with
small errors.

Challenges in crystal symmetry. In the materials science
field, the determination of crystal symmetry in crystalline
structures is often subject to a distortion tolerance. For large-
scale crystal datasets, such as the Materials Project (MP)
and JARVIS, a typical Euclidean distance tolerance is set
at 0.01. This means that if the largest pairwise distortion,
measured before and after a symmetry transformation, falls
below this threshold, the transformation is considered part
of the crystal’s symmetry group. Hence, minor distortions
in the input crystal structures can disrupt the crystal symme-
try. Additionally, numerical errors during message passing
will also slightly alter the pairwise relationships between
atoms, as outlined in the atom-level feature requirements
in Sec. 3.2. These distortions and numerical inaccuracies
present challenges in generating predictions that fully com-
ply with crystal symmetry constraints.

Crystal symmetry enforcement module. To address the
challenge of upholding crystal symmetry in tensor predic-
tions, we introduce a crystal symmetry enforcement module.
This module simplifies the complex symmetry constraints of
tensor properties into constraints applicable to crystal-level
features. For any transformation R ∈ R3×3,b ∈ R3 within
the crystal’s symmetry group, applying M′ = (A, RP+b,
L) leaves the crystal structure unchanged. However, the
node features for each node i will be modified as follows:

f ℓ
i

′
= WDℓ(R) ◦ f ℓ

i , (8)
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where ◦ denotes matrix multiplication and WDℓ(R) denotes
the Wigner D-transformation matrix for the irreducible rep-
resentation with rotation order ℓ and 3D rotation R. The
crystal-level representation then becomes

Gℓ′ =
1

n

∑
1≤i≤n

WDℓ(R) ◦ f ℓ
i = WDℓ(R) ◦Gℓ. (9)

For a crystal structure belonging to a specific crystal space
group with transformations {R1,R2, · · · ,Rs}, due to the
fact that macroscopic tensor properties of crystals will not
change under translations, we focus on the rotation and
reflection transformations and remove duplicates to form
{R1,R2, · · · ,Rnr

}. We verify that this set still constitutes
a group and adheres to the four group conditions. To impose
symmetry constraints on tensor predictions, we ensure that:
Gℓ = WDℓ(R) ◦Gℓ, for every R in {R1,R2, · · · ,Rnr}
by setting

Gℓ
sym =

1

nr

∑
1≤i≤nr

WDℓ(Ri) ◦Gℓ, (10)

and group theory guarantees that:

WDℓ(Rm) ◦Gℓ
sym = Gℓ

sym. (11)

Additionally, we can reduce small distortions in the input
crystal structures by refining the crystal input structures
using their space group transformations.

3.5. Equivariance and Symmetry Verification

Equivariance of tensor properties. Applying R ∈
R3×3, |R| = ±1 to the crystal structure and the external
electrical field will result in Gℓ′ = WDℓ(R)Gℓ, and

RD =
∑
ℓG

(WDℓG(R) ◦GℓG ⊗REℓE=1)ℓD=1.

The corresponding ε′ will be

ε′ =
∂(RD)

∂(RE)
= R

∂D

∂E
R−1 = RεRT ,

which satisfies the tensor’s equivariance, and similar proper-
ties can be proven for piezoelectric and elastic tensors.

Crystal symmetry of tensor properties. Let’s consider a
pair of external perturbation and crystal response (E,D).
When the crystal structure is rotated by Ri (one of the crys-
tal’s space group symmetry operations), while E remains
constant, the resultant displacement field D′ is given by

D′ =
∑
ℓG

(WDℓG(Ri) ◦GℓG ⊗EℓE=1)ℓD=1

=
∑
ℓG

(GℓG ⊗EℓE=1)ℓD=1 = D,

due to WDℓG(Ri) ◦GℓG = GℓG , with the dielectric tensor
ε′ being

ε′ =
∂D′

∂E
=

∂D

∂E
= ε,

after the transformation Ri. Similar proofs apply to the
piezo and elastic tensors, underscoring the consistency of
these tensor properties with crystal symmetry principles.

4. Related Works
Equivariant graph neural networks. Equivariant graph
neural networks have demonstrated remarkable capabilities
in modeling atomic systems (Schütt et al., 2017; Zhang et al.,
2023) including molecules (Satorras et al., 2021; Schütt
et al., 2021; Liao & Smidt, 2022; Batzner et al., 2022; Bata-
tia et al., 2022), materials (Xie et al., 2022; Luo et al., 2023;
Yan et al., 2024), and proteins (Jing et al., 2020; Fu et al.,
2023). These networks have been particularly developed to
predict either invariant scalar properties such as formation
energy and band gap, or equivariant 3D vector properties
including atomic forces and positional shifts. Despite these
advancements, the specific challenge of predicting high-
order tensor properties such as dielectric, piezoelectric, and
elastic tensors while maintaining their inherent equivariance
properties remains unexplored. Furthermore, the task of
ensuring that tensor predictions conform to the stringent
crystal symmetry constraints presents a unique and complex
challenge that has not been addressed in previous works.

Machine learning based crystal property prediction. The
realm of crystal property prediction has witnessed a sub-
stantial leap forward with the advent of machine learning
techniques. These methods (Xie & Grossman, 2018; Chen
et al., 2019; Louis et al., 2020; Choudhary & DeCost, 2021;
Yan et al., 2022; Deng et al., 2023; Ruff et al., 2023) offer
a significant acceleration that are often several orders of
magnitude faster than traditional Density Functional Theory
(DFT) calculations while maintaining a commendable level
of prediction accuracy. However, the primary focus of most
existing studies has been on predicting scalar properties.
Extending beyond scalar property prediction, Chen & Ong
(2022) introduced a method enabling invariant networks to
predict atomic forces and stress by deriving gradients rel-
ative to energy predictions. Yet, it falls short to predict a
broader range of tensor properties inherent in crystals.

Recent work by Zhong et al. (2023) has furthered this
progress, enabling invariant graph neural networks to pro-
duce tensor-form predictions through the outer product of
edge vectors. This technique generates a 3× 3 matrix from
νjiν

T
ji and a 3 × 3 × 3 matrix from νji · νji · νji, where

· denotes the outer product. Despite its innovation, this ap-
proach introduces a significant computational complexity
of O(nkm−1) for tensors of order-m with k denoting the
average number of edges per atom, and requires specialized
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designs for different tensors to account for anti-symmetry
(e.g., νjiν

T
ji does not include anti-symmetry). Most notably,

it fails to enforce crystal symmetry constraints in tensor pre-
dictions as shown in the experimental results.

In contrast, our method significantly diverges from Zhong
et al. (2023). We achieve a consistent computational com-
plexity of O(nk), with only two-hop message passing for
tensors of varying orders, and inherently resolves the issue
of anti-symmetry often encountered in outer product opera-
tions like νjiν

T
ji. Critically, our method integrates crystal

symmetry constraints that are the direct consequence of sym-
metry and critical to be obeyed when developing ML-based
tensor property predictions. This has been demonstrated
in our experimental results. Our innovative technique rep-
resents a notable stride forward in the field of machine
learning-based prediction of crystal tensor properties, effec-
tively overcoming the limitations of previous methods and
enhancing the scope and accuracy of predictive modeling in
the domain of materials science.

Additionally, instead of carefully designing model compo-
nents to achieve the invariance of crystal space groups when
predicting general tensors with different orders, there is a
widely used general approach, group averaging (Murphy
et al., 2018; Yarotsky, 2022), or more generally, frame av-
eraging (Puny et al., 2021), that can convert any model
output to be invariant to a group of transformations of in-
terest. However, we show in Appendix A.3 that directly
converting outputs to satisfy crystal space groups will result
in sub-optimal prediction performances.

5. Experiments
5.1. Curated Crystal Tensor Property Dataset

In our research, a dataset is curated specifically focusing
on crystal tensor properties, including dielectric, piezoelec-
tric, and elastic tensors, sourced from the JARVIS-DFT
database (Choudhary et al., 2020). This dataset has been
constructed with a keen emphasis on ensuring congruence
between the properties and structures, achieved by extract-
ing both the tensor property values and corresponding crys-
tal structures directly from the DFT calculation files. This
approach guarantees that the symmetry of the properties
aligns with that of the structures. Notably, each tensor prop-
erty within this dataset is computed using a consistent DFT
core, ensuring uniformity in the calculation method.

Table 1. Dataset statistics. Fnorm denotes Frobenius norm.
Dataset # Samples Fnorm Mean Fnorm STD # Elem. Unit

Dielectric 4713 14.7 18.2 87 Unitless
Piezo 4998 0.43 3.09 87 C/m2

Elastic 14220 327 249 87 GPa

The dataset’s statistics, as detailed in Table 1, underscores

the significant challenges posed in predicting crystal tensor
properties. These challenges stem from several factors: (1)
the diversity of constituting elements in each dataset, with
more than 80 different elements included, (2) the limited
number of available training samples, which is less than
5,000 for dielectric and piezoelectric tensors and less than
15,000 for elastic tensors, and (3) the substantial variability
observed in the properties, as indicated by the Frobenius
norm (denoted as Fnorm in the table). The dielectric tensor
is relative dielectric constant with respect to vacuum permit-
tivity ε0 and unitless (ε0 = 8.854×10−12 CV−1m−1).

5.2. Experimental Setup

Baseline methods. We benchmark against two key methods
in the field. The first is the invariant MEGNET model (Chen
et al., 2019), which has been previously employed for pre-
dicting dielectric tensors (Morita et al., 2020). The second
is ETGNN (Zhong et al., 2023), known for its capacity to
generate tensor-form predictions.

Evaluation metrics for tensor predictions. Given the lim-
ited number of studies capable of producing crystal tensor
properties of various orders, there is a need for well-defined
evaluation metrics to foster advancements in ML-based ten-
sor property prediction. To thoroughly assess the quality of
tensor predictions, we propose the following metrics, each
targeting a specific aspect of the tensor prediction quality.
(1) Success rate in capturing zero elements that evaluates
the ability of the model to correctly identify tensor elements
that should be zero-valued due to symmetry constraints in-
herent in crystal structures. (2) Success rate in identifying
mutually dependent elements that measures the model’s
accuracy in capturing the equality between tensor elements
that are dependent due to symmetry. (3) Frobenius norm
(Fnorm) distance that is an E(3) invariant measure for
crystal tensor properties, averaged across different crys-
tal systems. It is worth noting that the widely used MAE
distance is not E(3) invariant for tensor properties. (4)
High-quality prediction rate (EwT) that is determined by
the ratio of Fnorm(error) to Fnorm(label) being less than
25%. This threshold is aligned with DFPT (Petousis et al.,
2016) standards for comparing against experimental results,
offering a robust benchmark for prediction accuracy.

Experimental settings. A single NVIDIA A100 GPU is
used for computing. We directly follow Chen et al. (2019)
and Zhong et al. (2023) to implement MEGNET and ET-
GNN, with more details shown in Appendix A.4. For each
property, we split the samples into training, evaluation, and
test sets using ratio 8:1:1. To train our model, we use Hu-
ber loss (Huber, 1992) with AdamW (Loshchilov & Hutter,
2018), 10−5 weight decay, and polynomial decay for the
learning rate. It is worth noting that the Wigner D matrix
calculation provided in e3nn (Geiger & Smidt, 2022) intro-
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cubic hexagonal tetragonal orthorhombic monoclinic triclinictrigonal

Ground Truth

GMTNet

Figure 2. Visualization of piezoelectric tensor predictions on piezoelectric test set. The results underscore GMTNet’s effectiveness in
generating symmetry-consistent piezoelectric tensor predictions with tensor order 3.

duces numerical errors, and the error is larger for higher
rotation order features. To address this issue, we provide a
detailed approach with the tolerance that can further adjust
the tensor predictions in Appendix A.4. We use maximum
rotation order ℓmax = 3 features for dielectric and piezo-
electric tensors, while use ℓmax = 4 for elastic tensors.

5.3. Experimental Results

Ability to generate tensors adhering to symmetry. We
first evaluate the ability of GMTNet to generate tensor pre-
dictions that adhere to crystal symmetry. As demonstrated
in Sec. 2.2, crystal symmetry constraints result in exact zero
elements in dielectric tensors in all crystal systems except
the triclinic system. Table 2 shows that invariant MEGNET
has no ability to capture this, while equivariant ETGNN
can only capture a limited portion of crystal structures in
various crystal systems. In contrast, our method achieves
100% success rate in capturing zero elements adhering to
crystal symmetry, across various crystal systems.

Table 2. Predicting symmetry-constrained zero-valued dielectric
tensor elements. Success rate measured by error < 10−5. Property
labels in the curated dataset achieve 100% success rate.

Crystal System MEGNET ETGNN GMTNet

Cubic 0% 13.5% 100%
Tetragonal 0% 1.3% 100%
Hexa-Trigonal 0% 2.3% 100%
Orthorhombic 0% 0% 100%
Monoclinic 0% 6.4% 100%

Table 3. Capturing the equality of symmetry-constrained mutually
dependent dielectric tensor elements. Success rate measured by
difference < 10−4. Dataset labels achieve 100% success rate.

Crystal System MEGNET ETGNN GMTNet

Cubic 0% 100% 100%
Tetragonal 0% 55.3% 100%
Hexagonal 0% 0% 100%
Trigonal 0% 0% 100%

Additionally, intrinsic crystal symmetries result in mutually
dependent elements in dielectric tensors in certain crystal
systems. Table 3 demonstrates that MEGNET has 0% suc-
cess rate for all systems. ETGNN achieves 100% for cubic
systems, but only achieves 55% for the tetragonal system,

and even 0% for hexagonal and trigonal systems, while our
method again achieves 100% success rate across various
crystal systems. We also provide equivariance verification
in Appendix A.4 showing that ETGNN and our GMTNet
maintain equivariance for tensor predictions while MEG-
NET breaks this property.

Table 4. Comparison of accuracy in terms of Fnorm and error
within threshold (EwT) on the test set of dielectric tensors.

MEGNET ETGNN GMTNet

Fnorm ↓ 4.16 3.92 3.50
EwT 25% ↑ 74.9% 81.3% 84.5%
EwT 10% ↑ 38.9% 41.6% 57.1%
EwT 5% ↑ 19.1% 23.8% 27.8%

High-quality tensor predictions. The prediction accu-
racy of different models by Fnorm and EwT is shown in
Table 4. GMTNet achieves 84.5% high-quality dielectric
predictions within 25% threshold and achieves 57.1% for
a stricter 10% threshold, showing a much better model-
ing power beyond ETGNN with only 41.6%. Additionally,
GMTNet achieves a 3.50 Fnorm across different crystal
systems, significantly better than ETGNN with 3.92. We
also provide visualization comparison for predicted piezo-
electric tensors in Figure 2, as well as dielectric and elastic
tensors in Appendix A.4.

Table 5. Prediction accuracy in terms of Fnorm and error within
threshold (EwT) on test set for piezoelectric and elastic tensors.

Piezo (C/m2) Elastic (GPa)

Data Fnorm (mean ± std) 0.43± 3.09 326.9± 249.3

Fnorm ↓ 0.37 67.38
EwT 25% ↑ 49.1% 66.1%
EwT 10% ↑ 46.3% 21.8%
EwT 5% ↑ 45.7% 7.7%

Symmetry-Zero ↑ 100% 100%
Symmetry-Equality ↑ 100% 100%

Generality of GMTNet for higher order tensors. We
extend the evaluation of GMTNet to higher-order tensor
properties, specifically focusing on piezoelectric (order 3)
and elastic (order 4) tensors, to showcase the versatility of
GMTNet as a comprehensive framework capable of han-
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dling a diverse range of tensor properties. The results, as
detailed in Table 5, are indicative of GMTNet’s robust per-
formance. It consistently achieves a 100% success rate in ac-
curately identifying zero elements and mutually dependent
elements. Furthermore, GMTNet demonstrates impressive
proficiency for these more complex tensors, achieving high-
quality prediction rates of 49.1% for piezoelectric tensors
and 66.1% for elastic tensors, underscoring its effectiveness
and general applicability in the domain of tensor property
prediction within materials science.

Table 6. Efficiency analysis on the dielectric dataset.
Model Time/Batch (s)↓ Num. Param.↓ Fnorm ↓

ETGNN 0.121 1.1 M 3.92
GMTNet 0.069 (57%) 0.7 M (64%) 3.50

Efficiency comparison. The results presented in Table 6
highlight the efficiency gains achieved by our method when
compared to ETGNN. Our approach not only reduces the
running time by 43% but also utilizes 37% fewer trainable
parameters, remarkably accompanied by a significant en-
hancement in accuracy. These outcomes demonstrate the
robustness and superior modeling capability of GMTNet,
establishing it as a more efficient and effective solution in
the realm of ML-based crystal tensor prediction.

Table 7. Ablation studies on the dielectric dataset.
Equivariance Struct Correction Symm. Constraints Equality Fnorm

✗ ✗ ✗ ✗ 4.15
✓ 3.76
✓ ✓ 3.72
✓ ✓ ✓ 3.56
✓ ✓ ✓ ✓ 3.50

Ablation study. Here, we evaluate the importance of each
component in GMTNet. To begin with, the equivariant
tensor prediction module enables the O(3) equivariant pre-
diction of tensor properties. As shown in Table 7, it plays a
vital role and decreases Fnorm from 4.15 to 3.76, which is
already better than ETGNN. Without this module, GMTNet
cannot provide equivariant predictions.

Furthermore, the symmetry enforcement module, including
structure correction and symmetry constraint crystal-level
feature correction enhances GMTNet’s robustness beyond
ideal crystal inputs and message-passing operations for re-
alistic crystal inputs and message passing with numerical
errors. It can be seen in Table 7 that the symmetry enforce-
ment module further decreases Fnorm from 3.76 to 3.56, and
tolerance-guided prediction adjustment (equality) described
in Sec. 5.2 decreases Fnorm to 3.50.

We also demonstrate that GMTNet without the symme-
try enforcement module already satisfies O(3) equivari-
ance and space group invariance when predicting crys-
tal tensors for ideal crystal structures, as shown in Ta-
ble 8 and Table 9. Specifically, we include the zero and
equal entry tests on ideal crystal inputs without distor-

tions as shown below. GMTNet w/o correction indi-
cates GMTNet without the symmetry enforcement mod-
ule. Note that error ratio for zero entries are calculated
as

∑
ij∈zero positions abs(εij)/

∑
mn∈nonzero positions abs(εmn),

to measure the relative errors. It can be seen that for ideal
crystal inputs, GMTNet w/o correction is more robust in
satisfying space group invariance.

Table 8. Predicting symmetry-constrained zero-valued dielectric
tensor elements for ideal crystal structures.

Error ratio ↓ ETGNN GMTNet w/o correction

Cubic 5.2 ∗ 10−8 0
Tetragonal 5.6 ∗ 10−8 1.3 ∗ 10−16

Hexa-Trigonal 4.3 ∗ 10−3 5.3 ∗ 10−9

Orthorhombic 2.5 ∗ 10−8 0
Monoclinic 3.5 ∗ 10−8 0

Table 9. Predicting symmetry-constrained equal-valued dielectric
tensor elements for ideal crystal structures.

Crystal System ETGNN GMTNet w/o correction

Cubic ✓ ✓
Tetragonal ✓ ✓
Hexa-Trigonal ✗ ✓

Additionally, it is worth noting that GMTNet without the
symmetry enforcement module is not robust enough for
realistic crystal inputs with structural errors, or in other
words, minor distortions that disrupt the crystal symmetry,
as shown in Table. 10.

Table 10. Predicting symmetry-constrained zero-valued dielectric
tensor elements. Success rate measured by error < 10−5. Property
labels in the curated dataset achieve 100% success rate.

Crystal System ETGNN GMTNet w/o correction GMTNet

Cubic 13.5% 44.6% 100%
Tetragonal 1.3% 56.6% 100%
Hexa-Trigonal 2.3% 57.0% 100%
Orthorhombic 0% 68.7% 100%
Monoclinic 6.4% 78.2% 100%

6. Conclusion and Limitations
To conclude, we present GMTNet, a symmetry informed
equivariant network for crystal tensor property prediction.
It is carefully designed to satisfy the unique equivariance to
O(3) group and invariance to crystal space groups, across
various tensor properties. A crystal tensor dataset is cu-
rated with specifically designed evaluation metrics to foster
the advancements in ML-based tensor property prediction.
Experimental results demonstrate that GMTNet achieves
promising performance on crystal tensors of various orders,
and generates predictions fully consistent with the intrinsic
crystal symmetries. The limitations of our current GMTNet
include (1) the scale of our curated tensor dataset can be ex-
panded, which could potentially enhance the model’s robust-
ness and the diversity of its applications, and (2) GMTNet
currently cannot generate tensor predictions for amorphous
materials. These directions can be explored as future works.
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A. Appendix
A.1. Demonstration of the influence of crystal space group on tensor properties

Demonstration. Formally, D = εE can be written asDx

Dy

Dz

 =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

Ex

Ey

Ez

 ,

where each εji element quantifies the impact of the electric field along axis i on the electric displacement along axis j.
Consider, for instance, a 90-degree rotation around the z-axis, denoted as R1 as

R1 =

0 −1 0
1 0 0
0 0 1

 .

Applying this rotation to the transformation equation ε = RiεR
T
i , we obtain

ε =

0 −1 0
1 0 0
0 0 1

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 0 1 0
−1 0 0
0 0 1

 .

Simplifying the above equation yields:εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

 εyy −εyx −εyz
−εxy εxx εxz
−εzy εzx εzz

 .

It becomes evident that a crystal possessing a 90-degree rotational symmetry along the z-axis has specific zero elements in
its dielectric tensor, as shown below:

ε =

 εxx εxy 0
−εxy εxx 0
0 0 εzz

 .

A.2. GMTNet extracted crystal-level equivariant features meet the pre-established requirements

We provide analysis and proof in this section to demonstrate that GMTNet extracted crystal-level equivariant features meet
the pre-established requirements in Sec. 3.2.

Assumptions: crystal structure M = (A, P, L) satisfies given space group transformation R ∈ R3×3,b ∈ R3 without
any structural error, and the equivariant function θequi taking crystal structure M = (A, P, L) as input introduces no error
including numerical ones.

Proof: for the transformation R ∈ R3×3,b ∈ R3 in a given crystal’s space group, since the crystal structure M = (A, P,
L) satisfy this space group without structural error, we have the transformed crystal structure M′ = (A, RP+b, L), which
is an equivalent crystal structure, albeit with a reindexed arrangement. Define the reindexed arrangement as a mapping
function θre : i → i′, 1 ≤ i, i′ ≤ n. It can be seen that function θre is a bijection fucntion.

For the crystal-level equivariant feature after the transformation R ∈ R3×3,b ∈ R3, by using the equivariant function θequi,
we can have

f ℓ
i,rotated =θequi(A,RP+ b,L)ℓi

=WDℓ(R) ◦ θequi(A,P,L)ℓi

=WDℓ(R) ◦ f ℓ
i ,

and

Gℓ
rotated =

1

n

∑
1≤i≤n

f ℓ
i,rotated =

1

n

∑
1≤i≤n

WDℓ(R) ◦ f ℓ
i = WDℓ(R) ◦Gℓ.
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MEGNET ETGNN GMTNet Ground Truth
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Figure 3. Comparative visualization of dielectric tensor predictions. This figure presents a model comparison for dielectric tensor
prediction, on the dielectric test set comprising various crystal systems: cubic, hexagonal, trigonal, tetragonal, orthorhombic, monoclinic,
and triclinic. GMTNet’s predictions are highlighted for their alignment with the spatial symmetry characteristics of the ground truth
tensors, underscoring its superior performance. In contrast, models such as MEGNET and ETGNN demonstrate a notable discrepancy in
capturing these symmetry aspects. The comparison underscores GMTNet’s effectiveness in generating symmetry-consistent dielectric
tensor predictions.

Further, by using the fact that M′ = (A, RP+ b, L) is an equivalent crystal structure as M = (A, P, L), albeit with a
reindexed arrangement θre : i → i′, 1 ≤ i, i′ ≤ n, we can have

Gℓ =
1

n

∑
1≤i≤n

f ℓ
i =

1

n

∑
1≤θre(i)≤n

f ℓ
θre(i) =

1

n

∑
1≤i′≤n

f ℓ
i′ = Gℓ

rotated,
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cubic hexagonal tetragonal orthorhombic monoclinic triclinictrigonal

Ground Truth

GMTNet

Figure 4. Visualization of elastic tensor predictions on elastic test set. The results underscore GMTNet’s effectiveness in generating
symmetry-consistent elastic tensor predictions with tensor order 4.

which means

Gℓ = Gℓ
rotated = WDℓ(R) ◦Gℓ.

Hence, the proof that GMTNet extracted crystal-level equivariant features, detailed in Sec. 3.2, meet the pre-established
requirements and have the same spatial symmetry characteristics of the crystal structure is done.

A.3. Directly converting outputs to satisfy crystal space group constraints results in sub-optimal performances

As discussed in the related work section, instead of carefully designing model components to achieve the invariance of crystal
space group when predicting general tensors with different orders, there is a widely used general approach, group averaging,
or more generally, frame averaging, that can convert any model output to be invariant to a group of transformations of
interest. However, we show in this section that directly converting outputs to satisfy crystal space groups will result in
sub-optimal prediction performances.

Specifically, we conduct experiments using group averaging with equation ε = 1
nr

∑
RiεR

T
i to convert output of MEGNET

and ETGNN to be space group invariant, and the results are shown in Tab. 11 where GA denotes using group averaging in
the training and inference processes.

Table 11. Comparison of accuracy in terms of Fnorm on the test set of dielectric tensors.
MEGNET ETGNN MEGNET-GA ETGNN-GA GMTNet

Fnorm ↓ 4.16 3.92 4.51 4.07 3.50

The results verify that directly converting outputs to satisfy crystal space groups will result in sub-optimal prediction
performances, not only for methods that do not satisfy crystal tensor equivariance like MEGNET, but also for methods that
satisfy crystal tensor equivariance like ETGNN.

A.4. Experimental details and additional results

Equivariance verification. The equivariance of different models is verified on the dielectric test set using the E(3) invariant
measurement Fnorm shown in Table 12. ETGNN and our method maintain equivariance for tensor predictions while
invariant MEGNET breaks this property.

Table 12. Equivariance analysis in terms of Fnorm – Evaluated on the most challenging triclinic system of dielectric tensors.
Fnorm MEGNET ETGNN GMTNet

Origin 8.51 8.32 7.65
Rotate 45-x 9.74 8.32 7.65
Rotate 45-y 9.67 8.32 7.65
Rotate 45-z 8.51 8.32 7.65

Equivariance ✗ ✓ ✓
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Node invariant feature updating

(a)

Equivariant message passing

(b)

Figure 5. Message passing details for node invariant feature updating and equivariant message passing in GMTNet. (a) Node invariant
feature updating that takes node features (f j , f i) and edge feature (fe

ji) as input to obtain the updated invariant node feature f new
i . (b)

Equivariant message passing that produces high rotation order node features. In this figure, all notations follow Sec. 3.2.

Visualization comparison. Fig. 3 presents a comparative visualization of dielectric tensor predictions across various crystal
systems within the dielectric test set. In our methodology, the visualization of the dielectric tensor is generated for each
direction in three-dimensional space. This is achieved by considering a directional vector vE = (x, y, z), normalized such
that ||vE ||2 = 1. We define the electric field vector as E = vE and subsequently compute the corresponding displacement
response using the formula D = εE. To effectively represent the displacement response in every direction within the 3D
space, we introduce a surface function θsurface : (vE , ε) → D. The visualization is then rendered by utilizing the norm
||D||2 to determine the radial distance r from the origin to the surface and the surface color.

Notably, as shown in Fig. 3, GMTNet’s predictions exhibit a high degree of alignment with the spatial symmetry characteris-
tics inherent in the ground truth tensors, thereby highlighting its superior predictive capabilities. In contrast, baseline models
such as MEGNET and ETGNN show large deviations in capturing these symmetry aspects. This comparative analysis
shows GMTNet’s effectiveness in producing dielectric tensor predictions that are consistent with the underlying symmetries
of the crystal structures.

We further provide visualization comparison between ground truth piezoelectric and elastic tensors with GMTNet predicted
ones on the piezoelectric and elastic test sets in Fig. 2 and Fig. 4 using MTEX (Bachmann et al., 2010). These comparisons
further demonstrate GMTNet’s effectiveness in generating symmetry-consistent higher order tensor predictions with tensor
order 3 (piezoelectric tensors) and 4 (elastic tensors).

Configurations of GMTNet. The detailed architecture of node invariant feature updating and equivariant message passing
within GMTNet is shown in Fig. 5. For the edge embedding, we use c = 0.75 and RBF kernels with value from −4 to 0
which maps −c/||νji||2 to a 512 dimensional vector. This 512 dimensional vector is mapped to 128 dimensional vector by
a nonlinear layer to fe

ji. We use 2 layers of node invariant feature updating and 3 layers of equivariant message passing for
all tasks including dielectric, piezoelectric, and elastic tensors. Learning rate of 0.001, epoch number of 200, and batch size
of 64 are used for dielectric, piezoelectric, and elastic tensors. We construct crystal graphs using radius determined by the
16-th nearest neighbor. The source code of GMTNet will be released when the paper is publicly available.

Implementations of MEGNET. Following the original paper (Chen et al., 2019), we use three layers of MEGNET message
passing with the same feature dimensions as mentioned in the paper. We train MEGNET for 200 epochs using Huber loss
with a learning rate of 0.001 and AdamW optimizer with 10−5 weight decay. The same polynomial learning rate decay
scheduler as our GMTNet implementation is used. To predict a tensor matrix of shape 3× 3, we change the original output
dimension from one to nine.

Implementations of ETGNN. Following ETGNN (Zhong et al., 2023), we use four DimeNet++ layers with hidden
dimension 128 and ELU activation function to serve as the invariant message-passing network. Since the code of ETGNN
is not publically accessible, we implement DimeNet++ layers following the code provided by Du et al. (2023). We train
ETGNN for 200 epochs using Huber loss with a learning rate of 0.001 and AdamW optimizer with 10−5 weight decay. The
same polynomial learning rate decay scheduler as our GMTNet implementation is used.

Tolerance-guided prediction adjustment. As discussed in Sec. 5.2, the Wigner D matrix computation provided in the e3nn
package (Geiger & Smidt, 2022), introduces numerical errors, notably more pronounced in features with higher rotation
orders. To mitigate the impact of this issue, we implement a tolerance-guided prediction adjustment during inference.
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The symmetry adjustment operator, 1
nr

∑
1≤i≤nr

WDℓ(Ri), embeds the structural symmetry information of the crystal
input. However, the minor errors in each element are challenging to identify and correct. Fortunately, for specific tensor
properties, it is possible to extract symmetry characteristics using defined tolerances, thereby eliminating errors in the
symmetry operator.

For instance, consider the symmetry adjustment operator 1
nr

∑
1≤i≤nr

WDℓ=0,1,2(Ri). To extract the equality characteristics
of dielectric tensors using tolerance, we first construct three vectors v1 ∈ R,v2 ∈ R3,v3 ∈ R5 with rotation orders 0,
1, and 2, respectively, each containing distinct values in their elements. The symmetry-adjusted vectors are obtained as
vnew
1 = 1

nr

∑
1≤i≤nr

WDℓ=0(Ri) ◦ v1,v
new
2 = 1

nr

∑
1≤i≤nr

WDℓ=1(Ri) ◦ v2,v
new
3 = 1

nr

∑
1≤i≤nr

WDℓ=2(Ri) ◦ v3.
Since dielectric tensors comprise three vectors of rotation orders 0, 1, and 2, the vectors vnew

1 ,vnew
2 ,vnew

3 can be transformed
into a 3× 3 dielectric tensor εsymmetry. Equality pairs within εsymmetry are identified by comparing elements with a tolerance
threshold. We find that using 0.01% of the mean value of two elements as the threshold is effective for determining equality
in dielectric tensors. Similar approaches can be applied to piezoelectric and elastic tensors, and threshold value ϵzero = 1.0
is effective for determining zero elements in piezoelectric and elastic tensors if needed.
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