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Abstract
Discovery of causal relationships is a fundamen-
tal goal of science and vital for sound decision
making. As such, there has been considerable
interest in causal discovery methods with prov-
able guarantees. Existing works have thus far
largely focused on discovery under hard interven-
tion and infinite-samples, in which intervening
on a node readily reveals the orientation of ev-
ery edge incident to the node. This setup how-
ever overlooks the stochasticity inherent in real-
world, finite-sample settings. Our work takes a
step towards studying finite-sample causal discov-
ery, wherein multiple interventions on a node are
now needed for edge orientation. In this work,
we study the canonical setup in theoretical causal
discovery literature, where one assumes causal
sufficiency and access to the graph skeleton. Our
key observation is that discovery may be viewed
as structured, multiple testing, and we develop a
novel testing framework to this end. Crucially,
our framework allows for anytime valid testing as
multiple tests are needed to conclude an edge ori-
entation. It also allows for flexible combination
of structured test-statistics (enabling one to use
Meek rules to propagate edge orientation) as well
as robust testing. Through empirical simulations,
we confirm the usefulness of our framework. In
closing, using this testing framework, we show
how one may efficiently verify graph structure by
drawing a connection to multi-constraint bandits
and designing a novel algorithm to this end.

1. Introduction
Causal discovery is a fundamental goal of natural and social
sciences, with widespread use across fields such as biology,
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physics and economics (Spirtes et al., 2000; Pearl, 2009). As
a result, there has great interest in discovery methods with
provable guarantees. In the task of causal discovery, one
assumes access to the observational distribution, from which
one can compute the undirected graph skeleton G with an
unoriented edge between every cause and effect. Under
specific functional assumptions on the graph, the underlying
causal DAG can be identified from observational data alone.
In more general settings, interventional data is needed for
discovery. The goal of causal discovery is thus to minimize
the amount of interventional data needed to identify the true
causal graph. A typical discovery algorithm is outlined as in
Algorithm 1, where the two key subroutines are the “query
step” (adaptively determine which interventional data to
collect next) and the “update step” (given the latest sample,
orient edges in G using all the data collected so far).

The existing line of work on causal discovery with prov-
able guarantees have largely focused on the query step; a
non-exhaustive list of such papers include (Eberhardt, 2007;
Hyttinen et al., 2013; Hu et al., 2014; Shanmugam et al.,
2015; Kocaoglu et al., 2017; Ghassami et al., 2018; Lind-
gren et al., 2018; Choo et al., 2022). Key to the analysis is
the assumption of hard intervention (under infinite samples),
an idealized model of node intervention. That is, when node
v is intervened on, the orientation of all edges in G incident
to v is revealed. Thus, the update step can be easily imple-
mented, and the algorithm performance be neatly defined
in terms of the number of intervened nodes needed to fully
orient the graph.

Importantly, this idealized model of node intervention over-
looks the statistical complexity of orienting an edge in real
world settings. If we view each edge orientation as a hy-
pothesis, then almost always multiple samples are needed to
reject with high probability (w.h.p.) an incorrect hypothesis
(edge orientation), due to stochasticity in the data samples.
Thus, towards studying finite-sample discovery, we consider
the setup considered by Greenewald et al. (2019). An ex-
periment with intervention v now provides one sample from
v’s interventional distribution, which by itself is may not be
sufficient to orient the edge.

In this setting, it is no longer trivial to implement the update
step. Thus, to even begin to study the finite-sample setting,
we first need a framework that can implement the update
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step: given the interventional data obtained so far, decide
which edges can be oriented. Put another way, a correct
implementation of the update step is needed to measure
algorithm performance. And only after we have this can
we get to developing algorithms with provably good perfor-
mance. Specifically, we note the following two properties
are desirable for the framework to have:

1. Anytime Valid Testing: The most basic property re-
quired of any framework that implements the update
step is correctness. That is, any edge that is oriented
at any timestep should be correct w.h.p. In the finite-
sample causal setting, this means that the testing frame-
work has to have anytime validity.

To see why, note that the number of samples needed
for orientation varies depends on the unknown, under-
lying edge strength. For instance, many fewer samples
are needed to orient X1

1000−−−→ X2 w.h.p. compared to
that of X1

0.001−−−→ X2. And so, anytime valid testing
is needed as hypotheses (corresponding to edge orien-
tation e.g. of X1 → X2) will be tested a number of
times, where this number is unknown apriori.

2. Encoding Propagation Implications: Efficient dis-
covery algorithms under hard intervention orient edges
by considering the propagation implications of node
interventions. Intervening on an “informative” node
orients edges, whose orientations in turn propagate to
many other edges via Meek rules (Meek, 2013).

Thus in the finite-sample setting, a secondary, useful
property for the framework to have is to be able to
encode this structure, and relate hypotheses (edge ori-
entations). We note that that this structure is useful
for obtaining higher power tests. For a simple exam-
ple, consider testing X1 → X2 in X1 − X2 − X3.
Evidence against X2 → X3 also serves as evidence
against X1 → X2, since by Meek rule X1 → X2 ⇒
X2 → X3 ∴ ¬X2 → X3 ⇒ ¬X1 → X2.

In this paper, we develop a framework that has both proper-
ties 1 and 2. To the best of our knowledge, our framework
is the first that has these requisite properties. It perform
anytime valid testing using the collected interventional data,
with controlled error rate. That is, at any point in time
(for however long it takes for the graph to be fully ori-
ented), every oriented edge is correct w.h.p. This allows our
framework to be paired with any causal discovery strategy
(that implements the “query step”) to perform finite-sample
causal discovery.

The key observation used to develop the framework is that
causal discovery can be viewed as structured, anytime hy-
pothesis testing. The orientation of each edge in G corre-
sponds to two hypotheses, one for each possible orientation.

Algorithm 1 Causal Discovery Algorithm Template
1: Input: Essential graph G, Query algorithm A
2: while |MEC(G)| > 1 do ▷ multiple graphs in the

Markov Equivalence Class
3: A(G)→ Xt ▷ query step
4: Observe a sample from interventional distribution

(xt
1, ..., x

t
n) ∼ X1, ..., Xn|do(Xt) ▷ collect new

data
5: Test orientation of each unoriented edge using data

{(xj
1, ..., x

j
n)}tj=1 collected so far, and update G ac-

cordingly ▷ update
step

6: end while
7: Return G

There is structure among the hypotheses due to the Meek
rules. Accordingly, our framework makes use of e-processes
for testing. This is a type of test statistics that allows for
both anytime valid testing and flexible combination of test
statistics (Ramdas et al., 2023).

Our Contributions: First, in Section 3, we develop test
statistics that is anytime valid (Property 1). In Section 4, we
consider how one may combine test statistics to leverage
graph structure (Property 2). In Section 5, we empirically
verify the validity of our framework. Finally in Section 6,
to make use of our testing framework, we develop a novel
multi-constraint bandit algorithm for causal verification.

2. Problem Setup
We consider a linear graph with n nodes, where Xi =
θTi Xpa(i) + ui with the set of exogenous noises U sub-
Gaussian: ui ∼ subG(σ2). We note that our results general-
ize to additive graphs, provided knowledge of upper bounds
on the variance of intervention distributions.

In line with the canonical setup in theoretical causal discov-
ery literature, we assume causal sufficiency and access to the
observational distribution D0 and graph skeleton G (Eber-
hardt, 2007; Hyttinen et al., 2013; Hu et al., 2014; Shan-
mugam et al., 2015; Kocaoglu et al., 2017; Ghassami et al.,
2018; Lindgren et al., 2018; Choo et al., 2022). In certain set-
tings, existing algorithms such as the PC algorithm (Spirtes
et al., 2000) can orient additional edges on top of the graph
skeleton. We note that our results are applicable to any
essential graph returned by such algorithms. For most of
our results, we are concerned with the worst-case setting
wherein we only know the graph up to the graph skeleton.
Still, our framework can be used to efficiently test and orient
the remaining unoriented edges given any essential graph.
Finally, with consideration for real-world robustness, we
also consider the setting where the graph skeleton contains
spurious edges in Section 3.4. We demonstrate that we can

2



Foundations of Testing for Finite-Sample Causal Discovery

construct robust test statistics that do not propagate the error
in the graph skeleton.

In addition to causal sufficiency, we also assume faithful-
ness: when a node is intervened upon, the expectation
of each of its children nodes does change. Just as in the
setup of (Greenewald et al., 2019), we consider a mildly
stronger form of faithfulness where, for every cause-effect
pair, there is a minimal causal effect b. That is, if we let
the causal effect of i on j be µj(i) := E[Xj |do(Xi)], then
µj(i) ̸= 0⇒ |µj(i)| > b.

For experimentation, we assume the scientist can perform
sequential, single-node interventions with interventional
value ν. In our setting, we focus on soft intervention, and
we note that our testing framework is also applicable in the
hard intervention setting, when mean-shift detection is used
for edge orientation. Let It denote the node intervened on
at time t. As in (Greenewald et al., 2019), following an
intervention on node It, we observe one sample from the
joint distribution, XIt ∼ Pr(X1, ..., Xn|do(XIt)).

Our primary goal in this paper is to design a framework
where we can use the data we collect from interventions to
construct a sequence of partially oriented graphs (Ĝt) such
that every edge is oriented correctly at all time steps t ∈ N
with high probability.

Definition 2.1 (Anytime-valid partially oriented graph). Let
Ĝt denote the set of oriented edges after the first t interven-
tions. A sequence of partially oriented graphs (Ĝt) is an
anytime-valid partially oriented graph if it satisfies:

Pr(∃t ∈ N : exists incorrect edge in Ĝt) ≤ α (1)

for some predetermined error rate α ∈ [0, 1].

For further discussion on other relevant works and setups,
please refer to Appendix A.

3. Anytime-valid testing via e-processes
First, in Section 3.1, we show that if we are able to construct
an e-process for each edge orientation, then we can correctly
implement the update step. This is because testing using
e-processes guarantees that every edge that is oriented at
any point in time is correct w.h.p. That is, the update step is
correct across time w.h.p. With this motivation in mind, in
Section 3.2, we construct e-processes that can be used for
edge orientation. We begin with some definitions.

Definition 3.1 (Canonical Filtration). A filtration (Ft)t∈N0

is a sequence of nested sigma-algebras, i.e., Ft ⊆ Ft for
all t ∈ N. We define the canonical filtration to have ele-
ments Ft := σ({Xk}k∈[t] ∪ {U}) for each t ∈ N and let
F0 := σ({U}). (Ft) is essentially the sequence of vari-
ables observed after each intervention, and any internal

randomness in the algorithm for selecting Ii for the first t
interventions.
Definition 3.2 (Intervention-specific Filtration). Define
(F i

t ) as the filtration over data just from interventions on i:
F i

t := σ({Xk}k:k∈[t],It=i ∪ {U}) for each t ∈ N.
Definition 3.3. Define a supermartingale w.r.t. to filtration
(F ′t) be any process (Mt)t∈N s.t. E[Mt | F ′t−1] ≤ Mt−1
and Mt is measurable w.r.t. F ′t for each t ∈ N. For simplic-
ity, we will always let nonnegative supermartingale (NSM)
(Mt) satisfy E[M1] ≤ 1.
Definition 3.4. Define an e-process (Et)t∈N w.r.t. to (F ′t)
as a nonnegative process where there exists an NSM w.r.t.
to (F ′t), (Mt), s.t. Et ≤ Mt for all t ∈ N almost surely,
and E[M1] ≤ 1. Note that every NSM is an e-process.
Equivalently, (Et) is an e-process iff it satisfies E[Eτ ] ≤ 1
for any stopping time τ .

The only (key) property we use about e-processes is that it
satisfies the following anytime guarantee, per Ville’s inequal-
ity. At a high level, e-processes may be thought of some-
thing that satisfies the following crucial property, which is
what enables sequential testing with provable error control.
Fact 1 (Ville’s inequality (Ville, 1939)). For any e-process
(Et)t∈N: Pr(∃t ∈ N : Et ≥ 1/α) ≤ α.

3.1. A general approach for constructing anytime-valid
partially oriented graphs

As mentioned previously, we may view each edge orienta-
tion as a hypothesis test. For an oriented edge i → j, we
may define the associated null hypothesis to be:

Hi→j
0 : edge (i, j) has orientation i→ j in G∗.

To test a hypothesis Hi→j
0 with anytime validity, our testing

framework simply requires the construction of an process
(Ei→j

t ) that satisfies the following condition:

Hi→j
0 holds ⇒ Ei→j

t is an e-process

Note that this framework is general and one may design test
statistics specific to the problem at hand, so long as the test
statistic is an e-process under the null. Once we have such
an (Ei→j

t ), our test is φi→j
t (α) := 1{Ei→j

t ≥ 1/α} and
we may test as follows:

Reject Hi→j
0 (i.e. claim j → i is correct)

if φi→j
t (α) = 1 at any t ∈ N. (2)

Proposition 3.5. (φi→j
t ) is an anytime-valid test. That is,

the procedure in (2) ensures that for all error rates α ∈
[0, 1]:

P(Hi→j
0 is rejected | Hi→j

0 is true) =

P(exists t ∈ N : φi→j
t (α) = 1 | Hi→j

0 is true) ≤ α
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Being able to construct anytime-valid test statistics is useful,
because one can use it to produce anytime-valid partially-
oriented graphs.

Using anytime-valid tests, we can construct an anytime-
valid partially oriented graph by union bounding across the
|G| tests.
Proposition 3.6. Given an anytime-valid test (φi→j

t ), orient
edge i → j in Ĝt the first time φj→i

t (α/|G|) = 1. Then,
(Ĝt) is an anytime-valid partially oriented graph.

In summary, if we are able to construct anytime valid par-
tially oriented graphs through anytime valid test statistics
(such as e-processes), then we have in hand a testing frame-
work that can correctly execute the update step w.h.p.

3.2. Construction of per-edge base e-processes

One way to construct e-processes is by combing a sequence
of sequential e-values, defined as follows.
Definition 3.7. A sequence of sequential e-values (St) w.r.t.
to a filtration (F ′t) under null hypothesis H0 is defined as
satisfying: E[St | F ′t−1] ≤ 1 for all t ∈ N under H0.

To develop a test statistic for testing hypothesis i→ j, we
develop sequential e-values for testing Hi→j

0 .

It is natural to start by considering evidence from interven-
tional data on node i and j. Both interventions provide
evidence against i→ j if the edge is actually j → i. Below,
we construct e-values under do(i) and do(j), which allows
us to construct an e-process when we are given interven-
tional data from i and j respectively.

Intervention on j: Suppose It = j, under do(j), it nat-
ural to look at Xi

t . If i → j, then Xi
t would still be mean

0, sub-Gaussian random variable, since the cause is not
changed by changes in the effect. However, if i← j, then
Xi

t would have a shifted mean.

Thus, we define updates Si→j,+
t (j), Si→j,−

t (j), which we
show are sequential e-values:

Si→j,+
t (j) := exp

(
λtX

i
t −

λ2
tσ

2
i

2

)
Si→j,−
t (j) := exp

(
λt(−Xi

t)−
λ2
tσ

2
i

2

)
.

where (λt) is adapted to (Ft).
Proposition 3.8 (Effect on cause). For any sequence (λt)
that is predictable w.r.t. (F j

t ), S
i→j,+
t (j) and Si→j,−

t (j)
are both sequential e-values under Hi→j

0 w.r.t. filtration
(F j

t ).

Intervention on i: Suppose It = i, under do(i), the as-
sumption of minimal causal effect, b, allows us to include

further evidence. We have that Hi→j
0 = Hi→j,+

0 ∪Hi→j,−
0 ,

where the two hypotheses are defined:

Hi→j,+
0 : Hi→j

0 is true and µi(j) ≥ 0

Hi→j,−
0 : Hi→j

0 is true and µi(j) < 0

That is, if i causes j, then the casual effect of i on j is either
positive or negative.

Since interventions result in a minimal shift of b in the mean,
we can construct the following sequential e-values:

Si→j,+
t (i) := exp

(
λt(b−Xj

t )− λ2
tσ

2
j /2
)

if µj(i) > 0 ,

Si→j,−
t (i) := exp

(
λt(b+Xj

t )− λ2
tσ

2
j /2
)

if µj(i) < 0

Proposition 3.9 (Cause on effect). Under the minimal
causal effect condition, we have the following:

Under Hi→j,+
0 , Si→j,+

t (i) are sequential e-values w.r.t. fil-
tration (F i

t ).

Under Hi→j,−
0 , Si→j,−

t (i) are sequential e-values w.r.t. fil-
tration (F i

t ).

With these e-values, we may construct aggregate test statis-
tics under interventional data i and j, which we prove are
e-processes.

Proposition 3.10. Under Hi→j
0 , the following processes

are e-processes w.r.t. filtrations (F j
t ), (F i

t ) respectively:

Ei→j
t (j) :=

1

2

 t∏
k:Ik=j

Si→j,−
k (j) +

t∏
k:Ik=j

Si→j,+
k (j)


Ei→j

t (i) := min

(
t∏

k:Ik=i

Si→j,−
k (i),

t∏
k:Ik=i

Si→j,+
k (i)

)

3.3. Growth rate of e-processes

Suppose that it is the case that j → i, we show that our test
statistics in Proposition 3.10 are such the test has power.
That is, it suffices to show that the test statistic will increase
under the alternative, eventually exceed 1/α, and lead to the
rejection of the null hypothesis Hi→j

0 .

Below, we derive the expected growth rate, which is a stan-
dard measure of the power of an e-process test. We note
that the growth rate of (the log of) the e-values is edge-
specific. It is a function of the edge’s causal strength and
variance. Also, we note that since the log of the e-values is
sub-Gaussian, the test statistic concentrates quickly.

Proposition 3.11. Suppose the true edge orientation is
actually that j → i and WLOG µi(j) > 0. By setting
λt = b/σ2

i for Si→j
t (i) and λt = b/σ2

j for Si→j
t (i), we

have the following growth rates:
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1. E[logSi→j,+
t (j) | Ft−1] = b(µi(j)− b/2)/σ2

i

2. E[logSi→j,+
t (i) | Ft−1] = E[logSi→j,−

t (i) |
Ft−1] = b2/(2σ2

j )

3.4. Robust Testing

In practical settings, the graph skeleton provided may con-
tain mis-oriented edges. In what follows, we show that it is
possible to detect and correct incorrect edges in the graph
skeleton.

Specifically, we observe that by using only the test statistic
Si→j
t (j), our tests will be robust to spurious edges. The

proof is simply that, if neither nodes have an effect on each
other, the shift in mean is zero. Thus, both test statistics
have expectation at most 1, and are thus e-processes. From
Proposition 3.5, we then know that neither tests will reject
w.h.p. And so, we will not mistakenly orient an edge w.h.p,
when there is none there.

On top of this, we can then use the non-conclusiveness
of both tests, after sufficiently many rounds, to correct an
incorrectly specified edge. Indeed, when there is an edge,
we should expect one of the two tests to reject within a
bounded number of rounds with high probability. Thus, if
we know a lower bound for the edge size, then we can use
the non-rejection of both tests after sufficiently many rounds
to determine that the edge is spurious. Indeed, if there is an
edge, one of the two tests should have rejected w.h.p.

We now derive this bound as follows. For a sequence of
sequential e-variables (St), define τα := min{t ∈ N ∪
{∞} :

∏t
k=1 Sk ≥ α−1} to be the first time t ∈ N where

the product of St exceeds α−1 for any α ∈ [0, 1] (or∞ if
St never exceeds α−1).
Proposition 3.12. . If the edge j → i is the true orientation
in G, then each of the the following statements hold true
with probability 1− β for each β ∈ [0, 1]:

1. For (Si→j,+
t (j)), we have that τα ≤ σ2

i log(α−1β−1)
b(µi(j)−b) .

2. For (Si→j,±
t (i)), we have that τα ≤

σ2
j log(α−1β−1)

b2

Thus, these sample complexity results provide high prob-
ability upper bounds on the process corresponding to the
product of sequential e-variables.

Please refer to Appendix B for the proofs of all results in
this section and experiment plots.

4. Combining edge e-processes according to
propagation rules

In this section, we study the theory of combining anytime
valid e-processes, developed in the previous section. Recall,

these test statistics (as in Proposition 3.10) were constructed
for testing a single edge, in isolation. However, implications
of Meek rules can allow us to propagate evidence from other
edges to our edge of interest.

Importantly, this means that for testing i→ j, it is possible
to make use of interventional data from not just nodes i, j.
As we will show, e-processes can be flexibly combined
and allow for propagation rules to be encoded into the test-
statistic to take advantage of this structure.

Firstly, we observe that each Meek rule may be viewed as
being one of two types of logical implications. Let i0 →
j0, i1 → j1, i2 → j2 be directed edges in the graph. Meek
rules are of two forms:

i1 → j1 ⇒ i0 → j0 i.e., propagation of a single edge.(3)
(j2 → i2 ∧ j1 → i1)⇒ j0 → i0

i.e., propagation of two edges to a single edge. (4)

Taking the contrapositive (CP) of Rule (4) results in the
following rule: i0 → j0 ⇒ (i2 → j2 ∨ i1 → j1).

Lemma 4.1 (Meek rules imply hypothesis conjunc-
tion/disjunction). For any edge orientation hypotheses
Hi0→j0

0 , Hi1→j1
0 , Hi2→j2

0 , we have that

Hi0→j0
0 = Hi0→j0

0 ∩Hi1→j1
0 by Rule 3

Hi0→j0
0 = Hi0→j0

0 ∩ (Hi1→j1
0 ∪Hi2→j2

0 ) by CP of Rule 4

This is useful, because under Rule 3 for example, testing
i0 → j0 is equivalent to testing i0 → j0 and i1 → j1. Thus,
we can use evidence from i1 → j1 to reject i0 → j0, which
increases the power of testing i0 → j0.

In light of this observation, it is useful to enumerate i0 →
j0’s implications, to to obtain additional evidence for testing.
Intuitively, the more implications an edge (hypothesis) has
(due to propagation rules), the more ways there are to verify
this hypothesis, since it only takes one false implication to
reject a hypothesis. In the next subsection, we develop an
algorithm that recursively enumerates these implications.

4.1. Enumeration of implications of an edge orientation

In this subsection, we develop an algorithm, Algorithm 2,
for enumerating the “extended hypothesis” implied by the
original hypothesis corresponding to the edge orientation of
interest, i→ j. This algorithm allows us to operationalize
the Meek rules and enumerate edges that are implied by the
null hypothesis, i→ j.

In the algorithm, a tree of edges is recursively expanded
to enumerate all the edges implied by the root edge. To
emphasize, the tree we refer to in this section does not refer
to the causal graph (which need not be a tree), but rather a
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Algorithm 2 Enumerating edges implied by Meek rule for
a given edge orientation
Require: Essential graph G, hypothesized orientation i→

j.
1: Initialize empty tree T , insert edge i→ j as root.
2: while exists root to leaf path P such that the oriented

edges in P imply new edge via a Meek rule in G do
3: if Meek rule of the form (3) or (4) propagates a single

new edge i′ → j′ not in P then
4: Append i′ → j′ to the leaf node of P .
5: end if
6: if Meek rule of the form (4) propagates two new

edges i1 → j1, i2 → j2 both not in P then
7: Add i1 → j1 and i2 → j2 as children of the leaf

node of P . ▷ do not include the pair if at least one
of the edges is on the path

8: end if
9: end while

10: Return tree T where each path from root to leaf P is a
set of edges that are implied by i→ j.

representation of the logical implications that are implied
by the root edge.

Let T i→j be the tree constructed by applying Algorithm 2.
A path in a tree T is the set of edges encountered by travers-
ing T from its root to a leaf node.

Definition 4.2. For a tree T , define the logical implications
represented by T as follows:

H0(T ) :=
⋃

P∈P(T )

⋂
i′→j′∈P

Hi′→j′

0 .

Proposition 4.3. Algorithm 2 satisfies the following proper-
ties:

• (Soundness) Algorithm 2 is sound and does terminate.

• (Correctness) Let T i→j be the resultant tree of Algo-
rithm 2, then:

Hi→j
0 =

⋃
P∈P(T i→j)

⋂
i′→j′∈P

Hi′→j′

0 .

Remark 4.4. As we prove in Lemma C.2, we can stop the
tree expansion in Algorithm 2 after any number of applica-
tion of Meek rules. The corresponding tree T would still be
valid (H0(T ) = Hi→j

0 ). That is, we need not exhaust all im-
plications based on the Meek rules. This is useful because
one can trade off between the power of the test, and the
time/space complexity of a more complicated tree/test statis-
tic. Testing with fewer implications results in lower power,
but has the benefit of being easier to track and evaluate.

4.2. Conversion of expanded hypothesis into an
e-process

Having enumerated other edge orientations implied by the
original edge orientation, in this subsection, we show how
to convert these logical relationships into an “extended” e-
process useful for testing.

Given a logical tree T i→j , we first design an e-process
corresponding to a particular path P ∈ T i→j . Let V be the
set of all nodes in the graph. Let ∆d denote the probability
simplex on d-dimensions. Let P (i′) := {i → j : i → j ∈
P, i = i′ ∨ j = i′} be the set of edges on path P with one
its vertex node i′. We can now construct a corresponding
e-process which is defined as follows.

Proposition 4.5. Let (Ei→j
t (i)) be an e-process w.r.t. (F i

t )
under Hi→j

0 . For a path P , define:

EP
t := exp

(∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)

−|P (i′)| − 1

2
· log(2|Ti′(t)| − 2)

)
,

Then (EP
t ) is an e-process w.r.t. (Ft) under HP

0 .

Having defined the e-process corresponding to some path
P ∈ T i→j , we may now define the e-process corresponding
the full tree T i→j as follows.

Proposition 4.6 (Correctness of combined e-process). De-
fine:

Ei→j
t := min

P∈P(T i→j)
EP

t .

Then, (Ei→j
t ) is an e-process when Hi→j

0 is true.

Theorem 4.7. For any sequence of interventions (It) pre-
dictable w.r.t. (Ft), let Ĝt be the partially oriented DAG
where the test for each orientation is defined as follows:

φi→j
t = 1{Ei→j

t ≥ |G|/α}.

Then, (Ĝt) is anytime-valid orientation (as defined in (11)).

4.3. Additional power in combined test statistics

We note that Proposition 4.6 applies to any expanded T i→j

tree, which includes the tree without any expansion i.e.
T i→j = (i→ j). So does an expanded tree lead to higher
power? We note that an increase in power depends on the
graph: for instance, if a graph comprises of only isolated
edges, no additional power can be gained from propagation.
Below, we present one instance where we can prove that the
power of the test is sizably larger, thus providing a concrete
example showing the value of combining evidence.
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Proposition 4.8. Consider an uniform intervention policy
over nodes [n]. There exists a graph and edge i → j,
such that the expected growth rate (i.e. power) of logEi→j

t

under the fully expanded tree T i→j is Ω(|G|) times that of
logEi→j

t under the non-expanded tree (i.e. just the single
edge i→ j).

Please see Figure 15 of Appendix F for an illustration of a
simple n-node chain graph, wherein additional power can
be obtained due to Meek rules. Please refer to Appendix C
for the proofs of all results in this section as well as time
complexity analysis of the proposed algorithms.

In closing, we note that this approach to test statistic combi-
nation can apply more broadly to other structured hypothe-
sis testing settings, wherein there are logical relationships
(Meek rules in this case) relating the hypotheses.

5. Experiments on fixed-time versus anytime
methods

To illustrate the usefulness of anytime valid tests, we com-
pare our anytime-valid test statistic (as in Section 3.2)
against a fixed-time test statistic across a variety of graphs.

Graph Setups: We consider two classes of graphs. (1)
Erdos-Renyi graphs with varying number of nodes and den-
sity (n, p) ∈ {10, 20, 30} × {0.3, 0.5} (2) tree graphs with
n ∈ {10, 20, 50, 100}. These are used to generate the graph
skeleton. The SCM of the graphs is linear Gaussian; the
edge strengths are randomly sampled from max(U [0, k], b),
where k is the upper bound.

Fixed-time Baseline: We consider the following p-value
that corresponds to the two-sided z-test for edge i→ j. The
hypothesis test involves checking if the test statistic is below
the acceptance threshold α

2|G| (from union bound).

Let µ̂j|do(i)
t :=

∑
k∈Ti(t)

Xj
k, µ̂

i|do(j)
t :=

∑
k∈Tj(t)

Xi
k. Let Ti(t)

be the number of times we have intervened on i at time t.
Define the fixed-time p-value baseline as:

P i→j
t = 2

(
1− Φ

(
b · |Ti(t)| − |µ̂j|do(i)

t |+ |µ̂i|do(j)
t |)√

|Tj(t)| varXi + |Ti(t)| varXj

))

where Φ is the Gaussian CDF function.

Proposition 5.1 (P i→j
t is a p-value). P i→j

t satisfies
P(P i→j

t ≤ s) ≤ s for all s ∈ [0, 1] and t ∈ N under
Hi→j

0 .

Experiment Configurations: In the experiment, we fix
b = 0.1, variance 1 and the interventional value ν =
1. We vary the number of interventional samples ∈
{100, 500, 1000, 5000, 10000}, tolerated error rate α ∈
{0.1, 0.2} and edge strength k ∈ {0.1, 0.2, 1, 2, 10}, all

of which affect hypotheses testing (i.e. number of orienta-
tions). Fixing a particular setting, we simulate 20 trials to
compute the mean and standard deviation.

We plot two metrics. The most important is the mis-
coverage rate, which is defined to be the number of trials
wherein the test statistic returns at least one falsely oriented
edge. That is, the percentage of time that an update step that
uses this test statistic is wrong. Alongside miscoverage, we
also plot the number of oriented edges. This indicates the
informativeness of a test statistic, as indeed a test that never
rejects can trivially achieve 0 miscoverage rate.

Comparing anytime vs fixed-time: In the interest of space,
we present results under the ER graph with (n, p, α) =
(30, 0.5, 0.2) in Figure 1. Overall, we observe the following
trends in our experiments.

Miscoverage: In every setting, we find that our testing frame-
work achieves miscoverage rate below α (line in green), thus
validating our theoretical anytime guarantee. On the other
hand, in a number of settings, we observe that the fixed-time
statistic leads to high miscoverage rate.

Number of Orientations: The reason for the high miscover-
age seems to be that the fixed time test statistic is not conser-
vative enough to control the error rate. The anytime test is
more conservative in orienting fewer number of edges, so as
to attain error control. Note that this control is important in
preventing spurious edge orientations, which would then be
fed back into the query step as an erroneous representation
of the partially oriented graph.

Comparing combined e-values vs base e-values: We also
conduct an experiment comparing the combined e-values
(Section 4) against the base e-values (Section 3) in a chain
graph, where we expect the combined e-values to be helpful.
We find that combining e-values is more useful in large
data/graph regimes, while the light-weight, base e-values
are more effective in small data/graph regimes.

Please refer to Appendix D for all experimental results.

6. Optimizing test statistic for causal
verification

Once we have an anytime valid test framework that cor-
rectly implements the update step, we can turn to designing
query strategies that minimize sample complexity under
this framework. Towards this goal, we consider the task of
causal verification, which acts as a stepping-stone towards
causal discovery. Knowing how to optimally intervene to
verify a known graph is an useful building block for under-
standing how to optimally intervene to learn an unknown
graph. In this section, we develop a novel querying algo-
rithm with provable guarantees that we believe can be be a
stepping stone to more practical algorithms. To do so, we
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Figure 1. (Left) Number of samples vs Miscoverage rate (Middle) Number of samples vs Number of oriented edges (Right) Edge signalsize
k vs Miscoverage rate.

highlight a connection between finite-sample causal verifica-
tion and the structured bandit literature (Badanidiyuru et al.,
2018), by demonstrating that causal verification reduces to
multi-constraint bandit optimization.

To recap, the goal of active verification is: given knowledge
of the true graph, verify the edge orientations, while mini-
mizing the expected number of samples needed to conclude
that each edge orientation is oriented as in the graph w.h.p.

Problem Setup: Formally, construct an intervention policy
that (adaptively) intervenes on nodes I1, ..., Iτ such that the
the expected stopping time E[τ ] is minimized, where τ is
defined as the earliest time step such that every hypothesis
corresponding to incorrect orientation j → i is rejected.
That is, ∀j → i, Ej→i

τ ≥ |G|/α.

6.1. Construction of test statistic for causal verification

Since the SCM is known in verification, all edge strengths
are known. This allows us to construct a more simplified
test-statistic than that of Proposition 4.5.

Consider some incorrect orientation j → i. Let its logical
tree be T j→i. With full information, it is natural to construct
a test statistic for j → i by including only the e-value
with the highest expected growth rate. Define S∗t (P, It) =

Se∗,s∗

t (It) for e∗, s∗ = argmaxe∈P (It),s∈{±} E[S
e,s(It)].

This represents the edge and sign e-value with the largest
expected growth-rate under intervention It, out of all the
possible e-values of edges in P (It).

With this, we may define a test statistic with the
highest expected growth rate under intervention i′ as
E∗j→i

t (i′) =
∏t

k:Ik=i′ S
∗
k(P, i

′), path test statistic as

E∗Pt := exp

( ∑
i′∈V

logE∗j→i
t (i′)

)
and full test statistic

as E∗j→i
t = minP∈P(T j→i) E

∗P
t . In what follows, we will

make the assumption that Xi is a bounded r.v. with b, ν
such that logS∗k(P, I) is positive (as arm rewards are usually
assumed to be positive in bandits literature).

6.2. Reduction to multi-constraint bandit optimization

Having defined E∗Pt , causal verification then corresponds
to choosing an apt intervention policy that jointly optimizes
E∗j→i

t for every incorrect orientation j → i, and only inso-
far as to have E∗j→i

t exceed a threshold, |G|/α. To solve
this problem, we observe that causal verification reduces to
multi-constraint bandit optimization, defined as follows.

Multi-constraint bandit optimization: An instance is pa-
rameterized by n arms, m constraints and budget b:

• There are T rounds for T a specified time horizon.

• At round i, the algorithm may pull an arm xi, yielding
a “gain” vector, where rxi

∼ Dxi
for rxi

∈ [0,M ]m.

• There is a known threshold b ∈ R+ on the aggregate
gain of each constraint.

• The interaction terminates at the earliest round τ , when∑τ
t=1 rxt

≥ b · 1 (aggregate gain of every constraint
exceeds b), or at the end of the T th round.

The goal of the algorithm is to minimize the total expected
cost

∑τ
i=1 cxi

(node intervention cost cxi
is set to 1).

Reduction to multi-constraint bandits: We observe that
the test statistic for each path P ∈ P(T j→i) grows addi-
tively in the log of e-values logS∗k(P, Ik):

E∗j→i
t ≥ |G|/α⇔ ∀P ∈ P(T j→i), E∗Pt ≥ |G|/α

⇔ ∀P ∈ P(T j→i),

t∑
k=1

logS∗k(P, Ik) ≥ log(|G|/α)

Thus, given a causal verification instance, we may instanti-
ate a multi-constraint bandit instance as follows:

1. Arms: define n = |V | arms, each corresponding to a
node intervention in the graph.

2. Constraint: define a constraint corresponding to every
(P, i′) pair, for path P ∈ T j→i and intervention i′ ∈ V .
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Algorithm 3 Causal Verification as multi-constraint bandits
Require: threshold b; time horizon T ; for each node x,

known expected gain vector r̄x ∈ [0,M ]m ▷
for node x, this vector’s entries are the expected growth
rates under intervention on node x (E[logS∗(P, x)] of
every path P of every logical tree T j→i)

1: In the first n rounds, intervene on each node once
2: Initialize v1 = 1 ∈ [0, 1]m

3: Set ϵ =
√

M lnm
b+M

4: while
∑t

i=1 rxi
< b · 1 and t < T do ▷ not all

tests have concluded, since not all test statistics have
exceeded b

5: for node x ∈ [n] do
6: Set weighted total gain gx = r̄x · vt
7: end for
8: Intervene on node xt = argmaxx∈X gx with the

highest weighted gain
9: Receive vector rx, whose entries are realizations of

random variables logS∗(P, x) of every path P ∈
T j→i of every tree T j→i

10: Update vt entry-wise with normalized rx, where its
ith entry changes as follows:

vt+1(i) = vt(i)(1− ϵ)ℓ, ℓ = rx(i)/M

11: end while

Thus, the gain of pulling arm i′ ∈ V corresponds to a
vector of realizations of random variable logS∗(P, i′)
of every path P ∈ T j→i of every tree T j→i.

3. Set the threshold b = log(|G|/α).

Guarantee: We develop Algorithm 3 that attains provable
guarantees in the multi-constraint bandit setting, which ap-
plies immediately to the causal verification setting via the re-
duction. Let OPT be the expected total number of interven-
tions needed by the optimal dynamic policy. Let REWtot

be the algorithm performance of Algorithm 3, which is the
expected number of interventions such that every incorrect
orientation test statistic exceeds b. Then, we have that:

Theorem 6.1. The regret of Algorithm 3 is:

REWtot −OPT ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPT

+ Õ

(
M
√
T

b
+ nM

)
.

To provide some intuition, in Algorithm 3, one may view v
as a varying, weighting over each constraint. Each round,
the algorithm greedily pulls the arm whose sum of weighted

expected gain is the largest. After a round, if a constraint has
seen a sizable increase, then its weighting in v is reduced.
This adaptive re-balancing then allows for an arm selection
that focuses more on increasing other constraints, which are
further away from exceeding the threshold b. Please refer to
Appendix E for the proofs of all results in this section.

7. Conclusion
We develop a general, anytime valid testing framework that
can correctly implement the “update step” needed in finite-
sample causal discovery. Using this framework, we develop
a multi-constraint bandit algorithm for causal verification.
Overall, we believe our results serve as an useful stepping
stone towards making further progress on causal discovery
and more broadly structure learning, in the real world.

Impact Statement
This paper presents work whose goal is to advance the topic
of causality, primarily geared towards capturing the statisti-
cal sample complexity of causal discovery. To the best of
our understanding, there are no societal consequences of our
work which we feel must be specifically highlighted here.
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A. More Related Works
Finite-Sample Considerations in Causality: The three papers most similar in motivation to that of ours are: Greenewald
et al. (2019), Wadhwa & Dong (2021) and Acharya et al. (2023). Like Greenewald et al. (2019), our paper is similarly
motivated by finite-sample considerations that exist in real-world settings, where the collection of interventional data (e.g.
RCTs) is much more difficult and costly than that the collection of observational data. As such, we also assume that infinitely
many observational samples are available, while only finitely many interventional samples can be obtained. (Wadhwa &
Dong, 2021) is concerned with the sample complexity of causal discovery, albeit that of learning the equivalence class, and
not the actual graph, given only observational data only. Finally, (Acharya et al., 2023) is also concerned with finite-sample
causal discovery via testing. They study the two node setting, and assume both finite interventional and observational data,
which are contrasted in the paper.

While our paper’s goal of studying finite-sample causal discovery is the same as those of Greenewald et al. (2019); Acharya
et al. (2023), our paper differs in focusing primarily on the update step. Additionally, our testing framework is applicable
in general graphs, going beyond the two-node or tree settings. Different from (Greenewald et al., 2019), we study soft
interventions instead of hard interventions, thus introducing the need to consider the strength of edges, as edges with weak
causal strength require more samples to orient. Different from (Acharya et al., 2023), we study how to propagate edge
orientations in hypothesis testing, which is needed when the graph comprises of more than two nodes and a single edge.

Causal Verification: Causal Verification is a well-known task in causal discovery. Besides having practical applications
(e.g. verifying a scientific conjecture corresponding to some causal graph structure), it has the theoretical benefit of better
understanding the lower bound that underlies any active causal discovery algorithm (Squires et al., 2020; Porwal et al., 2022;
Choo et al., 2022).

Bayesian causal discovery: There has also been a line of work in Bayesian causal discovery, wherein one uses interventional
data to update the posterior over all graphs (Agrawal et al., 2019; Toth et al., 2022; Tigas et al., 2022). Since the set of all
graphs in the MEC may be prohibitively large, approximation methods are used to sample from the posterior, making less
clear what provable guarantees one may be able to provide about such methods.

Functional Causal Discovery: Further afield, there has been a sizable number of paper that leverage specific functional
forms of graphs for orientation, using observational data only. Examples of such methods include (Shimizu et al., 2006;
Hoyer et al., 2008; Zhang & Hyvarinen, 2012). Interested readers may refer to for example (Glymour et al., 2019) for a
more complete survey of this line of work.

Bandit Multiple-Testing: The closest type of methods in the bandit literature are those dealing with multiple testing
(Jamieson & Jain, 2018; Xu et al., 2021). Current work on bandit multiple testing differs from the methods in this paper
in two significant ways: (1) bandit multiple testing is primarily focused on controlling the false discovery rate (FDR) and
(2) methods lie in the typical hypothesis testing problem setting where one can only reject a hypothesis — in the causal
discovery setting, each unoriented edge will be one of two directions, and the negation of one implies the other — hence the
relationships between the hypotheses require methods that will derive a certain conclusion for each unoriented edge.

Necessity of Non-Negative Martingales: (Ramdas et al., 2020) proves that under a suitable definition of admissibility, all
admissible constructions of test statistics for any-time sequential inference must necessarily utilize nonnegative martingales.
This shows that the martingale test statistic we construct is in some sense of the “right form”.

B. Deferred Proofs from Section 3

Lemma B.1. Let Mt :=
t∏

k=1

Sk. Then, (Mt) is an NSM w.r.t. filtration (Ft) under H0.

Proof. The conditional expectation of Mt is as follows:

E[Mt | Ft−1] = E[St | Ft−1] ·
t−1∏
k=1

Ek = E[St | Ft−1] ·Mt−1 ≤Mt−1,

where the inequality is by definition of St being a sequential e-value for each t ∈ N.
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B.1. Deferred Proofs from Section 3.1

Proposition B.2. (φi→j
t ) is an anytime-valid test, that is, the procedure in (2) ensures that

P(Hi→j
0 is rejected ) = P(exists t ∈ N : φi→j

t (α) = 1) ≤ α when Hi→j
0 is true for all α ∈ [0, 1].

Proof.

P(exists t ∈ N : φi→j
t (α) = 1|Hi→j

0 ) = Pr(exists t ∈ N : M i→j
t ≥ 1/α|Hi→j

0 ) (by definition of φi→j
t (α))

≤ α (Ville’s inequality, because under Hi→j
0 is true⇒ (M i→j

t ) is an e-process)

Proposition B.3. Given an anytime-valid test (φi→j
t ), orient edge i→ j in Ĝt the first time φj→i

t (α/|G|) = 1. Then, (Ĝt)
is an anytime-valid partially oriented graph.

Proof. Let the final oriented graph be Ĝ.

P
(

exists t ∈ N : exists oriented edge in Ĝt not in G∗
)
≤

∑
i→j∈Ĝ

P (exists t ∈ N : orient edge i→ j ∧ j → i in G∗)

=
∑

i→j∈Ĝ

Pr(exists t ∈ N : ϕj→i
t (α/|G|) = 1 ∧ j → i in G∗)

≤
∑

i→j∈Ĝ

α/|Ḡ| (by Proposition 3.5)

= α (5)

B.2. Deferred Results from Section 3.2

Proposition B.4. For any sequence (λt) that is predictable w.r.t. (F j
t ), S

i→j,+
t (j) and Si→j,−

t (j) are both sequential
e-values under Hi→j

0 w.r.t. filtration (F j
t ).

Proof. At time t with It = j, under Hi→j
0 , we have that ±Xi

t | F
j
t−1 is a mean 0, σ2

i -sub-Gaussian random variable. We
work through the Xi

t case, and the −Xi
t case follows analogously. From definition, its MGF is such that:

E[exp(λXi
t)] ≤ exp

(
λ2σ2

i

2

)
⇔ E[Si→j,+

t (j) | Fj
t−1] = E[Si→j,+

t (j)] = exp

(
λXi

t −
λ2σ2

i

2

)
≤ 1

Proposition B.5. Under the minimal causal effect condition, we have the following:

Under Hi→j,+
0 , Si→j,+

t (i) are sequential e-values w.r.t. filtration (F i
t ).

Under Hi→j,−
0 , Si→j,−

t (i) are sequential e-values w.r.t. filtration (F i
t ).

Proof. We prove the first statement, and the second follows analogously. WLOG µj(i) = E[Xj
t (i)] ≥ b. We have that:

E
[
exp

(
λ(b−Xj

t (i))− λ2σ2
j /2
)
| Ft−1

]
≤ 1⇔ E[Si→j,+

t (i) | F i
t−1] = E[Si→j,+

t (i)] ≤ 1

since b−Xj
t (i) | Ft−1 is a σ2

i -sub-Gaussian with nonpositive mean b− E[Xj
t (i)].
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Proposition B.6. Under Hi→j
0 , the following processes are e-processes w.r.t. to filtration (F j

t ), filtration (F i
t ) respectively:

Ei→j
t (j) :=

1

2

 t∏
k:Ik=j

Si→j,−
k (j) +

t∏
k:Ik=j

Si→j,+
k (j)

 , Ei→j
t (i) := min

(
t∏

k:Ik=i

Si→j,−
k (i),

t∏
k:Ik=i

Si→j,+
k (i)

)

Proof. • (Ei→j
t (j)) is the average of two processes

M+
t (j) =

∏
k∈Tj(t)

Si→j,+
k (j), M−t (j) =

∏
k∈Tj(t)

Si→j,−
k (j).

By Proposition 3.8, each of these processes are the product of sequences of sequential e-values (w.r.t. to filtration (F j
t ))

under Hi→j
0 , i.e., (Si→j,−

k ) and (Si→j,+
k ). This implies that they are NSMs by Lemma B.1, and hence also e-processes

w.r.t. to filtration (F j
t ).

To show that the average of these two e-processes is an e-process, we introduce the notion of a stopping time, and note
the following e-process equivalence.

Definition B.7. A stopping time τ ∈ N w.r.t. a filtration (F ′t)t∈N is a random variable that where 1{τ = t} is
measurable w.r.t. Ft.

Further, we use the following fact about e-processes from (Ramdas et al., 2020).

Fact 2 (Item (vi) from Lemma 6 of Ramdas et al. 2020). (Et) is a an e-process w.r.t. to a filtration (F ′t) iff it is
nonnegative and E[Eτ ] ≤ 1 for all stopping times τ defined w.r.t. (F ′t).

Now, we get that, for any stopping time τ defined w.r.t. to filtration (F j
t ):

E[Ei→j
τ (j)] =

1

2
(E[M+

τ (j)] + E[M−τ (j)]) ≤ 1,

where the last inequality is by (M+
t (j)), (M−t (j)) being NSMs defined w.r.t. to filtration (F j

t ).

• Now, we will prove (Ei→j
t (i)) is also an e-process. Since Hi→j

0 ⇒ Hi→j,+
0 ∪Hi→j,−

0 , if Hi→j
0 is true, one of Hi→j,+

0

or Hi→j,−
0 holds. Without loss of generality, let Hi→j,+

0 be true.

Here, the processes under consideration are now:

M+
t (i) =

∏
k∈Tj(t)

Si→j,+
k (i), M−t (i) =

∏
k∈Tj(t)

Si→j,−
k (i).

We will show that M+
t (i) is an NSM w.r.t. to filtration (F i

t ), which implies that M i→j
t is an e-process since M i→j

t ≤
M+

t (i) for all t ∈ N almost surely.

When It = i, by Proposition 3.9, Si→j,+
t (i) is an e-value and so:

E[M+
t (i)|Ft−1] = E[Si→j,+

t (i)|Ft−1] ·M+
t−1 ≤M+

t−1.

Finally, we check that when It ̸= i, we have that:

E[M+
t (i)|Ft−1] = M+

t−1 ≤M+
t−1.

And we note that at the base case t = 1, for the NSM, we have that:

E[M+
t (i)] = E[Si→j,+

1 (i)] ≤ 1 or E[M+
t (i)] = 1

13
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B.3. Deferred Results from Section 3.3

Proposition B.8. Suppose the true edge orientation is actually that j → i and WLOG µi(j) > 0. By setting λ = b/σ2
i for

Si→j
t (i) and λ = b/σ2

j for Si→j
t (i), we have the following growth rates:

1. E[logSi→j,+
t (j) | Ft−1] = b(µi(j)− b/2)/σ2

i

2. E[logSi→j,+
t (i) | Ft−1] = E[logSi→j,−

t (i) | Ft−1] = b2/(2σ2
j )

Proof. We analyze the growth rates of each case separately:

1.

E[logSi→j
t (j) | Ft−1] = λ

(
E
[
Xi

t | Ft−1
])
− λ2σ2

i

2

=
b

σ2
i

µi(j)−
b2

2σ2
i

=
b(µi(j)− b/2)

σ2
i

2. We have that:

E[logSi→j,±
t (i) | Ft−1] = λ(b± E[Xj

t | Ft−1])− λ2σ2
j /2

= λb− λ2σ2
j /2

=
b2

2σ2
j

.

Remark B.9. We note that var(Xi) in any interventional distribution is identified, and the same as varD0(Xi). This allows
us to put in the exact multiplier for λ2/2 in the the NSM.

From Linear Graphs to Additive Graphs: We note that our setting may be generalized to additive graphs, when given an
upper bound on the variance of variables in the interventional.

This is because, to set the appropriate λ for sequential e-values, we only need to have knowledge of b and an upper bound on
the variance interventional distribution. With this, we could set a rate such that the growth rate is positive as in the power
analysis above.
Proposition B.10. If the edge j → i is the true orientation in G, then each of the the following statements hold true with
probability 1− β for each β ∈ [0, 1]:

1. For (Si→j,+
t (j)), we have that τα ≤ σ2

i log(α−1β−1)
b(µi(j)−b) .

2. For (Si→j,±
t (i)), we have that τα ≤

σ2
j log(α−1β−1)

b2

Proof. We prove this explicitly for Si→j,+
t (j) and other results for (Si→j,±

t (i)) follow similarly.

Let Mt :=
t∏

k=1

Si→j,+
k (j) as follows.

Mt = exp

(
t∑

k=1

λXi
t −

λ2σ2
i

2

)

= exp(t(λµi(j)− λ2σ2
i )) · exp

(
t∑

k=1

λ(Xi
t − µi(j)) +

λ2σ2
i

2

)
.

14
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Figure 2. The four meek rules for propagating oriented edges.

Now, we note that exp
(∑t

k=1−λ(Xi
t − µi(j))− λ2σ2

i

2

)
is a nonnegative supermartingale since Xi

t − µi(j) are i.i.d.

σ2
i -sub-Gaussian random variables with mean 0. As a result, we know that

Mt ≥ exp(t(λµi(j)− λ2σ2
i )) · β

for all t ∈ N with probability 1− β by Ville’s inequality. If we set λ = b/σ2
i . We get that

σ2
i log(α

−1β−1)

b(µi(j)− b)
≤ t.

implies Mt ≥ α−1 with probability 1− β. This concludes our desired result.

C. Deferred Proofs from Section 4
Lemma C.1 (Meek rules imply hypothesis conjunction/disjunction (general)). For any edge orientation hypotheses
Hi→j

0 , Hi1→j1
0 , Hi2→j2

0 , we have that

Hi→j
0 = Hi→j

0 ∩Hi1→j1
0 if i→ j ⇒ i1 → j1

Hi→j
0 ∩Hi1→j1

0 = Hi→j
0 ∩Hi1→j1

0 ∩Hi2→j2
0 if i→ j ∧ i1 → j1 ⇒ i2 → j2

Hi→j
0 = Hi→j

0 ∩ (Hi1→j1
0 ∪Hi2→j2

0 ) if i→ j ⇒ i1 → j1 ∨ i2 → j2

Proof. The results follow from an application of the logical rule that if A⇒ B, then A = A ∩B.

For the first rule, we get the following implications:

Hi→j
0 ⇔ i→ j in G∗ ⇒ i1 → j1 in G∗ ⇔ Hi1→j1

0 .

For the second rule, we can show its true by the following derivation.

Hi→j
0 ∩Hi→j

0 ⇔ i→ j and i1 → j1 in G∗ ⇒ i2 → j2 in G∗ ⇔ Hi2→j2
0 .

For the last rule, we can derive the implication as follows:

Hi→j
0 ⇔ i→ j in G∗

⇒ i1 → j1 in G∗ ∨ i2 → j2 in G∗

⇔ Hi1→j1
0 ∪Hi2→j2

0 .
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C.1. Deferred Results from Section 4.1

Let P(T ) denote the set of paths in T . The following lemma proves the correctness of the “extended hypothesis” generated
by Algorithm 2.
Lemma C.2. Given some tree T , let T ′ be the tree that results from applying a single Meek rule to T , i.e., through either
Algorithm 2 or Algorithm 2 in Algorithm 2. Then, H0(T ) = H0(T

′).

Proof. We perform a case analysis depending on the Meek rule (as defined in (3), (4), (4)) that is applied to T . Let the path
in T that is expanded be P̂ .

1. In the case of (3) or (4), there exists a single path P ′ = P̂ ∪ {i′ → j′} ∈ P(T ′) such that

P(T ′) = P(T ) \ {P̂} ∪ {P ′} ,

i.e., the only difference between T and T ′ is that path P̂ gained a child i′ → j′ to become P ′. We have that:

⋂
i→j∈P̂

Hi→j
0 =

 ⋂
i→j∈P̂

Hi→j
0

 ∩Hi′→j′

0 =
⋂

i→j∈P ′

Hi→j
0 . (6)

where the first equality is from Lemma 4.1. Hence, we get

H0(T
′) =

⋃
P∈P(T ′)

⋂
i→j∈P

Hi→j
0 =

 ⋃
P∈P(T ′)\{P ′}

⋂
i→j∈P

Hi→j
0

 ∪
 ⋂

i→j∈P ′

Hi→j
0


(a)
=

 ⋃
P∈P(T )\{P̂}

⋂
i→j∈P

Hi→j
0

 ∪
 ⋂

i→j∈P̂

Hi→j
0


= H0(T ).

where equality (a) is by P(T ′) \ {P ′} = P(T ) \ {P̂} and (6).

2. In the case of (4), we know that there exist two paths P ′1, P
′
2 ∈ P(T ′) such that P ′1 = P̂ ∪ {i′1 → j′1} and

P ′2 = P̂ ∪ {i′2 → j′2}, where P̂ ∈ P(T ) and P(T ′) = P(T ) \ {P̂} ∪ {P ′1, P ′2}.
Further, by Lemma 4.1, we know that: ⋂

i→j∈P̂

Hi→j ⇒ Hi′i→j′1 ∪Hi′2→j′2 .

Hence, we get the following equality (using the logical relation A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)):

⋂
i→j∈P̂

Hi→j
0 =

 ⋂
i→j∈P̂

Hi→j
0

 ∩ (Hi′1→j′1
0 ∪H

i′2→j′2
0

)
=

 ⋂
i→j∈P ′

1

Hi→j
0

 ∪
 ⋂

i→j∈P ′
2

Hi→j
0

 . (7)

From this, we obtain

H0(T
′) =

 ⋃
P∈P(T )\{P ′

1,P
′
2}

⋂
i→j∈P

Hi→j

 ∪
 ⋂

i→j∈P ′
1

Hi→j

 ∪
 ⋂

i→j∈P ′
2

Hi→j


=

 ⋃
P∈P(T )\P̂

⋂
i→j∈P̂

Hi→j

 ∪
 ⋂

i→j∈P ′
1

Hi→j

 ∪
 ⋂

i→j∈P ′
2

Hi→j


(since P(T ′) \ {P ′1, P ′2} = P(T ) \ {P̂})

=

 ⋃
P∈P(T )\P̂

⋂
i→j∈P̂

Hi→j

 ∪
 ⋂

i→j∈P̂

Hi→j

 (by (7))

= H0(T ).
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Proposition C.3. Algorithm 2 satisfies the following properties.

• (Soundness) Algorithm 2 is sound and does terminate.

• (Correctness) Let T i→j be the resultant tree of Algorithm 2, then:

Hi→j
0 =

⋃
P∈P(T i→j)

⋂
i′→j′∈P

Hi′→j′

0 .

Proof. Soundness: We note that a Meek rule cannot introduce a novel edge to a path in the tree if the path is of length |E|
and already contains an orientation for each possible edge in G. And so, the algorithm must terminate since each root to leaf
path’s length is bounded. This in turn means that so is the depth of the final tree T i→j .

Correctness: This follows from Lemma C.2 that each added edge(s) maintains the invariant that the logical expression
corresponding to the tree is equal to Hi→j

0 .

C.2. Deferred Proofs from Section 4.2

Proposition C.4. Let (Ei→j
t (i)) be an e-process w.r.t. (F i

t ) under Hi→j
0 . For any path P ⊆ E define

EP
t := exp

(∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)

−|P (i′)| − 1

2
· log(2|Ti′(t)| − 2)

)
,

Then (EP
t ) is an e-process w.r.t. (Ft) under HP

0 .

We are able to justify that (EP
t ) is an e-process by constructing an NSM that upper bounds EP

t . We begin with the following
fact.
Fact 3 (Theorem 2 of Cover & Ordentlich (1996)). Define xt ∈ Rd

+ to be a d-dimensional nonnegative real vector for each
t ∈ N. Then, there exists a sequence of weight vectors, (wt), where wt ∈ ∆d and wt is solely a function of (xk)k∈[t−1] for
each t ∈ N, such that

log

(
t∏

k=1

w⊤k xt

)
≥ max

w∈∆d
log

(
t∏

k=1

w⊤xt

)
− d− 1

2
· log(2(t+ 1)) for all t ∈ N.

Proof. For each e-process Ei→j
t (i′), let M i→j

t (i′) be the corresponding (F i′

t )-NSM (under Hi→j
0 ) such that Ei→j

t (i′) ≤
M i→j

t (i′) for all t ∈ N almost surely. Now, define

∆M i→j
t (i′) :=


M i→j

t (i′) if t = 1

1 if M i→j
t−1 (i

′) = 0
Mi→j

t (i′)

Mi→j
t−1 (i′)

otherwise
.

For t ≥ 2, we have that:

E[∆M i→j
t (i′)|F i′

t−1] =
E[M i→j

t (i′)|F i′

t−1]

M i→j
t−1 (i

′)
≤ 1

17
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as a result of M i→j
t (i′) being an NSM. And so, (∆M i→j

t (i′)) is a sequence of sequential e-values with respect to the
filtration F i′

t . And E[M i→j
1 (i′)] ≤ 1 by Definition 3.3.

Furthermore, we use the following lemma.

Lemma C.5. M i→j
t (i′) is a NSM and (∆M i→j

t (i′)) is a sequence of sequential e-values under (Ft) as well.

Proof. The filtration (F i′

t ) is important here, since this implies that

M i→j
t (i′) = M i→j

t−1 (i
′) and ∆M i→j

t (i′) = 1 if It ̸= i′, (8)

as M i→j
t (i′) is F i′

t -measurable (i.e., a function of samples from i′) for each t ∈ N.

Note that for each t ∈ N,

Xt ⊥⊥ Ft−1 | It. (9)

We will now show that E[∆M i→j
t | Ft−1] ≤ 1, i.e., is a sequential e-value under (Ft). This is trivially true if It ̸= i′, so we

consider the case where It = i′.

E[∆M i→j
t | It = i′,Ft−1] = E[∆M i→j

t | F i′

t−1, It = i,
⋃

j∈V,j ̸=i′

F j
t−1]

= E[∆M i→j
t | F i′

t−1, It = i′] ≤ 1.

The first equality is because Ft = F i′

t−1 ∪
⋃

j∈V,j ̸=i′ F
j
t−1. The last line is by (9) and ∆M i→j

t being a sequential e-value
under F i′

t−1.

Let ∆Mt(i
′) be the vector of ∆M i→j

t (i′) indexed for each i → j ∈ P (i′). Now, we utilize the following regret bound
from Fact 3, which implies that there exists a sequence of weights (wt) predictable w.r.t. (Ft) such that we can define the
following process:

MP
t :=

t∏
k=1

w⊤k ∆Mk(Ik) = exp

(
t∑

k=1

log(w⊤k ∆Mk(Ik))

)

= exp

∑
i′∈V

log

 ∏
k∈Ti′ (t)

w⊤k ∆Mk(i
′)

 (collecting terms across Ik ∈ V )

(a)
≥ exp

∑
i′∈V

max
w∈∆|P (i′)|

log

 ∏
k∈Ti′ (t)

w⊤∆Mk(Ik)

− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))


(b)
= exp

∑
i′∈V

max
w∈∆|P (i′)|

log

∏
k∈[t]

w⊤∆Mk(Ik)

− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))


(c)
≥ exp

(∑
i′∈V

max
i→j∈P (i′)

logM i→j
t (i′)− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))

)

≥ exp

(∑
i′∈V

max
i→j∈P (i′)

logEi→j
t (i′)− |P (i′)| − 1

2
· log(2(|Ti′(t)| − 1))

)

Inequality (a) is a result of Fact 3. For equality (b), we note that ∆Mk(i
′) = 1 (i.e., the vector of ones) for each

k ̸∈ Ti′(t), as a result of (8). Consequently, is we can change the index of the product from Ti′(t) to [t], since multiplying
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by w⊤1 = 1 does not change the product. Inequality (c) is because the elementary bases is a subset of ∆|Ai′ | and∏
k∈Ti′ (t)

∆M i→j
k (i′) = M i→j

t (i′) due to telescoping product. The last inequality is by definition of M i→j
t (i′) ≥ Ei→j

t (i′)
for all t ∈ N.

Now, we only need to show that MP
t is an NSM w.r.t. (Ft). Recall MP

t =
∏

k∈Ti′ (t)
w⊤k ∆Mk(Ik). We have that:

E[MP
t |Ft−1] = E[w⊤t ∆Mt(It) | Ft−1]M

P
t−1

Thus, it suffices to show the following:

E[w⊤t ∆Mt(It) | Ft−1] ≤ 1 under HP
0 . (10)

We know the following is true under HP
0 :

E[w⊤t ∆Mt(It) | Ft−1] =
∑

i→j∈PIt

wi→j
t E[∆M i→j

t (It) | Ft−1] ≤
∑

i→j∈PIt

wi→j
t = 1.

The inequality is by definition of ∆M i→j
t of being a sequential e-value (under (Ft)) under Hi→j

0 , which holds as i→ j ∈ P
and HP

0 holds by assumption. The last equality is by wt ∈ ∆|AIt |.

Thus, we have shown (10) and proven our desired result.

Proposition C.6 (Correctness of combined e-process). Define

Ei→j
t := min

P∈P(T i→j)
EP

t .

Then, (Ei→j
t ) is an e-process when Hi→j

0 is true.

Proof. By the definition of P(T i→j):

Hi→j
0 = H0(T

i→j) =
⋃

P∈P(T i→j)

HP
0

Thus, if Hi→j
0 is true, then there exists P ∈ P(T i→j) such that HP

0 is true.

(EP
t ) is an e-process by Proposition 4.5. Since, Ei→j

t ≤ EP
t for all t ∈ N almost surely, (Ei→j

t ) is an e-process, and we
have shown our desired result.

Theorem C.7. For any sequence of interventions (It) predictable w.r.t. (Ft), let Ĝt be the partially oriented DAG where
the test for each orientation is defined as follows:

φi→j
t = 1{Ei→j

t ≥ |G|/α}.

Then, (Ĝt) is anytime-valid orientation (as defined in (11)).

Proof. Let the final oriented graph be Ĝ.

P
(

exists t ∈ N : exists oriented edge in Ĝt not in G∗
)
≤

∑
i→j∈Ĝ

P (exists t ∈ N : orient edge i→ j ∧ j → i in G∗)

=
∑

i→j∈Ĝ

Pr(exists t ∈ N : Ej→i
t ≥ |G|/α ∧ j → i in G∗)

≤
∑

i→j∈Ĝ

α/|Ḡ| (by Proposition 4.6)

= α (11)
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Proposition C.8 (Additional power of combining test statistics). Consider an uniform set of interventions over nodes [n].
There exists a graph and edge i→ j, such that the expected growth rate (i.e. power) of logEi→j

t under the fully expanded
tree T i→j , is Ω(|Ḡ|) times that of logEi→j

t under the non-expanded tree (i.e. just the single edge i→ j).

Proof. Consider a chain graph Ḡ = X1 −X2 − ...−Xn (generalizable to trees where the root has only one child), where
the underlying graph is such that X1 ← X2...← Xn. Such a setting allows for a simple, closed-form expression for the test
statistic.

Suppose we are interested in testing H1→2
0 . Suppose there are m interventions, which means m/n interventions of each

node.

In this setting, we assume that edge causal effects and variance are equal for fair comparisons. Thus ∀i, j,E[logEi→i+1
t (i+

1)] = E[logEj→j+1
t (j + 1)]. Certainly, if Ej→j+1

t (j + 1)] > E1→2
t (2)], then gain in power will be even more pronounced.

Using Proposition 4.5, we have that:

E[logE1→2
t ] = E

[
logE1→2

t (1) +

n−1∑
i=2

[max(logEi−1→i
t (i), logEi→i+1

t (i))− 1/2(log(2|Ti(t)| − 2))] + logEn−1→n
t (n)

]

≥ E

[
logE1→2

t (1) +

n−1∑
i=2

logEi−1→i
t (i) + logEn−1→n

t (n)− 1/2(n− 2) log(2m/n− 2)

]

≥
n−1∑
i=2

E[logEi−1→i
t (i)]− 1/2(n− 2) log(2m/n− 2)

= (n− 2) · E[logE1→2
t (2)]− Õ(n)

≥ (n− 2)/2 · E[logE1→2
t (2) + logE1→2

t (1)]− Õ(n)
(for any edge i→ j, E[logSi→j,+

t (j) | Ft−1] ≥ E[logSi→j,+
t (i) | Ft−1])

≥ C · E[logE1→2
t (2) + logE1→2

t (1)] (we assume that logE1→2
t (2) = Ω(m) >> Õ(n))

for constant C = Ω(n).

Remark C.9. Note that the combination of evidence is such that we need not reject any of Xi → Xi+1 to reject X1 → X2.
The cumulative evidence is enough, despite the data not being conclusive for any of the downstream edges!

C.3. Time complexity analysis of algorithms

Algorithm 2: Each path in the loop contains at most |E| edges. Each round in the while loop requires examining at most |E|
to see if there is a new edge that is implied via Meek’s rule. Thus, if the algorithm is run for T rounds, the time complexity
is T · |E|. We note that how much the tree is expanded out, as a function of T , is an user choice.

Algorithm 4: First, we consider the time complexity of updating test-statistic given a new intervention i at time t. It suffices
to update EP

t for every path P ∈ T i→j , which is pre-computed. Using the definition of EP , it suffices to just re-compute
logEi→j

t (i′) to incorporate the new interventional data, and then take the minimum.

If one re-computation is taken to require one unit of computation, then there are |P (i′)| many logEi→j
t (i′) re-computations.

Using the definition of |P (i′)|, we know it is upper bounded by the degree of i′. Thus, if the max degree of the graph is
deg(G), then the update to each edge test statistic requires at most deg(G) · |P ∈ P (T i→j)| updates. In total, updating this
for all edge hypotheses is upper bounded by: 2|E|·deg(G)·|P ∈ P (T i→j)| = O(|V ||E|maxi→j |P ∈ P (T i→j)|). Finally,
if there are T rounds with T interventions, the total number of updates comes out to: O(T · |V ||E|maxi→j |P ∈ P (T i→j)|).

Note that this characterizes the time-complexity of the e-process updates in as being polynomial (more precisely linear) in
terms of the graph parameters and the size of the implication trees. As we previously note, the size of this implication tree
(that is pre-computed) is an user-based choice. The more implications that are enumerated in the tree, the higher the power
of the test. However, this in turn increases the time-complexity (and memory), which we can observe above.
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Algorithm 4 Anytime Testing for Updates in Finite-Sample Causal Discovery
Require: Input: pre-compute logical tree T i→j for each hypothesized edge orientation for edge i − j in skeleton (via

Algorithm 2)
Require: Sample from intervention distribution (xt

1, ..., x
t
n) ∼ X1, ..., Xn|do(Xt)

1: for node Xi adjacent to XIt do
2: if edge Xi −XIt unoriented then
3: Update Ei←It

t , Ei→It
t

4: Test Ei←It
t ≥ |G|/α,Ei→It

t ≥ |G|/α ▷ Test if we can conclude i ̸← It or i ̸→ It w.h.p.
5: end if
6: end for
7: for hypothesized orientation edge i′ → j′; i′ − j′ unoriented, i′, j′ ̸= It do ▷ Propagation
8: if exists edge i← It or i→ It in T i′→j′ then
9: Update Ei′→j′

t using updated Ei←Xt

t or Ei→Xt

t

10: Test Ei′→j′

t ≥ |G|/α ▷ Test if we can conclude i′ ̸→ j′ w.h.p.
11: end if
12: end for

D. Experiments
D.1. Fixed-time test statistic construction

Proposition D.1. P i→j
t satisfies P(P i→j

t ≤ s) ≤ s for all s ∈ [0, 1] and t ∈ N under Hi→j
0 .

Proof. For c ∈ {±1}, define

P+
t (c) := 1− Φ

(
b · Ti(t)− µ̂

j|do(i)
t + c · µ̂i|do(j)

t√
|Tj(t)| varXi + |Ti(t)| varXj

)
,

P−t (c) := 1− Φ

(
µ̂
j|do(i)
t + b · Ti(t) + c · µ̂i|do(j)

t√
|Tj(t)| varXi + |Ti(t)| varXj

)
.

Note that, for any choice of c, P+
t (c) and P−t (c) are z-test p-values under Hi→j,+

0 and Hi→j,−
0 respectively. As a result,

max(P+
t , P−t ) is a p-value under Hi→j

0 .

Now, we can see that the following is true:

P i→j
t = 2min(max(P+

t (1), P−t (1)),

max(P+
t (−1), P−t (−1))).

Since taking double the minimum of any two p-values is still a valid p-value by union bound, we get our desired result that
P i→j
t is a p-value.

Remark D.2. Note the difference in qualifiers from the anytime guarantee, wherein correctness is guaranteed across time t,
and not only at some fixed point t in time.

D.2. Comparing fixed-time vs anytime test statistics

Experiment Configurations: In experiments, we fix b = 0.1, variance as 1 and interventional value ν = 1. Each setting is
run for 20 trials to evaluate the mean and standard deviation.

We plot two metrics: (1) the mis-coverage rate (number of trials wherein the test statistic returns at least one falsely oriented
edge) (2) the number of oriented edges (indeed an uninformative test that never rejects can trivially achieve 0 miscoverage
rate).

To assess the guarantee of anytime approaches across a number of settings, we have the following experiments:
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• Figures 3 and 5: Varying the number of interventional samples {100, 500, 1000, 5000, 10000} (fixing k = 0.2) in ER
graphs with number of nodes ∈ {10, 20, 30}, α ∈ {0.1, 0.2} and p = 0.3.

• Figures 4 and 6: Varying the number of interventional samples {100, 500, 1000, 5000, 10000} (fixing k = 0.2) in ER
graphs with number of nodes ∈ {10, 20, 30}, α ∈ {0.1, 0.2} and p = 0.5.

• Figures 7 to 10: Varying the number of interventional samples {100, 500, 1000, 5000, 10000} (fixing k = 0.2) in tree
graphs with number of nodes ∈ {10, 20, 50, 100} and α ∈ {0.1, 0.2}.

• Figures 11 and 12: Varying edge causal strength k ∈ {0.1, 0.2, 1, 2, 10} (fixing number of samples at 1000) in ER
graphs (n, p) ∈ {10, 20, 30} × (0.3, 0.5) and α = 0.2.

In all these settings, in terms of miscoverage, we find that the anytime approach has controlled error rate below that of α (in
green), although the miscoverage rate is not always 0. On the other hand, the fixed time approach can attain sizable error
rate and introduce spuriously oriented edges. This trend seems consistent across two classes of graphs (ER and trees), as
well as in ER graphs with varying SCM parameters edge strength k.

In terms of number of orientations, we observe that the number of orientations increases with sample complexity (as
expected). However, the anytime test statistic orients conservatively at a (much) lower pace than does the fixed time
approach. In exchange, this provides the error control and guarantees a high probability of only correct orientations.

D.3. Understanding the effectiveness of combining test statistics

To examine the effectiveness of propagating evidence from test statistics, we have the following experiment:

• Figure 13: Varying the number of interventional samples {100, 500, 1000, 5000, 10000} (fixing k = 0.2) and plot the
number of oriented edges in a chain graph with the number of nodes in {5, 10, 20, 50} and edges have alternating
causal strength in {0.1, 10}.

Chain graphs are an example where edges may benefit from propagation effects. We set up the causal strength to vary such
that some edge orientations (those with low edge strength) will benefit from other edges (those with high edge strength). In
the experiment, we compare the number of oriented edges at a fixed sample size by base e-values (as in Section 3) against
the combined e-values (as in Section 4). Note that we also check for miscoverage rate to ensure correctness (in order to have
a fair comparison); we do find that the miscoverage rate under both are 0.

In the plot, we observe that combining test statistics may help. It orients more edges than base e-values, when one has a
sizable number of samples. Interestingly, we find that the base e-values is better in lower sample regimes. Moreover, the
number of data points after which the combined test statistic is more effective increases with graph size.

We believe that this happens, because the combined test statistic, while having higher mean, also has higher variance. Thus,
it is most effective when there are more samples. Overall, this suggests we should favor base e-values in smaller data and/or
graph regimes, and combined test statistics in big data/graph regimes. The lighter-weight base e-values can be surprisingly
effective. Verily, an interesting future work would be to develop testing methods that adapt the test statistic to the (unknown)
SCM parameters and the test parameters (e.g. number of budgeted samples).
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Figure 3. Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with α = 0.2, p = 0.3. First Row: (n, p) =
(10, 0.3); Second Row: (n, p) = (20, 0.3); Third Row: (n, p) = (30, 0.3).
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Figure 4. Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with α = 0.2, p = 0.5. First Row: (n, p) =
(10, 0.5); Second Row: (n, p) = (20, 0.5); Third Row: (n, p) = (30, 0.5).
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Figure 5. Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with α = 0.1, p = 0.3. First Row: (n, p) =
(10, 0.3); Second Row: (n, p) = (20, 0.3); Third Row: (n, p) = (30, 0.3).
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Figure 6. Plotting miscoverage rate and number of orientations in Erdos-Renyi Graphs with α = 0.1, p = 0.5. First Row: (n, p) =
(10, 0.5); Second Row: (n, p) = (20, 0.5); Third Row: (n, p) = (30, 0.5).

26



Foundations of Testing for Finite-Sample Causal Discovery

Figure 7. Plotting miscoverage rate and number of orientations in tree graphs with α = 0.2, n ∈ {10, 20}. First Row: n = 10; Second
Row: n = 20.
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Figure 8. Plotting miscoverage rate and number of orientations in tree graphs with α = 0.2, n ∈ {50, 100}. First Row: n = 50; Second
Row: n = 100.
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Figure 9. Plotting miscoverage rate and number of orientations in tree graphs with α = 0.1, n ∈ {10, 20}. First Row: n = 10; Second
Row: n = 20.
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Figure 10. Plotting miscoverage rate and number of orientations in tree graphs with α = 0.1, n ∈ {50, 100}. First Row: n = 50; Second
Row: n = 100.
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Figure 11. Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with α = 0.2, p = 0.3. First Row: n = 10 (left)
and n = 20 (right); Second Row: n = 30.
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Figure 12. Plotting SCM parameter (edge strength k) vs miscoverage rate in ER graphs with α = 0.2, p = 0.5. First Row: n = 10 (left)
and n = 20 (right); Second Row: n = 30.
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Figure 13. Comparing number of orientations of combined e-values vs those of base e-values in chain graphs with α = 0.2. First Row:
n = 10 (left) and n = 20 (right); Second Row: n = 30 (left) and n = 50 (right).
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D.4. Evaluating Derived Upper Bounds on Stopping Time useful for Robust Testing

In Subsection 3.4, we derive a set of upper bounds on the number of samples needed for testing. One important implication
is that this allows one to have an upper bound estimate on the amount of interventional data that one needs to collect to do
the test. The other implication of this, useful for robust testing, is that one can use the non-conclusiveness of the test after
this number of samples to detect spurious, non-edges.

In this subsection, we empirically verify this claim by evaluating the sample complexity needed for testing the orientation of
some edge. Please refer to Figure 14 for a plot of the results.

• Firstly, we verify that with high probability, the bounds derived in Proposition 3.12 holds.

In the experiments, we vary one parameter and fix the rest, checking the number of times the number of samples needed
for testing is below the derived upper bound, out of 100 trials for each setting.

We vary α = {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1}, while setting µi(j) = 1.0, σ = 1.0, b = 0.1, β = 0.1.

We vary σ = {1e-6, 1e-3, 1e-2, 1e-1, 1, 10}, while setting α = 0.01, µi(j) = 1.0, b = 0.1, β = 0.1.

We vary µi(j) = {5e-1, 1, 5, 10, 100, 1000}, while setting α = 0.01, σ = 1.0, b = 0.1, β = 0.1.

• Secondly, we verify that when there is no edge between the two edges, then with high probability the test statistic does
not reject before the derived number of samples, thus allowing us to use the contrapositive of Proposition 3.12 to detect
spuriously oriented edges.

In this set of experiments, we use the same parameter setting as above, with the only difference that there is no causal
effect from node i to node j. We check the number of times the number of samples needed for test conclusion is below
the derived upper bound, out of 100 trials for each setting.

We vary α = {1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1}, while setting σ = 1.0, b = 0.1, β = 0.1. Here, µi(j) = 0.0.

We vary σ = {1e-6, 1e-3, 1e-2, 1e-1, 1, 10}, while setting α = 0.01, b = 0.1, β = 0.1. Here, µi(j) = 0.0.
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Figure 14. (Left Column) the fraction of 100 trials where the needed number of samples to conclude the test is below that of the derived
upper bound (Right Column) the fraction of 100 trials where the needed number of sample complexity is below that of the derived upper
bound, when there is no edge between the two nodes (i.e. µj(i) = 0).
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E. Multi-constraint Bandit Optimization
Causal verification is a well-known and important task in causal discovery (Squires et al., 2020; Porwal et al., 2022; Choo
et al., 2022). Besides having practical applications (e.g. verifying a scientific conjecture corresponding to a causal graph
structure), it has the theoretical benefit of understanding the lower bound that underlies any causal discovery algorithm.

The key challenge that arises in this problem is that an intervention policy needs to choose nodes It in order to grow the
test statistic of all n edges simultaneously. Moreover, it only needs to optimize each test statistic only to the extent that
the test statistic exceeds a threshold. In this section, we develop a novel, multi-constraint bandit algorithm needed for
verification. Our key observation is that the causal verification setting reduces to the dual of the Bandits with Knapsack
(BwK) setup (Badanidiyuru et al., 2018).

To this end, we develop Algorithm 3 that attains provable guarantees in the multi-constraint bandit setting, and applies
immediately to the causal verification setting using the reduction. As observed in (Badanidiyuru et al., 2018), OPT, the
expected total number of interventions needed by the optimal dynamic policy is difficult to characterize. In fact, even
evaluating the expected number of interventions needed by a given time invariant, intervention policy is difficult. This is
due to the difficulty of characterizing the random stopping time τ , when every test statistic exceeds the threshold. Thus, an
algorithmic approach is taken where the proposed algorithm is shown to attain provable guarantees with respect to OPT.

E.1. Problem Statement

Setup: An instance of multi-constraint bandit optimization is parameterized by n arms, m constraints (henceforth “re-
sources”), gain vector distributions Di for arm i and budget b:

• There are n arms and m resources.

• Time proceeds in T rounds, where T is a finite time horizon given as input into the algorithm.

• Each round t, the learning algorithm picks some arm xt ∈ X .

• Pulling arm x incurs deterministic cost cx.

• The algorithm receives a gain vector, Rxt ∈ [0,M ]m where Rxt ∼ Dxt (some known distribution).

• There is a threshold b ∈ R+ on the total gain of each resource.

• The interaction terminates the first time
∑τ

t=1 Rxt
≥ b · 1.

• The goal of the algorithm is to minimize the total expected cost
∑τ

i=1 cxi .

E.2. Reducing causal verification to multi-constraint bandits

We show that the causal verification problem corresponds to an instance of the multi-constraint bandit optimization problem.
This algorithm is needed as our choice of intervention affects the e-processes of all edges.

We observe that bandit optimization is possible, because for any j → i, the test statistic grows additively in the log of
e-values:

E∗j→i
t ≥ 1/α⇔ ∀P ∈ P(T j→i), E∗Pt ≥ 1/α

⇔ ∀P ∈ P(T j→i),
∑
i′∈V

logE∗j→i
t (i′) ≥ log(1/α)

⇔ ∀P ∈ P(T j→i),

t∑
k=1

logS∗k(P, Ik) ≥ log(1/α)

Reduction: Thus, given a causal verification instance, we may reduce to a multi-constraint bandit instance as follows:

36



Foundations of Testing for Finite-Sample Causal Discovery

1. Arms: define n = |V | arms, each corresponding to a node intervention in the graph.

Set ci = 1 for all i ∈ V , as we only care about the total number of interventions. However, we note that our algorithm
can handle differing node intervention costs.

2. Resources: define a resource corresponding to each (P, i′) pair each path P ∈ T j→i and intervention i′ ∈ V .

Accordingly, define the gain of pulling arm i′ ∈ V (i.e. intervening on node i′) as a random draw of logS∗(P, i′).

3. Define budget b = log 1/α.

In the causal verification setting, node intervention cost is set as ci = 1 for all i ∈ V , since the objective of interest is the
total number of interventions. Note however that Algorithm 3 can handle varying node intervention costs.

In the analysis below, we assume that Xi is a bounded r.v. with b, ν such that logS∗k(P, I) is positive (as arm rewards are
usually assumed to be positive in bandits literature). While this represents a subset of all SCM instances, as we will see, the
query strategy design already results in solving an involved and novel multi-constraint bandit problem.

Finally, we note that one needs to manually specified the horizon T as in the multi-constraint bandit setting. This is a
common assumption in BwK literature (Badanidiyuru et al., 2018), which has proven to be difficult to remove. T in the
causal verification setting may be viewed as the maximum number of experiments a scientist can run, or a known upper
bound on the number of experiments needed to verify the graph. Verily, an exciting future direction is understanding how to
remove the need to specify T , and develop a

E.3. Algorithm Guarantee:

The goal is to compete with the optimal dynamic policy given all the latent information. That is, OPT is the expected total
number of steps of the optimal dynamic policy, given foreknowledge of the distribution of outcome vectors.

Since OPT is difficult to analyze, consider the fractional relaxation of this problem in which the number of rounds in which
a given arm is selected (and also the total number of rounds) can be fractional, and the reward and resource consumption per
unit time are deterministically equal to the corresponding expected values in the original instance.

min
k1,...,kn

c1k1 + ...+ cnkn

s.t.
n∑

j=1

rjiki ≥ b for each resource i ∈ [m]

ki ≥ 0

where ki is the the fractional relaxation for the number of rounds in which a given arm i is selected.

This is a bounded LP, because
∑n

i=1 ki ≤ T by definition. The optimal value of this LP is denoted by OPTLP. We may
construct the dual program:

max
v1,...,vm

b(v1 + ...+ vm)

s.t.
m∑
i=1

rjivi ≤ cj for each arm j ∈ [n]

vj ≥ 0

The dual variables vi can be interpreted as a unit gain for the corresponding resource i.

Lemma E.1. OPTLP is a lower bound on the value of the optimal dynamic policy: OPTLP ≤ OPT.

Proof. Let v∗ be the optimal solution to the dual program. We note that by strong duality, b
∑m

i=1 v
∗
i = OPTLP =∑n

j=1 cik
∗
i .
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Algorithm 5
1: In the first n rounds, pull each arm once
2: For each arm x, define known expected gain vector Rx ∈ [0,M ]m

3: v1 = 1 ∈ [0, 1]m ▷ vt ∈ [0, 1]m is the round-t estimate of the optimal solution to the dual v∗

4: Set ϵ =
√

M lnm
b+M

5: for rounds t = n+ 1, ..., τ do
6: for arm x ∈ X do
7: Set expected gain gx = Rx · vt
8: end for
9: Pull arm x = xt ∈ X that maximizes gx/cx

10: Observe realized reward for each resource rx ∈ [0,M ]
11: Update estimated unit gain for each resource i with normalized gain rx(i)/M : ▷ Cost-based MWU

vt+1(i) = vt(i)(1− ϵ)ℓ, ℓ = rx(i)/M

12: end for

Let Zt denote the potential function: sum of costs incurred in optimal dynamic policy, plus total gain of the remaining
resource endowment after round t.

At the start, the total gain of the remaining (all the) resource endowment is Z0 = b
∑m

i=1 v
∗
i .

We have that Zt = Zt−1 + cxit −
∑m

i=1 rxtivi from arm pull xt at time t.

From dual feasibility, we have that cj −
∑m

i=1 rjivi ≤ 0. Then, it follows that the stochastic process Z0, Z1, ..., ZT is a
submartingale.

Let τ be the stopping time of the optimal dynamic algorithm, i.e. the total number of rounds.

Thus, Zτ−1 equals the algorithm’s total cost, plus the gain of the remaining (non-negative) resource supply at the start of
round τ .

By Doob’s optional stopping theorem, we have that Z0 ≤ E[Zτ−1] ≤ OPT.

Let us REWtot =
∑τ

t=1 ct.

The algorithmic approach will make use of dual vectors, computed as follows.

Learning the dual variable: We use the multiplicative weights update method to learn the optimal dual vector. This method
raises the cost of a resource exponentially as it is consumed, which ensures that heavily demanded resources become costly,
and thereby promotes balanced resource consumption.

Scaled-Hedge: This update scheme is such that for any τ and asequence of vectors π1, ..., πτ ∈ [0,M ]m, feed in normalized
π1/M, ..., πτ/M vectors into the hedge algorithm and obtain guarantee:

∀y ∈ ∆[m],

τ∑
t=1

yTt πt ≤ (1 + ϵ)

τ∑
t=1

yTπt +
M lnm

ϵ

E.4. Algorithm Analysis under Known Arm Means

Let R̂t ∈ [0,M ]m×n be the actual gain matrix for round t. The (i, x) entry is the realized gain of resource i in round t if
arm x were chosen in this round.

Suppose it holds with probability at least 1− 1/T that the confidence interval for every latent parameter, in every round of
execution, contains the true value of that latent parameter. We call this high-probability event a “clean execution”.

The regret guarantee will hold almost surely assuming that a clean execution takes place. The regret can be at most T ·M
when a clean execution does not take place, and since this event has probability at most 1/T it contributes only O(M) to the
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regret. We will henceforth assume a clean execution.
Claim 1. The Algorithm total cost is such that:

REWtot −OPTLP ≤

[
Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + nM

]
+ Õ

(
1

b

)
OPTLP∥

τ∑
t=n+1

Etzt∥∞

where Et = R− R̂t under Algorithm 3.

Proof. Let k∗ be the optimal solution to the LP-Primal with OPTLP =
∑n

j=1 cjk
∗
j . For any realized gains by the algorithm

policy, we have the following analysis.

Let ŷ = ei, where resource i is (one of) the last resources, whose gain exceeds b:

ŷT

(
τ−1∑
t=1

R̂tzt

)
≤ b⇒ ŷT

(
τ−1∑

t=n+1

R̂tzt

)
≤ b

Let the total cost after exploration be REW =
∑τ

t=n+1 ct and define:

ȳ =
1

REW

τ−1∑
t=n+1

ctyt

Under Algorithm 3, we have at time t, by our choice of xt, the corresponding zt must be such that:

zt ∈ argmax
z∈∆(X)

yTt Rz

cT z

b ≤ ȳTRk∗ (from primal feasibility, Rk∗ ≥ b1)

=
1

REW

τ−1∑
t=n+1

cty
T
t Rk∗ (plug in definition of ȳ)

=
cT k∗

REW

τ−1∑
t=n+1

cty
T
t R

k∗

cT k∗

≤ OPTLP

REW

τ−1∑
t=n+1

yTt Rzt (since yT
t Rzt
cT zt

≥ yT
t Rk∗

cT k∗ )

≤ min
y

OPTLP

REW

[
(1 + ϵ)

τ−1∑
t=n+1

yTRzt +M lnm/ϵ

]
(since this holds for all y ∈ ∆[m] using hedge)

< (1 + ϵ)
OPTLP

REW
min
y

[
yT

τ−1∑
t=n+1

R̂tzt + yT
τ−1∑

t=n+1

Etzt +M lnm/ϵ

]
(pull out (1 + ϵ))

≤ (1 + ϵ)
OPTLP

REW

[
ŷT

τ−1∑
t=n+1

R̂tzt + ŷT
τ−1∑

t=n+1

Etzt +M lnm/ϵ

]
(choose y = ŷ)

≤ (1 + ϵ)
OPTLP

REW

[
b+ ŷT

τ−1∑
t=n+1

Etzt +M lnm/ϵ

]
(since ŷT

(∑τ−1
t=n+1 R̂tzt

)
≤ b)

From this we get that by setting ϵ =
√

M lnm
b+M :
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REW ≤ OPTLP

(
(1 + ϵ) +

1 + ϵ

b

[
ŷT

τ−1∑
t=n+1

Etzt

]
+

1 + ϵ

b

M lnm

ϵ

)

⇔ REW −OPTLP ≤ OPTLP

(
ϵ+

1 + ϵ

b

M lnm

ϵ
+

1 + ϵ

b

[
ŷT

τ−1∑
t=n+1

Etzt

])

⇔ REWtot −OPTLP ≤
(
ϵ+

1 + ϵ

b

M lnm

ϵ

)
OPTLP +

n∑
t=1

ct +
1 + ϵ

b
OPTLP

[
ŷT

τ−1∑
t=n+1

Etzt

]

⇔ REWtot −OPTLP ≤

(√
M lnm

b+M
+

M lnm

b
+

√
(b+M)M lnm

b

)
OPTLP

+ nM +
1 + ϵ

b
OPTLP

[
ŷT

τ−1∑
t=n+1

Etzt

]

⇔ REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + nM + Õ

(
1

b

)
OPTLP

[
ŷT

τ−1∑
t=n+1

Etzt

]

Remark E.2. This roughly leads to a M factor larger than when M = 1, which should yield a O(
√

lnm
b + lnm

b ) multiplier.

E.4.1. KNOWN R CONCENTRATION

For Error Analysis, it remains to bound the error term ∥
∑τ

t=n+1 Etzt∥∞.

In this case, we observe that each entry of Et is a mean-zero random variable bounded in [0,M ]. We may then use Hoeffding
and union bound across all m resources to get that:

Pr

(
∥

τ∑
t=n+1

Etzt∥∞ ≤ (τ − n− 1)κ

)
≥ 1−m ·

(
2 exp(−2(τ − n− 1)κ2/M2)

)
Setting 1/T = m ·

(
2 exp(−2(τ − n− 1)κ2/M2)

)
, we obtain that:

κ =

√
M2 log 2mT

2(τ − n− 1)
⇒ (τ − n− 1)κ = O(M

√
T log 2mT ).

E.4.2. REGRET GUARANTEE

Theorem E.3. Algorithm 3 with parameter ϵ =
√

M lnm
b+M attains total regret:

REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(
M
√
T

b
+ nM

)

Proof. We have that:
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REWtot −OPTLP ≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + nM + Õ

(
1

b

)[
ŷT

τ−1∑
t=n+1

Etzt

]

≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(∥∑τ
t=n+1 Etzt∥∞

b
+Mn

)

≤ Õ

(
M

b
+

√
(b+M)M

b

)
OPTLP + Õ

(
M
√
T

b
+Mn

)

Remark E.4. The regret dependence on the number of resources m is O(lnm).

We note that Theorem 6.1 follows from that OPTLP ≤ OPT.
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Figure 15. Consider testing X1 → X2 in the n-node chain graph X1 −X2 − ...−Xn. This is a graph, where the propagation of edge
orientation is crucial for minimizing interventional complexity. We have that X1 → X2 ⇒ Xi → Xi+1, with which we can derive
T 1→2 and E1→2

t explicitly. We note that, asymptotically (ignoring log factors in t), E1→2
t has much higher power than the e-process of

exp(logE1→2
t (1) + logE1→2

t (2)) (from Section 3), under non-expanded tree (1 → 2). E1→2
t leverages evidence from for example

hypothesis X2 → X3 (blue).

F. Worked through Examples
We work out in close form the test statistic of simple graphs to illustrate our test statistic construction and illustrate how it
draws on power from its implications. Having already seen the chain graph example, we turn to the triangle example.

Three-node Triangle Graph: Consider testing X1 → X3 in triangle graph X1 −X2 −X3.

Since X3 → X2 ∧X2 → X1 ⇒ X3 → X1, ∴ X1 → X3 ⇒ X2 → X3 ∨X2 → X1.

We have that T 1→3 = (X2 → X3 ∧X1 → X3) ∨ (X1 → X2 ∧X1 → X3).

For path P = X2 → X3 ∧X1 → X3, we have that:

EP
t = exp

(
logE1→3

t (1) + logE2→3
t (2) + max(logE1→3

t (3), logE2→3
t (3))− 1/2(log(2|T3(t)| − 2))

)
For path P ′ = X1 → X2 ∧X1 → X3, we have that:

EP ′

t = exp
(
max(logE1→2

t (1), logE1→3
t (1))− 1/2(log(2|T1(t)| − 2)) + logE1→2

t (2) + logE1→3
t (3)

)
Thus we see that, asymptotically (ignoring log factors in t), E1→3

t = min(EP
t , EP ′

t ) has strictly higher power.
This is because both EP

t and EP ′

t have higher power the single-edge e-process corresponding E1→3
t (1)E1→3

t (3) =
exp(logE1→3

t (1) + logE1→3
t (3)).

Here, we can also observe that there are two possible updates when node X3 is intervened upon, which corresponds to a
choice when optimizing the test statistic. This naturally later motivates the use of bandit optimization.
Remark F.1. In Figure 15, another interesting observation of note is that, due to the combination of evidence, we need not
reject any of Xi → Xi+1 to reject X1 → X2. The cumulative evidence across all n− 1 edges may be enough for E1→2

t

to exceed 1/α, and lead to the rejection of the null. This is despite the data being inconclusive for any of the downstream
edges (i.e. Ei→i+1

t need not exceed 1/α).
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