
Gated Linear Attention Transformers with Hardware-Efficient Training

Songlin Yang 1 * Bailin Wang 1 * Yikang Shen 2 Rameswar Panda 2 Yoon Kim 1

Abstract

Transformers with linear attention allow for
efficient parallel training but can simultaneously
be formulated as an RNN with 2D (matrix-valued)
hidden states, thus enjoying linear-time inference
complexity. However, linear attention generally
underperforms ordinary softmax attention. More-
over, current implementations of linear attention
lack I/O-awareness and are thus slower than highly
optimized implementations of softmax attention.
This work describes a hardware-efficient algo-
rithm for linear attention that trades off memory
movement against parallelizability. The resulting
implementation, dubbed FLASHLINEARAT-
TENTION, is faster than FLASHATTENTION-2
(Dao, 2023) as a standalone layer even on short
sequence lengths (e.g., 1K). We then generalize
this algorithm to a more expressive variant of
linear attention with data-dependent gates. When
used as a replacement for the standard attention
layer in Transformers, the resulting gated linear
attention (GLA) Transformer is found to perform
competitively against the LLaMA-architecture
Transformer (Touvron et al., 2023) as well recent
linear-time-inference baselines such as RetNet
(Sun et al., 2023a) and Mamba (Gu & Dao, 2023)
on moderate-scale language modeling experi-
ments. GLA Transformer is especially effective
at length generalization, enabling a model trained
on 2K to generalize to sequences longer than 20K
without significant perplexity degradations. For
training speed, the GLA Transformer has higher
throughput than a similarly-sized Mamba model.

� https://github.com/sustcsonglin/fl
ash-linear-attention

*Equal contribution 1Massachusetts Institute of Technology
2MIT-IBM Watson AI Lab. Correspondence to: Songlin Yang
<yangsl66@mit.edu>, Bailin Wang <bailinw@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

1 Introduction
Transformers with softmax attention (Vaswani et al., 2017)
enjoy efficient parallel training but suffer from quadratic
(in sequence length) complexity, thus motivating more
RNN-like models that allow for linear-time sequence
modeling. Linear attention, which replaces the exponential
similarity function with a simple dot product over (possibly
transformed) key/query vectors, has emerged as a promising
alternative to classic softmax attention (Katharopoulos et al.,
2020; Choromanski et al., 2021; Kasai et al., 2021; Peng
et al., 2021). An attractive property of linear attention is that
it admits a “recurrent form” in which it can be formulated
as a linear RNN with 2D hidden states (Katharopoulos et al.,
2020), thus enabling linear-time inference. For training,
linear attention also admits a subquadratic “chunkwise par-
allel form” which divides the sequence into non-overlapping
chunks and performs (serial) inter-chunk recurrent computa-
tions followed by (parallel) intra-chunk computations (Hua
et al., 2022; Sun et al., 2023a; Lingle, 2023), thus (partially)
maintaining parallel training. However, existing algorithms
for linear attention are not I/O aware and thus, in practice,
slower than optimized implementations of softmax attention
(Dao et al., 2022b; Dao, 2023) on moderate sequence lengths.

From a performance standpoint, linear attention has gener-
ally been found to underperform ordinary softmax attention,
often by a significant margin in language modeling (Kasai
et al., 2021). Recent variants of linear attention such as
RetNet (Sun et al., 2023a) and TransNormerLLM (Qin et al.,
2023b) obtain significant improvements by multiplying
the current hidden state with a decay factor before the
RNN update. However, these works use a global, data-
independent decay factor, despite the fact that in 1D RNNs,
a data-dependent gating mechanism has been shown to be
crucial for performance (van der Westhuizen & Lasenby,
2018; Qin et al., 2023c). And even with the decay factor,
linear attention Transformers underperform the strongest
Transformer architectures when pretrained from scratch.

This work develops a hardware-efficient algorithm for linear
attention, and applies it to train a gated variant of linear
attention that is competitive with softmax attention. We first
discuss aspects of optimizing ordinary linear attention on
modern GPUs and give two I/O-aware algorithms (tailored
for different training settings) based on these principles (§3).
Our implementation of the algorithm, called FLASHLIN-

1

https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention
yangsl66@mit.edu
bailinw@mit.edu

Gated Linear Attention Transformers with Hardware-Efficient Training

EARATTENTION, is faster than FLASHATTENTION-2 (Dao,
2023) even on short (e.g., 1K) sequences. We then describe
a gated linear attention layer with a data-dependent gating
mechanism and show how FLASHLINEARATTENTION can
be generalized to the gated case (§4). We study the resulting
gated linear attention (GLA) Transformer on moderate-scale
language modeling benchmarks, where we train models with
340M/1.3B parameters on 15B/100B tokens, respectively.
We find that the GLA Transformer performs favorably
against a strong LLaMA architecture Transformer baseline
that makes use of recent recipes (Transformer++; Touvron
et al., 2023) as well as recent linear-time sequence models
such as RetNet (Sun et al., 2023a) and Mamba (Gu & Dao,
2023). GLA Transformer is found to be particularly strong at
length generalization and recall-intensive tasks among linear
recurrent models. For training speed, the GLA Transformer
has significantly higher throughput than a similarly sized
Mamba model.

2 Background: Linear Attention
We first give a brief background on linear attention layers.
For notation we use bold upper-case letters for matrices (e.g.,
S, Q), bold lower-case letters for vectors (e.g., qt, kt), and
italic upper-case for learnable parameters matrices (e.g.,
WK). We generally use the same alphabet to show the rows
of a matrix, e.g., qt is the t-th row of Q.

2.1 Parallel and Recurrent Forms

Standard autoregressive Transformers employ a softmax at-
tention mechanism which takes an input sequenceX∈RL×d

(here L is the length and d is the hidden dimension) and
computes the output O∈RL×d through,

Q,K,V=XWQ,XWK ,XWV ,

O=softmax
(
(QK

T
)⊙M

)
V,

where WQ,WK ,WV ∈ Rd×d are learnable matrices and
M ∈ {−∞, 1}L×L is a mask that prevents the model
from attending to future tokens, i.e., Mij = 1 if i≥ j and
Mij=−∞ if i<j. (Here we assume a single attention head
for simplicity.) The above parallel form of attention can
compute O in parallel given the full input X, thus enabling
efficient training. However, during inference Transformers
must use the following recurrent form,

qt, kt, vt=xtWQ, xtWK , xtWV ,

ot=

∑t
i=1exp(qtk

T

i)vi∑t
i=1exp(qtk

T

i)
,

which calculates the query (qt), key (kt), and value (vt)
vectors given the current token’s representation xt∈R1×d

and the performs attention over the (growing) set of keys
{k1,...,kt} and values {v1,...,vt} (i.e., the “KV cache”).

Linear attention mechanisms (Katharopoulos et al., 2020)
replace exp(qtk

T

i) with a kernel k(x,y) with an associated
feature map ϕ (i.e., k(x,y)=⟨ϕ(x),ϕ(y)⟩). This simplifies

the calculation of ot since we have

ot=

∑t
i=1ϕ(qt)ϕ(ki)

T
vi∑t

i=1ϕ(qt)ϕ(ki)
T

=
ϕ(qt)

∑t
i=1ϕ(ki)

T
vi

ϕ(qt)
∑t

i=1ϕ(ki)
T

.

Letting St =
∑t

i=1ϕ(ki)
T
vi and zt =

∑t
i=1ϕ(ki)

T where
St∈Rd×d,zt∈Rd×1, we can rewrite the above as an RNN,

St=St−1+ϕ(kt)
T
vt, zt=zt−1+ϕ(kt)

T
, ot=

ϕ(qt)St

ϕ(qt)zt
.

Although various kernels have been explored (Kasai et al.,
2021; Peng et al., 2021), recent work has found that a linear
kernel (i.e., setting ϕ to be the identity) without a normalizer
works well in practice (Sun et al., 2023a). This results in
an (unnormalized) linear attention layer with the following
update equation,

St=St−1+k
T

t vt, ot=qtSt. (1)

Eq. 1 makes it clear that a linear attention layer is essentially a
linear recurrent layer with matrix-valued hidden statesSt that
is updated via the outer-productkT

t vt=(xtWK)
T
(xtWV).1

The parallel form of causal linear attention, whose complex-
ity is still quadratic in L, is given by O=

(
(QK

T
)⊙M

)
V,

where M∈ {0,1}L×L is a mask such that Mij =1 if i≥ j
and Mij =0 if i< j. Due to M it is not possible to exploit
the associative property of matrix multiplication to reduce
the parallel form complexity from quadratic to linear.2

2.2 Chunkwise Parallel Form

The chunkwise parallel form of linear attention strikes a
balance between parallel and recurrent form (Hua et al.,
2022; Sun et al., 2023a), and allows for subquadratic,
partially parallel training. Formally, suppose the input X is
now split into non-overlapping chunks, where each chunk
is of length C. Let S[i] ∈ Rd×d be the chunk-level hidden
state after processing i chunks, i.e., S[i] := SiC . Further
let Q[i] := QiC+1:(i+1)C+1 ∈ RC×d be the query vectors
corresponding to the i-th chunk; let K[i], V[i], O[i] be
similarly defined. We then have the following inter-chunk
recurrence (for i∈ [0,1,...LC −1]):

S[i+1]=S[i]+

(i+1)C∑
j=iC+1

k
T

jvj︸ ︷︷ ︸
K

T

[i]
V[i]

∈Rd×d. (2)

Here S[0] can be initialized to zero or from the previous seg-
ment’s hidden state. The sum of all RNN inputs from a chunk
(i.e., KT

[i]V[i]) can be computed in O(C2d) in parallel. The

1This type of model with matrix-valued hidden states that change
over time is also known as “fast weights” (Hinton & Plaut, 1987;
Schmidhuber, 1992; Ba et al., 2016), whose connection to Trans-
formers was explored in recent work (Schlag et al., 2021; Irie et al.,
2021; Mao, 2022).

2Without M, one can transform (QK
T
)V to Q(K

T
V) reduc-

ing the complexity from quadratic (O(L2d)) to linear (O(Ld2)).

2

Gated Linear Attention Transformers with Hardware-Efficient Training

intra-chunk parallel computation for the output is given by

O[i+1]= Q[i+1]S[i]︸ ︷︷ ︸
inter-chunk:Ointer

[i+1]

+
(
(Q[i+1]K

T

[i+1])⊙M
)
V[i+1]︸ ︷︷ ︸

intra-chunk:Ointra
[i+1]

,

where O[i+1] ∈RC×d. Here the “intra-chunk” component
Ointra

[i+1] has exactly the same parallel form as Eq. 1 and thus
takes O(C2d+Cd2). The “inter-chunk” component Ointer

[i+1]
accounts for the contribution from the hidden state from the
previous chunk, and takes O(Cd2). Training complexity
is thus O

(
L
C (C2d+Cd2)

)
=O(LCd+Ld2), which is less

than O(L2d) when L>d. Note that setting C=L recovers
the parallel form, and C=1 recovers the recurrent form.

3 Hardware-Efficient Linear Attention
We describe FLASHLINEARATTENTION, an I/O-aware,
hardware-efficient algorithm for linear attention in the spirit
of FLASHATTENTION (Dao et al., 2022b; Dao, 2023). We
first discuss aspects of hardware that should be taken into
account for a practically efficient implementation.

3.1 Principles of Hardware-Efficient Algorithms

An efficient algorithm should be aware of the compute
model, memory hierarchy, and specialized compute units
on modern hardware.

Occupancy. GPUs have many threads executed in parallel;
threads are grouped into thread blocks, which execute on
streaming multiprocessors (SMs). To maintain a high GPU
occupancy (i.e., fraction of GPU resources being used), it
is necessary to use a sufficient number of SMs. In large-scale
training and long-sequence modeling scenarios where the
batch size tends to be small, parallelizing over the temporal
dimension enables high GPU occupancy (Dao, 2023).

Specialized compute units. Modern hardware for neural
network training typically have specialized compute units
(e.g., tensor cores on NVIDIA GPUs, matrix mutiply units
on TPUs), which can significantly accelerate matmuls; for
example half-precision matmuls on an A100 can be roughly
16 times faster on tensor cores than on CUDA cores. These
specialized units are crucial for large-scale training.

Memory hierarchy. GPUs have a memory hierarchy with
larger but slower global GPU memory (high bandwidth
memory; HBM) and smaller but faster shared memory
(SRAM). Optimal utilization of SRAM to reduce HBM I/O
cost can therefore lead to significant speed-ups.

3.2 Hardware Considerations for Linear Attention

We now discuss hardware considerations pertaining to the
efficiency of the different forms of linear attention.

Recurrent form. A basic implementation of the recurrent
form stores the 2D hidden states of all time steps in HBM,
resulting in high I/O cost (Mao, 2022). I/O cost could
be reduced by avoiding such materialization and recom-

Algorithm 1 FLASHLINEARATTENTION: Forward Pass
Input: Q,K,V ∈ RL×d,V ∈ RL×d, chunk size C ∈ [L], materialize ∈
{True,False}
Divide Q,K,V into N = L

C blocks {Q[1] ...Q[N]}, {K[1] ...K[N]} of size
C×d each.
Initialize S=0∈Rd×d on SRAM
On chip, construct causal mask M∈RC×C

if materialize then ▷ the materialization version
for n←1,N do

Store S to HBM as S[n].
Load K[n],V[n]∈RC×d from HBM to SRAM
On chip, compute S=S+K⊤

[n]V[n].
end for
parfor n←1,N do

Load Q[n],K[n],V[n],S[n] from HBM to SRAM.

On chip, compute O′=Q[n]S[n]+(Q[n]K
T

[n]⊙M)V[n]

Store O′ to HBM as O[n].
end parfor
return O={O[1]...O[N]}, S={S[1]...S[N]}.

else ▷ the non-materialization version
for n←1,N do

Load Q[n],K[n],V[n]∈RC×d from HBM to SRAM
On chip, compute O′=Q[n]S+(Q[n]K

⊤
[n]⊙M)V[n]

On chip, compute S=S+K⊤
[n]V[n].

Store O′ to HBM as O[n]

end for
return O={O[1]...O[N]}

end if

puting the hidden states during the backward pass, as in
Katharopoulos et al. (2020), but the elementwise operations
in the recurrent update cannot make use of tensor cores and
result in low arithmetic intensity. Hence, while the recurrent
form generally has the lowest total FLOPs among the three
forms, this does not translate to actual wall-time efficiency.
And while it is theoretically possible to parallelize linear
recurrences via the parallel scan algorithm, this method
requires materializing the 2D hidden state for each time step.
This incurs a significant memory I/O burden, thereby offset-
ting the benefits of parallelism over the sequence length and
resulting in slow actual running speeds, as in Katsch (2023).

Parallel form. The parallel form could be as efficient
as FLASHATTENTION using similar I/O optimization
techniques, as demonstrated by Qin et al. (2023b). However,
the high number of FLOPs (due to the quadratic complexity)
makes the long-sequence training expensive, the same issue
that the naı̈ve implementation of softmax attention would
suffer from.

Chunkwise form. The chunkwise parallel form, which
interpolates between the parallel and recurrent forms with an
extra “parameter” C, makes it possible to more easily make
the above tradeoffs for fine-grained optimization. Unlike
the recurrent form, most operations can be done via matmuls,
enabling the use of tensor cores (if C is set to a multiple
of 16). Though the chunkwise training algorithm has been
discussed before in the literature (Hua et al., 2022; Sun
et al., 2023a), most implementations are not I/O-aware and
thus slower than FLASHATTENTION for moderate sequence
lengths (e.g., 2K-4K).

3

Gated Linear Attention Transformers with Hardware-Efficient Training

Sequential

Sequential Chunkwise Parallel

S[i−1]

S[i−1] S[i] S[i+1] S[i]

S[i] S[i+1]

Ointer
[i+1] Ointra

[i+1]

Ointer
[i+1] Ointra

[i+1]

Ointer
[i] Ointra

[i]

Q[i] K[i] V[i]

K[i] V[i] K[i+1] V[i+1]

Q[i+1] K[i+1] V[i+1]

Q[i+1] K[i+1] V[i+1]

Load from HBM Store to HBM

(a)

(c)(b)

On-chip construct

Figure 1: (a) FLASHLINEARATTENTION without materialization.
This version is more memory-efficient. (b-c) FLASHLINEARAT-
TENTION with materialization. This version enables sequence-level
chunkwise parallelism.

3.3 FLASHLINEARATTENTION: Hardware-Efficient
Linear Attention with the Chunkwise Form

We describe our I/O-aware, hardware-efficient implemen-
tation of the chunkwise form. We give two versions, whose
forward and backward passes differ depending on whether
the chunk-level hidden states S[n] are materialized in HBM.
See Alg. 1 and Fig. 1 for the forward pass. (Alg. 2 in the
appendix describes the backward pass.) At a high level,
we use tiling to load tensors block-by-block and re-use
tensor blocks on chip to avoid multiple HBM I/O as much as
possible. For example, when Q[n] is loaded to SRAM, both
Q[n]S and (Q[n]K

⊤
[n]⊙M)V[n] can be computed on chip,

which avoids loading Q[n] twice, thus saving HBM I/O.

The non-materialization version computes O[n] sequen-
tially for n ∈ [N], using SRAM to temporarily store S[n],
which is memory-efficient. This version parallelizes across
batch size, number of heads, and head dimensions, but lacks
sequence-level parallelim. When the batch size is large,
this level of parallelism is sufficient to enable high GPU
occupancy. In long-sequence and large scale training settings
where batch size is small, the SMs cannot be fully exploited
in this case. The materialization version first performs the
inter-chunk recurrence (Eq. 2) and stores all S[n] for n∈ [N]
in HBM. Then, the O[n]’s can be computed in parallel for
all chunks. This approach offers better parallelism but
increases the memory footprint by approximately 10-20%.
We mitigate this through recomputation, where the hidden
states discarded after the forward pass and recomputed
during the backward pass. We find this introduces a small
runtime overhead but significantly reduces the memory
footprint, and we adopt this strategy by default.

Figure 2 shows the speed and memory footprint of our imple-
mentation. Both versions of FLASHLINEARATTENTION are
substantially faster than FLASHATTENTION-2 (Dao, 2023)

29 210 211 212 213 214 215

100

101

102

103

Sentence length

Ti
m

e
(m

s)

Running speed

210 211 212
2−1

20

21

Sentence length

G
PU

m
em

or
y

(G
B

)

Memory footprint

FlashAttention-2 (CUDA) FlashLinearAttention (w/ m. Triton)
FlashLinearAttention (w/o m. Triton) Chunkwise Linear Attention (Pytorch)

Figure 2: Speed comparison on a single H100 GPU with batch
size 32, number of heads 16, head dimension 64, and chunk size
64. Both x- and y-axes are on log scale. w/ m. and w/o m. denotes
using FLASHLINEARATTENTION with or without materialization
of hidden states in HBM.

and a pure PyTorch (i.e., I/O-unaware) implementation
of chunkwise linear attention, showing the benefits of
I/O-awareness.

4 Gated Linear Attention
The linear recurrence in Eq. 1 does not have a decay term
or a forget gate, which has been shown to be crucial in
RNNs (Hochreiter & Schmidhuber, 1997; Cho et al., 2014;
van der Westhuizen & Lasenby, 2018). The lack of a decay
term makes it difficult for a model to “forget” information,
and has been hypothesized to be partially responsible for the
instability of linear attention in long-context tasks (Buckman
& Gelada, 2024). Recent works (Sun et al., 2023a; Qin et al.,
2023b) obtain better performance through incorporating
a global, non-data-dependent decay factor3 γ ∈ (0,1) into
linear attention: St = γSt−1+k

T

t vt. The use of a single γ
is designed to preserve the attention-style parallel form for
efficient training. In this work, we consider a data-dependent
gating mechanism for linear attention. We show that despite
having a more expressive gating factor, the resulting gated
linear attention (GLA) layer still admits a hardware-efficient
chunkwise form for efficient training.

4.1 Recurrent and Parallel Form of GLA

Recurrent form. GLA has a 2D forget gate
Gt∈(0,1)dk×dv that varies over time:

St=Gt⊙St−1+k⊤t vt,

where we now allow the hidden state to have varying
dimensions. This Hadamard product-based recurrent form
is very general and encompasses many recent RNNs with
2D hidden states, as listed in Table 1.

Central to the design of gated linear attention is the
parameterization of Gt which requires a balance between
parameter-efficiency, state size, and training efficiency. A

3This can be viewed as linear attention with ALiBi position en-
codings (Press et al., 2021). In practice these works also incorporate
rotary position embeddings (RoPE; Su et al., 2021).

4

Gated Linear Attention Transformers with Hardware-Efficient Training

Model Parameterization Learnable parameters

Mamba (Gu & Dao, 2023) G=exp(−(1T
αt)⊙exp(A)), αt=softplus(xtWα1Wα2) A∈Rdk×dv , Wα1 ∈Rd× d

16 , Wα2 ∈R
d
16

×dv

Mamba-2 (Dao & Gu, 2024) Gt=γt1
T
1, γt=exp(−softplus(−xtWγ)exp(a)) Wγ ∈Rd×1, a∈R

mLSTM (Beck et al., 2024; Peng et al., 2021) Gt=γt1
T
1, γt=σ(xtWγ) Wγ ∈Rd×1

Gated Retention (Sun et al., 2024) Gt=γt1
T
1, γt=σ(xtWγ)

1
τ Wγ ∈Rd×1

DFW (Mao, 2022; Pramanik et al., 2023) Gt=α
T

tβt, αt=σ(xtWα), βt=σ(xtWβ) Wα∈Rd×dk , Wβ∈Rd×dv

GateLoop (Katsch, 2023) Gt=α
T

t 1, αt=σ(xtWα1)exp(xtWα2 i) Wα1 ∈Rd×dk , Wα2 ∈Rd×dk

HGRN-2 (Qin et al., 2024b) Gt=α
T

t 1, αt=γ+(1−γ)σ(xtWα) Wα∈Rd×dk , γ∈(0,1)dk
RWKV-6 (Peng et al., 2024) Gt=α

T

t 1, αt=exp(−exp(xtWα)) Wα∈Rd×dk

Gated Linear Attention (GLA) Gt=α
T

t 1, αt=σ(xtWα1Wα2)
1
τ Wα1 ∈Rd×16, Wα2 ∈R16×dk

Table 1: Gated linear attention formulation of recent models, which vary in their parameterization of Gt. The bias terms are omitted.

naı̈ve mapping xt 7→Gt to obtain a data-dependent gating
matrix would require a matrix of size d · dk · dv, which
would be parameter-inefficient. Mao (2022) propose a more
efficient outer-product-based low-rank parameterization
(Gt=α⊤t βt), which requires d·dv+d·dk parameters.4

In Mamba (Gu & Dao, 2023), Gt is obtained by combining a
data-independent learnable matrix A with a data-dependent
vector αt, which allows the matrix to be full rank. However,
this prevents the use of tensor cores because it cannot be
reformulated into a matrix-multiply format, as discussed in
Dao & Gu (2024). The lack of a compact matrix-multiply
form necessitates the materialization of each time step’s
hidden states. To reduce high I/O costs, Gu & Dao (2023)
develop a hardware-aware algorithm that materializes the
hidden states exclusively in SRAM rather than in HBM.
Due to limited SRAM capacity, this approach cannot
scale to larger hidden states, which, as we will show in
our experiments, results in suboptimal performance on
recall-intensive tasks. Mamba-2 (Dao & Gu, 2024) addresses
this limitation with a more restricted gating mechanism:
Gt = γt1

T1, where γt ∈ (0,1) is a scalar, which makes it
possible to to reformulate the recurrence in matrix-multiply
form, enabling the use of tensor cores and larger state sizes.
This scalar data-dependent gating is also used in Peng et al.
(2021), Sun et al. (2024), and Beck et al. (2024).

This paper adopts a middle ground between the scalar and
the fully low-rank parameterization by using Gt =α⊤t 1.5

This results in the following recurrent form,

St=(α⊤t 1)⊙St−1+k⊤t vt=Diag(αt)St−1+k⊤t vt, (3)

where αt is parameterized via a low-rank linear layer
followed by sigmoid on xt (see §4.4). Note that the above
formulation is general and encompasses several recent RNNs
(Katsch, 2023; Qin et al., 2024b; Peng et al., 2024). Thus,
the hardware-efficient GLA implementation (described next)
could be directly used or adapted to other models.

4However, Mao (2022) works with only the recurrent form and
materializes the hidden states for all time steps in HBM. In Appendix
C we give a new algorithm that reformulates the model in a matrix-
multiply-based parallel form, which can make use of (an extension
of) FLASHLINEARATTENTION for efficient training.

5Our preliminary experiments with the Gt=α⊤
t βt parameteri-

zation resulted in only marginal improvements over Gt=α⊤
t 1.

Parallel form. We now describe a parallel form GLA for
parallelizing across sequence length. Unrolling Eq. 3 gives

St=

t∑
i=1

 t∏
j=i+1

α⊤j 1

⊙k⊤i vi

Letting bt :=

∏t
j=1αj , we can rewrite the above as

ot=qtSt=qt

t∑
i=1

((
bt
bi

)⊤
1

)
⊙k⊤i vi

=

t∑
i=1

(qt⊙bt)

(
ki

bi

)⊤
vi

where the division is element-wise. Letting B∈(0,1)L×d be
the matrix obtained from stacking bt’s, the parallel form is:

O=

(Q⊙B)

(
K

B

)⊤
︸ ︷︷ ︸

P

⊙M

V.

However, this form is not numerical stable as bt is the
cumulative product of gate values in αj ∈(0,1)1×d, and thus
can be extremely small when t is large, making K

B explode.
To handle this, we can compute in log space for P,6

Pij=

d∑
k=1

QikKjkexp(logBik−logBjk), i≥j, (4)

where k denotes feature indices. However, unlike vanilla
linear attention, as Eq. 4 cannot be represented via a standard
matmul, and it cannot make use of half-precision matmuls
on tensor cores. We will show in §4.3 how a secondary-level
chunking mechanism can enable the use of half-precision
matmuls for most computations while maintaining numerical
stability, as illustrated in Figure 3.

4.2 Chunkwise Parallel Form of GLA

We derive a chunkwise form of GLA similar to the
chunkwise form of basic linear attention (§2.2). Here the
intra-chunk operation implements the above parallel form

6This form resembles extrapolatable position encoding (Sun
et al., 2023b) in that the term inside the exponential can be viewed
as a data-dependent relative position factor.

5

Gated Linear Attention Transformers with Hardware-Efficient Training

level tensor core
1 ✓
2 ✓
2 ✗

causal mask

Figure 3: Attention-style map to illustrate the chunkwise compu-
tations in GLA. The inter-chunk dependencies (in gray) are not
directly computed in the chunkwise form (only computed in the
parallel form). The intra-chunk dependencies are modeled via sec-
ondary chunking/tiling where the inter-sub-chunk part (in orange)
is computed by half-precision matmuls while the intra-sub-chunk
part (in pink) is computed in full precision in log space.

at the chunk-level to obtain Ointra. For inter-chunk, we have

ΛiC+j=
biC+j

biC
,ΓiC+j=

b(i+1)C

biC+j
,γi+1=

b(i+1)C

biC
,

S[i+1]=
(
γ⊤i+11

)
⊙S[i]+

(
K[i+1]⊙Γ[i+1]

)⊤
V[i+1],

Ointer
[i+1]=

(
Q[i+1]⊙Λ[i+1]

)
S[i].

Intuitively, Λ[i+1] encodes the cumulative decay from the
start of a chunk which will be used to propagate the hidden
states from the previous chunk S[i], while Γ[i+1] encodes the
decay to the end of a chunk which will be used to accumulate
information to be added to the next hidden state S[i+1].

4.3 Hardware-Efficient GLA

With the chunkwise form in hand, we can adapt the
FLASHLINEAR ATTENTION algorithm presented in §3 to
the gated case. The adaptation additionally relies on two
crucial techniques described below. We give high-level
intuitions in this section and defer the full algorithms to Alg.
3-6 of Appendix A.3.

Secondary-level chunking. Unlike in ordinary linear
attention, the intra-chunk computations in GLA cannot
leverage half-precision matmuls (and thus tensor cores)
due to log space computations (Eq. 4). To make better
use of tensor cores, we use secondary-level chunking
scheme, where a chunk is further divided into sub-chunks
(i.e., another level of tiling) in the spirit of classic tiling
techniques (Dao et al., 2022b). The attention-like matrix
P ∈ RL×L is then computed in a chunkwise manner, as
illustrated in Figure 3. Concretely, the interactions between
sub-chunks are computed via half-precision matmuls,7

P[i][j]=
(
Q[i]⊙Λ[i]

)(
K[j]⊙Γ[j]⊙

biC
b(j+1)C

)T

∈RC×C .

This corresponds to the orange tiles in Figure 3. For the
intra-sub-chunk part (pink tiles in Figure 3) we have to
resort to Eq. 4 and perform the matmul in full precision for
stability. With this two-level tiling strategy, the total amount

7To reduce notational clutter, here we use the notations from the
first-level chunking to express the key idea. The actual implementa-
tion is done with secondary-level chunks.

of non-half-precision matmul FLOPs are greatly reduced,
thus leading to wallclock improvements. We provide the
Pytorch-style pseudo-code in Listing 1 of Appendix A.3.

Memory-efficient dαt computation. Past work (Mao,
2022, §3.1) has claimed that GLA-like models have
to materialize the matrix-valued hidden states of size
L×d×d in HBM to compute all the gradients dαt, since
dαt=(St−1⊙dSt)1. We instead give the following closed
form formula for dlogαt,

dlogbt=qt⊙dqt−kt⊙dkt, dlogαt=
∑

t≤i≤L

dlogbi,

which can be easily obtained by taking the derivative with
respect to Eq. 4 (see Appendix A.3 for full derivation). dqt

and dkt can be computed as in Alg. 2.

4.4 GLA Transformer

We generalize the GLA layer to the multi-head case. Given
H heads, we have the following for each head h∈ [1,H],

Sh
t =
((

αh
t

)⊤
1
)
⊙Sh

t−1+khT

t vh
t ∈Rd′

k×d
′
v ,

oh
t =qh

t S
h
t ∈R1×d′

v ,

o′t=concat(LN(o1
t),...,LN(oH

t))∈R1×dv ,

rt=Swish(xtWr+br)∈R1×dv ,

yt=(rt⊙o′t)WO∈R1×d.

Here we use separate key (dk) and value (dv) dimensions;
d′k = dk/H,d′v = dv/H are the per-head key/value dimen-
sions. LayerNorm (LN) is applied after the output of each
head, while the output projection and output gating operate
on the concatenation of head outputs (Sun et al., 2023a).

We then build up a Transformer-like model by interleaving
multi-head GLA layers with feed-forward networks (FFN).
Concretely, given layer l’s contextualized representation
X(l), we obtain X(l+1) via,

Y(l)=GLA(LN(X(l)))+X(l)

X(l+1)=SwiGLU(LN(Y(l)))+X(l),

where the SwiGLU FFN layer (Touvron et al., 2023) is,

SwiGLU(Z)=(Swish(ZW1)⊙ZW2)W3.

Parameter allocation. As presented, our GLA layer
employs two additional matrices for predicting αt,rt (i.e.,
Wα,Wr) compared to a regular softmax attention layer. For
parameter-efficiency, we use a low-rank parameterization

αt=σ((xtW
1
αW

2
α+bα)))

1
τ ∈R1×dk ,

where W 1
α ∈ Rd×16, W 2

α ∈ R16×dk , and τ = 16 is a
temperature term to encourage model to have a slower
forgetting rate. We further set dk = d

2 and dv = d and use
full-rank parameterizations for (WQ,WK ,WV ,WO,Wr).
Ultimately, one GLA layer collectively needs (roughly) 4d2

parameters, as in regular softmax attention.

6

Gated Linear Attention Transformers with Hardware-Efficient Training

Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
Scale Model ppl ↓ ppl ↓ acc ↑ acc ↑ acc norm ↑ acc ↑ acc ↑ acc norm ↑ ↑
340M Params Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2
15B Tokens RetNet 32.33 49.19 28.6 63.5 33.5 52.5 44.5 23.4 41.0

Mamba 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8
GLA 28.65 43.35 30.3 64.8 34.5 51.4 45.1 22.7 41.5

1.3B Params Transformer++ 16.85 13.44 48.9 70.8 49.6 53.6 56.0 26.5 50.9
100B Tokens RetNet 18.64 17.27 43.3 70.0 47.3 52.5 54.8 25.6 48.9

Mamba 17.06 13.89 46.2 72.2 40.1 54.1 59.0 28.2 50.0
GLA 17.22 14.47 46.9 71.8 49.8 53.9 57.2 26.6 51.0

Table 2: GLA Transformer results against Transformer++ (Touvron et al., 2023), RetNet (Sun et al., 2023a), and Mamba (Gu & Dao, 2023).
All models are trained on the same subset of the SlimPajama dataset with the Mistral tokenizer. The 340M/1.3B models are trained for
15B/100B tokens respectively. The individual task performance is via zero-shot. We report the main results on the same set of tasks reported
by Gu & Dao (2023). See Appendix D for results on other benchmarks, including 5-shot results. The last column shows the average over all
benchmarks that use (normalized) accuracy as the metric.

5 Empirical Study
5.1 Experimental Setup

Our main experiments are on language modeling, where
we study whether GLA can perform competitively against
a (i) strong Transformer baseline with modern architectural
recipes and (ii) recent linear-time models. We use the
SlimPajama dataset (Soboleva et al., 2023) and tokenize it
using the Mistral tokenizer (Jiang et al., 2023). The original
dataset contains 627B tokens; we use a 100B subset.

Baselines. We evaluate GLA against three baselines:
Transformer++ (Touvron et al., 2023), RetNet (Sun et al.,
2023a), and Mamba (Gu & Dao, 2023). Transformer++
is the LLaMA architecture with Rotary Positional Em-
beddings (Su et al., 2021), SWiGLU (Shazeer, 2020), and
RMSNorm (Zhang & Sennrich, 2019); we also use SwiGLU
in the RetNet to replace its original FFN for fair comparison.
For Mamba, we use the open source code. All our baselines
are trained for the exact same number of tokens on the same
dataset for fair comparison.

Training details. We train all models from scratch at
two scales: 340M and 1.3B. All models are trained with
AdamW (Loshchilov & Hutter, 2018) using a maximum
learning rate of 3e-4. The 340M models are trained on 15B
tokens with a batch size of 0.5M tokens, while the 1.3B
models are trained on 100B tokens with a batch size of
2M tokens. We use a cosine learning rate schedule with
a warmup of 0.5B/1B tokens for the 340M/1.3B settings,
respectively. The initial and final learning rates are 3e-5. We
use a weight decay of 0.01, and gradient clipping of 1.0.

5.2 Main Results

In addition to perplexity (ppl) on Wikitext (Wiki.), we
consider a wide range of downstream tasks covering
common-sense reasoning and question-answering as was
used in Gu & Dao (2023): LAMBADA (LMB.; Paperno
et al., 2016), PiQA (Bisk et al., 2020), HellaSwag (Hella.;
Zellers et al., 2019), WinoGrande (Wino.; Sakaguchi et al.,

64 128 256 512

25

50

75

100

Model dimension
A

cc
ur

ac
y

Sequence Length: 256
Key-Value Pairs: 16

64 128 256 512
Model dimension

Sequence Length: 512
Key-Value Pairs: 64

Mamba
GLA
RetNet
RWKV-4
Hyena

Figure 4: Accuracy (%) on the synthetic MQAR task.

2021), ARC-easy (ARC-e) and ARC-challenge (Arc-c)
(Clark et al., 2018). In Appendix D, we also include
results on additional tasks: Copa (Roemmele et al., 2011),
SciQA (Auer et al., 2023), OpenbookQA (Mihaylov et al.,
2018), BoolQA (Clark et al., 2019). We report perplexity
(ppl) on WikiText and LAMBADA, accuracy normalized
by length on HellaSwag, ARC-challenge and OpenbookQA,
and accuracy on the other tasks. All evaluations are per-
formed using the LM evaluation harness (Gao et al., 2021).

Our main results are shown in Table 2. Compared to
RetNet which uses a data-independent decay rate, the GLA
Transformer with data-dependent gates shows improved
results on all tasks. Both GLA Transformer and Mamba
show comparable performance to Transformer++.

Recall-intensive tasks. While subquadratic models can
achieve competitive language modeling performance to
Transformers, Arora et al. (2024) show that they lag behind
softmax attention in recall-intensive tasks. We next evaluate
GLA on real and synthetic tasks that focus on recall.

The synthetic MQAR task (Arora et al., 2023a) is a more
challenging multi-query version of the induction head task
(Fu et al., 2023b) in which a model has to recall the token
following a query token multiple times. We follow Arora
et al. (2023a)’s experimental setting and compare GLA
against recent subquadractic models, including RetNet (Sun
et al., 2023a), Mamba (Gu & Dao, 2023), Hyena (Poli et al.,
2023) and RWKV-4 (Peng et al., 2023). For RetNet and GLA
the number of heads is set to 2; for other models we follow the
default settings in Arora et al. (2023a). The results are shown

7

Gated Linear Attention Transformers with Hardware-Efficient Training

0 5 10 15 20 25 30
10

15

20

25

Position bucket (K)

Pe
rp

le
xi

ty

PG19

5 10 15 20
6

7

8

9

10

Position bucket (K)

SlimPajama

Transformer++ (2K)
RetNet (2K)
RetNet∗ (12x2K)
Mamba (2K)
Mamba (8K)
GLA (2K)
GLA∗ (12x2K)
GLA (8K)

Figure 5: Length extrapolation on the test set of SlimPajama and PG19. We pretrain 1.3B models from scratch on SlimPajama for 100B
tokens with different training length. ∗ indicates models using truncated BPTT with over 12 segments that are each of 2K-length.

Scale Model FDA SWDE SQUAD
340M Params Transformer++ 21.4 42.2 22.1
15B Tokens RetNet 2.9 13.3 27.6

Mamba 2.1 12.4 23.0
GLA 8.1 18.6 27.2

1.3B Params Transformer++ 27.4 66.6 31.5
100B Tokens RetNet 14.3 42.8 34.7

Mamba 6.2 41.4 35.2
GLA 19.9 50.6 42.6

Table 3: Comparison of different models in three recall-intensive
tasks tested in Arora et al. (2024). Higher is better for all tasks.

in Figure 4. Standard quadratic attention achieves perfect
scores in all settings and is thus omitted. We find that models
with matrix-valued hidden states (i.e., Mamba/RetNet/GLA)
outperform Hyena/RWKV, and our GLA outperforms Ret-
Net, confirming the benefits of using data-dependent gates.

Following Arora et al. (2024), we also test our models on
three real recall-intensive tasks: FDA (Arora et al., 2023b),
SWDE (Lockard et al., 2019), and SQUAD (Rajpurkar et al.,
2018). These tasks focus on information extraction or read-
ing comprehension. As illustrated in Table 3, subquadratic
models significantly underperform Transformers on the FDA
and SWDE, both of which are information extraction tasks.
However, GLA outperforms other subquadractic models,
likely due to its larger recurrent state (compared to Mamba)
and selection mechanism (compared to RetNet).

Long sequence training and length extrapolation. One
advantage of linear attention models is that they allow for
efficient long sequence training in linear time. To showcase
this feature, we consider two training settings: (i) direct
training on 8K-length contexts, (ii) training on 24K-length
contexts through truncated backpropagation through time
(TBPP) over 2K-length segments.8 In the latter case the
gradients are not back-propagated across segments, and
hence this approach has minimal overhead comparable to
the standard 2K-length training strategy (where the initial
hidden state is always set to zero). We pretrain 1.3B Mamba,

8We split a 24K input sequence into 12 segments. The final state
of the previous segment is used as the initial state for the current
segment.

RetNet, and GLA models on SlimPajama for 100B tokens
on these settings and test them on both SlimPajama test set
and PG19 (Rae et al., 2019) test set.

Figure 5 shows the perplexities of the tokens calculated in dif-
ferent position groups. For models trained on 2K-length con-
texts, GLA extrapolates better than Mamba/RetNet in most
position buckets on the PG19 test set; Mamba struggles to
extrapolate beyond 4K, while GLA/RetNet can generalize to
18K on the Slimpajama test set. Transformers cannot extrapo-
late beyond training length, which is a known failure mode.9

Pretraining in a long sequence consistently improves per-
plexities for all three models. We found marginal perplexity
difference in the two settings for GLA, indicating that TBPTT
might be a more economic approach to long-sequence train-
ing. Mamba benefits significantly from 8K-length training,
and it performs similarly as GLA in the same training setting.

Ablations. We conduct a small-scale ablation study
by training the 340M GLA variants for 7B tokens. We
investigate (i) the importance of having both fine-grained
and data-dependent gating and (ii) the influence of head
dimension size. The results are shown in Table 4. For (i),
we find that while data dependent scalar gates substantially
improve upon RetNet, a finer-grained gating mechanism
is still necessary. For (ii) we tune the number of heads to
vary head dimensions, where by default GLA uses 4 heads.
Increasing it to 8 (i.e., smaller head dimension) leads to
relatively large perplexity degradation; reducing it to 1 (i.e.,
larger head dimension) actually performs best, but results
in only marginal improvement while requiring much higher
GPU memory. We thus choose 4 heads for our experiments.

5.3 Training Efficiency

Fig. 6 shows the throughput and memory usage as a function
of the sequence length and batch size for the different 1.3B
models on a single H100 GPU.10 Here GLA adopts the

9Although there are positional encoding schemes that enable bet-
ter length extrapolation, these methods still have difficulty generaliz-
ing significantly beyond context lengths seen during training (Press
et al., 2021; Sun et al., 2023b; Li et al., 2023c).

10We use the official implementation for Mamba, the fused ver-
sion of SwiGLU for Transformer++ and GLA, and FlashAttention-2

8

Gated Linear Attention Transformers with Hardware-Efficient Training

Model variants Training ppl.
GLA Transformer (4 heads) 14.77

No gate (i.e., Linear Attention) 23.21
Data independent scalar decay (i.e., RetNet) 16.55
Data dependent scalar gate 15.56
Small head dimension (8 heads) 15.29
Large head dimension (1 head) 14.61

Table 4: Ablation study results on the 340M model trained for 7B
tokens. We evaluate the model variants via the average perplexity
of the last 200 training steps.

materialization version of FLASHLINEARATTENTION with
recomputation of hidden state (§3.3). All models have linear
space complexity, and the total GPU footprint difference
among them is minimal. In terms of training throughput,
Mamba lags behind Transformer++ and GLA, with GLA
shows greater advantages in training lengths beyond 4096.

5.4 Limitations & Future Work

While our experiments with the GLA Transformer were on
a respectable scale, we were unable to perform larger-scale
experiments due to limited compute resources. Although
it is unclear at this point how GLA would scale to even larger
models/datasets, we anticipate that training efficiency of
GLA become even more favorable compared to Mamba at
larger scales. Specifically, when scaled to larger sizes (e.g.,
> 7B), GLA can be more efficient than Mamba because
of better use of tensor cores and GLA’s compatibility
with tensor parallelism.11 Insofar as we are interested in
leveraging the efficiency of linear attention, it would be
interesting to apply GLA to other modalities (especially
modalities with long-range dependencies), in line with
recent work on applying state-of-the-art state-space models
to other types of data (Yan et al., 2023; Zhu et al., 2024; Ma
et al., 2024; Liu et al., 2024; Xing et al., 2024; Wang et al.,
2024a;b; Yang et al., 2024, inter alia).

6 Related Work
We briefly discuss related work here and give an extended
discussion of the related work in Appendix A.

Traditional RNNs are difficult to scale due to the nonlinear de-
pendencies between the hidden states and expensive matmul-
based sequential hidden state updates. Linear RNNs/State-
Space Models (SSMs)/Transformers eliminate nonlinear
dependencies, making training parallelizable along the
temporal dimension (Martin & Cundy, 2018; Gu et al., 2022;
Smith et al., 2023). Such models have been the focus of much
recent work as a competitive sub-quadratic alternative to the
Transformer architecture (Peng et al., 2023; Gu & Dao, 2023;
Qin et al., 2023c;b; Sun et al., 2023a; Wang et al., 2022).

Data-dependent decay rates have always been regarded

for Transformer++.
11In particular, since Mamba is not a multi-head model it is not

as amenable to tensor parallelism.

2048/8 4096/4 8192/2 16284/1
0

10

20

30

40

50

Training length/Batch size

To
ke

ns
pe

rs
ec

on
d

(K
t/s

)

Training throughput

2048/8 4096/4 8192/2 16284/1
0

10

20

30

40

Training length/Batch size

G
ig

ab
yt

e
(G

B
)

GPU memory usage

Transformer++ Mamba GLA

Figure 6: Training throughput and memory footprint on an H100.

important for RNNs (Gers et al., 2000; van der Westhuizen
& Lasenby, 2018). Typical forget gate values depend on both
the previous hidden state and the current input. However
Martin & Cundy (2018) suggest that forget gate values
should depend solely on the current inputs to enable parallel
training. This simple strategy has been shown to be effective
in moderate-scale experiments conducted by HGRN (Qin
et al., 2023b). RWKV-v6 (Peng et al., 2024) and Mamba
(Gu & Dao, 2023) also use data-dependent decay rates
that are reminiscent of forget gates. In the context of linear
Transformers, Peng et al. (2021) employ a coarse-grained
position-wise forget gate, while Mao (2022) and Katsch
(2023) use a more fine-grained forget gate.

RNNs rely on fixed-dimensional hidden states to encode their
entire history. The hidden state dimension serves as a proxy
for memory capacity and thus significantly influences their
expressive power. Linear Transformers expand the hidden di-
mension of RNNs via the outer-product parameterization, as
discussed §2.1. Linear SSMs on the other hand expand their
hidden dimension via a single-input-single-output (SISO)
strategy. Without data-dependent SSM parameters, this can
be done efficiently during training via the Fast Fourier Trans-
form (FFT). However, with data-dependent SSM parameters,
FFT-based training is not possible, and thus Gu & Dao (2023)
implements a custom CUDA kernel to train a selective state-
space model using the parallel scan algorithm (Smith et al.,
2023). To fit all the hidden states into SRAM, they can only
afford an expansion rate up to 16. In contrast our hardware-
aware training algorithm provides an alternative, efficient
approach for expanding the hidden dimension to a wider
range, which we have shown useful in recall-intensive tasks.

7 Conclusion

We propose an efficient algorithm for training linear attention
Transformers with data-dependent gating mechanisms.
Our algorithm makes it possible to balance FLOPs against
parallellism, while still allowing for the use of half-precision
matmuls which can take advantage of tensor core units
on modern GPUs. Experiments on language modeling
demonstrate that gated linear attention Transformers can
perform respectably compared to strong baselines.

9

Gated Linear Attention Transformers with Hardware-Efficient Training

Impact Statement

This paper aims to improve the training efficiency of a
new model family of (gated) linear attention models. The
efficiency advantage of such models might help democratize
access of language models. On the other hand, whether
such new architectures would affect known issues such as
biased and harmful outputs of language models remains an
unexplored research question.

Acknowledgments

This work was supported by MIT-IBM Watson AI. We
thank Yutao Sun, Zhen Qin, Li Dong, Xinyu Yang, Jiacheng
You, Huanqi Cao, Yu Zhang, and Shida Wang for their
insightful discussions. We also thank Yu Zhang, Fares
Obeid, Daniel Goldstein, and Liliang Ren for their proof-
reading. Special thanks to Yu Zhang for contributing to the
FLASHLINEARATTENTION library.

References

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli,
M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring
and improving recall in efficient language models. CoRR,
abs/2312.04927, 2023a.

Arora, S., Yang, B., Eyuboglu, S., Narayan, A., Hojel,
A., Trummer, I., and Ré, C. Language Models Enable
Simple Systems for Generating Structured Views of
Heterogeneous Data Lakes, April 2023b. URL http:
//arxiv.org/abs/2304.09433. arXiv:2304.09433 [cs].

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Al-
berti, S., Zinsley, D., Zou, J., Rudra, A., and R’e, C.
Simple linear attention language models balance the
recall-throughput tradeoff. ArXiv, abs/2402.18668, 2024.

Auer, S., Barone, D. A. C., Bartz, C., Cortes, E. G., Jaradeh,
M. Y., Karras, O., Koubarakis, M., Mouromtsev, D.,
Pliukhin, D., Radyush, D., Shilin, I., Stocker, M., and
Tsalapati, E. The sciqa scientific question answering
benchmark for scholarly knowledge. Scientific Re-
ports, 13(1):7240, May 2023. ISSN 2045-2322. doi:
10.1038/s41598-023-33607-z.

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C.
Using fast weights to attend to the recent past. Advances
in neural information processing systems, 29, 2016.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova,
O., Kopp, M., Klambauer, G., Brandstetter, J., and
Hochreiter, S. xlstm: Extended long short-term memory.
arXiv preprint arXiv:2405.04517, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv

preprint arXiv: Arxiv-2004.05150, 2020. URL
https://arxiv.org/abs/2004.05150v2.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language.
In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 7432–7439, 2020.

Blelloch, G. E. Prefix sums and their applications. 1990.

Brandon, W., Nrusimha, A., Qian, K., Ankner, Z., Jin,
T., Song, Z., and Ragan-Kelley, J. Striped attention:
Faster ring attention for causal transformers. ArXiv,
abs/2311.09431, 2023.

Buckman, J. and Gelada, C. Linear Transformers Are Faster
After All, 2024.

Chaurasia, G., Ragan-Kelley, J., Paris, S., Drettakis, G., and
Durand, F. Compiling high performance recursive filters.
In High Performance Graphics, 2015.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generating
long sequences with sparse transformers. PREPRINT,
2019. URL https://arxiv.org/abs/1904.10509v1.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mohiuddin,
A., Kaiser, L., Belanger, D. B., Colwell, L. J., and
Weller, A. Rethinking attention with performers. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Dao, T. Flashattention-2: Faster attention with better
parallelism and work partitioning. CoRR, abs/2307.08691,
2023. doi: 10.48550/ARXIV.2307.08691.

Dao, T. and Gu, A. Transformers are ssms: Generalized
models and efficient algorithms through structured state
space duality, 2024.

10

http://arxiv.org/abs/2304.09433
http://arxiv.org/abs/2304.09433
https://arxiv.org/abs/2004.05150v2
https://arxiv.org/abs/1904.10509v1

Gated Linear Attention Transformers with Hardware-Efficient Training

Dao, T., Chen, B., Sohoni, N. S., Desai, A. D., Poli, M.,
Grogan, J., Liu, A., Rao, A., Rudra, A., and Ré, C.
Monarch: Expressive structured matrices for efficient
and accurate training. In International Conference on
Machine Learning, 2022a.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
Flashattention: Fast and memory-efficient exact attention
with io-awareness. In NeurIPS, 2022b.

Fu, D. Y., Arora, S., Grogan, J., Johnson, I., Eyuboglu, S.,
Thomas, A. W., Spector, B., Poli, M., Rudra, A., and R’e,
C. Monarch mixer: A simple sub-quadratic gemm-based
architecture. ArXiv, abs/2310.12109, 2023a.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A., and
Ré, C. Hungry hungry hippos: Towards language model-
ing with state space models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023b.

Fu, D. Y., Epstein, E. L., Nguyen, E., Thomas, A.,
Zhang, M., Dao, T., Rudra, A., and Ré, C. Simple
hardware-efficient long convolutions for sequence
modeling. International Conference on Machine
Learning, 2023c. doi: 10.48550/arXiv.2302.06646. URL
https://arxiv.org/abs/2302.06646v1.

Fu, D. Y., Kumbong, H., Nguyen, E., and Ré, C. Flashfftconv:
Efficient convolutions for long sequences with tensor
cores. CoRR, abs/2311.05908, 2023d.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff,
N., Phang, J., Reynolds, L., Tang, E., Thite, A., Wang,
B., Wang, K., and Zou, A. A framework for few-shot
language model evaluation, September 2021.

Gers, F. A., Schmidhuber, J., and Cummins, F. A. Learning
to forget: Continual prediction with LSTM. Neural
Comput., 12(10):2451–2471, 2000.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces. 2023.

Gu, A., Goel, K., and R’e, C. Efficiently modeling long
sequences with structured state spaces. International
Conference On Learning Representations, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K. K., Dao, T., Rudra,
A., and R’e, C. Combining recurrent, convolutional, and
continuous-time models with linear state-space layers.
Neural Information Processing Systems, 2021b. URL
https://arxiv.org/abs/2110.13985v1.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. In The Tenth Inter-
national Conference on Learning Representations, ICLR

2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022.

Gupta, A. and Berant, J. Diagonal state spaces are as
effective as structured state spaces. ARXIV.ORG, 2022.
doi: 10.48550/arXiv.2203.14343.

Hasani, R., Lechner, M., Wang, T.-H., Chahine, M., Amini,
A., and Rus, D. Liquid structural state-space models.
arXiv preprint arXiv:2209.12951, 2022.

Hinton, G. E. and Plaut, D. C. Using fast weights to deblur old
memories. In Proceedings of the ninth annual conference
of the Cognitive Science Society, pp. 177–186, 1987.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Hooker, S. The hardware lottery. Communications of the
ACM, 64:58 – 65, 2020.

Hua, W., Dai, Z., Liu, H., and Le, Q. V. Transformer quality
in linear time. In Chaudhuri, K., Jegelka, S., Song, L.,
Szepesvári, C., Niu, G., and Sabato, S. (eds.), Interna-
tional Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume
162 of Proceedings of Machine Learning Research, pp.
9099–9117. PMLR, 2022.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J.
Going beyond linear transformers with recurrent fast
weight programmers. Advances in Neural Information
Processing Systems, 34:7703–7717, 2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. ArXiv preprint,
abs/2310.06825, 2023.

Kacham, P., Mirrokni, V., and Zhong, P. Polysketchformer:
Fast transformers via sketching polynomial kernels, 2023.

Kasai, J., Peng, H., Zhang, Y., Yogatama, D., Ilharco,
G., Pappas, N., Mao, Y., Chen, W., and Smith, N. A.
Finetuning pretrained transformers into RNNs. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.),
Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 10630–10643,
Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.830.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on
machine learning, pp. 5156–5165. PMLR, 2020.

Katsch, T. Gateloop: Fully data-controlled linear recurrence
for sequence modeling. ArXiv, abs/2311.01927, 2023.

11

https://arxiv.org/abs/2302.06646v1
https://arxiv.org/abs/2110.13985v1

Gated Linear Attention Transformers with Hardware-Efficient Training

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer:
The efficient transformer. International Confer-
ence On Learning Representations, 2020. URL
https://arxiv.org/abs/2001.04451v2.

Li, D., Shao, R., Xie, A., Xing, E. P., Gonzalez, J. E.,
Stoica, I., Ma, X., and Zhang, H. Lightseq: Sequence
level parallelism for distributed training of long context
transformers. ArXiv, abs/2310.03294, 2023a.

Li, S., Xue, F., Baranwal, C., Li, Y., and You, Y. Sequence
parallelism: Long sequence training from system
perspective. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), Toronto, Canada, July 2023b. Association
for Computational Linguistics.

Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon,
S., Zaheer, M., Sanghai, S., Yang, Y., Kumar, S., and
Bhojanapalli, S. Functional interpolation for relative
positions improves long context transformers. arXiv
preprint arXiv:2310.04418, 2023c.

Li, Y., Cai, T., Zhang, Y., Chen, D., and Dey, D. What
makes convolutional models great on long sequence
modeling? In The Eleventh International Confer-
ence on Learning Representations, 2023d. URL
https://openreview.net/forum?id=TGJSPbRpJX-.

Lingle, L. D. Transformer-vq: Linear-time transformers via
vector quantization. CoRR, abs/2309.16354, 2023. doi:
10.48550/ARXIV.2309.16354.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context. ArXiv,
abs/2310.01889, 2023.

Liu, Y., Tian, Y., Zhao, Y., Yu, H., Xie, L., Wang, Y., Ye, Q.,
and Liu, Y. Vmamba: Visual state space model. arXiv
preprint arXiv:2401.10166, 2024.

Lockard, C., Shiralkar, P., and Dong, X. L. OpenCeres:
When Open Information Extraction Meets the Semi-
Structured Web. In Burstein, J., Doran, C., and Solorio,
T. (eds.), Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 3047–3056, Minneapolis,
Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19- 1309. URL
https://aclanthology.org/N19-1309.

Loshchilov, I. and Hutter, F. Fixing weight decay
regularization in adam. 2018.

Ma, J., Li, F., and Wang, B. U-mamba: Enhancing long-
range dependency for biomedical image segmentation.
arXiv preprint arXiv:2401.04722, 2024.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G.,
May, J., and Zettlemoyer, L. Mega: Moving average
equipped gated attention. In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=qNLe3iq2El.

Mao, H. H. Fine-tuning pre-trained transformers into
decaying fast weights. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing, pp. 10236–10242, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.697.

Martin, E. and Cundy, C. Parallelizing linear recurrent neural
nets over sequence length. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

Massaroli, S., Poli, M., Fu, D. Y., Kumbong, H., Parnichkun,
R. N., Timalsina, A., Romero, D. W., McIntyre, Q.,
Chen, B., Rudra, A., Zhang, C., Re, C., Ermon, S., and
Bengio, Y. Laughing hyena distillery: Extracting compact
recurrences from convolutions. NEURIPS, 2023. URL
https://arxiv.org/abs/2310.18780v1.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Nahshan, Y., Kampeas, J., and Haleva, E. Linear log-normal
attention with unbiased concentration, 2023.

Oren, M., Hassid, M., Adi, Y., and Schwartz, R. Transform-
ers are multi-state rnns. ArXiv, abs/2401.06104, 2024.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., V., K. K. G.,
He, X., Hou, H., Kazienko, P., Kocon, J., Kong, J., Koptyra,
B., Lau, H., Mantri, K. S. I., Mom, F., Saito, A., Tang, X.,
Wang, B., Wind, J. S., Wozniak, S., Zhang, R., Zhang, Z.,
Zhao, Q., Zhou, P., Zhu, J., and Zhu, R. RWKV: reinvent-
ing rnns for the transformer era. CoRR, abs/2305.13048,
2023. doi: 10.48550/ARXIV.2305.13048.

Peng, B., Goldstein, D., Anthony, Q., Albalak, A., Alcaide,
E., Biderman, S., Cheah, E., Ferdinan, T., Hou, H.,
Kazienko, P., et al. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. arXiv preprint
arXiv:2404.05892, 2024.

12

https://arxiv.org/abs/2001.04451v2
https://openreview.net/forum?id=TGJSPbRpJX-
https://aclanthology.org/N19-1309
https://openreview.net/forum?id=qNLe3iq2El
https://arxiv.org/abs/2310.18780v1

Gated Linear Attention Transformers with Hardware-Efficient Training

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. arXiv
preprint arXiv:2103.02143, 2021.

Peng, H., Kasai, J., Pappas, N., Yogatama, D., Wu, Z., Kong,
L., Schwartz, R., and Smith, N. A. ABC: Attention with
bounded-memory control. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Dublin, Ireland, May 2022.
Association for Computational Linguistics.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Bac-
cus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena hierarchy:
Towards larger convolutional language models. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and
Scarlett, J. (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 28043–28078. PMLR, 2023.

Pramanik, S., Elelimy, E., Machado, M. C., and White, A. Re-
current linear transformers. CoRR, abs/2310.15719, 2023.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N., and
Zhong, Y. The devil in linear transformer. arXiv preprint
arXiv:2210.10340, 2022.

Qin, Z., Han, X., Sun, W., He, B., Li, D., Li, D., Dai,
Y., Kong, L., and Zhong, Y. Toeplitz neural network
for sequence modeling. In The Eleventh International
Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=IxmWsm4xrua.

Qin, Z., Li, D., Sun, W., Sun, W., Shen, X., Han, X., Wei,
Y., Lv, B., Yuan, F., Luo, X., et al. Scaling transnormer to
175 billion parameters. arXiv preprint arXiv:2307.14995,
2023b.

Qin, Z., Yang, S., and Zhong, Y. Hierarchically
gated recurrent neural network for sequence
modeling. CoRR, abs/2311.04823, 2023c. doi:
10.48550/ARXIV.2311.04823.

Qin, Z., Sun, W., Li, D., Shen, X., Sun, W., and Zhong, Y.
Lightning attention-2: A free lunch for handling unlimited
sequence lengths in large language models. 2024a.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and
Zhong, Y. Hgrn2: Gated linear rnns with state expansion.
arXiv preprint arXiv:2404.07904, 2024b.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., and
Lillicrap, T. P. Compressive transformers for long-range
sequence modelling. arXiv preprint, 2019.

Rajpurkar, P., Jia, R., and Liang, P. Know What You
Don’t Know: Unanswerable Questions for SQuAD. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 784–789,
Melbourne, Australia, July 2018. Association for
Computational Linguistics. doi: 10.18653/v1/P18-2124.
URL https://aclanthology.org/P18-2124.

Ren, L., Liu, Y., Wang, S., Xu, Y., Zhu, C., and Zhai,
C. Sparse modular activation for efficient sequence
modeling. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL
https://openreview.net/forum?id=TfbzX6I14i.

Roemmele, M., Bejan, C. A., and Gordon, A. S. Choice
of plausible alternatives: An evaluation of commonsense
causal reasoning. In 2011 AAAI Spring Symposium Series,
2011. URL https://people.ict.usc.edu/∼gordon/
publications/AAAI-SPRING11A.PDF.

Romero, D. W., Kuzina, A., Bekkers, E. J., Tom-
czak, J. M., and Hoogendoorn, M. Ckconv: Con-
tinuous kernel convolution for sequential data.
arXiv preprint arXiv: 2102.02611, 2021. URL
https://arxiv.org/abs/2102.02611v3.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient
content-based sparse attention with routing transformers.
International Conference On Topology, Algebra And
Categories In Logic, 2020. doi: 10.1162/tacl a 00353.
URL https://arxiv.org/abs/2003.05997v5.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

Saphra, N., Fleisig, E., Cho, K., and Lopez, A. First tragedy,
then parse: History repeats itself in the new era of large
language models. ArXiv, abs/2311.05020, 2023.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transformers
are secretly fast weight programmers. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 9355–9366. PMLR, 2021.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139, 1992.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

13

https://openreview.net/forum?id=IxmWsm4xrua
https://aclanthology.org/P18-2124
https://openreview.net/forum?id=TfbzX6I14i
https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF
https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF
https://arxiv.org/abs/2102.02611v3
https://arxiv.org/abs/2003.05997v5

Gated Linear Attention Transformers with Hardware-Efficient Training

Smith, J. T. H., Warrington, A., and Linderman, S. W.
Simplified state space layers for sequence modeling.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B token
cleaned and deduplicated version of RedPajama, 2023.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding.
CoRR, abs/2104.09864, 2021.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor
to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023a.

Sun, Y., Dong, L., Patra, B., Ma, S., Huang, S., Benhaim,
A., Chaudhary, V., Song, X., and Wei, F. A length-
extrapolatable transformer. In Rogers, A., Boyd-Graber,
J. L., and Okazaki, N. (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 14590–14604.
Association for Computational Linguistics, 2023b. doi:
10.18653/V1/2023.ACL-LONG.816.

Sun, Y., Dong, L., Zhu, Y., Huang, S., Wang, W., Ma, S.,
Zhang, Q., Wang, J., and Wei, F. You only cache once:
Decoder-decoder architectures for language models. 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

van der Westhuizen, J. and Lasenby, J. The unreasonable
effectiveness of the forget gate. CoRR, abs/1804.04849,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is
all you need. Advances in neural information processing
systems, 30, 2017.

Wang, C., Tsepa, O., Ma, J., and Wang, B. Graph-mamba: To-
wards long-range graph sequence modeling with selective
state spaces. arXiv preprint arXiv:2402.00789, 2024a.

Wang, J., Yan, J. N., Gu, A., and Rush, A. M. Pretraining
without attention. CoRR, abs/2212.10544, 2022.

Wang, J., Gangavarapu, T., Yan, J. N., and Rush, A. M.
Mambabyte: Token-free selective state space model.
arXiv preprint arXiv:2401.13660, 2024b.

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M. Pay
less attention with lightweight and dynamic convolutions.
International Conference on Learning Representations,
2019. URL https://arxiv.org/abs/1901.10430v2.

Xing, Z., Ye, T., Yang, Y., Liu, G., and Zhu, L. Segmamba:
Long-range sequential modeling mamba for 3d medical
image segmentation. arXiv preprint arXiv:2401.13560,
2024.

Yan, J. N., Gu, J., and Rush, A. M. Diffusion models without
attention. 2023.

Yang, Y., Xing, Z., and Zhu, L. Vivim: a video vision mamba
for medical video object segmentation. arXiv preprint
arXiv:2401.14168, 2024.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie,
J., Alberti, C., Ontanon, S., Pham, P., Ravula, A.,
Wang, Q., Yang, L., et al. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297, 2020. URL
https://arxiv.org/abs/2007.14062v2.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhang, J., Jiang, S., Feng, J., Zheng, L., and Kong, L. Linear
attention via orthogonal memory, 2023.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C. The
hedgehog & the porcupine: Expressive linear attentions
with softmax mimicry, 2024.

Zhang, Y. and Cai, D. Linearizing transformer with
key-value memory. In Goldberg, Y., Kozareva, Z., and
Zhang, Y. (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing,
Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics.

Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., and Wang,
X. Vision mamba: Efficient visual representation learning
with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

14

https://arxiv.org/abs/1901.10430v2
https://arxiv.org/abs/2007.14062v2

Gated Linear Attention Transformers with Hardware-Efficient Training

A Extended Related Work

A.1 Linear Attention

Feature map ϕ. Linear attention mechanisms (Katharopoulos et al., 2020) replace exp(qtk
T

i) with a kernel k(x,y) having
an associated feature map ϕ (i.e., k(x,y)=⟨ϕ(x),ϕ(y)⟩) where ϕ∈Rdkey →Rddot . ϕ often consists of two parts: ϕ=ϕ0◦ϕ1.
ϕ1 could be a linear map made up by random samples (Peng et al., 2021; Choromanski et al., 2021), learnable MLPs (Kasai
et al., 2021; Zhang et al., 2024; Kacham et al., 2023) or simply an identity map (Mao, 2022). ϕ2 is often an element-wise
(activation) function that makes the resulting ϕ a positive feature map, such as 1+elu (Katharopoulos et al., 2020), ReLU
(Kasai et al., 2021), exp(·) (Zhang et al., 2024; Choromanski et al., 2021). Some work (Qin et al., 2023b; Sun et al., 2023a;
Mao, 2022) suggests that a positive feature map might not be necessary.

Our work follows Sun et al. (2023a) and Mao (2022) by using an identity map ϕ=I. Recent work suggests that non-identity
feature maps such as scaled element-wise exponential map (Nahshan et al., 2023; Zhang et al., 2024) and higher-order
polynomial map (Arora et al., 2024; Kacham et al., 2023) work well empirically. We leave the exploration of integrating
other types of feature map into GLA to future work.

Attention spikiness. Linear attention suffers from the “attention dilution” issue (Qin et al., 2022), where the attention
distribution is too uniform (i.e., high entropy) to concentrate on relevant tokens. Qin et al. (2022) propose adding local
attention layers to focus more on adjacent tokens, a method adopted in (Lingle, 2023; Nahshan et al., 2023; Zhang et al., 2023)
and proven crucial for performance. Recent work finds that a scaled element-wise exponential map—i.e., ϕ(x)=exp(t·x)
with t ≥ 2—helps to concentrate attention (Nahshan et al., 2023; Zhang et al., 2024). Zhang et al. (2024) also find that
higher-order polynomial kernels induce low-entropy and spiky attention distribution, partially explaining the empirical
success of Based Linear Attention (Arora et al., 2024) and PolySketchFormer (Kacham et al., 2023).

Memory capacity. Linear attention has bounded memory size (Peng et al., 2022) while softmax attention enjoys unbounded
memory(Oren et al., 2024). We believe that increasing the memory size efficiently and utilizing memory effectively are the
keys to bridging the performance gap between linear attention and softmax attention. To increase memory size, it is shown
that directly increasing dkey is effective (Sun et al., 2023a; Mao, 2022; Zhang & Cai, 2022); however, the total parameters
are hard to control with the increase of dkey. Parameter-efficient methods often keep dkey intact and increase ddot instead.
Higher order polynomial kernels with order p≥ 2 map dkey to a much higher ddot =O(dpkey) (Arora et al., 2023a; Kacham
et al., 2023). Schlag et al. (2021) propose the Deterministic Parameter-Free Projection (DPFP), while Pramanik et al. (2023)
use parameterized outer product to expand ddot in a parameter-efficient/free manner.

For better memory utilization, Schlag et al. (2021) use the delta rule to edit the memory dynamically. However, this is shown
to underperform the gating mechanism (Mao, 2022), which is a classic method to erase irrelevant historical information
in gated RNNs. Recently, Zhang et al. (2023) enforce orthogonality of memory vectors to potentially increase utiliziation.

Linear attention with decay or gates. Peng et al. (2021) use position-wise scalar gates for incorporating recency bias into
linear attention, and has been revisited in recent work (Dao & Gu, 2024; Beck et al., 2024; Sun et al., 2024), while Mao (2022);
Pramanik et al. (2023) use matrix-valued gates (obtained by the outer product) for more fine-grained memory control.

Scalar decays can be easily incorporated into chunkwise linear attention for training efficiency (Sun et al., 2023a; Qin et al.,
2024a). With matrix-valued gates, the training efficiency becomes much more challenging. Both Mao (2022) and Katsch
(2023)’s training algorithms involve materializing hidden states of all steps in HBM, which suffers from high I/O costs.
Moreover, both approaches cannot take advantage of tensor cores. Our hardware-efficient training algorithm reduces or
eliminates materialization and enables usage of tensor cores.

I/O-aware chunkwise linear attention. The chunkwise form of linear attention is well-known in the literature. Hua et al.
(2022) first propose the chunkwise linear attention form, arguing that the training algorithm of Katharopoulos et al. (2020)
is slow in practice. Sun et al. (2023a) and Qin et al. (2024a) generalize this form to linear attention with exponential decay
(or ALiBi). Kacham et al. (2023); Lingle (2023) also derive similar chunkwise forms.

However, most chunkwise linear attention is not I/O-aware. To the best of our knowledge, only LIGHTNINGATTENTION2
(Qin et al., 2024a) (concurrent to our work) is I/O aware, and it is very similar to the non-materialization version of our
FLASHLINEARATTENTION. We additionally propose a materialization version, which leverages sequence-level parallelism

15

Gated Linear Attention Transformers with Hardware-Efficient Training

and thus allows for higher training throughput at the cost of a slightly increasing memory footprint.

Other subquadratic models. Besides the Linear attention Transformer (Katharopoulos et al., 2020; Schlag et al., 2021)
discussed in this work, previous studies have explored sparsifying attention with either a predefined fixed pattern (Child et al.,
2019; Beltagy et al., 2020; Zaheer et al., 2020) or a context-aware learnable pattern (Roy et al., 2020; Kitaev et al., 2020; Ren
et al., 2023) for sequence modeling with subquadratic complexity in the sequence length dimension. Leveraging convolutions
for efficient sequence modeling has also been studied in works such as Dynamic Convolution (Wu et al., 2019), Long Convolu-
tion (Fu et al., 2023c; Qin et al., 2023a; Poli et al., 2023; Massaroli et al., 2023; Li et al., 2023d; Romero et al., 2021), and State
Space Models (Gu et al., 2021a; Gupta & Berant, 2022; Gu et al., 2021b; Hasani et al., 2022; Smith et al., 2023; Ma et al., 2023).

A.2 Sequence parallelism

The chunk-wise parallel form of linear Transformers resembles the two-stage parallel prefix sum (or parallel scan) algorithm
(Blelloch, 1990), which also combine chunk-wise parallel computations with inter-chunk communication (Chaurasia et al.,
2015). It also resembles sequence parallelism used for accelerating attention-based Transformers (Li et al., 2023b), which has
recently received much attention for long-sequence modeling (Liu et al., 2023; Li et al., 2023a; Brandon et al., 2023). Sequence-
level parallelism also constitutes the main improvement of FlashAttention-2 (Dao, 2023) over FlashAttention-1 (Dao et al.,
2022b). The main differences between these works are that (i) the chunk-level parallel form of linear Transformer needs only
a single pass due to the linear complexity, while the sequence parallelism in Transformers needs L/C passes (i.e., left-to-right
scan of key/value blocks for each query block) due to the inherent quadratic complexity, and (ii) the order of matrix multiplica-
tions is different. We also note that chunkwise linear attention could greatly reduce the communication cost between devices in
the distributed training setting compared to softmax attention, which could open the door for extremely long sequence training.

Algorithm 2 FLASHLINEARATTENTION: Backward Pass

Input: Q,K,V,O,dO∈RL×d, chunk size C∈ [L], materialize∈{True,False}, S∈R
L
C

×d×d ▷S is available when materialize is True
Initialize dS=0∈Rd×d on SRAM
On chip, construct causal mask M∈RC×C

if materialize then ▷ the materialization version
for n←N,1 do ▷ in reverse order

Store dS in HBM as dS[n]

Load Q[n],dO[n]∈RC×d from HBM to SRAM.

On chip, compute dS=dS+Q
T

[n]dO[n]

end for
parfor n←1,N do

Load Q[n],K[n],V[n],dO[n]∈RC×d from HBM to SRAM.
Load S[n], dS[n]∈Rd×d from HBM to SRAM.
On chip: dQ=dO[n]S

⊤
[n]+(dO[n]V

⊤
[n]⊙M)K[n].

On chip: dK=V[n]dS
⊤
[n]+(V[n]dO

⊤
[n]⊙M⊤)Q[n]

On chip: dV=K[n]dS[n]+(Q[n]K
⊤
[n]⊙M)⊤dO[n]

Write dQ,dK,dV to HBM as dQ[n],dK[n],dV[n]

end parfor
else ▷ the non-materialization version

Initial S=0∈Rd×d on SRAM
for n←1,N do ▷ hidden state recomputation

Load K[n],V[n],dO[n]∈RC×d from HBM to SRAM.
On chip: dQ=dO[n]S

⊤+(dO[n]V
⊤
[n]⊙M)K[n]

On chip: S=S+K⊤
[n]V[n]

end for
for n←N,1 do ▷ in reverse order

Load Q[n],K[n],V[n],dO[n]∈RC×d from HBM to SRAM.

On chip, compute dS=dS+Q
T

[n]dO[n]

On chip: dQ=dO[n]S
⊤
[n]+(dO[n]V

⊤
[n]⊙M)K[n].

On chip: dK=V[n]dS
⊤
[n]+(V[n]dO

⊤
[n]⊙M⊤)Q[n]

On chip: dV=K[n]dS[n]+(Q[n]K
⊤
[n]⊙M)⊤dO[n]

Write dQ,dK,dV to HBM as dQ[n],dK[n],dV[n]

end for
end if
return dQ={dQ[1]...dQ[N]}, dK={dK[1]...dK[N]}, dV={dV[1]...dV[N]}.

16

Gated Linear Attention Transformers with Hardware-Efficient Training

A.3 Hardware-ware algorithm

Many algorithms are fast in theory, but slow in practice, due to misalignment with hardware properties (Hooker, 2020; Saphra
et al., 2023). For example, matmuls with butterfly matrices have theoretically lower complexity by using FFT, but in practice
it is slow due to extensive memory transportation operations, motivating matrices (Dao et al., 2022a; Fu et al., 2023a) which
can better align butterfly operators to GPUs. In practice it is important to reduce HBM I/O cost using techniques such as
tiling and recomputation and leverage tensor cores as much as possible. Our FLASHLINEARATTENTION is similar in spirit
to FLASHATTENTION (Dao et al., 2022b; Dao, 2023) and FLASHCONVFFT (Fu et al., 2023d), which implement I/O-aware
versions of neural network layers to enable practical wallclock speedups. Concurrent work by Qin et al. (2024a) also proposes
an I/O-aware version of linear attention, which is similar to the non-materialization version of FLASHLINEARATTENTION.
We additionally propose a materialization version, which leverages sequence-level parallelism and thus allows for higher
training throughput at the cost of a slightly increasing memory footprint.

B Details for Chunkwise (Gated) Linear Attention

Backward pass of FLASHLINEARATTENTION. The pseduocode for backward pass of linear attention is listed in
Algorithm 2.

Pseudo codes of GLA. We first present the direct adaptions of FLASHLINEARATTENTION to training GLA without
secondary-level chunking. Specifically, Alg. 3 and 4 shows the forward/backward pass for the materialization version; Alg. 5
and 6 for the non-materialization version. We show the psuedo code of our secondary-level chunking in Pytorch style in
Listing 1.

def gated_linear_attention_forward(Q, K, V, a, C, c):
'''
Q/K/V: query/key/value
a: log forget gate
C/c: chunk size , subchunk size
'''
L: sequence length , d: head dimension
L, d_k = Q.shape
d_v = V.shape[-1]
S = torch.zeros(d_k , d_v)
O = torch.empty_like(V)
cumsum of log decay within a chunk
B = torch.empty_like(a)
local compute of cumulative product of decay within a chunk
for i in range(0, L//C):

b = torch.zeros(d_k)
for j in range(0, C):

b += a[i]
B[i] = b

for i in range(0, L // C):
r = range(i*C,(i+1)*C)
(C, d) chunking
bq, bk, bv, bb = Q[r], K[r], V[r], B[r]
b = bb[-1,None]
#inter -chunk w/ matmul
q, k, g = bq*(bb.exp()), bk*((b-bb).exp()), b.exp()
o = q @ S
#hidden state update
S = g.t() * S + k.t() @ bv
#intra -chunk (secondary chunking)
for j in range(0, C // c):

t = range(j*c, (j+1)*c)
#(c, head_dim) subchunking
q, k, v, b = bq[t], bk[t], bv[t], bb[t]
p = torch.zeros(c,c)
#intra -subchunk w/o matmul.
for m in range(c):

17

Gated Linear Attention Transformers with Hardware-Efficient Training

for n in range(m+1):
p[m,n]=torch.sum(q[m]*k[n]*((b[m]-b[n]).exp()))

o[t] += p @ v
inter -subchunk w/ matmul
z = b[0, None]
q = q * (b-z).exp()
for u in range(0, j):

y = range(u*c, (u+1)*c)
p = q @ (bk[y]*(z-bb[y]).exp()).t()
o[t] += p@bv[y]

O[r] = o
return O

Listing 1: Pytorch-like code snippet of our two-level chunking algorithm for training GLA. We omit the dimensions of batch size and
number of heads for clarity

Derivations of dlogαt. We show the derivations for the following gradient form.

dlogbt=kt⊙dkt−qt⊙dqt,

dlogαt=
∑

t≤i≤L

dlogbi.

By unrolling the recurrence, we have

ot=qtSt=

t∑
i=1

(qt⊙bt)

(
ki

bi

)⊤
vi

=

t∑
i=1

(qt⊙exp(logbt))(ki⊙exp(−logbi))
⊤
vi

Algorithm 3 Forward pass for gated linear attention (w. materialization)

Input: Q,K,∈RL×dk ,V∈RL×dv , G=[α1...αL]∈RL×dk , chunk size C
Divide Q,K,G into N= L

C
blocks {Q[1]...Q[N]}, {K[1]...K[N]}, {G[1]...G[N]} of size C×dk each.

Divide V into N blocks {V[1]...V[N]} of size C×dv each.
Initialize S=0∈Rdk×dv on SRAM
for n←1,N do

Write S to HBM as S[n].
Load K[n],G[n]∈RC×dk from HBM to SRAM.
Load V[n]∈RC×dv from HBM to SRAM.
On chip, compute γ[n]∈Rdk ,Γ[n]∈RC×dk and K̃[n]=K[n]⊙Γ[n].

On chip, compute S=
(
γ

T

[n]1
)
⊙S+K̃⊤

[n]V[n].
end for
parfor n←1,N do

Load Q[n],K[n],G[n]∈RC×dk from HBM to SRAM.
Load V[n]∈RC×dv from HBM to SRAM.
Load S[n]∈Rdk×dv from HBM to SRAM.
On chip, construct causal mask M∈RC×C

On chip, compute Λ[n],Γ[n]∈RC×dk

On chip, compute Q̃[n]=Q[n]⊙Λ[n], K̃[n]=K[n]⊙Γ[n], K̄[n]=K[n]/Λ[n]

On chip, compute Ointer
[n] =Q̃[n]S[n]∈RC×dv

On chip, compute P=(Q̃[n]K̄
T

[n])⊙M∈RC×C

On chip, compute Ointra =PV[n]

On chip, compute O[n]=Ointer+Ointra

Store O[n] to HBM.
end parfor
return O={O[1]...O[N]}, S={S[1]...S[N]}.

18

Gated Linear Attention Transformers with Hardware-Efficient Training

Algorithm 4 Backward pass for gated linear attention (w. materialization)

Input: Q,K,G∈RL×dk , V,O,dO∈RL×dv , chunk size C
Initialize dS=0∈Rdk×dv on SRAM
for n←N,1 do

Store dS in HBM as dS[n]

Load G[n]∈RC×dk from HBM to SRAM.
Load Q[n]∈RC×dk from HBM to SRAM.
Load dO[n]∈RC×dv from HBM to SRAM.
On chip, compute γ[n], Γ[n] and Q̃[n]=Q[n]⊙Γ[n]
On chip, compute dS=

(
γ

T

[n]1
)
⊙dS+Q̃

T

[n]dO[n]

end for
parfor n←1,N do

Load Q[n],K[n],G[n]∈RC×dk from HBM to SRAM.
Load S[n]∈Rdk×dv from HBM to SRAM.
Load V[n],O[n],dO[n]∈RC×dv from HBM to SRAM.
Load dS[n]∈Rdk×dv from HBM to SRAM.
On chip, construct causal mask M∈RB×B

On chip, compute Λ[n],Γ[n]∈RC×dk

On chip, compute Q̃[n]=Q[n]⊙Λ[n], K̃[n]=K[n]⊙Γ[n], K̄[n]=K[n]/Λ[n].
On chip, compute P=(Q̃[n]K̃

T

[n])⊙M∈RC×C

On chip, compute dP=(dO[n]V
T

[n])⊙M
On chip, compute dK̄[n]=Q̃[n]dP

T

On chip, compute dK̃[n]=V[n]dS
T

[n]

On chip, compute dK[n]=dK̃[n]⊙Γ[n]+dK̄[n]/Λ[n]

On chip, compute dQ̃[n]=dPK̄[n]+dO[n]S
T

[n]

On chip, compute dQ[n]=dQ̃[n]⊙Λ[n]

On chip, compute dV[n]=P
T
dO[n]+K̃[n]dS[n]

Store dK[n],dV[n] in HBM.
end parfor
Let dQ={dQ[1]...dQ[N]}, dK={dK[1]...dK[N]}, dV={dV[1]...dV[N]}.
Compute dA=Q⊙dQ−K⊙dK, dG= revcum(dA)
return dQ,dK,dV,dG

Algorithm 5 Forward pass for gated linear attention (w/o. materialization)

Input: Q,K,∈RL×dk ,V∈RL×dv , G=[α1...αL]∈RL×dk , chunk size C
Divide Q,K,G into N= L

B
blocks {Q[1]...Q[N]}, {K[1]...K[N]}, {G[1]...G[N]} of size C×dk each.

Divide V into N blocks {V[1]...V[N]} of size C×dv each.
Initialize S=0∈Rdk×dv on SRAM
for n←1,N do

Write S to HBM as S[n].
Load Q[n],K[n],G[n]∈RC×dk from HBM to SRAM.
Load V[n]∈RC×dv from HBM to SRAM.
On chip, compute γ[n]∈Rdk ,Γ[n]∈RC×dk and K̃[n]=K[n]⊙Γ[n].
On chip, construct causal mask M∈RC×C

On chip, compute Λ[n],Γ[n]∈RC×dk

On chip, compute Q̃[n]=Q[n]⊙Λ[n], K̃[n]=K[n]⊙Γ[n], K̄[n]=K[n]/Λ[n].
On chip, compute Ointer

[n] =Q̃[n]S[n]∈RC×dv

On chip, compute P=(Q̃[n]K̄
T

[n])⊙M∈RC×C

On chip, compute Ointra =PV[n]

On chip, compute O[n]=Ointer+Ointra

Store O[n] to HBM.

On chip, compute S=
(
γ

T

[n]1
)
⊙S+K̃⊤

[n]V[n].
end for
return O={O[1]...O[N]}.

19

Gated Linear Attention Transformers with Hardware-Efficient Training

Algorithm 6 Backward pass for gated linear attention (w/o. materialization)

Input: Q,K,G∈RL×dk , V,O,dO∈RL×dv , chunk size C
Initialize S=0∈Rdk×dv on SRAM
for n←1,N do

Load G[n]∈RC×dk from HBM to SRAM.
Load Q[n]∈RC×dk from HBM to SRAM.
Load dO[n]∈RC×dv from HBM to SRAM.
On chip, compute γ[n]∈Rdk ,Γ[n]∈RC×dk and K̃[n]=K[n]⊙Γ[n].
On chip, compute dP=dO[n]V

T

[n]

On chip, compute dQ̃[n]=dPK̃[n]+dO[n]S
T

On chip, compute dQ=dQ̃[n]⊙Γ[n]
Store dQ[n] to HBM.

On chip, compute S=
(
γ

T

[n]1
)
⊙S+K̃⊤

[n]V[n].
end for
Initialize dS=0∈Rdk×dv on SRAM
for n←N,1 do

Load Q[n],K[n],G[n]∈RC×dk from HBM to SRAM.
Load V[n],O[n],dO[n]∈RC×dv from HBM to SRAM.
On chip, construct causal mask M∈RC×C

On chip, compute Λ[n],Γ[n]∈RC×dk

On chip, compute Q̃[n]=Q[n]⊙Λ[n], K̃[n]=K[n]⊙Γ[n].
On chip, compute P=(Q̃[n]K̃

T

[n])⊙M∈RC×C

On chip, compute dP=(dO[n]V
T

[n])⊙M
On chip, compute dK̄[n]=Q̃[n]dP

T

On chip, compute dK̃[n]=V[n]dS
T

[n]

On chip, compute dK[n]=dK̃[n]⊙Γ[n]+dK̄[n]/Λ[n]

On chip, compute dV[n]=P
T
dO[n]+K̃[n]dS

Store dQ[n],dK[n],dV[n] in HBM.

On chip, compute dS=
(
γ

T

[n]1
)
⊙dS+Q̃

T

[n]dO[n]

end for
Let dQ={dQ[1]...dQ[N]}, dK={dK[1]...dK[N]}, dV={dV[1]...dV[N]}.
Compute dA=Q⊙dQ−K⊙dK, dG= revcum(dA)
return dQ,dK,dV,dG

where at the second step, we apply a trivial identity: exp(logx)=x. We first derive the gradients wrt. query/key vectors,

dqt=

t∑
i=1

⟨dot,vi⟩bt⊙ki/bi,

dki=
L∑
t=i

⟨dot,vi⟩qt⊙bt/bi.

Then for the gradients wrt. the logits of the accumulative gates,

dlogbt=qt⊙
t∑

i=1

⟨dot,vi⟩⊙bt⊙ki/bi︸ ︷︷ ︸
dqt

−kt⊙
L∑
i=t

⟨doi,vt⟩qi⊙bi/bt︸ ︷︷ ︸
dkt

.

where we change the index notation for the dk term. It now becomes clear that

dlogbt=qt⊙dqt−kt⊙dkt.

Since logbt=
∑t

i=1logαi, we get dlogαt=
∑L

t=idlogbi.

20

Gated Linear Attention Transformers with Hardware-Efficient Training

C General Gated Linear Attention

In the main paper, we use a simplified parameterization where β is fixed to 1 in the following gated linear attention.

St=(α⊤t βt)⊙St−1+k⊤t vt,

Though empirically we found that makingβ learnable does not lead to performance gain, we show here that the general form still
enjoys parallel form and chunk-wise form, which could be potentially useful for future development of linear attention models.

C.1 Parallel form

By unrolling the recurrence we have,

ot=qtSt=qt

t∑
i=1

(
(

t∏
i+1

Gi)⊙(k
T

i vi)
)

(5)

By taking advantage of the mixed product property of Kronercker/outer product, we have

(

t∏
j=i+1

Gj)⊙(k
T

i vi)=
(
(
bt
bi
)
T
(
dt

di
)
)
⊙(k

T

i vi) (6)

=

(
bt
bi

⊙ki

)T(
dt

di
⊙vi

)
(7)

where bt=
∏t

j=1αj ,dt=
∏t

j=1βj . By plugging it into the expanded recurrence, we have the following form.

ot=qtSt=qt

t∑
i=1

(
(

t∏
i+1

Gi)⊙(k
T

i vi)
)

(8)

=qt

t∑
i=1

(
bt
bi

⊙ki

)T(
dt

Bi
⊙vi

)
(9)

=

t∑
i=1

(
qt

(
bt
bi

⊙ki

)T
)(

dt

di
⊙vi

)
(10)

=

t∑
i=1

〈
qt,

bt
bi

⊙kt

〉
︸ ︷︷ ︸

R1×1

(
dt

di
⊙vt

)
︸ ︷︷ ︸

R1×dv

(11)

=

t∑
i=1

(〈
qt⊙bt,

ki

bi

〉
vi

di

)
⊙dt (12)

=

t∑
i=1

(
(qt⊙bt)

(
ki

bi

)T(
vi

di

))
⊙dt ∈R1×dv (13)

Eq. 10 is by linearity and associative property of matrix multiplication, Eq. 12 is derived based on ⟨a,b⊙c⟩=⟨a⊙b,c⟩. The
final form has following equivalent parallel form similar to the parallel form of linear/softmax attention.

Q̃=Q⊙B K̃=K/B Ṽ=V/D (14)

Õ=(Q̃K̃
T⊙M)Ṽ O=Õ⊙D (15)

where Q,K,B∈RL×dk , V,D∈RL×dv , M∈RL×L denotes the causal mask.

C.2 Chunkwise parallel form

Now we show that the chunkwise parallel form for efficient training of general linear attention. Suppose X is now split into L
C

chunks, each of length C. Let S[i]∈Rdk×dv be the chunk-level hidden state after processing i chunks, i.e., S[i] :=SiC . Further

21

Gated Linear Attention Transformers with Hardware-Efficient Training

let K[i+1] :=KiC+1:(i+1)C ∈RC×dk , V[i+1] :=ViC+1:(i+1)C ∈RC×dv . The inter-chunk recurrence is then given by,

S[i+1]=

((B(i+1)C

BiC

)T(D(i+1)C

DiC

))
⊙S[i]+

(
B′[i+1]⊙K[i+1]

)T(
D′[i+1]⊙V[i+1]

)
,

where (B′[i+1])j =
B(i+1)C

BiC+j
∈R1×dk and (D′[i+1])j =

D(i+1)C

DiC+j
∈R1×dv for j ∈ [1,C], i∈ [0,L/C−1]. (Therefore we have

B′[i+1]∈RC×dk ,D′[i+1]∈RC×dv .) The intra-chunk parallel computation is then given by,

Õ[i+1]=
(
(Q[i+1]⊙B†[i+1])S[i]

)
⊙D†[i+1]︸ ︷︷ ︸

inter-chunk

+(Q̃[i+1]K̃
T

[i+1]⊙M)Ṽ[i+1]︸ ︷︷ ︸
intra-chunk

, (16)

O[i+1]=Õ[i+1]/D
†
[i+1], (17)

where (B†[i+1])j =
BiC+j

BiC
∈R1×dk and (D†[i+1])j =

DiC+j

DiC
∈R1×dv for j ∈ [1,C], i∈ [0,L/C−1]. Subsequently, we have

Q̃[i+1] =Q[i+1]⊙B†[i+1],K̃[i+1] =
K[i+1]

B†
[i+1]

,Ṽ[i+1] =V[i+1]⊙D†[i+1]. For initial values, we set S0 = 0, B0 = 1, D0 = 1.

Intuitively, B′[i] encodes the cumulative decay from the start of a chunk which will be used to propagate the hidden states

from the previous chunk S[i]; B
†
[i] encodes the decay to the end of a chunk which will be used to accumulate information

to be added to the next hidden state S[i+1].

The chunkwise form given here is a generalization of several existing forms for linear attention. If we set Aij=1, Bij=1,
it reduces to the chunk-wise form presented in the main paper for vanilla linear attention; if we set Aij =1, Bij =γi+1, it
becomes RetNet’s chunk-wise form (Sun et al., 2023a). As such, our formulation can be regarded as a generalized chunk-wise
parallel form for linear attention that enables fine-grained data-dependent decay.

Memory-efficient computation of dα and dβ In the general form, we show that the gradient wrt. α and β admits the
following closed form, which allows computing dα and dβ without instantiating S in HBM.

dlogbt=kt⊙dkt−qt⊙dqt,

dlogαt=
∑

t≤i≤L

dlogbi

dlogdt=ot⊙dot−vt⊙dvt,

dlogβt=
∑

t≤i≤L

dlogdi.

where logbt =
∑t

i=1 logαi, logb=dt =
∑t

i=1βi (or alternatively bt =
∏t

i=1αi, dt =
∏t

i=1βi). We apply the trick to
compute dlogbt and dlogdt for the following cumulative-sum form.

ot=

t∑
i=1

(
(qt⊙bt)

(
ki

bi

)T(
vi

di

))
⊙dt ∈R1×dv .

The gradient of logbt comes from two sources: one associated with qt, the other associated with ki. Similarly, logb=dt

comes from both ot and vi.

dlogbt=qt⊙
t∑

i=1

⟨dot,
dt

di
vi⟩⊙bt⊙ki/bi︸ ︷︷ ︸
dqt

−kt⊙
L∑
i=t

⟨doi,
di

dt
vt⟩qi⊙bi/bt︸ ︷︷ ︸

dkt

dlogdt=dot⊙
t∑

i=1

(
(qt⊙bt)

(
ki

bi

)T(
vi

di

))
⊙dt︸ ︷︷ ︸

ot

−vt⊙
L∑
i=t

(
(qi⊙bi)

(
kt

bt

)T(
1

dt

))
⊙di︸ ︷︷ ︸

dvt

The trick applied there is that ∂f(a⊙b)
∂logb =a⊙ ∂f(a⊙b)

∂a and ∂f(a/b)
∂logb =−∂f(a/b)

∂a ⊙a.

22

Gated Linear Attention Transformers with Hardware-Efficient Training

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc norm ↑ acc ↑ acc ↑ acc norm ↑ acc ↑ acc norm ↑ acc ↑ acc ↑

0-shot
Transformer++ 340M 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 66.0 28.4 73.8 60.9 47.7
RetNet 350M 32.33 49.19 28.6 63.5 33.5 52.5 44.5 23.4 63 28.4 73.1 60.0 47.1
Mamba 350M 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 71.0 28.4 73.7 52.6 47.7
GLA-Transformer 340M 28.65 43.35 30.3 64.8 34.5 51.4 45.1 22.7 70.0 29.2 73.2 58.7 48.0

0-shot
Transformer++ 1.3B 16.85 13.44 48.9 70.8 49.6 53.6 56.0 26.5 75.0 29.8 83.6 52.3 54.6
RetNet 1.3B 18.64 17.27 43.3 70.0 47.3 52.5 54.8 25.6 70.0 31.4 82.3 57.1 53.4
Mamba 1.3B 17.06 13.89 46.2 72.2 40.1 54.1 59.0 28.2 74.0 33.0 83.1 59.1 54.9
GLA-Transformer 1.3B 17.22 14.47 46.9 71.8 49.8 53.9 57.2 26.6 73.0 32.4 84.7 58.5 55.5

5-shot
Transformer++ 1.3B - 16.80 42.9 70.2 50.3 53.8 60.5 28.7 75.0 33.8 90.7 46.0 55.2
RetNet 1.3B - 23.27 37.3 69.8 47.5 51.1 58.5 27.4 72.0 31.8 87.5 45.3 52.8
Mamba 1.3B - 23.00 31.4 71.4 51.2 54.1 60.1 30.4 79.0 33.8 88.5 47.7 55.4
GLA-Transformer 1.3B - 18.87 41.1 71.9 49.9 54.4 61.8 28.4 75.0 34.2 90.4 56.9 56.4

Table 5: Extended zero- and five-shot performance results. All models are trained on the same subset of SlimPajama dataset with Mistral
tokenizer. The 340M/1.3B models are trained for 15B/100B tokens respectively. The last column shows the average of all accuracies.

D Additional Experimental Results

The complete results on all 11 tasks, including the 5-shot results for the 1.3B models, are shown in Table 5.

23

