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Abstract
In order to enhance the generalization ability to-
wards unseen domains, universal cross-domain
image retrieval methods require a training dataset
encompassing diverse domains, which is costly
to assemble. Given this constraint, we intro-
duce a novel problem of data-free adaptive cross-
domain retrieval, eliminating the need for real
images during training. Towards this goal, we
propose a novel Text-driven Knowledge Integra-
tion (TKI) method, which exclusively utilizes
a pre-trained vision-language model to imple-
ment an “aggregation after expansion” training
strategy. Specifically, we extract diverse im-
plicit domain-specific information through a set
of learnable domain word vectors. Subsequently,
a domain-agnostic universal projection, equipped
with a non-Euclidean multi-layer perceptron, can
be optimized using these assorted text descrip-
tions through the text-proxied domain aggrega-
tion. Leveraging the cross-modal transferability
phenomenon of the shared latent space, we can
integrate the trained domain-agnostic universal
projection with the pre-trained visual encoder to
extract the features of the input image for the
following retrieval during testing. Extensive ex-
perimental results on several benchmark datasets
demonstrate the superiority of our method.

1. Introduction
With the rapid growth of data uploaded and shared through
the Internet in diverse forms or modalities (e.g., viewpoints,
lightning, artistic styles, and photographs), retrieval across
different domains (Huang et al., 2015; Paul et al., 2021;
Hu & Lee, 2022; Hu et al., 2023) has attracted significant
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attention and has been applied to a wide range of applica-
tions, such as e-commerce and surveillance, in recent years.
Such cross-domain retrieval (CDR) aims to retrieve relevant
instances from a domain (e.g., photo) when giving a query
belonging to a different domain (e.g., sketch, quickdraw,
etc.).

Owing to the significant distribution shifts observed when
training and test data lack alignment, the cross-modal re-
trieval (CDR) task is often constrained to a predefined re-
trieval domain, such as sketch-based image retrieval (Liu
et al., 2017; Yelamarthi et al., 2018; Dey et al., 2019;
Chaudhuri et al., 2023) or infrared-visible person re-
identification (Li et al., 2020; Huang et al., 2021; Yu et al.,
2023). However, the development of domain-specific re-
trieval models for each practical CDR task entails substan-
tial training and maintenance costs. In response to this
challenge, researchers have sought to establish a universal
CDR model capable of direct generalization across diverse
domains, introducing a series of methods aligned with this
objective (Paul et al., 2021; Tian et al., 2022; Agarwal et al.,
2023). To enhance the generalization ability of the CDR
model to previously unseen domains, these methodologies
leverage well-annotated training data from multiple domains
to learn domain-agnostic feature embeddings (Li et al., 2019;
Wang et al., 2020; Yan et al., 2024) in the latent space. How-
ever, given the need to apply among arbitrary domains, the
optimal selection of training domains remains ambiguous.
Furthermore, it is extremely expensive and even impossible
to label multiple domains in the real world.

To this end, we pose the inquiry of whether it is feasible
to employ a pre-trained model for the task of data-free
adaptive cross-domain retrieval (DFACDR), which entails
straightly utilizing a pre-trained model to retrieve instances
across arbitrary domains. Such a DFACDR problem, repre-
senting the retrieval challenge without access to any realistic
training data, has received limited attention in the existing
literature, to the best of our knowledge.

In this paper, we investigate the effective employment of
a large-scale pre-trained model (Jia et al., 2021; Radford
et al., 2021; Yang et al., 2022; Chen et al., 2022; Cho et al.,
2023; Yin et al., 2024) in the absence of training data, with
the aim of leveraging its potential capabilities for retrieval
across arbitrary domains. Since the large-scale pre-trained
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Figure 1. (a) Cross-modal transferability in CLIP: Text features have the potential to effectively embody their corresponding visual
features within a shared cross-modal latent space. Consequently, it becomes feasible to manipulate visual features through text prompts,
by capitalizing on their shared cross-modal latent space. (b) Simple illustration of our text-driven knowledge integration method.

model has already seen diverse domains, an instinctive ap-
proach for the data-free adaptative cross-domain retrieval
task is to extract implicit domain-related information and
employ it to acquire domain-agnostic feature embeddings in
the latent space, all without the need for additional training
data. We posit that leveraging large-scale vision-language
models has the potential to provide insights and solutions to
the challenging DFACDR task. Given the reciprocal repre-
sentation capabilities of text and visual feature embeddings
in a universal cross-modal latent space (Zhang et al., 2023;
Cho et al., 2023) shown in Figure 1 (a), the existing textual
representations can be harnessed for the proxies of visual
encoders during fine-tuning.

Motivated by this, we propose a text-driven knowledge
integration method, dubbed TKI, that takes an “aggrega-
tion after expansion” strategy to extract and integrate rich
domain-related knowledge for learning domain-agnostic
feature embeddings. In the conventional large-scale vision-
language model, e.g., CLIP (Radford et al., 2021), the tex-
tual category labels are combined with a pre-fixed prompt,
such as “A photo of” to form text descriptions (e.g., “ A
photo of dog.”), which cannot reflect the domain-specific
information. To explore the implicit domain knowledge,
we introduce a prompt-based domain expansion module
where a learnable domain placeholder [domain] is in-
serted into the pre-fixed prompt, i.e. “ A [domain] style
of [class]”. In this way, we can make the model aware
diverse domain knowledge guided by the learned domain-
related prompts. To ensure the effective synthesis of the
domain-related prompts, a domain expansion module with
the “min-max” strategy is exploited shown in Figure 1 (b).
And then, a text-proxied domain aggregation module is
proposed to integrate the extracted domain knowledge and
take full advantage of it to learn domain-agnostic feature
embeddings via a universal projection. Specifically, we

force the text features originating from different domains
but pertaining to the same category closer in the latent space
through the utilization of a contrastive-based loss. Due to
the cross-modal transferability in the latent space of CLIP,
the text embeddings can be regarded as proxies for image
embeddings. Therefore, the image embeddings after the
learned domain-agnostic universal projection also have the
capability of unified representing data belonging to different
domains.

In summary, the main contributions of this work include:

• We explore the possibility of exploiting the pre-trained
vision-language model to effectively address domain-
free cross-domain retrieval.

• We propose a new text-driven knowledge integration
method that fully exploits the cross-modal semantic
guidance ability of CLIP to enable the model to under-
stand more domain-related knowledge. In our method,
a two-stage learning strategy is adopted to optimize
learnable domain-related prompts and capture unified
domain-agnostic semantics, respectively.

• Extensive experiments on several cross-domain
datasets are conducted to analyze our TKI. We show
that the proposed method can capture more informa-
tive domain-related semantics, thereby significantly
improving performance over state-of-the-art methods.

2. Related Work
Cross-Domain Retrieval. The field of cross-domain re-
trieval has received considerable attention in recent years
due to the increasing demand for integrating information
from various sources. This interdisciplinary field has broad
practical applications in e-commerce, multimedia, and web
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search. A significant body of research has focused on de-
veloping methods for cross-domain retrieval. For exam-
ple, sketch-based image retrieval (Yelamarthi et al., 2018;
Liu et al., 2019; Xu et al., 2020; Dutta et al., 2020; Wang
et al., 2021) aims to retrieve natural images for sketch
queries, where the domains are pre-defined. While sub-
stantial progress has been made in cross-domain retrieval,
further research is needed to address ongoing challenges
and improve the effectiveness of retrieval across diverse
domains without pre-definition.

In cases where the test instances originate from a new do-
main, the network necessitates re-training with data perti-
nent to the corresponding domains. This not only mandates
that training be executed for each domain pair with an ade-
quate volume of data, but it also requires the domain from
which retrieval will be conducted to be known a-priori. To
tackle this issue, universal cross-domain retrieval (Paul et al.,
2021) and its variants (Paul et al., 2022; Tian et al., 2022;
Fang et al., 2023) have been proposed to exploit training
data from multiple domains to optimize a cross-domain re-
trieval model, which can deal with the test samples from
unseen domains. However, when there is a need for appli-
cation across arbitrary domains, the optimal selection of
training domains remains uncertain (Agarwal et al., 2023).
Additionally, the task of labeling multiple large-scale do-
mains in the real world can be exceedingly costly and at
times, even unfeasible. Therefore, in this paper, we turn our
focus to a more demanding scenario, that is, data-free cross-
domain image retrieval, where no actual training instances
are within reach.

Large-scale Pre-trained Vison-Language Model. Large-
scale pre-training enables models to acquire generalizable
features and representations. These learned characteristics
can then be fine-tuned to cater to specific tasks, significantly
enhancing the model’s performance and accuracy (Zhang
et al., 2022; Zhou et al., 2022b;a; Gao et al., 2023). Large-
scale pre-trained vision-language models, such as Con-
trastive Language-Image Pre-training (CLIP) (Radford et al.,
2021) and ALIGN (Jia et al., 2021), are a specialized type
of pre-trained model that have been trained on a massive
amount of visual and linguistic data. These models are en-
gineered to comprehend and generate meaningful outputs
from both visual (images, videos) and linguistic (text) inputs,
thereby understanding the complex interplay between visual
and textual data. This capability proves to be invaluable for
tasks including image captioning (Mokady et al., 2021), vi-
sual questioning answering (Parelli et al., 2023), and visual
dialogue (Kang et al., 2023). CLIP, for instance, benefits
from the richness of semantic information and the large-
scale availability of images, allowing it to learn generic
feature representations within the same cross-modal embed-
ding space. This facilitates the model’s generalization ability

in downstream tasks without labels, known as the zero-shot
setting (Romera-Paredes & Torr, 2015; Zhang & Saligrama,
2016; Xie et al., 2020). Building on CLIP, several works,
such as ALBEF (Li et al., 2021) and SimVLF (Wang et al.,
2022), have been introduced to encompass a broader variety
of downstream tasks.

3. Preliminaries
Problem Definition. In this paper, we focus on a more
realistic yet challenging problem, i.e., data-free adaptative
cross-domain retrieval where well-annotated multi-domain
data is not available for training a cross-domain retrieval
model. Furthermore, we hope the learned cross-domain
retrieval model can effectively retrieve similar instances
between arbitrary domains rather than predefined domains.
It seems to be an impossible task that has not attracted
enough attention.

Motivation Illustration. Large-scale pre-trained models,
trained on extensive data across diverse domains, have
acquired significant domain-related knowledge, which fa-
cilitates effective cross-domain retrieval. However, this
valuable information is implicitly stored within the pre-
trained model. Direct deployment of these large-scale pre-
trained models, such as the visual encoder in CLIP, for
cross-domain retrieval does not optimally stimulate and uti-
lize the domain-related knowledge for effective retrieval
across various domains. To address this, we propose lever-
aging large-scale vision-language models like CLIP, using
the readily available text representations as a surrogate for
actual training data to tap into domain-related knowledge.
This approach is grounded in the understanding that text
features can effectively represent their associated image fea-
tures within a shared vision-language space.The primary
task of our work is efficiently utilizing the available textual
representations as the proxy to learn a domain-agnostic uni-
versal projection in the cross-modal latent space that can be
straightly combined with the pre-trained visual encoder for
cross-domain retrieval.

4. Text-driven Knowledge Integration
In this paper, we propose a new text-driven knowledge inte-
gration method (TKI) that can exploit textual descriptions
as proxies to explore implicit domain-relevant knowledge
with a pre-trained large-scale vision-language model such as
CLIP (Radford et al., 2021). During fine-tuning, we adopt
an “aggregation after expansion ” strategy to effectively ex-
cavate and utilize intrinsic diverse domain information. The
overall framework is shown in Figure 2.
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Figure 2. The overall framework of our proposed method. (Left) The training stage: We first expand the pre-set word vector set in the
embedding lookup process with the domain-relevant embeddings {νp}Pp=1, which correspond to the domain tokens {[DOMAIN]p}Pp=1,
respectively. Then, these diverse text prompts are utilized to optimize a non-Euclidean MLP for acquiring a domain-agnostic universal
projection within the shared cross-modal latent space. (Right) The test stage: Test images are fed into the visual encoder of CLIP
combined with the learned non-Euclidean MLP to derive visual features for retrieval.

4.1. Prompt-based Domain Expansion

Though diverse domain-relevant knowledge is stored in the
pre-trained CLIP, straightly employing the visual encoder
of CLIP to extract image features cannot excavate such
implicit domain-relevant knowledge and further utilize it.
Without any realistic data for training, we turn to exploit the
text representation via the text encoder of CLIP to assist in
exploring implicit domain-relevant knowledge. To this end,
we first explicitly exhibit the domain diversity information
in the shared cross-modal space via the domain expansion
process with a series of learnable domain prompts.

In downstream tasks utilizing the CLIP model, the textual
representation is usually obtained from a pre-set natural
language prompt such as “A photo of [CLASS].”, where
the category placeholder [CLASS] is substituted by the
relevant textual label, such as “dog” or “cat”. Given that this
form of text representation is domain-independent, its text
embedding aligns with the visual embeddings of all images
that fall under the corresponding category, but diverse do-
main styles, in a shared cross-modal space. Consequently, it
is not feasible to directly utilize these simplistic text prompts
as substitutes to uncover domain-relevant knowledge for the
purpose of learning a universal projection in the shared
cross-modal space.

Specifically, we insert a series of learnable domain to-
kens {[DOMAIN]p}Pp=1 into the original text prompts
and derive the synthesized domain-related text prompts
“A [DOMAIN]p style of [CLASS]i.”, which can effec-
tively capture the diverse domain information. Here,
[CLASS]i represents the text label of i-th category. During

the embedding lookup procedure, the domain placeholder
[DOMAIN]p will be replaced by the p-th domain-specific
word vector νp. In an endeavor to proficiently imitate the dis-
tribution shifts among diverse domains in the latent space, it
becomes imperative to adaptively acquire P unique domain-
specific word vectors {νp}Pp=1. To ensure a distinct repre-
sentation of diverse domains, these vectors should exhibit
discernible differences from one another, while simultane-
ously maintaining independence from any category-specific
information.

For a complete text prompt with the p-th domain and
i-th class label denoted as Λpi (i.e., “A [DOMAIN]p

style of [CLASS]i.”), we simply divide it into two parts,
i.e.,domain-specific prompt Λd

p (“A [DOMAIN]p style of
”) and category-specific prompt Λc

i (“[CLASS]i”). Upon
introducing these prompts into the pre-trained text encoder
T (·) incorporated in CLIP, we can extract their corre-
sponding text features denoted as tpi = T (Λpi) ∈ Rd,
tdp = T (Λd

p) ∈ Rd and tci = T (Λc
i ) ∈ Rd, respectively.

To efficiently learn unique domain-specific word vectors
{νp}Pp=1, we adopt a “min-max” learning strategy utilizing
these text features in the shared cross-modal space.

First, we propose a domain-wise diversity maximum
loss to encourage the diversity between every two domain-
specific word vectors, where the formula is

Lmax =
1

P (P − 1)

P∑
p=1

∑
q ̸=p

log
(
1 + eα(s

d
pq−µ)

)
, (1)

where sdpq denotes the cosine similarity between p-th and
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q-th domain-specific text features, which is computed by

sdpq =
tdp · tdq

∥tdp∥2∥tdq∥2
. (2)

Note that α and µ are hyperparameters. This loss aims to
spread the distance between different domain-specific text
features in the latent space, which can effectively ensure the
diversity of the learned domain-specific word vectors.

Furthermore, in order to avoid being confounded by unde-
sirable category-wise knowledge during the learning pro-
cess, a constraint, i.e., category-wise correlation minimum
loss, is enforced to the domain-specific text features so that
all domain-specific word vectors are independent of cate-
gories. Specifically, text features {t1i, · · · , tpi, · · · , tPi}
synthesized via different domain-specific word vectors but
the same class label should be pushed together in the la-
tent space. To this end, we can employ a contrastive loss,
where text features {t1i, · · · , tpi, · · · , tPi} are regarded as
different augmentations of the i-th category. Nonetheless,
while the contrastive-based loss capitalizes on rich sample-
to-sample relationships, it is encumbered by the elevated
training complexity required for optimizing dense sample-
to-sample relationships. Regrettably, certain intricate rela-
tionships may impede performance. Therefore, we resort to
employing a prototype-based contrastive loss to construct
our category-wise correlation minimum loss as follows:

Lmin = − 1

PC

P∑
p=1

C∑
i=1

log

(
exp(scpii/τ)∑C
j=1 exp(s

c
pij/τ)

)
, (3)

where C is the number of categories while τ is the temper-
ature coefficient. Here, the category-specific feature tci is
regarded as the i-th class prototype, and spij denotes the
cosine similarity between tpi and tcj , which is computed by

scpij =
tpi · tcj

∥tpi∥2∥tcj∥2
. (4)

The overall loss for learning P domain-specific word vectors
during the domain expansion process is summarized as:

Lexp = Lmin + λLmax, (5)

where λ is a trade-off hyperparameter.

4.2. Text-proxied Domain Aggregation

Owing to the application of the prompt-based domain ex-
pansion, an abundance of domain-specific information can
be distinctly captured by the diverse domain word vectors
that have been learned. Consequently, these text represen-
tations, fortified with diverse domain word vectors, can
be employed as proxies for the purpose of optimizing a

non-Euclidean multi-layer perceptron (MLP) h(·) to obtain
a domain-agnostic universal projection within the shared
cross-modal latent space.

In comparison with the conventional MLP, our modified ver-
sion only replaces the Euclidean layer with a non-Euclidean
layer of equivalent size, while the remainder of the structure
remains unaltered. The sole additional hyperparameter intro-
duced is the radius of the Poincaré ball. It is noteworthy that
the backbone structure produces Euclidean representations.
Consequently, the intermediate representations necessitate
transformation prior to their input into the non-Euclidean
layer. It is worth noting that the backbone structure produces
Euclidean representations; hence, the intermediate represen-
tations require transformation prior to being input into the
non-Euclidean layer. Specifically, given a Poincaré ball Dr

of radius r, we assume the intermediate representation is
in the tangent space of the Poincaré ball at the origin, Ωr

0.
Owing to the advanced principles of the hyperbolic Poincaré
ball, the acquired domain-agnostic universal projection is
better equipped to capture the implicit hierarchical structure
prevalent among cross-domain image data. In this struc-
ture, images of identical categories from disparate domains
exhibit diversified characteristics, yet they should possess
heightened similarity within the latent space.

In pursuit of this objective, it is essential to aggregate the
text features that are associated with the same class, yet
encompass diverse domain-specific information. Specifi-
cally, given the P ×C embedded diverse text features {tpi},
we can train the non-Euclidean MLP by a supervised con-
trastive loss as follows:

Lagg =

− 1

PC

P∑
p=1

C∑
i=1

log

( ∑
q ̸=p exp(h(tpi) · h(tqi)/τ)∑P,C
q,j=1 exp(h(tpi) · h(tqj)/τ)

)
.

(6)

4.3. Retrieval During Testing

Thanks to the cross-modal transferability in the CLIP model,
text features can effectively represent their relevant visual
features in the shared cross-modal latent space. Therefore,
we can combine the trained domain-agnostic universal pro-
jection h(·) with the visual encoder I(·) to extract the im-
age features during testing. Specifically, given an input
image xn, we can obtain the corresponding image feature
zn = h(I(xn)) for downstream retrieval task.

5. Experiments
5.1. Experimental Settings

Datasets. To comprehensively evaluate the effectiveness
of our method, we conduct experiments on three cross-
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domain benchmarks, i.e., DomainNet (Peng et al., 2019),
PACS (Li et al., 2017), and Office-Home (Venkateswara
et al., 2017). Within the challenging data-free cross-domain
retrieval task, we do not exploit any actual data for train-
ing. The actual images in datasets are only used for test.
The statistics about these three datasets are summarized in
Table 1.

Table 1. Statistics details of the employed datasets in experiments.

DomainNet PACS Office-Home

# Domains 6 4 4
# Classes 345 7 65
# Samples 596006 9991 15588

Evalutation Metrics. To more effectively illustrate the
efficacy of our proposed method, we employ mean av-
erage precision (mAP), top-200 mean average precision
(mAP@200), and top-200 precision (Prec@200) as the eval-
uation metrics. The term ”top-k” represents the evaluation
exclusively based on the first k retrieved samples.

Experimental Implementation. In our experimental
setup, we utilize CLIP as the large-scale vision-language
model. Throughout the training process, the text and visual
encoders within our comprehensive framework remain static.
We leverage the publicly accessible pre-trained model, in
which the Transformer serves as the backbone of the text en-
coder, and ViT-B/32 (Dosovitskiy et al., 2021) functions as
the visual encoder. Additionally, we incorporate two other
architectures for the visual encoder, specifically ResNet-
50 (He et al., 2016), and ViT-L/14 (Dosovitskiy et al., 2021),
to facilitate a more in-depth evaluation. For benchmarking
purposes, we employ the pre-trained visual encoder in CLIP
(referred to as Vanilla CLIP) as the baseline.

Our approach is implemented in PyTorch and trained with
an NVIDIA A6000 GPU. The input images are resized
to 224 × 224 during testing. We train our model by
Adam (Kingma & Ba, 2015) optimizer with the same hyper-
parameters (learning rate, τ , and λ are set as 0.005, 0.1, and
1, respectively) in all experiments.

5.2. Performance Evaluation

Quantitative Results. We present the results of cross-
domain retrieval on the DomainNet, PACS, and Office-
Home datasets, delineated in Tables 2 and 3. In contrast
to the baseline, our proposed method demonstrates a sig-
nificant enhancement in performance across all evaluative
measures. This evidence corroborates the efficacy of our
introduced text-driven approach in augmenting the general-
ization capacity of the pre-trained model, i.e., CLIP. Impor-
tantly, this improvement is achieved without the necessity of

any training images, highlighting the potential for retrieval
across an unrestricted range of domains.

Qualitative Results. We undertake a qualitative assess-
ment of the diverse text prompts on the PACS dataset, uti-
lizing t-SNE visualization for this analysis. As illustrated
in Figure 3, our methodology engenders a multitude of
domains, while concurrently maintaining the integrity of
content information. The diverse text features that are de-
rived from an identical class name exhibit similar semantics,
albeit with varied variations. This outcome substantiates our
ability to efficaciously emulate a range of distribution shifts
in the latent space of a large-scale vision-language model,
by synthesizing diverse domains through the application of
learnable, domain-specific word vectors.

Furthermore, to better demonstrate the effectiveness of the
learned domain-specific text words, we conduct a text-to-
image synthesis visualization. In Figure 4 4, we translate the
learned text prompts (“A [DOMAIN]p style of house/Dog.”)
via a pre-trained Stable Diffusion v1.4 (Rombach et al.,
2022). Here, we select two labels, i.e., house and dog and
randomly select 4 different domain word vectors, where the
word vectors are learned for the PACS dataset. To match
the pre-trained stable diffusion model, the text prompts are
learned with the CLIP ViT-L/14 as the backbone.

5.3. Ablation Study

The effect of different compositional losses in domain
expansion. To better measure the effectiveness of the pro-
posed losses in our method, we conduct an ablation study
on the PACS dataset (Li et al., 2017). The experimental
results using different combinations of losses on PACS are
shown in Table 5. Upon integrating both losses, we are able
to generate a diversity of domains without compromising
the integrity of the content information. We can see that the
generated images show good diversity.

The effect of different backbones. To comprehensively
evaluate our method, we conduct experiments with different
backbones of the visual encoder. The experimental results
on the PACS dataset (Li et al., 2017) using different back-
bones of the visual encoder are reported in Table 4. We
can see that our method can achieve consistently superior
performance when using different backbones of the visual
encoder, which can further demonstrate the effectiveness of
our method in a large range.

The effect of the number of domain-specific word vectors.
To measure the effect of domain-specific word vectors, we
conduct the ablation study on the PACS datset (Li et al.,
2017) and show the experimental results with different num-
bers of domain-specific word vectors in Figure 5. For a fair
comparison, we set P = 20 in all experiments.
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Table 2. Experimental results (%) on the DomainNet dataset.
Gallery Domain

Query Real Sketch Quickdraw Infograph Painting Clip-art Avg.

Method Domain mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP Real - - 21.03 26.39 6.80 13.62 8.11 11.87 19.41 24.18 23.46 24.39 15.76 20.09
Our TKI - - 27.36 31.60 7.81 15.02 14.07 16.96 27.04 30.57 30.27 28.83 21.31 24.60

Vanilla CLIP Sketch 18.94 25.90 - - 6.63 13.05 3.75 6.51 12.08 16.84 15.30 17.88 11.34 16.04
Our TKI 28.96 35.83 - - 7.78 14.66 7.77 11.24 18.03 22.86 21.20 22.41 16.75 21.40

Vanilla CLIP Quickdraw 1.00 2.27 1.15 2.91 - - 0.21 0.83 0.35 1.25 1.23 2.52 0.80 1.96
Our TKI 2.69 4.70 2.57 4.92 - - 0.66 1.89 1.24 2.79 2.68 4.25 1.97 3.71

Vanilla CLIP Infograph 17.44 23.90 9.85 14.59 4.38 8.51 - - 8.28 11.83 11.13 13.85 10.22 14.54
Our TKI 21.95 28.15 13.07 17.64 5.05 9.48 - - 11.42 14.93 14.24 16.16 13.15 17.27

Vanilla CLIP Painting 25.97 33.58 16.12 21.55 6.03 11.85 4.57 7.58 - - 16.14 18.39 13.77 18.59
Our TKI 34.55 41.38 21.34 26.38 6.99 13.04 8.55 11.92 - - 21.30 22.01 18.55 22.95

Vanilla CLIP Clip-art 22.81 29.93 16.00 21.15 7.49 14.21 4.15 6.87 10.79 14.75 - - 12.25 17.38
Our TKI 34.10 41.30 21.97 26.89 9.13 16.41 8.42 11.93 18.04 21.98 - - 18.33 23.70

(a) ℒ𝑚𝑎𝑥 (b) ℒ𝑚𝑖𝑛 (c) ℒ𝑚𝑎𝑥 + ℒ𝑚𝑖𝑛

Figure 3. t-SNE visualization results on the PACS dataset utilizing learned diverse text features. Different colors denote features obtained
from different domain-specific word vectors, and different shapes indicate features obtained from different class text labels.
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Figure 4. Prompt-based image generation results utilizing the
learned diverse text prompts.
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Figure 5. mAP@200 and Prec@200 results on PACS with regard
to the number of learnable domain-specific word vectors P .
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Table 3. Experimental results (%) on PACS and Office Home datasets. In PACS, “A”, “C”, “P”, and “S” represent Art Painting, Cartoon,
Photo, and Sketch, respectively. In Office Home, “A”, “C”, “P”, and “R” represent Art, Clipart, Product, and Real, respectively.

PACS Office-Home

A → C A → P A → S Avg. A → C A → P A → R Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 67.46 71.44 50.41 56.83 65.40 62.39 61.09 63.55 28.26 16.92 29.45 17.07 32.80 19.18 30.17 17.72
Our TKI 80.94 82.86 66.40 70.73 72.01 67.52 73.12 73.70 33.27 18.65 37.79 20.05 40.26 21.95 37.11 20.22

C → A C → P C → S Avg. C → A C → P C → R Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 48.71 58.74 52.58 59.43 74.23 71.84 58.51 63.34 16.97 8.51 22.65 14.64 21.74 14.58 20.45 12.58
Our TKI 70.23 76.07 73.66 77.30 78.85 75.59 74.25 76.32 22.70 9.92 31.17 18.24 29.97 17.75 27.95 15.30

P → A P → C P → S Avg. P → A P → C P → R Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 64.09 70.21 80.73 80.84 70.27 63.93 71.70 71.66 24.80 9.94 26.52 16.49 39.75 21.00 30.36 15.81
Our TKI 82.16 84.95 93.35 91.11 78.88 72.18 84.80 88.03 32.10 11.55 34.09 19.14 47.82 23.68 38.00 18.12

S → A S → C S → P Avg. R → A R → C R → P Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 44.02 56.14 56.87 61.83 47.18 55.77 49.36 57.91 30.74 11.88 31.51 18.12 47.48 24.03 36.58 18.01
Our TKI 65.01 71.59 74.51 75.37 66.06 70.85 68.53 72.60 37.33 13.30 37.56 20.13 54.82 26.23 43.24 19.89

Table 4. Experimental results (%) exploiting different visual encoder backbones on PACS. “A”, “C”, “P”, and “S” represent Art Painting,
Cartoon, Photo, and Sketch, respectively.

ResNet-50 ViT-L/14

A → C A → P A → S Avg. A → C A → P A → S Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 52.53 61.04 42.34 53.43 45.31 49.88 46.73 54.78 76.09 77.42 56.51 61.07 68.97 67.13 67.19 68.54
Our TKI 78.07 81.14 71.63 76.78 63.86 63.26 71.19 73.73 87.29 87.08 75.63 76.74 77.89 72.09 80.27 78.64

C → A C → P C → S Avg. C → A C → P C → S Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 32.90 45.24 46.94 57.84 58.24 61.44 46.03 54.84 51.80 59.24 52.84 59.04 77.95 75.03 60.62 64.44
Our TKI 62.86 71.07 79.02 81.47 72.56 71.81 71.48 74.78 80.87 83.92 80.30 81.90 87.88 81.19 83.02 82.34

P → A P → C P → S Avg. P → A P → C P → S Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 53.57 61.79 77.37 78.43 58.63 57.28 63.19 65.83 61.94 67.53 83.53 82.69 68.89 63.39 71.45 71.20
Our TKI 77.41 81.34 95.77 93.06 75.93 70.91 83.04 81.77 81.43 84.95 94.30 91.63 78.10 70.40 84.61 82.33

S → A S → C S → P Avg. S → A S → C S → P Avg.

Method mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec mAP Prec

Vanilla CLIP 25.63 40.25 38.75 48.30 34.93 47.76 33.10 45.44 56.29 64.49 78.80 78.43 52.23 58.49 62.44 67.14
Our TKI 48.40 59.06 61.38 66.21 58.99 65.56 56.26 63.61 83.65 85.81 89.93 87.07 76.38 77.47 83.32 83.45

Effect of the text label information. During training, we
need to use the text label information as prior to conduct
domain expansion. To further evaluate the zero-shot general-
ization ability of our method, we conduct an ablation study
on the usage of the text label information. We compare the
two different settings on the PACS dataset (Li et al., 2017):
(1) Using the corresponding label information in the dataset;

(2) Randomly selecting text labels that don’t overlap with
the actual label in the dataset. The experimental results
are shown in Table 6. We can see that although using the
randomly selected text label information, our method can
also improve the performance of the baseline, which can
effectively demonstrate the zero-shot generalization ability
of our method.

8



Retrieval Across Any Domains via Large-scale Pre-trained Model

Table 5. Experimental results (%) with regard to different losses.
“A”, “C”, “P”, and “S” represent Art Painting, Cartoon, Photo, and
Sketch, respectively.

A → C A → P A → S Avg.

Lmax Lmin mAP Prec mAP Prec mAP Prec mAP Prec

- - 67.46 71.44 50.41 56.83 65.40 62.39 61.09 63.55
✓ - 77.44 80.02 61.15 65.45 70.04 66.40 69.54 70.62
- ✓ 74.01 77.06 61.45 65.99 69.93 65.16 68.46 69.40
✓ ✓ 80.94 82.86 66.40 70.73 72.01 67.52 73.12 73.70

Table 6. Experimental results (%) using different label information.
“A”, “C”, “P”, and “S” represent Art Painting, Cartoon, Photo, and
Sketch, respectively.

A → C A → P A → S Avg.

mAP Prec mAP Prec mAP Prec mAP Prec

Baseline 67.46 71.44 50.41 56.83 65.40 62.39 61.09 63.55
Strategy 2 68.74 74.88 56.36 61.75 68.42 64.62 64.51 67.08
Strategy 1 80.94 82.86 66.40 70.73 72.01 67.52 73.12 73.70

6. Conclusion
We introduce a new data-free fine-tuning approach, TKI,
which amalgamates a range of domains within a shared
cross-modal space using learnable domain words. This ap-
proach, which does not rely on any images, is designed
to address arbitrary cross-domain retrieval. TKI emulates
a variety of distribution shifts within the latent space of a
large-scale pre-trained model, thereby enhancing its general-
ization capability across disparate domains. This proposed
methodology achieves state-of-the-art retrieval results on
multiple cross-domain benchmarks, all without the utiliza-
tion of any actual training data.
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A. Other Experimental Results
We add the ablation study about the non-Euclidean MLP on the DomainNet dataset and report the Prec@1 results in Table 7.

Table 7. Performance Comparison on Different Domains
Gallery Domain

Method Query Domain Real Sketch Quickdraw Infograph Painting Clipart Average
Vanilla CLIP – 53.56 32.77 39.11 55.22 58.94 47.92

Ours w/ non-Euclidean MLP Real – 59.75 35.97 50.50 60.01 63.82 54.01
Ours w/ Euclidean MLP – 57.64 34.22 46.24 58.38 61.54 51.60

Vanilla CLIP 39.83 – 27.26 23.36 35.91 41.17 33.51
Ours w/ non-Euclidean MLP Sketch 46.36 – 29.42 32.22 40.95 46.31 39.05

Ours w/ Euclidean MLP 41.16 – 28.54 28.40 38.22 43.34 35.93
Vanilla CLIP 4.57 6.49 – 2.90 2.14 5.69 4.36

Ours w/ non-Euclidean MLP Quickdraw 6.89 9.07 – 4.69 4.89 7.98 6.70
Ours w/ Euclidean MLP 5.25 8.13 – 3.16 3.64 6.72 5.38

Vanilla CLIP 30.23 25.92 17.64 – 22.84 27.37 24.80
Ours w/ non-Euclidean MLP Infograph 35.38 30.25 19.03 – 27.31 31.10 28.61

Ours w/ Euclidean MLP 33.80 28.98 18.23 – 25.28 29.34 27.13
Vanilla CLIP 45.20 41.29 26.06 24.86 – 38.85 35.25

Ours w/ non-Euclidean MLP Painting 51.34 45.59 27.83 34.78 – 44.25 40.76
Ours w/ Euclidean MLP 49.67 43.43 27.21 28.95 – 41.79 38.21

Vanilla CLIP 52.28 52.33 30.99 26.13 39.71 – 40.29
Ours w/ non-Euclidean MLP Clipart 57.79 56.28 34.60 36.43 46.19 – 46.26

Ours w/ Euclidean MLP 55.08 53.67 33.31 31.62 44.11 – 43.56
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