
Analysis for Abductive Learning and Neural-Symbolic Reasoning Shortcuts

Xiao-Wen Yang 1 2 Wen-Da Wei 1 2 Jie-Jing Shao 1 Yu-Feng Li 1 2 Zhi-Hua Zhou 1 2

Abstract
Abductive learning models (ABL) and neural-
symbolic predictive models (NeSy) have been re-
cently shown effective, as they allow us to infer la-
bels that are consistent with some prior knowledge
by reasoning over high-level concepts extracted
from sub-symbolic inputs. However, their gener-
alization ability is affected by reasoning shortcuts:
high accuracy on given targets but leveraging in-
termediate concepts with unintended semantics.
Although there have been techniques to alleviate
reasoning shortcuts, theoretical efforts on this is-
sue remain to be limited. This paper proposes
a simple and effective analysis to quantify harm
caused by it and how can mitigate it. We quantify
three main factors in how NeSy algorithms are
affected by reasoning shortcuts: the complexity
of the knowledge base, the sample size, and the
hypothesis space. In addition, we demonstrate
that ABL can reduce shortcut risk by selecting
specific distance functions in consistency opti-
mization, thereby demonstrating its potential and
approach to solving shortcut problems. Empirical
studies demonstrate the rationality of the analysis.
Moreover, the proposal is suitable for many ABL
and NeSy algorithms and can be easily extended
to handle other cases of reasoning shortcuts.

1. Introduction
Recently, neural-symbolic learning (NeSy) (d’Avila Garcez
et al., 2019) and abductive learning (ABL) (Zhou, 2019)
have been shown effective for integration of raw data and
symbolic rules. Neural-symbolic learning (d’Avila Garcez
et al., 2019; Sarker et al., 2021; Cunnington et al., 2022)
focuses on integrating logical reasoning into the neural net-
works in an end-to-end manner. Deep neural networks (Le-
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Figure 1. Reasoning shortcuts. In Task 1, an autonomous vehicle
needs to decide whether to move forward or stop based on the
given rule: Red ∨ Car→ Stop, which means it should stop if
there is a red light or a vehicle ahead. The model trained on this
task could correctly classify the target, but it acquires a reasoning
shortcut by confusing the presence of a vehicle and the red light.
When the perception model learned in Task 1 is applied to Task 2,
which involves determining whether turning right is permissible,
the autonomous vehicle mistakenly decides it should stop when
the perception model incorrectly predicts a vehicle ahead, possibly
resulting in a dangerous situation.

Cun et al., 2015) serve as low-level perception models to
translate raw inputs into symbolic concepts of practical
meaning, while the symbolic knowledge constrains both the
intermediate symbolic concepts and the final target using
logical rules. Abductive learning (Zhou, 2019) is one recent
generic and effective framework that bridges any kind of
machine learning algorithms and logical reasoning by using
inconsistency minimization to construct pseudo-labels of the
intermediate symbolic concepts. The inconsistency value
is calculated by a designed distance function (Huang et al.,
2021b; Cai et al., 2021). Unlike most NeSy algorithms, ABL
does not attempt to make symbolic knowledge differentiable.
Instead, it fully utilizes the symbolic reasoning capability
within the symbolic knowledge by sampling pseudo-labels
of intermediate symbols using abductive reasoning. Both
methods combine the interpretability of symbolic knowl-
edge with the learning capabilities and flexibility of neural
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networks (d’Avila Garcez et al., 2019), resulting in a sys-
tem that can effectively adapt to new tasks while remaining
comprehensible to human users.

However, numerous researchers have highlighted potential
issues in current NeSy systems (Marconato et al., 2023a;
Li et al., 2023), particularly reasoning shortcuts. It means
that neural networks may acquire inaccurate semantics (i.e.,
overfitting to specific assignments of symbolic concepts)
due to the absence of grounding labels for intermediate
symbolic concepts at the training stage. While this may
achieve high performance on the training task, it can com-
promise the network’s capacity for generalization across
new tasks and its interpretability. Figure 1 demonstrates an
example of reasoning shortcuts. Many efforts (Marconato
et al., 2023b; Li et al., 2023; He et al., 2024) have been
proposed to mitigate reasoning shortcuts, such as providing
a pre-trained model (Zhou & Huang, 2021; Manhaeve et al.,
2019), smoothing labels (Li et al., 2020; Müller et al., 2019),
and incorporating semi-supervised data (Huang et al., 2020),
among others. Nevertheless, theoretical efforts to quantity
the effectiveness of these methods remain to be limited.

In this paper, we propose a simple and effective analysis
to quantify the harm caused by the reasoning shortcuts and
how we can mitigate it theoretically. We first formalize the
severity of reasoning shortcuts. Different from Marconato
et al. (2023b)’s definition of reasoning shortcuts, wherein
the model achieves maximal log-likelihood on the train-
ing set but does not match the ground-truth intermediate
concept distribution, we introduce the shortcut risk Rs to
measure the severity of reasoning shortcuts. Our definition
allows for a more granular quantification of the caused by
reasoning shortcuts. Furthermore, we present a formalized
definition of the complexity of the symbolic knowledge
base, denoted as DKB , based on two basic properties of
the knowledge base: data dependence and rule dependence.
Data dependence implies that the same symbolic knowledge
base yields various effects across diverse data distributions,
while rule dependence suggests that the knowledge base
under different rules (e.g., ∨ or ⊕) will yield different im-
pacts on the same data distribution. Based on the above
two properties, we prove that the Rs is unbounded if there
is no assumption for the hypothesis space. Then we find
the upper bounds of Rs if the hypothesis space is under
the label smooth assumption or the pre-training assumption.
The asymptotic rate of the upper bound can be expressed as
O(ln (C −DKB) + 1/

√
N + γ), where N represents the

size of the training dataset and γ is a constant associated
with the characteristics of the hypothesis space. This implies
that as the complexity of the knowledge base increases and
the number of training samples grows, the shortcut risk will
decrease. Besides, our analysis indicates that smoothing
labels or providing pre-training models can effectively alle-
viate the reasoning shortcut problem for NeSy algorithms.

Moreover, we analyze the reasoning shortcut problem of
the ABL framework. We prove that the shortcut risk of the
ABL algorithm, denoted as RABL

s , is consistently smaller
than that of the NeSy algorithm, and if we can construct
a reasonable distance function, RABL

s will have an upper
bound of asymptotic rate O(κ) where κ represents the error
rate of the distance function. This means that the reasoning
shortcuts may be greatly alleviated, showcasing its potential
to address the shortcut problem. Empirical studies demon-
strate the rationality of our analyses.

We summarize the contributions of our proposed analysis:
(i). We first formalize the reasoning shortcut risk and the
complexity of the symbolic knowledge base. (ii). We quan-
titatively analyze three main factors in how typical NeSy
algorithms are affected by reasoning shortcuts. (iii). We find
that ABL is more robust to reasoning risks and demonstrates
its effectiveness through a large range of empirical studies.

2. Problem Setting and Preliminary
2.1. Problem Setting

A neural-symbolic system usually consists of two parts: a
concept perception model f , and a symbolic knowledge
base KB. The concept perception model is typically imple-
mented with a neural network to characterize the conditional
distribution of the intermediate concept z given the raw in-
put data x. The intermediate symbol z, which takes on a
finite number of values, has a precise interpretation com-
prehensible to humans. A symbolic knowledge base KB
represents a set of logical rules provided by experts, which
enables the derivation of the final target label y satisfying
that z,KB ⊨ y. More formally, we define an input space X ,
a discrete target space Y of size K, and a discrete symbol
space Z of size C. The concept perception model can be
defined as f(z|x) corresponding to the conditional distri-
bution of the intermediate concept given the input, which
is in a hypothesis space F ⊆ X → Z . For the sake of
simplification, we denote f(x) as the predicted label and
f(z|x) as the predicted probability of z given x.

A distribution S is defined on space X × Y . We sample
a training dataset S = {(x1,y1), (x2,y2), . . . , (xN ,yN )}
from this distribution where N is the size of the dataset.
Moreover, we define a joint distribution P on space X ×
Z × Y . The dataset S can also be regarded as a sample
drawn from the distribution P , where the variable z remains
unobserved. The whole task is a K-classification task.

2.2. Neural-symbolic Learning

Many researchers (Marconato et al., 2023a; Li et al., 2023)
pointed out that the optimization of representative neural-
symbolic algorithms such as DeepProblog (Manhaeve et al.,
2019), LTN (Badreddine et al., 2022), and Semantic Loss
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(Xu et al., 2018) can have a general form, that is given a
training dataset S, find f ∈ F that minimizing:

L̂nesy = − 1

N

∑
xi,yi

ln(
∑
z∈Z

I(z,KB ⊨ yi) · f(z|xi)) (1)

Owing to the intractability of the aforementioned loss func-
tion, precise optimization is unattainable. Deepproblog
(Manhaeve et al., 2019) leverages knowledge compilation
while LTN (Badreddine et al., 2022) leverages fuzzy logic to
make it differentiable. In light of the fact that the incorrect
intermediate concept satisfying the symbolic knowledge
may also occupy a term within the loss function, this objec-
tive does not sufficiently guarantee the correct prediction of
intermediate symbolic concepts, thereby giving rise to the
issue of reasoning shortcuts.

2.3. Abductive Learning

Abductive learning (ABL) is a new framework that bridges
neural networks and logical reasoning by using inconsis-
tency minimization to construct pseudo-labels of the inter-
mediate symbolic concepts. Concretely, abductive Learning
consists of a perception model, denoted as f , and a rea-
soning model. The perception model serves the purpose of
mapping the raw input x to an intermediate concept z, simi-
lar to neural-symbolic algorithms. We denote the prediction
of the perception model as f(x). The reasoning model takes
f(x) as input and utilizes abductive reasoning to identify
the most similar z that satisfies the knowledge base. z is
subsequently treated as the pseudo-label for retraining the
perception model. The entire process iterates iteratively.
The acquisition of z given (x,y) by the reasoning part can
be formalized as the following optimization problem:

z = argmin
z∈Z

Dis(z, f(x)))

s. t. z,KB ⊨ y
(2)

The function Dis denotes a pre-defined distance metric. And
the re-training for the perception model is to minimize such
loss: L̂ABL = − 1

N

∑
(xi,yi)

ln(f(zi|xi)). To facilitate
further analysis, we denote the acquisition of z as sam-
pling from a distribution Φ(x,y,f)(z) (It depends on both
the data and the current perception model and its support
set is {z|z,KB ⊨ y}). Thus, the loss function of ABL can
be rewritten as follows:

L̂ABL = − 1

N

∑
(xi,yi)

Ezi∼Φ(xi,yi,f)(z) ln(f(zi|xi)) (3)

Since the optimization goal of ABL is not to directly opti-
mize the correct intermediate concepts, the reasoning short-
cut problem also occurs in ABL.

3. Reasoning Shortcuts and Knowledge Base
In this section, we give detailed definitions of both the short-
cut risk and the complexity of the knowledge base KB.

3.1. Reasoning Shortcut Risk

Reasoning shortcuts occur when the perception model over-
fits an erroneous concept given the raw input. Despite the
perception model’s misconstruction of the concept, the tar-
get prediction may still be correct. Consequently, this phe-
nomenon leads to a high prediction accuracy on the training
data but fails to generalize to novel, unseen tasks. We find
that the occurrence of shortcut problems can be attributed to
the disparity between the optimization objective of neural-
symbolic algorithms and the objective of directly supervised
learning on intermediate concepts. Considering a supervised
learning task whose target is to directly learn f given ground-
ing labels of intermediate concepts. The objective of this
task is to minimize the cross-entropy loss L under the joint
distribution of (x, z,y), i.e.,

L = −E(x,z,y)∼P ln(f(z|x)) (4)

We believe that if f can minimize L, then there would
be no occurrence of shortcut problems. However, in real
neural-symbolic tasks, we do not optimize along the same
objective but optimize L̂nesy using a training dataset of
limited size. This leads to the emergence of the reasoning
shortcut problem. Hence, we define the severity of reasoning
shortcuts as the disparity between our desired objectives and
the attainable objectives within a finite dataset. Formally,
we express this definition as follows:

Definition 3.1 (Shortcut Risk). The shortcut risk Rs is
defined as:

Rs ≜ L − L̂nesy (5)

The shortcut risk represents the severity of the reasoning
shortcuts. The larger Rs, the more severe the issue of rea-
soning shortcuts. We have E[Rs] ≥ 0, so we only need to
consider the upper bound of Rs.

3.2. Complexity of the Knowledge Base

Based on existing findings (Marconato et al., 2023a), the
complexity of the symbolic knowledge base is a key fac-
tor that influences the severity of the shortcut risk. The
complexity of the symbolic knowledge base represents the
strength of its contribution to the overall neural-symbolic
system. The more complex symbolic knowledge we have,
the less prone to reasoning shortcuts. We observe that two
properties highly affect the definition of the complexity of
the symbolic knowledge base: data dependence and rule
dependence. Below we will provide two intuitive examples
to explain how each property affects the complexity of the
symbolic knowledge separately.
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Example 3.1. Considering two MINIST-Addition tasks that
have different input data. In Task 1, the input data contains
one sample: + = 0. In Task 2, the input data also
contains one sample: + = 1. Task 1 can uniquely
determine 0 correctly, but Task 2 tends to present ambiguity
in distinguishing between 0 and 1.

This example demonstrates that with different input data, the
contribution of symbolic knowledge to the neural-symbolic
system can be different. In the extreme case, if the input
samples have nothing to do with the symbolic knowledge,
then the knowledge base is not useful for the task, so we
should define its complexity as 0. Such analysis indicates
that data dependence is an important property for us to
formally define symbolic knowledge’s complexity.

Example 3.2. Considering two tasks both given a pair
of images (x1,x2) representing true or false. The KB
for Task 1 is y = z1 ∨ z2; while the KB for Task 2 is
y = z1 ⊕ z2. When given y = false, Task 1 can easily
get that z1 = false and z2 = false but Task 2 can be
confused to determine the value of z1 or z2.

This example demonstrates that different rules in the knowl-
edge base can have different contributions to the neural-
symbolic system. Such analysis indicates that rule depen-
dence property should also be considered to define the
knowledge base’s complexity. Based on these two prop-
erties, we give a formal definition for the complexity of a
symbolic knowledge base.

Definition 3.2 (Complexity of KB). The complexity of KB,
denoted as DKB , is defined as:

DKB ≜ E(x,y)∼S [
∑
z∈Z

I(z,KB ⊭ y)] (6)

DKB is defined as the expected count of instances z that
conflict with the knowledge base. This measure decides
upon the distribution of task data and the specific set of rules
contained within KB, thereby aligning with the aforemen-
tioned two properties. Intuitively, for any z, if the complex-
ity of KB is sufficiently high, it is more likely to encounter
contradictions with z, thus resulting in a large DKB .

Considering that only training samples can be obtained in
the real training process, we can define the empirical com-
plexity of a symbolic knowledge base.

Definition 3.3 (Empirical Complexity of KB). Empirical
Complexity of KB given training dataset S is defined as:

D̂KB ≜
1

N

∑
(xi,yi)∈S

∑
z∈Z

I(z,KB ⊭ yi)] (7)

Lemma 3.4 (Relationship between DKB and D̂KB). Ac-
cording to the Hoeffding’s inequality, we can obtain the

following conclusion: For ∀δ ∈ (0, 1), with the probability
of at least 1− δ, we have

|DKB − D̂KB | ⩽ (C − 1)

√
ln 2/δ

2N
(8)

This lemma demonstrates that as the training dataset is suf-
ficiently large, the difference between DKB and D̂KB is
tightly bounded with a large probability. The proof is pro-
vided in Appendix C.

4. Analysis of NeSy Reasoning Shortcut Risk
In this section, we give analyses of the upper bounds of Rs.
The upper bound of the shortcut risk quantifies the utmost
severity of shortcuts that a given algorithm can potentially
exhibit in the worst-case scenario. This measure has the-
oretical significance for the design of neural-symbolic al-
gorithms. We first show that Rs is unbounded when the
knowledge base is not complex enough.

Theorem 4.1 (Unbounded property of Rs). Suppose that
the hypothesis space F is comprised of the set of all map-
pings from X to Z , i.e., F : X → Z . When DKB < C − 1
, ∃f ∈ F , such that Lnesy = 0 and L → +∞, so that
Rs → +∞.

Theorem 4.1 showcases the unbounded nature of Rs when
the hypothesis space F exhibits sufficient complexity but
the complexity of the knowledge base is insufficient. In such
cases, the learned function f satisfies the knowledge base
for all training samples, thus L̂nesy = 0. Simultaneously, it
produces erroneous predictions for the intermediate concept
z across all samples, leading to the desired objective loss L
towards infinity. Consequently, the absence of constraints
on the hypothesis space F greatly increases the risk of
reasoning shortcuts.

Numerous approaches (Marconato et al., 2023b; Li et al.,
2023) have been introduced to alleviate the issue of reason-
ing shortcuts, including the utilization of pre-trained models,
label smoothing, extra-supervised data, and various other
strategies. We posit that the aforementioned approaches
have the potential to mitigate reasoning shortcuts due to
their assumption-making for the hypothesis space F , which
will simplify it. Based on existing solutions to mitigate
the shortcut problem, we define two assumptions regarding
F : the label smoothness assumption and the pre-training
assumption.

Definition 4.2 (Label smoothness assumption.). The hy-
pothesis space Fη satisfying label smooth assumption is
defined as:

Fη = {f |f ∈ F ∧ ∀x ∈ X ,
maxz f(z|x)
minz f(z|x)

≤ η} (9)
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Definition 4.3 (Pre-training assumption.). The hypothesis
space Fϵ satisfying pre-training assumption is defined as:

Fϵ = {f |f ∈ F ∧ ∀x ∈ X ,∀z ̸= g, f(z|x) ≤ ϵ}, (10)

where g is the grounding label of x.

The label smoothness assumption requires that the model f
should not exhibit excessive confidence in its predictions,
meaning that the ratio between the maximum and minimum
probabilities of a prediction should not exceed η. This as-
sumption can accurately reflect the goal of the label smooth-
ing method which softens the one-hot labels and has been
proved to be an effective way to mitigate reasoning short-
cuts. The pre-training assumption states that a model f ,
following pre-training on annotated data, exhibits a certain
level of discernment regarding incorrect labels. In other
words, the probability of predicting any erroneous label
should not surpass ϵ. This assumption is consistent with
existing methodologies that employ pre-trained models or
integrate supplementary supervised data as regularization.

Given the definitions of the two assumptions, we proceed to
derive upper bounds for Rs under the constrained hypothesis
space. Firstly, we prove the upper bound of expected Rs.

Theorem 4.4. We have the upper bounds of E[Rs] under
two assumptions of the hypothesis space given the data
distribution S.

(i). When Fη satisfies the label smooth assumption.

E(x,y)∼S [Rs] ≤
1

2
ln(C −DKB) + γη, ∀f ∈ Fη, (11)

where γη is a constant about Fη , γη = ln η + 1
2 lnC.

(ii). When Fϵ satisfies the pre-training assumption.

E(x,y)∼S [Rs] ≤
1

2
ln(C −DKB) + γϵ, ∀f ∈ Fϵ, (12)

where γϵ is a constant about Fϵ, γϵ =
(C−1)ϵ2

2(C−1)ϵ2−4(C−1)ϵ+2 .

Theorem 4.4 demonstrates that the upper bound for the
expected Rs consists of two components: one is related to
the complexity of the knowledge base, and the other is a
constant about the characteristics of the hypothesis space.
As the upper bound on the knowledge base complexity
increases, the shortcut risk in the expected sense diminishes.
It is insufficient to solely obtain an upper bound for the
expected Rs because, during the actual training process,
only L̂nesy and D̂KB are accessible. Below, we present the
upper bounds for Rs.

Theorem 4.5. Given training dataset S of size N , for any
0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1, with the probability of at least
(1− δ1)(1− δ2):

(i). When Fη satisfies label smooth assumption.

Rs ≤
1

2
ln
(
C + (C − 1)

√
ln 2/δ1
2N

− D̂KB

)
+ 3Bη

√
ln 2/δ2
2N

+ 2R̂m(Fη) + γη, ∀f ∈ Fη

(13)

where Bη is the bound of L̂nesy , Bη = lnC + ln η.

(ii). When Fϵ satisfies pre-training assumption.

Rs ≤
1

2
ln
(
C + (C − 1)

√
ln 2/δ1
2N

− D̂KB

)
+ 3Bϵ

√
ln 2/δ2
2N

+ 2R̂m(Fϵ) + γϵ, ∀f ∈ Fϵ

(14)

where Bϵ is the bound of L̂nesy , Bϵ = − ln (1− (C − 1)ϵ).

R̂m(F) represents the empirical Rademacher complexity
of F . Theorem 4.5 establishes that, with a high probability,
Rs can be bounded by three terms. The first term relates
to the complexity of the knowledge base, where a more
complex KB leads to a tighter upper bound for Rs. The sec-
ond term corresponds to the convergence of the number of
training samples, following a rate of O(1/

√
N). The third

term comprises the empirical Rademacher complexity of the
hypothesis space and a constant factor, which characterizes
the properties inherent to the hypothesis space itself. The
asymptotic complexity of the upper bound can be generally
denoted as O(ln (C −DKB)+1/

√
N + γ). All the proofs

are in Appendix C.

5. Analysis of ABL
Similar to the definition of shortcut risk in the domain of
neural-symbolic learning, the shortcut risk associated with
ABL, denoted as RABL

s , can be formulated in the following
manner:

Definition 5.1 (Shortcut Risk of ABL). The shortcut risk
RABL

s is defined as:

RABL
s ≜ L − L̂ABL (15)

Based on the aforementioned formalization of ABL, it can
be observed that if the distance metric can be appropriately
designed, it can provide more suitable feedback z compared
to the ordinary neural-symbolic system to train the concept
perception model, thereby enabling it to achieve better train-
ing outcomes and mitigate the reasoning shortcuts to some
extent. To formally analyze the reasoning shortcuts of ABL,
we first contemplate the simplest setting of the distance
function, specifically Dis(·, ·) = 0 in this paper.

Theorem 5.2. When Dis(·, ·) = 0, we have (i): Φ is the
uniform distribution on the z which satisfies the knowledge
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base.

Φ(xi,yi,f)(z) = Φ(yi)(z)∝

{
1 z,KB ⊨ yi,

0 z,KB ⊭ yi.
(16)

(ii): RABL
s has an upper bound.

RABL
s ≤ Rs −

lnC

C − 1

(
C − D̂KB − 1

)
(17)

Theorem 5.2 demonstrates that RABL
s is upper bounded

by Rs. The rationale for this theorem lies in the fact that
ABL only assigns a single pseudo-label at a time, whereas
the NeSy algorithm integrates all potential pseudo-labels
consistent with the knowledge base into the loss function.
This causes Lnesy to become smaller, resulting in a larger
Rs than RABL

s . And when the knowledge base’s complexity
D̂KB is smaller, then RABL

s will have a tighter bound. As
a result, NeSy can be easier to fall into reasoning shortcuts.
This finding indicates that ABL exhibits superior efficacy
in mitigating the occurrence of reasoning shortcuts when
compared to typical neural-symbolic algorithms.

Theorem 5.3. If the sampling distribution Φ derived
from the Dis function satisfies that ∀x ∈ X ,∀c ̸=
g,Φ(x,y,f)(c) ≤ κ (g is the grounding label of x).

(i). When Fη satisfies the label smooth assumption.

E(x,y)∼S [R
ABL
s ] ≤ η2(C −DKB − 1) · κ (18)

(ii). When Fϵ satisfies the pre-training assumption.

E(x,y)∼S [R
ABL
s ] ≤ ϵ(C −DKB − 1)

1− (C − 1)ϵ
· κ (19)

Theorem 5.3 demonstrates that when Φ is capable of sam-
pling incorrect intermediate labels with a small error rate κ,
the expected shortcut risk of ABL remains small. Further-
more, when the complexity of the knowledge base is fixed,
the upper bound on the shortcut risk approaches zero with a
rate of O(κ). The result implies that if ABL can select or
train a good distance function in some way, then the shortcut
risk of ABL will not be significant, highlighting its potential
to address the shortcut problem and the advantage of ABL
algorithms over typical NeSy algorithms. All the proofs are
in Appendix C.

6. Related Work
Neural-symbolic Learning Neural-symbolic learning
(Besold et al., 2021; De Raedt et al., 2020) has received
considerable attention in recent years. Typical methods
(Yang et al., 2022; Xu et al., 2018; Fischer et al., 2019;
Huang et al., 2021a) regard logical rules as constraints that

act as effective regularization during the training of neural
networks. Among them, Huang et al. (2021a) devised a
loss function that compels the network’s output to adhere
more closely to logic constraints. Yang et al. (2022); Fis-
cher et al. (2019) adopt similar strategies to address various
types of logical constraints. Furthermore, several techniques
(Badreddine et al., 2022; Manhaeve et al., 2019) have specif-
ically emphasized the integration of neural networks with
established tools for logical reasoning. Badreddine et al.
(2022) extend fuzzy logic with neural predicates to create a
fully differentiable logical language known as Real Logic.
Similarly, DeepProbLog (Manhaeve et al., 2019) is a prob-
abilistic logic programming language that integrates deep
learning through the use of neural predicates. The objective
of these approaches is to construct comprehensive logical
systems in a differentiable manner. In fact, regardless of
the perspective from which neural-symbolic methods are
designed, they may encounter shortcut problems.

Abductive Learning Abductive learning (Zhou, 2019) fa-
cilitates the simultaneous optimization of machine learning
and logical reasoning through the minimization of the incon-
sistency. The main emphasis of this approach is to deal with
intermediate symbolic concepts that serve as pseudo-labels
during the learning process and as variables for abductive
reasoning. By utilizing pseudo-labels, the machine learning
model can be iteratively updated, while abduction searches
for the most appropriate revised pseudo-label to minimize
any inconsistencies between the raw data and knowledge
base. There are various variants of ABL. Cai et al. (2021) ex-
tend the ABL framework by leveraging the logical domain
knowledge base, which is represented through groundings.
Huang et al. (2021b) employs a similarity-based consis-
tency metric to determine the most suitable pseudo-label
among all possible abduction results, thereby enhancing
the optimization process of the ABL framework in terms
of speed and stability. Some researchers have incorporated
the ABL framework into weakly supervised scenarios (Shi
& Li, 2024; Zhou et al., 2024), including semi-supervised
learning (Huang et al., 2020) and transfer learning (Zhou
et al., 2023). The shortcut problem similarly occurs for
ABL algorithms. Yang et al. (2024) consider when the
knowledge base contains inaccurate rules, the severity of
reasoning shortcuts increases. In this paper, we show that by
designing a suitable distance function, ABL can have lower
shortcut risk, which demonstrates its potential to mitigate
reasoning shortcuts.

Reasoning Shortcuts The issue of shortcuts is a signifi-
cant and challenging problem in the field of neural-symbolic,
and only a few articles have paid attention to this problem.
Stammer et al. (2022) investigate the approach of injecting
additional knowledge into the model to address input-level
shortcuts. In the context of NeSy, Marconato et al. (2023a)
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introduce the concept of the reasoning shortcut and proposes
a method that combines concept supervision and concept-
level rehearsal to address shortcut problems in the context
of continual learning. Li et al. (2023) propose a minimax ob-
jective that ensures the concepts learned by the model satisfy
the knowledge base and have less shortcuts. However, all
these methods lack corresponding in-depth theoretical anal-
ysis results. Moreover, the work proposed by Marconato
et al. (2023b) theoretically analyzes the generality of the
reasoning shortcut problem and extracts the key factors that
may have an impact on it, thereby proposing several mit-
igation strategies. One limitation of the work is that the
characterization of the complexity of the knowledge base
may not be sufficiently accurate, which could potentially
affect the thoroughness of the analysis regarding the impact
of the knowledge base on reasoning shortcuts.

7. Empirical Study
In this section, we empirically corroborate two principal
findings that have previously been supported by theoretical
evidence: (1). As the complexity of the knowledge base
increases, both the neural-symbolic approaches and the ABL
algorithms exhibit lower shortcut risk. (2). The selection of
the distance function Dis influences the performance of the
ABL algorithm significantly, where a good choice of Dis
can assist in alleviating the reasoning shortcuts.

7.1. MNIST-Addition

Task Description We consider the MNIST-Addition ex-
periment (Manhaeve et al., 2019). The input of this task
is a pair of MNIST images (LeCun et al., 1998), and the
output is the sum of the individual digits. The knowledge
base given by this task is the addition rule. We construct six
datasets of different levels from the original task. We first
split target labels into an ‘easy’ pool and a ‘hard’ pool. Then
we sample input data from these two distinct pools with dif-
ferent ratios. Therefore, the constructed datasets will have
different levels of difficulty. Correspondingly, descending
through the levels precipitates an escalation in the complex-
ity of the empirical knowledge base. To ensure equity for
all the experiments, each dataset has a fixed training sam-
ple size of 30,000 and the test dataset remains unchanged.
Detailed information is provided in Appendix B.1.

Competing baselines We do experiments on three rep-
resentative neural-symbolic learning algorithms: semantic
loss (SL) (Xu et al., 2018), DeepProbLog (DPL) (Man-
haeve et al., 2019) and LTN (Badreddine et al., 2022). For
ABL algorithms, we instantiate the trivial distance func-
tion Dis(·, ·) = 0 as the baseline, denoted as ABL. In or-
der to verify whether the provided two assumptions on the
hypothesis space are effective for abductive learning, we

additionally compare the two methods ABL+L and ABL+P,
which respectively represent the use of label smoothing and
a pre-trained model.

Distance functions To verify the impact of the selection
of the distance function Dis on the performance of ABL,
we additionally select several non-trivial distance functions.
Firstly, we consider Hamming distance which calculates the
number of positions at which the corresponding symbols
are different of two strings. In the context of the MNIST-
Addition task, the digit pair (1, 2) exhibits a distance of one
from (1, 1) and a distance of two from (3, 4). We denote
the ABL algorithm with such distance function as ABL(H).
Secondly, we follow Huang et al. (2021b) which adopts the
metric Dis(z, f(x)) = 1−f(z|x), signifying the utilization
of the contemporary model’s confidence to construct the
sampler Φ. We denote this method of such distance function
within ABL algorithms as ABL(C). Moreover, we consider
a pre-training model g, and the metric Dis(z, f(x)) = 1−
g(z|x). We denote it as ABL(P). Different from ABL(C),
the extra model g is not updated during training.

Figure 2. The grid accuracy (GAcc) of different methods under
different levels of MNIST-Addition task.

Experimental results We report the results of typical
NeSy and ABL algorithms in Figure 2 whey varying the dif-
ficulty level of the training dataset. Given that the shortcut
risk Rs is not amenable to direct computation, we deploy
the metric of Grid accuracy (GAcc) to evaluate the model’s
degree of mitigation on reasoning shortcuts. Grid accuracy
represents the prediction accuracy of the model for the prob-
ability of intermediate symbols, specifically, in the MINST-
Addition experiment, it is the classification accuracy of
MINST images. As the neuro-symbolic system primarily
aims for the precise classification of intermediate concepts,
it follows logically that GAcc should be considered a rea-
sonable metric for evaluation purposes. The results indicate

7
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Table 1. Grid accuracy (GAcc) (%mean ± std) on different levels of MNIST-Addition tasks.

Method (GAcc) MNIST-Addition Datasets of Different Levels

I II III IV V VI AVG

SL 33.81±25.30 44.19±20.34 21.56±23.61 33.60±25.50 21.53±23.57 8.85±3.57 27.26±20.32

LTN 39.09±16.70 35.17±23.56 18.97±18.07 15.63±19.49 11.87±11.62 7.24±8.34 21.33±16.30

DPL 22.85±24.90 33.27±25.03 53.22±0.25 43.25±20.04 34.97±22.93 2.75±1.01 31.72±15.69

ABL 82.24±32.02 50.23±39.28 62.80±43.25 62.60±43.46 34.73±34.59 31.62±34.03 54.04±37.77

ABL(H) 80.64±35.41 64.50±41.67 62.84±43.29 46.69±42.22 36.59±33.54 19.48±14.13 51.79±35.04

ABL(C) 89.61±13.27 88.44±20.31 82.05±12.69 53.25±43.83 30.45±25.31 4.04±7.71 57.97±20.52

ABL(P) 98.63±0.08 98.60±0.11 98.55±0.10 98.53±0.08 98.54±0.07 98.57±0.13 98.57±0.10

Table 2. GAcc (%) and Acc (%) on the BDD-OIA task.

Method GAcc Acc

DPL 57.74 ± 6.70 69.00 ± 0.74
ABL 76.96 ± 0.04 75.17 ± 0.18
ABL(H) 76.94 ± 0.07 75.31 ± 0.21
ABL(C) 78.54 ± 1.43 75.30 ± 0.12
ABL(P) 85.13 ± 0.15 74.03 ± 0.10

that as the level decreases (i.e., D̂KB increases), most meth-
ods show an upward trend in predictive performance for
intermediate concepts. This demonstrates that the shortcut
problem is mitigated as the knowledge base becomes more
complex. We find that the ABL algorithm performs better
when using label smoothing, especially when the knowledge
base complexity is high. Additionally, we observe that the
ABL algorithm has a higher low bound performance and
overall performance after incorporating pre-training models.
It is worth noting that the DPL algorithm experiences a per-
formance decline at levels I and II, which we attribute to the
instability of the DPL algorithm. Overall, the experimental
results can be effectively regarded as supporting evidence
for our Theorem 4.4 and Theorem 4.5.

Table 1 shows the grid accuracy of the ABL algorithms with
different distance functions. Bold and underline indicate
the optimal and sub-optimal performance, respectively. The
results indicate that using a distance function constructed
from a pre-trained model can correctly identify labels of
the correct intermediate concepts with a high probability
by minimizing inconsistency. As a result, ABL(P) achieves
high performance and largely mitigates the reasoning short-
cut problem, which experimentally supports the result of
Theorem 5.3. Additionally, we observe that ABL(C) ex-
hibits a greater shortcut risk on higher-level datasets, with
only 4.04% GAcc at Level VI. However, it performs better
on lower-level tasks. We attribute this to the heavy reliance
on the distance function, which uses the confidence of the

current model. When the complexity of the knowledge base
is not high enough, this distance measure is more prone to
obtaining incorrect pseudo-labels, thereby deepening rea-
soning shortcuts. Overall, our experiments demonstrate that
the selection of Dis significantly influences the performance
of the ABL algorithms and a good choice of Dis can assist
in alleviating reasoning shortcuts. Our experimental details
and additional results are provided in Appendix B.1.

7.2. BDD-OIA

Task description We also conducted experiments on an
autonomous driving task. BDD-OIA (Xu et al., 2020) is a
commonly used dataset, which predicts the current feasi-
ble actions (Y = {move forward, stop, turn left,
turn right}). (Marconato et al., 2023a) has demon-
strated by experiments that reasoning shortcuts exist in this
task, however, the shortcut risk reduction of ABL algorithms
has not been well studied. There are 21 symbolic con-
cepts for this task, such as whether there is a vehicle ahead
(vehicle ahead), and rules in the knowledge base, such
as vehicle ahead→¬move forward. Similar to the
setting of the MNIST-Addition task, we compare the perfor-
mances of ABL algorithms under different distance func-
tions. In addition, we compare with the typical method DPL
as a baseline. More detailed information about this dataset
and experimental details are provided in Appendix B.2.

Experimental results The experimental results are shown
in Table 2. As the task involves multi-label classification,
GAcc and Acc represent the average accuracy on intermedi-
ate concepts and targets, respectively. The results demon-
strate that ABL(P) achieves the optimal GAcc at a slight
cost to the target Acc, indicating its minimal harm from
reasoning shortcuts. Furthermore, our approach utilizing
the model’s confidence, ABL(C), outperforms the trivial dis-
tance method (ABL) in terms of performance. Overall, this
experiment demonstrates a significant improvement over the
baseline by leveraging confidence and pre-trained models as
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the distance functions, inspiring us to consider incorporat-
ing machine learning into the design of Dis for future ABL
algorithms. Additionally, we observed that ABL(H) does
not exhibit a noticeable improvement compared to ABL.
We attribute this to the fact that the Hamming distance does
not align well with the structure of this task, resulting in
negligible differences from the trivial distance method.

8. Conclusion
In this paper, we focus on providing a rigorous theoretical
analysis of the reasoning shortcut within the framework of
neural-symbolic learning and abductive learning. We first
formalize the definition of shortcut risk and the complexity
of the knowledge base. Secondly, we prove the upper bound
of the shortcut risk under two assumptions of the hypothesis
space. Finally, we theoretically show the potential of ABL in
reducing the risk of reasoning shortcuts. Empirical studies
support the above theoretical results.

In the future, our efforts will be focused on expanding the
complexity of the knowledge base to a higher-order form,
with the aim of deepening the understanding of reasoning
shortcuts. Furthermore, we intend to investigate the influ-
ence of sample distribution on reasoning shortcuts.
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A. Limitations
Here are some limitations of our analysis. Firstly, the current definition of the complexity of the knowledge base is in the
expectation form which does not consider the variance of the data distribution. Secondly, we only focus on the general form
of NeSy algorithms but need further analysis for the shortcut risk of specific algorithms.

B. Experimental Details and Additional Results
B.1. MNIST-Addition Tasks

D̂KB of the datasets We report the value of C − D̂KB for each level dataset in Table 3. As the level increases, the
complexity of the knowledge base decreases.

Table 3. The value of C − D̂KB for the datasets of different levels.

Levels I II III IV V VI
C − D̂kB 7.40 7.68 7.96 8.24 8.52 8.80

Training details For all our experiments, we use LeNet-5(LeCun et al., 1998) as the perception model. For ABL
algorithms, we use the Adam optimizer (Kingma & Ba, 2015) with the learning rate of 3e− 4 to train our networks. Both
methods ABL+P and ABL(P) use a pre-trained network that can achieve 38.24% accuracy on the MNIST test dataset. All
our experiments are implemented by Pytorch and are conducted on an NVIDIA A800. We repeated each experiment five
times.

Additional results We also report the target accuracy on different levels of MNIST-Addition tasks. Results are shown in
Table 4.

Table 4. Final prediction accuracy (Acc) (%mean ± std) on different levels of MNIST-Addition tasks.

Method (Acc) MNIST-Addition Datasets of Different Levels

I II III IV V VI AVG

SL 78.48±24.19 88.01±19.55 63.65±19.45 78.54±23.91 63.11±19.62 39.35±8.19 68.52±19.15

LTN 64.78±35.55 69.48±37.34 29.22±34.69 27.89±35.10 19.84±13.09 30.96±5.07 40.36±26.80

DPL 66.16±22.44 76.22±22.93 93.87±1.00 83.16±21.44 73.12±26.41 25.36±5.55 69.65±16.63

ABL 79.46±34.20 45.50±41.79 61.20±42.96 61.31±42.75 29.32±33.91 25.20±35.73 50.33±38.56

ABL(H) 79.10±35.26 62.20±42.48 61.28±43.03 49.15±39.82 31.31±33.88 12.15±11.38 49.20±34.31

ABL(C) 83.22±19.76 84.95±24.52 70.80±18.47 57.52±13.34 33.52±11.70 33.20±9.35 60.54±16.19

ABL(P) 97.27±0.15 97.20±0.22 97.12±0.22 97.08±0.15 97.10±0.12 97.19±0.26 97.16±0.19
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B.2. BDD-OIA Task

Dataset details This dataset comprises frames extracted from driving scene videos, which are utilized for au-
tonomous predictions (Xu et al., 2020). The objective is to predict four actions for each frame, namely Y =
(move forward,stop,turn left,turn right). Each frame is annotated with 21 intermediate concepts denoted as
z, and further details can be found in Table 5. The training set consists of 16,000 frames, while the test set contains 4,500
annotated data points. Figure B.2 presents some examples from this dataset. Before usage, the dataset was pre-processed by
Marconato et al. (2023b) using a pretrained Faster-RCNN model on BDD-100k, in conjunction with the first module in
CBM-AUC (Sawada & Nakamura, 2022), resulting in embeddings of dimension 2048.

Figure 3. Examples of BDD-OIA. Figure is taken from (Xu et al., 2020).

Same as (Marconato et al., 2023b), the rules of the knowledge base are as follows:

For move forward/stop:

red light → ¬green light

obstacle = car ∨ person ∨ rider ∨ other obstacle

road clear ↔ ¬obstacle
green light ∨ follow ∨ clear → move forward

red light ∨ stop sign ∨ obstacle → stop

stop → ¬move forward

For turn left, and similarly for turn right, we have:
can turn = left lane ∨ left green light ∨ left follow

cannot turn = no left lane ∨ left obstacle ∨ left solid line

can turn ∧ ¬cannot turn → turn left

Experimental details For all our experiments, we use a linear layer as the perception model given the embeddings of 2048
dimensions. We use the Adam optimizer (Kingma & Ba, 2015) with the learning rate of 5e− 3 to train our networks. The
loss function to train the ABL algorithms is BCELoss. All our experiments are implemented by Pytorch and are conducted
on an NVIDIA A800. We repeated each experiment five times.
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Table 5. Concepts annotated in BDD-OIA. Table taken from (Xu et al., 2020)

Action Category Concepts Count

move forward
green light 7805
follow 3489
road clear 4838

stop

red light 5381
traffic sign 1539
car 233
person 163
rider 5255
other obstacle 455

turn left

left lane 154
left green light 885
left follow 365
no left lane 150
left obstacle 666
letf solid line 316

turn right

right lane 6081
right green light 4022
right follow 2161
no right lane 4503
right obstacle 4514
right solid line 3660
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C. Theorem Proof
C.1. Proof of Lemma 3.4

According to the Hoeffding’s inequality, we can obtain that ∀ϵ > 0

P (|DKB − D̂KB | ≤ ϵ) ≥ 1− 2e
−2N2ϵ2

N(C−1)2 (20)

By substituting δ = 2e
−2N2ϵ2

N(C−1)2 , we can subsequently obtain

ϵ =

√
(C − 1)2 ln(2/δ)

2N
= (C − 1)

√
ln(2/δ)

2N
(21)

Therefore, we can conclude that for ∀δ ∈ (0, 1), with the probability of at least 1− δ:

|DKB − D̂KB | ⩽ (C − 1)

√
ln 2/δ

2N
(22)

C.2. Proof of Theorem 4.1

Since DKB < C − 1 and the hypothesis space is complex enough, it is always possible to find a model f that predicts
wrong intermediate concepts on all inputs, but the wrong concepts conform to the knowledge base. At this time there are
L̂nesy = 0 and L = +∞. This leads to the unbounded of Rs.

C.3. Proof of Theorem 4.4: the Upper Bounds of Expected Rs

Lemma 2. For ∀f ∈ F , we have that

Lnesy ≥ −1

2
ln (C −DKB)−

1

2
lnC − E(x,y)∼S

(
lnmax

z
f(z|x)

)
Proof.

Lnesy = −E(x,y)∼S

(
ln

(∑
z∈Z

I(z,KB ⊨ y) · f(z|x)

))

≥ −E(x,y)∼S

ln

√∑
z∈Z

I2(z,KB ⊨ y)

√∑
z∈Z

f2(z|x)


= −1

2
E(x,y)∼S

(
ln
∑
z∈Z

I(z,KB ⊨ y)

)
− 1

2
E(x,y)∼S

(
ln
∑
z∈Z

f2(z|x)

)

≥ −1

2
lnE(x,y)∼S

(∑
z∈Z

I(z,KB ⊨ y)

)
− E(x,y)∼S

ln

√∑
z∈Z

f2(z|x)


= −1

2
ln (C −DKB)− E(x,y)∼S

ln

√∑
z∈Z

f2(z|x)


≥ −1

2
ln (C −DKB)− E(x,y)∼S

(
ln
(√

C ·max
z

f(z|x)
))

= −1

2
ln (C −DKB)−

1

2
lnC − E(x,y)∼S

(
ln
(
max

z
f(z|x)

))
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C.3.1. PROOF OF THEOREM 4.4.(I)

Based on the label smoothness assumption, we have that maxz f(z|x) ≤ ηminz f(z|x) ≤ ηf(g|x) whenf ∈ Fη.
Combining Lemma 2,we can obtain that

Lnesy ≥ −1

2
ln (C −DKB)−

1

2
lnC − E(x,z,y)∼P ln(ηf(z|x))

= −1

2
ln (C −DKB)−

1

2
lnC − ln η + L

Thus, it is evident that

E(x,y)∼S [Rs] ≤
1

2
ln(C −DKB) + γη, ∀f ∈ Fη,

where γη = ln η + 1
2 lnC.

C.3.2. PROOF OF THEOREM 4.4.(II)

According to the proof of the Lemma 2, we get that

Lnesy ≥ −1

2
ln (C −DKB)− E(x,y)∼S

ln

√∑
z∈Z

f2(z|x)

 (23)

Based on the pre-training assumption, we show that

f(g|x) ≥ 1− (C − 1)ϵ, ∀f ∈ Fϵ

Thus, we infer that

ln

√∑
z∈Z

f2(z|x) ≤ ln
√
f2(g|x) + (C − 1)ϵ2

= ln

(√
f2(g|x) + (C − 1)ϵ2

f(g|x)

)
+ ln f(g|x)

= ln

(√
1 +

(C − 1)ϵ2

f2(g|x)

)
+ ln f(g|x)

=
1

2
ln

(
1 +

(C − 1)ϵ2

f2(g|x)

)
+ ln f(g|x)

≤ (C − 1)ϵ2

2f2(g|x)
+ ln f(g|x)

≤ (C − 1)ϵ2

2(C − 1)ϵ2 − 4(C − 1)ϵ+ 2
+ ln f(g|x)

Following the Eq(23), we obtain that

Lnesy ≥ −1

2
ln (C −DKB)− E(x,y)∼S

(
(C − 1)ϵ2

2(C − 1)ϵ2 − 4(C − 1)ϵ+ 2
+ ln f(g|x)

)
By decomposing the expectation simplistically, we can draw the conclusion that

E(x,y)∼S [Rs] ≤
1

2
ln(C −DKB) + γϵ, ∀f ∈ Fϵ,

where γϵ =
(C−1)ϵ2

2(C−1)ϵ2−4(C−1)ϵ+2 .
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C.4. Proof of Theorem 4.5: the Upper Bounds of Rs

Lemma 3 ∀f ∈ Fη , Lnesy is bounded.

Proof. It is evident that Lnesy ≥ 0. Therefore, it suffices to demonstrate that Lnesy has an upper bound.

Based on the label smoothness assumption, we can easily infer that

∀x, z f(z|x) ≥ min
z

f(z|x) ≥ 1

Cη

Therefore we have that, ∀x,

− ln

(∑
z∈Z

I(z,KB ⊨ y) · f(z|x)

)

≤ − ln

(∑
z∈Z

I(z,KB ⊨ y) · 1

Cη

)

≤ − ln

(
1

Cη

)
= lnC + ln η

In other words, Lnesy has an upper bound Bη = lnC + ln η.

C.4.1. PROOF OF THEOREM 4.5.(I)

Owing to the result of the empirical Rademacher complexity, we can obtain that for any 0 ≤ δ1 ≤ 1, with the probability of
at least 1− δ1:

|Lnesy − L̂nesy| ≤ 2R̂m(Fη) + 3Bη

√
ln 2

δ1

2N
, ∀f ∈ Fη

Combining the Lemma 1 and the Lemma 3, we can draw the conclusion that given training dataset S of size N , for any
0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1, with the probability of at least (1− δ1)(1− δ2):

Rs ≤
1

2
ln
(
C + (C − 1)

√
ln 2/δ1
2N

− D̂KB

)
+ 3Bη

√
ln 2/δ2
2N

+ 2R̂m(Fη) + γη, ∀f ∈ Fη

where Bη = lnC + ln η.

Lemma 4 ∀f ∈ Fϵ, Lnesy is bounded.

Proof. Similarly to Lemma 3, we only have got to demonstrate that Lnesy has an upper bound. Based on the conclusion that
∀f ∈ Fϵ, f(g|x) ≥ 1− (C − 1)ϵ as previously demonstrated, we can get that ∀x

− ln

(∑
z∈Z

I(z,KB ⊨ y) · f(z|x)

)
≤ − ln (f(g|x))
≤ − ln (1− (C − 1)ϵ)

Therefore, Lnesy has an upper bound Bϵ = − ln (1− (C − 1)ϵ)

C.4.2. PROOF OF THEOREM 4.5.(II)

Based on the Lemma 4 before and analogously to the proof of theorem 4.5.(i), we utilize the empirical Rademacher
complexity and Lemma 1 to draw the conclusion that for any 0 ≤ δ1 ≤ 1, 0 ≤ δ2 ≤ 1, with the probability of at least

16
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(1− δ1)(1− δ2):

Rs ≤
1

2
ln
(
C + (C − 1)

√
ln 2/δ1
2N

− D̂KB

)
+ 3Bϵ

√
ln 2/δ2
2N

+ 2R̂m(Fϵ) + γϵ, ∀f ∈ Fϵ

where Bϵ = − ln(1− (C − 1)ϵ).

C.5. Proof of the upper bounds of RABL
s

To simplify the notation, we pre-define Ay = {z|z,KB ⊨ y}, so we can get DKB = Ex,y∼S |Ay|.

C.5.1. PROOF OF THEOREM 5.2.(II)

Next, we provide proof for the upper bound of RABL
s when Dis = 0.

Proof.

L̂ABL = − 1

N

∑
xi,yi

Ezi∼Φ ln (f(zi|x))

≥ − 1

N

∑
xi,yi

ln (Ezi∼Φ(f(zi|x)))

= − 1

N

∑
xi,yi

ln

(∑
z∈Z

(
1

|Ay|
I(z,KB ⊨ y) · f(z|x)

))

= − 1

N

∑
xi,yi

(I(z,KB ⊨ y) · f(z|x)) + 1

N

∑
xi,yi

ln |Ay|

≥ L̂nesy +
∑
xi,yi

ln |Ay|

≥ L̂nesy +
1

N

∑
xi,yi

(
lnC

C − 1
|Ay| −

lnC

C − 1

)

= L̂nesy +
lnC

C − 1

(
1

N

∑
xi,yi

|Ay| − 1

)

= L̂nesy +
lnC(C − D̂KB − 1)

C − 1

Thus, we can obtain that

RABL
s = L − L̂ABL

≤ L− Lnesy −
lnC(C − D̂KB − 1)

C − 1

= Rs −
lnC

C − 1
(C − D̂KB − 1)

The conclusion successfully illustrates that RABL
s is upper bounded by Rs and will have a tighter bound when D̂KB is

smaller.

C.5.2. PROOF OF THEOREM 5.3.(I)

Under the label smooth assumption, we have

1

Cη
≤ f(z|x) ≤ η

C

17
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So, we have Proof.
E(x,y)∼S [R

ABL
s ] = L − LABL

= E(x,z,y)∼P (Ez∼Φ ln f(z|x)− ln f(z|x))

≤ E(x,z,y)∼P

(
ln

Ez∼Φf(z|x)
f(z|x)

)
≤ E(x,z,y)∼P

(
ln

Φ(z) · f(z|x) + κ(|Ay| − 1) · η
C

f(z|x)

)
= E(x,z,y)∼P

(
ln

(
Φ(z) +

κ(|Ay| − 1) · η
C

f(z|x)

))
≤ E(x,z,y)∼P

(
ln

(
Φ(z) +

κ(|Ay| − 1) · η
C

1
Cη

))
≤ E(x,z,y)∼P

(
ln
(
1 + κ(|Ay| − 1)η2

))
≤ E(x,z,y)∼P(|Ay| − 1)η2κ

= η2(C −DKB − 1) · κ

C.5.3. PROOF OF THEOREM 5.3.(II)

Under the pre-training assumption, we have Proof.

E(x,y)∼S [R
ABL
s ] = L − LABL

= E(x,z,y)∼P (Ez∼Φ ln f(z|x)− ln f(z|x))

≤ E(x,z,y)∼P

(
ln

Ez∼Φf(z|x)
f(z|x)

)
≤ E(x,z,y)∼P

(
ln

Φ(z) · f(z|x) + κ(|Ay| − 1) · ϵ
f(z|x)

)
= E(x,z,y)∼P

(
ln

(
Φ(z) +

κ(|Ay| − 1) · ϵ
f(z|x)

))
≤ E(x,z,y)∼P

(
ln

(
Φ(z) +

κ(|Ay| − 1) · ϵ
1− (C − 1)ϵ

))
≤ E(x,z,y)∼P

(
ln

(
1 +

κ(|Ay| − 1) · ϵ
1− (C − 1)ϵ

))
≤ E(x,z,y)∼P

κϵ(|Ay| − 1)

1− (C − 1)ϵ

=
ϵ(C −DKB − 1)

1− (C − 1)ϵ
· κ
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