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Abstract

A long-standing goal in deep learning has been
to characterize the learning behavior of black-box
models in a more interpretable manner. For graph
neural networks (GNNs), considerable advances
have been made in formalizing what functions
they can represent, but whether GNNs will learn
desired functions during the optimization process
remains less clear. To fill this gap, we study their
training dynamics in function space. In particular,
we find that the gradient descent optimization of
GNNs implicitly leverages the graph structure to
update the learned function, as can be quantified
by a phenomenon which we call kernel-graph
alignment. We provide theoretical explanations
for the emergence of this phenomenon in the over-
parameterized regime and empirically validate it
on real-world GNNs. This finding offers new in-
terpretable insights into when and why the learned
GNN functions generalize, highlighting their lim-
itations in heterophilic graphs. Practically, we
propose a parameter-free algorithm that directly
uses a sparse matrix (i.e. graph adjacency) to up-
date the learned function. We demonstrate that
this embarrassingly simple approach can be as ef-
fective as GNNs while being orders-of-magnitude
faster.

1. Introduction
Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2008; Bruna et al., 2014; Kipf & Welling, 2017)
represent network architectures for learning on entities with
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relations and interactions. In addition to their empirical
success, the pursuit of theoretical understanding has also led
researchers to dissect GNNs in terms of their representation
powers (a.k.a. expressiveness) (Maron et al., 2019; Xu et al.,
2019; Oono & Suzuki, 2019; Chen et al., 2019), which aim
to answer what families of functions GNNs can represent
or approximate. However, beyond these studies, it remains
unclear whether GNNs will indeed learn the desired function
during the training process. Filling this gap calls for more
attention to the optimization of GNNs and effects of graph
structures that implicitly bias the learning process towards
certain solutions. In this paper, we analyze the training
dynamics of GNNs in function space, aiming to answer

Do GNNs indeed learn the desired function that can gener-
alize during the training process, and if so, how?

We note that the exact mathematical characterization of the
optimization of neural networks, even for shallow ones, is
prohibitive or even impossible due to their non-linearity. Ex-
isting work thus resorts to simplifications, such as removing
activations (e.g., Xu et al. (2021a) for GNNs) or training a
single neuron (e.g., Bai & Lee (2020); Frei et al. (2020)).
Moreover, even with these simplifications, there is generally
no single straightforward answer to the above question; only
insights from different angles exist for illuminating certain
mechanisms in this complex process (e.g., Cao et al. (2019);
Papyan et al. (2020); He & Su (2020)). In this work, we
provide initial answers to this open question by studying the
role of graph structures in the training process. Particularly,
we have the following informal statement:

The optimization of GNNs implicitly leverages the graph
structure, as is quantified by kernel-graph alignment, to
learn functions that can generalize.

More formally, the so-called Kernel-Graph Alignment char-
acterizes such a graph implicit bias during training, where
the so-called Neural Tangent Kernel (NTK) (Jacot et al.,
2018) that controls the evolution of the learned GNN func-
tion tends to align with the message passing matrix (typi-
cally implemented as graph adjacency) used in GNNs’ for-
ward pass. This result is not only useful for understanding
the optimization of GNNs but also allows us to explain a
series of previously unresolved theoretical questions and
develop practically useful algorithms in a principled manner.
Our contributions are summarized as follows:
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Figure 1: (a) Training dynamics of GNNs in function space where residuals (i.e. difference between labels and predictions)
propagate from observed to unobserved samples based on a kernel similarity measure. (b) The kernel matrix Θt naturally
aligns with the adjacency matrix A, which is favorable for generalization if A is inherently close to the optimal kernel Θ∗.

Warm-Up Example: Residual Propagation. As a warm-
up example, we propose a class of learning algorithms
that replace the NTK matrix in the training dynamics with
a sparse adjacency matrix, representing an extreme case
where the kernel perfectly aligns with the graph. We dub
this method Residual Propagation since it simultaneously
minimizes the loss and yields predictions by purely prop-
agating residuals (a.k.a. errors) without the need for train-
able parameters or back-propagation. The algorithm has
interesting connections with two classic non-parametric al-
gorithms: label propagation (Zhou et al., 2003) and ker-
nel regression (Shawe-Taylor & Cristianini, 2004). Strong
empirical evidence across 15 benchmarks, including three
OGBN datasets, demonstrates that this embarrassingly sim-
ple method has surprisingly good generalization perfor-
mance, competing with non-linear GNNs. Additionally,
compared with GNNs, it offers up to thousands of times
speedup and requires ten times less memory due to its lin-
ear complexity. This algorithm serves as a simple example
illustrating the inner mechanism of GNNs’ optimization.
(Section 3)

Implicit Leverage of Graphs in Optimization. Next, we
formally study how the graph structure is leveraged in the
optimization of GNNs. To make the analysis tractable, we
examine the training dynamics of GNNs in the overparame-
terized regime (Jacot et al., 2018; Lee et al., 2019), where
the model asymptotically converges to its first-order Tay-
lor expansion around its initialization as an approximation.
Despite this approximation, the message passing modules
and non-linearities in the model, which are critical for the
success of GNNs, are preserved. A rich body of literature
(e.g. see Golikov et al. (2022) and references therein) also
conduct analysis in this regime for gaining practical insights
into otherwise prohibitive problems. Using this approach,
we provide explicit mathematical formulas for recurrently
computing the NTK of GNNs (which we call node-level

GNTK) with arbitrary model depth and inputs. The formula
demonstrates how the graph structure is naturally integrated
into the kernel function, inducing the kernel-graph align-
ment phenomenon. Additional examples of shallow (two-
and single-layer) GNNs with fixed inputs further show cases
where the kernel function becomes equivalent to special
forms of adjacency. (Section 4)

Generalization and Failure Modes. Stepping further, we
provide interpretable explanations of how the graph implicit
bias in optimization leads to generalization of the learned
GNN function, and why GNNs struggle with certain graph
learning problems such as heterophily. As illustrated in
Fig. 1(b), we introduce another matrix called the optimal
kernel matrix, which denotes if a pair of instances share the
same label. The alignment of this matrix with the adjacency
matrix quantifies the homophily level of the (Zhu et al.,
2020), a data characteristic that has been empirically shown
to be highly relevant to GNNs’ generalization performance.
Intuitively, for homophilic graphs, a larger homophily level
with good kernel-graph alignment indicates that the kernel
function approaches the optimal one (the so-called kernel-
target alignment (Cristianini et al., 2001)); this is desired
for favorable generalization, as labels of training instances
tend to flow to testing instances with the same label during
optimization. Theoretically, we establish a strong correla-
tion between generalization and homophily by deriving a
data-dependent generalization bound that highly depends on
the graph heterophily, and also showing that GNNs are the
Bayesian optimal prior model architecture that minimizes
the population risk on homophilic graphs. during optimiza-
tion on datasets with diverse characteristics. (Section 5)

Empirical Verification. To further verify the theory, we
numerically study the evolution of real-world GNNs dur-
ing the GD-based training process on synthetic and real-
world datasets. We found that their NTKs indeed align

2



How Graph Neural Networks Learn: Lessons from Training Dynamics

with the message passing matrix used in the forward pass.
On homophilic graphs, alignment with the graph promotes
alignment with the optimal kernel matrix and thus improves
generalization, whereas on heterophilic graphs, it adversely
affects generalization. Additionally, we observed that GNNs
are capable of gradually adapting themselves to align with
the optimal kernel regardless of different graph structures,
which might be of independent interest for understanding
feature learning in GNNs. (Section 6)

Finally, we note that our analysis may only explain a
limited part of an under-explored complex problem, and
hope our analytical framework to pave the way for dis-
secting other graph learning tasks (such as link prediction
and representation learning), and to be used to gain in-
sights into, and methodology to solve other practically rele-
vant GNN issues. We conclude our paper by discussing
such possibilities and more related works. Our codes
are available at https://github.com/chr26195/
ResidualPropagation. (Section 7)

2. Preliminary
Notation and Setup. Given a training set with nl labeled
instances X = {xi}nl

i=1 ∈ Rnl×d and Y = {yi}nl
i=1 ∈ Rnl ,

we aim to learn a predictive function f(x) parameterized by
weights W. For (semi-)supervised learning, we minimize
the squared loss L using Gradient Descent (GD),

L = ∥Ft −Y∥2/2, ∂Wt/∂t = −η∇WL, (1)

where Wt and Ft = {ft(x)}x∈X ∈ Rnl are weights and
predictions for the training set at optimization time index t,
and η is the learning rate. Temporal discretization of this
gradient flow system with time-step ∆t = 1 yields the fixed
step-size GD algorithm commonly used in practice. Let also
X′ and Y′ denote testing instances, and X̄ = [X,X′] ∈
Rn×d (resp. Ȳ) the concatenation of training and testing
inputs (resp. labels), where n is the full dataset size. For
convenience, we generally refer to ft(x) as prediction for a
single data point, and allow it to depend also on other nodes’
information. Ft and F′

t are predictions for the training
and testing sets. This setup can be extended to other loss
functions and multi-dimensional output (see discussions in
Appendix. C.2, C.3).

Similar to (Xu et al., 2021a), we focus on learning node
representations, where instances (i.e. nodes) and their re-
lations (i.e. edges) are described by an undirected graph
G = (V, E), |V| = n. The graph defines a symmetric ad-
jacency matrix A ∈ Rn×n where Aij = 1 for a pair of
connected nodes (xi,xj) otherwise 0. Based on the data
split, we denote submatrices of A using AXX and AX′X.
Our insights apply to both transductive (i.e. semi-supervised
learning) and inductive settings (see Appendix. C.1), but
will focus on the former case unless stated otherwise.

Graph Neural Networks (GNNs) are a class of network
architectures for learning representations on graphs. For
GNNs with ReLU activation, each layer can be written as

Z(ℓ) = ReLU(AZ(ℓ−1)W(ℓ)) ∈ Rn×m, (2)

where Z(ℓ) are node representations at the ℓ-th layer with
Z(0) = X̄, and m is the model width. The definition of A
could differ for different GNNs. Our analysis applies to ar-
bitrary A and will not differentiate adjacency and the actual
message passing matrix used in the implementation. We
denote GNN prediction for a single data point as f(x;A).

Label Propagation (LP) represents a class of algorithms for
semi-supervised learning, where labels Y propagate along
edges to efficiently predict F′. From (Zhou et al., 2003), the
LP update equation can be written as LP(Y; k, α) =

[Fk,F
′
k] = αA [Fk−1,F

′
k−1] + (1− α)[Y,0], (3)

where [·, ·] is concatenation, k is the iteration number, and
α is a hyperparameter. As initialization [F0,F

′
0] = [Y,0],

and after convergence [F∞,F
′
∞] ∝ (In − αA)−1[Y,0].

LP algorithms have found wide applicability due to their
superior efficiency and scalability.

3. Graph Implicit Bias in Training
We commence by providing a label propagation perspective
on the evolution of a general parameterized model during
GD-based optimization, whereby we propose a simple non-
parametric algorithm for semi-supervised learning. The
algorithm shows that explicitly leveraging graph structure in
the training dynamics to update the learned function leads to
satisfactory generalization performance that is comparable
to non-linear GNNs. This serves as an illustrative example,
later contributing to our understanding of the optimization
of GNNs where they implicitly leverage graph structures.

3.1. Label Propagation View of Gradient Descent

On the training set, one can characterize the evolution of a
general parameterized model (with no restriction on model
architecture) f(·), induced by GD-based optimization that
continuously updates the weights Wt as (Jacot et al., 2018):

∂Ft/∂t = η Θt(X,X)Rt

Θt(X,X) ≜ ∇WF⊤
t ∇WFt ∈ Rnl×nl ,

(4)

where Rt = Y −Ft ∈ Rnl denotes residuals (Hastie et al.,
2009) (a.k.a. errors), the difference between ground-truth
labels and model predictions. The so-called Neural Tangent
Kernel (NTK) (Jacot et al., 2018) Θt(X,X) is produced
by the product of Jacobians, which is dependent on the
network architecture and evolves over time due to its asso-
ciation with time-varying weights. Intuitively, it quantifies
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similarity between instances based on how differently their
outputs change by an infinitesimal perturbation of weights.
Specially, if the kernel is constant (such as inner-product
kernel for linear models), (4) reduces to the training dynam-
ics of kernel regression (Shawe-Taylor & Cristianini, 2004).
The derivation of (4) mainly relies on the chain rule; we
reproduce it in Appendix B.1 for self-containment.

Residual Dynamics. While (4) has found usage for ana-
lyzing the convergence of empirical risk (Du et al., 2019a;
Arora et al., 2019) and the spectral bias of deep learn-
ing (Mei et al., 2019; Cao et al., 2019), it is restricted to a
limited set of samples (i.e. training set). To see how the
model evolves on arbitrary inputs for fully characterizing
the learned function, we extend (4) to accommodate unseen
samples (which could be chosen arbitrarily). Specifically,
let R′

t = Y′ − F′
t denote residuals for the testing set, and

after temporal discretization, the ODE in (4) can be rewrit-
ten neatly using a single variable residual R (see derivation
in Appendix B.1),[

Rt+1,R
′
t+1

]
= −η Θt(X̄, X̄) [Rt,0] + [Rt,R

′
t] , (5)

where Θt(X̄, X̄) ≜ ∇W[Ft,F
′
t]
⊤∇W[Ft,F

′
t] ∈ Rn×n

is the NTK matrix between training and testing sets. The
n × n matrix will be henceforth abbreviated as Θt. The
equation can be viewed as propagating residuals unidirec-
tionally from training to arbitrary unseen samples based on
a similarity measure, controlling the evolution of the learned
function.

To provide more intuitions into the inner mechanism of (5),
we rewrite it for an arbitrary unseen data point x′:

ft+1(x
′) = ft(x

′) + η
∑
x∈X

Θt(x,x
′)( y(x) − ft(x)),

(Ground-truth) label propagation in optimization

where y(x) is the ground-truth label for x, and Θt(x,x
′) =

∇Wf(x)⊤∇Wf(x′). Intuitively, for an unseen instance
x′ that is more ‘similar’ to x, more ground-truth label in-
formation y(x) will then propagate to x′, and vice versa
(illustrated in Fig. 1(a)). For ft(x) ̸= 0, the ground-truth
label is adjusted by subtracting current model prediction, i.e.
y(x)− ft(x), enabling the propagation process to diminish
progressively as errors or residuals are minimized.

Drawing upon an analogy between (5) induced by optimiza-
tion, and instance-wise propagation schemes commonly
seen in graph learning, we have the following hypothesis:
For GNNs defined in Section 2, its optimization process im-
plicitly leverages the graph structure to update the learned
function by aligning their Θt with certain forms of A, which
is also a key factor contributing to their good generalization
performance.

3.2. Residual Propagation

To test this hypothesis, we propose a toy algorithm that ex-
plicitly introduces graph structure information into training
dynamics in (5), by replacing the NTK matrix Θt with high-
order graph adjacency matrix AK . While original (5) is
expensive to run, such replacement allows us to actually im-
plement it as a practically useful semi-supervised algorithm
that can efficiently run, by taking advantage of the fact that
A is sparse. We dub this algorithm as Residual Propagation
(RP), whose update equation is[

Rt+1,R
′
t+1

]
= −ηAK [Rt,0] + [Rt,R

′
t] . (6)

At initialization, F0 and F′
0 are defined as 0, and unknown

testing labels are defined as Y′ = 0. One can conveniently
convert R′

t back to predictions at a certain time step. More
generally, one can flexibly replace the term AK with other
matrices indicating similarity of samples to broaden the use
cases of the algorithm.

Intriguingly, we show the RP algorithm has interesting con-
nections with various classic methods including LP (Zhou
et al., 2003) and kernel regression (Shawe-Taylor & Cristian-
ini, 2004), though they emerge from very different contexts.

Proposition 3.1 (Connection with Label Propagation). The
first step of RP in (6) yields identical classification results
as LP in (3) (with α = 1 and k = K):

(First Step of RP): [F1,F
′
1] = ηAK [Y,0],

(Label Propagation): LP(Y;K, 1) = AK [Y,0],
(7)

and each of subsequent step of RP can also be viewed as LP
on adjusted ground-truth labels, i.e. Y − Ft = Rt.

Besides the first step, each of subsequent step of RP can
also be viewed as LP on adjusted ground-truth labels, i.e.
Y − Ft = Rt. This result shows RP encompasses LP
as a special case; such a connection further motivates a
generalized version of RP by combining with other off-the-
shelf LP variants (see references in Appendix A.3):[

Rt+1,R
′
t+1

]
= −η LP∗(Rt) + [Rt,R

′
t] . (8)

where LP∗(·) : Rnl → Rn is a general LP function that
takes as input ground-truth labels and outputs predictions.

Theorem 3.2 (Convergence & Connection with Kernel Re-
gression). For RP in (6) and sufficiently small step size
η < 2σ−1

max[A
K
XX], where AK

XX is a submatrix of AK ,
and σmax is its largest eigenvalue, Rt and R′

t converge
for positive definite AK

XX or positive semi-definite AK .
Upon convergence in the former case, the predictions are
equivalent to the kernel regression solution w.r.t. kernel
κ(x,x′) ≜ AK

xx′

F∞ = Y, F′
∞ = AK

X′X(AK
XX)−1Y. (9)
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Table 1: Empirical evaluation of RP on OGB datasets. Accuracy is reported for Arxiv and Products, and ROC-AUC for
Proteins. Last three rows compare RP against full-batch GNN. Results of some baseline are from the official leaderboard.

Model Feat. Arxiv Proteins Products # Param.
Validation Test Validation Test Validation Test

MLP X 57.65 ± 0.12 55.50 ± 0.23 77.06 ± 0.14 72.04 ± 0.48 75.54 ± 0.14 61.06 ± 0.08 O(ℓm2)
LinearGNN X,A 70.67 ± 0.02 69.39 ± 0.11 66.11 ± 0.87 62.89 ± 0.11 88.97 ± 0.01 74.21 ± 0.04 O(dc)

GNN X,A 73.00 ± 0.17 71.74 ± 0.29 79.21 ± 0.18 72.51 ± 0.35 92.00 ± 0.03 75.64 ± 0.21 O(ℓm2)
LP A 70.14 ± 0.00 68.32 ± 0.00 83.02 ± 0.00 74.73 ± 0.00 90.91 ± 0.00 74.34 ± 0.00 0

RP (ours) A 71.37 ± 0.00 70.06 ± 0.00 85.19 ± 0.00 78.17 ± 0.00 91.31 ± 0.00 78.25 ± 0.00 0
Speedup / step × 14.48 × 14.00 × 12.46
Time to Acc. × 0.01461 × 0.00008 × 0.00427

Memory × 0.094 × 0.363 × 0.151
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Figure 2: Learning curves of RP and comparison with the performance of LP (α = 1), linear GNN and deep GNN. Transition
from yellow to purple denotes RP with decreasing step size η.

See proof and a more comprehensive discussion of the con-
vergence of RP and its connection with classic algorithms in
Appendix B.2. Different from kernel regression, RP might
not necessarily converge since it does not restrict the propa-
gation matrix to be PSD or symmetric. But intriguingly, it
can still achieve satisfactory generalization performance by
stopping at the step with peak validation performance.

3.3. Preliminary Empirical Verification

Since RP represents an extreme case where the kernel func-
tion perfectly aligns with the graph, we test its performance
against GNNs to empirically verify whether the graph im-
plicit bias in optimization alone is crucial for satisfactory
performance.

Setup. We compare RP with some standard GNN archi-
tectures (LinearGNN Wu et al. (2019) and GCN Kipf &
Welling (2017)) on a diverse set of 15 datasets, including
three challenging OGB (Hu et al., 2020) datasets Arxiv,
Proteins, Products with up to millions of nodes and
edges. Due to space limit, we report results on OGB datasets
in the main text, and defer the rest and experimental details
to Appendix E and D.1.

Results. In Table 1, the proposed RP demonstrates com-
petitive performance. As depicted in Fig. 2, RP achieves
the same performance as LP using one step, and quickly
increases until reaching its peak performance, which often

surpasses GNNs. Specifically, on Proteins where the
graph contains relatively richer structural information, a
single step of RP exceeds a well-trained deep GNN, while
in Products, merely four steps of RP exceeds the GNN.
Moreover, RP does not require trainable parameters and
boosts speed, with each step being more than 10 times faster
than each gradient descent step for training GNN. Further-
more, RP can achieve its peak performance using less steps,
and thus overall takes significantly less time (up to 1000
times less) to attain GNN-level performance. RP also inher-
its the scalability of LP and only requires storage space for
predictions; thus it consumes up to 10 times less memory in
practice.

In Appendices E.1 and E.2 respectively, we discuss general-
ized RP that combines with kernels (e.g. Gaussian kernel)
to incorporate node features. The corresponding update
equation can be re-written as

[
Rt+1,R

′
t+1

]
=

−ηAKK(X̄, X̄)AK [Rt,0] + [Rt,R
′
t] , (10)

where K(X̄, X̄) could be specified as arbitrary kernel func-
tions (such as Sigmoid, Gaussian, etc.) Additionally, we
test 12 datasets including homophilic (Cora, Citeseer,
Pubmed, Computer, Photo, CS, Physics) and
heterophilic (roman-empire, amazon-ratings,
minesweeper, tolokers, questions) ones where
we find RP can still outperform most popular GNNs.
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4. Analysis in Overparameterized Regime
We next theoretically verify that the optimization of GNNs
indeed implicitly leverage graph structure for updating the
learned function. Further empirical verification will be de-
ferred to the next section.

4.1. Insights from Explicit Formula of GNNs’ NTK

Similar to the training dynamics of general parameterized
models in (5), the training dynamics of GNNs in node-level
tasks is characterized by their NTK defined as follows:

Definition 4.1 (Node-Level GNTK). For a ℓ-layer GNN in
node-level tasks defined in Sec. 2, the NTK is defined as

Θ
(ℓ)
t (x,x′;A) = ∇Wf(x;A)⊤∇Wf(x′;A), (11)

which we refer to as Node-Level Graph Neural Tangent
Kernel (GNTK), or simply NTK of GNNs, to differentiate
it with the graph-level GNTK for graph-level tasks initially
proposed in Du et al. (2019b).

How GNNs evolve during training also follows (5). Ideally,
one might want to show the precise mathematical character-
ization of (11) and its connection with A, which however
is impossible in principle due the complexity of optimiz-
ing non-linear neural networks. To make the analysis of
non-linear models tractable, a previous work (Xu et al.,
2021a) removes all activations such that the GNN boils
down to a linear model. In comparison, we adopt an as-
sumption that makes the analysis tractable in a way that
still preserves model’s non-linearity. Specifically, we study
node-level GNTK in overparameterized regimes, where the
model width m tends to infinity, and consequently, neural
networks asymptotically converge to its first order Taylor
expansion around its initialization (e.g. Jacot et al. (2018);
Lee et al. (2019)), i.e. a kernel regression predictor. In
this case, the node-level GNTK is a constant kernel Θ(ℓ)

(without subscript t). We next represent the explicit math-
ematical formula, which applies to arbitrary layer number
ℓ, input features X, graph structure G, and various GNN
architectures that conform to the definition in Section 2.

Similar to fully-connected neural networks, the NTK of a ℓ-
layer GNN can be recursively computed based on the NTK
of a (ℓ − 1)-layer GNNs. The layer-wise formula can be
decomposed into two steps that respectively correspond to
Transformation (i.e. Z ← ReLU(ZW)) and Propagation
(i.e. Z ← AZ) in the GNN architecture. As additional
elements in the computation, we denote a node-level GNTK
for GNN without propagation at ℓ-th layer as Θ̄(ℓ), the co-
variance matrix of the ℓ-th layer’s outputs with (and w/o)
propagation as Σ(ℓ) (and Σ̄(ℓ)), and the covariance matrix
of the derivative to the ℓ-th layer as Σ̇(ℓ). Then the propa-
gation and transformation steps in each layer respectively
correspond to (we concisely show the key steps here and

defer the complete formula to Appendix B.3):

(Transformation) Θ̄(ℓ) = Θ(ℓ−1) ⊙ Σ̇(ℓ) + Σ̄(ℓ) (12)

(Propagation)
{

Σ(ℓ) = A Σ̄(ℓ)A
Θ(ℓ) = A Θ̄(ℓ)A.

(13)

Implications. Compared with the computation for NTK
of a fully-connected neural network (Jacot et al., 2018),
the node-level GNTK has an equivalent transformation
step, while its uniqueness stems from the propagation step,
whereby the adjacency matrix A (or propagation matrix
more generally) naturally integrates into the kernel similar-
ity measure. Consequently, this kernel function inherently
accommodates a graph implicit bias, and thus the gradient
descent optimization of GNNs also tends to follow the tra-
jectory regulated by the graph, similar to the behavior of the
RP algorithm. To give more concrete examples, we provide
case studies and show how the training dynamics of certain
shallow GNNs, given fixed inputs (that are practically used),
can be exactly described by the framework of generalized
RP in (8).

We will further provide analysis for real-world finite width
GNNs’ NTK in Section 5, to empirically corroborate our
insights. We believe similar results can be potentially ob-
tained using more advanced techniques, e.g. (Bai & Lee,
2020), which we leave as future works.

4.2. Illustrative Examples

Given that our primary focus centers on the role of graphs
in GNNs (as without them, GNNs are largely equivalent
to MLPs), we exclude external node features and instead
define inputs as either: 1) an identity matrix X̄ ≜ In that
assigns each node a one-hot vector as indication of its unique
identity (as sometimes assumed in practice (Kipf & Welling,
2017; Zhu et al., 2021)), which can be viewed as learning a
unique embedding for each node by treating the first-layer
weights as an embedding table; 2) fixed node embeddings
from graph spectral decomposition X̄ ≜ argminB ∥A −
BB⊤∥2F , which aligns with various network embedding
approaches based on definitions of A (Qiu et al., 2018).

Two-Layer GNN. Following the setup from prior work
on fully-connected neural networks (Arora et al., 2019), we
consider the training of two-layer GNNs where first-layer
weights are optimized:

Theorem 4.2 (Two-Layer GNN). For an infi-
nite width two-layer GNN defined as [F,F′] =
AReLU(AX̄W(1))W(2)/

√
m with X̄ = In as in-

puts and standard NTK parameterization, its training
dynamics by optimizing W(1) can be written as a
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generalized RP process[
Rt+1,R

′
t+1

]
= −ηA(A2 ⊙ S)A[Rt,0] + [Rt,R

′
t] ,

Sij =
(
π − arccos(

A⊤
i Aj

∥Ai∥∥Aj∥ )
)
/2π. (14)

The matrix S reweights each element in A2 by the sim-
ilarity of neighborhood distributions of two nodes. For
X̄ = argminB ∥A −BB⊤∥2F , the propagation matrix is
replaced by A(A3 ⊙ S̃)A where S̃ is another reweighting
matrix (details and proof in Appendix B.4).

Deep and Wide GNNs. Pushing further, we can also char-
acterize the evolution of arbitrarily deep GNNs where fea-
ture propagation is applied at the last layer (e.g. Klicpera
et al. (2019); Liu et al. (2020); Spinelli et al. (2020); Chien
et al. (2021)): , i.e. f(X;A,W) = Aℓ MLP(X;W).

Theorem 4.3 (Deep and Wide GNN Dynamics). For arbi-
trarily deep and infinitely-wide GNNs with feature propaga-
tion deferred to the last layer, i.e. [F,F′] = Aℓ MLP(X̄)
with X̄ = In, the training dynamics that result from opti-
mizing MLP weights can be written as the generalized RP
process

[
Rt+1,R

′
t+1

]
=

−ηAℓ(In + c11⊤)Aℓ[Rt,0] + [Rt,R
′
t] , (15)

where c ≥ 0 is a constant determined by the model depth,
and 1 is an all-1 column vector.

Linear GNNs. Another simple and interesting example
is linear GNN (specifically SGC Wu et al. (2019)), whose
training dynamics is equivalent to a special case of RP in
(6):

Corollary 4.4 (One-Layer GNN). The training dynamics of
the linear GNN [F,F′] = AℓX̄W is identical to the basic
version of RP in (6) with K = 2ℓ for input features X̄ = In,
and K = 2ℓ + 1 for X̄ = argminB ∥A − BB⊤∥2F and
positive semi-definite A. (Proof in Appendix B.6)

Remark. Despite this equivalence, it is important to note
that this specific linear GNN (on our given input features) is
not as lightweight as it may appear, since its parameter num-
ber scales with the size of dataset (even reaching orders of
magnitude larger than deep GNN models), and the full-rank
spectral decomposition of A is computationally very expen-
sive (i.e. n3) for large graphs. In contrast, RP efficiently
yields identical results to this heavily parameterized GNN
without actually training parameters or decomposing matrix.
In practice, RP also consistently performs better than linear
GNN, since real-world input feature is commonly a tall ma-
trix (i.e. n > d), which makes linear models sub-optimal
(see details in Appendix).

Note that there might exist many other examples where the
NTK of GNNs is identical to special forms of adjacency.

An exhaustive list of them is prohibitive. We refer readers
to Appendix B.5 for analysis of another type of deep GNN
where feature propagation is applied at the last layer (e.g.
APPNP Klicpera et al. (2019)).

5. Generalization and Heterophily
In this section, we offer interpretable explanations of “when
and why GNNs successfully generalize” and their patho-
logical training behavior on heterophilic graphs. We also
study the time evolution of real-world GNN NTKs to further
empirically verify our theoretical results.

5.1. When and Why GNNs Generalize?

Our previous discussions have revolved around two matrices,
namely the graph adjacency matrix A and the NTK matrix
Θt.1 To complete the theoretical picture, we introduce an-
other matrix called the ideal or optimal kernel matrix (Cris-
tianini et al., 2001), defined as Θ∗ ≜ ȲȲ⊤ ∈ Rn×n to
indicate whether two instances have the same label, and a
metric to quantify alignment of (kernel) matrices:

Definition 5.1 (Alignment, Cristianini et al. (2001)). Given
two (kernel) matrices K1 and K2, their alignment is defined
as A (K1,K2) ≜ ⟨K1,K2⟩F /(∥K1∥F ∥K2∥F ) ∈ [0, 1].
This is a generalization of cosine similarity from vectors to
matrices, arccos of which satisfies the triangle inequality.

◦ Homophily Level: A(A,Θ∗). The alignment between A
and Θ∗ quantifies the homophily level of graph structure, i.e.
whether two connected nodes indeed have the same label,
and is determined the dataset. While many empirical results
(e.g. Zhu et al. (2020)) suggest high homophily level is
important for the performance of GNNs, deeper theoretical
understandings are mostly lacking.

◦ Kernel-Target Alignment: A(Θt,Θ
∗). The alignment be-

tween kernel matrix and optimal Θ∗ has been widely studied
and used as an objective for learning kernels functions (Cris-
tianini et al., 2001; Kwok & Tsang, 2003; Lanckriet et al.,
2004; Gönen & Alpaydın, 2011). Better kernel-target align-
ment has been recognized as a critical factor that leads to
favorable generalization for classic non-parametric models.
For intuition in our case, one can quickly verify that substi-
tuting Θ∗ to the training dynamics in (5) leads to perfect
generalization performance (since ground-truth labels only
propagate to unseen instances with the same label).

◦ Kernel-Graph Alignment: A(Θt,A). The alignment be-
tween NTK and graph is a novel notion in our work, as prior
sections have shown that GNN NTK matrices naturally tend
to align with A. The RP algorithm (and variants thereof)
serve as an extreme case with two identical matrices.

1We here refer to A as a class of similarity matrices based on
original A in a general sense, such as AK etc.
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(c) Real Heterophilic Dataset
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Figure 3: Evolution of NTK matrix Θt of GCN during training, reflected by matrix alignment. (a) Synthetic dataset
generated by a stochastic block model, where the homophily level gradually decreases by altering edge probabilities, i.e.
homophilic→ heterophilic; (b & c) Real-world homophilic (Cora) and heterophilic (Texas) datasets, where the graph is
gradually coarsened until there is no edge left when evaluating Θt, i.e. more graph→ less graph. (Details in Appendix D.2)

Implications. We consider two cases. For homophilic
graphs where A(A,Θ∗) ↑ is naturally large, better kernel-
graph alignment A(Θt,A) ↑ consequently leads to better
kernel-target alignment A(Θt,Θ

∗) ↑. In other words, the
NTK of GNNs naturally approaches the optimum as the
graph structure possesses homophily property, and leverag-
ing it in the optimization process (5) encourages training
residuals to flow to unseen samples with the same label
and thus better generalization; In contrast, for heterophilic
graphs where A(A,Θ∗) is small, better kernel-graph align-
ment will hinder kernel-target alignment, explaining the
pathological learning behavior of GNNs when dealing with
heterophilic graphs in an interpretable manner.

5.2. Theoretical Results

To support this interpretation, we examine the generalization
behavior of infinitely-wide neural networks in the extreme
case where its NTK matrix is governed by the graph, say,
limk→∞

∑k
i=0(αA)i with α ∈ (0, 1) as adopted by the con-

verged LP algorithm in (3). With a common assumption that
training instances are drawn i.i.d. from a distribution P , and
based on the Rademacher complexity generalization bound
for kernel regression (Bartlett & Mendelson, 2002; Arora
et al., 2019; Du et al., 2019b), we have a label-dependent
high-probability (at least 1− δ) upper bound on population
risk (derivation in Appendix B.7) E(x,y)∼P [l (f(x), y)] =

O
(√

1− cn−1
l A(A,Θ∗) +

√
n−1
l log(δ−1)

)
, (16)

where c = α∥Θ∗∥F ∥A∥F is a constant, A(A,Θ∗) is the
homophily level for the training set (with slight abuse of
notation). This bound can also be viewed as a theoretical

guarantee for the converged (generalized) RP algorithm and
clearly demonstrates that: forA(Θt,A) fixed as 1, higher
level of graph homophily A(A,Θ∗) plays a dominant role
in better generalization. The above analysis can also be
potentially extended to infinitely-wide GNNs discussed in
Sec. 4 with further assumptions on the condition number of
its NTK matrix, which will lead to similar (but less straight-
forward) results.

Pushing further, in a complementary setting to the above,
where the objective is to find the optimal a priori kernel for
directly minimizing the population risk (but without access
to any input features or ground-truth labels), we demonstrate
that when homophily assumptions are imposed on the graph,
infinitely-wide GNNs and the RP algorithm will yield the
optimal kernel regression predictor with the provably best
generalization performance:

Theorem 5.2 (Bayesian Optimality of GNN). Assume that
the underlying data generation distribution P is such that
the probability of a pair of instances having the same label
P (y(xi) = y(xj)) is proportional to Aij − 1/2. Then
the optimal kernel regression predictor that minimizes the
population risk with squared loss has kernel matrix A.

Remark. See proof in Appendix B.8. The matrix A from the
above result could vary depending on different assumptions
on P (y(xi) = y(xj)), such as AK for the basic version of
RP, or A

(
A2 ⊙ S

)
A for infinitely-wide two-layer GNNs

in Theorem 4.2. And ideally, if one has privileged access
to labels of all instances, this optimal matrix is exactly the
optimal (posterior) kernel Θ∗ discussed above and perfect
generalization will be achieved. This result further veri-
fies our interpretation of generalization by showing that for
A(A,Θ∗) fixed to be large, better A(Θt,A) (e.g. GNN
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and RP) leads to favorable generalization.

6. Empirical Verification
We next empirically verify whether real-world GNN NTKs
indeed align with the graph during training and its effect
on generalization. Figure 3 plots the results reflected by
alignment between Θt, A and Θ∗.

Synthetic Dataset. To demonstrate the effects of different
homophily levels, we use stochastic block models (Holland
et al., 1983) to generate a synthetic dataset. As shown in
Fig. 3(a), the kernel-graph alignment A(Θt,A) for GNNs
stays at a high level regardless of different graph struc-
tures, as a natural result of the network architecture (Sec. 4).
Consequently, as we gradually alter edge probabilities to
decrease the homophily level A (A,Θ∗), the kernel-target
alignment A (Θt,Θ

∗) also decreases and the testing accu-
racy drops dramatically (Sec. 5.1).

Real-World Datasets. On real-world homophilic and het-
erophilic datasets, we progressively coarsen the graph until
the GNN degrades to an MLP, allowing us to analyze the
effects of feature propagation in the model. For now, let us
first focus on comparing red and blue lines in Fig. 3(b,c).
We found the kernel-graph alignment A(Θt,A) overall de-
creases with less graph structure, again verifying results
in Sec. 4. However, the impact of the graph structure de-
pends on different homophily levels A (A,Θ∗): on the ho-
mophilic dataset, more graph structure and better A(Θt,A)
optimize the NTK matrix as reflected by better kernel-target
alignment A (Θt,Θ

∗), but worsens it on the heterophilic
one. This results in distinct generalization behavior of
GNNs reflected by the testing accuracy.

Can and How (G)NNs Handle Heterophily? Recently,
there has been a growing discussion on whether standard
GNNs are capable of handling heterophily, with empirical
results pointing to diverging conclusions (Zhu et al., 2020;
Ma et al., 2022; Luan et al., 2022; Platonov et al., 2023).
From the training dynamics perspective, we add new in-
sights to this debate:

◦ 1) While we have shown that infinitely-wide GNNs
are sub-optimal on heterophilic graphs, MLPs in contrast
have no guarantee of kernel-target alignment (since both
A(A,Θ∗) and A(Θt,A) are not well-aligned), indicating
that they could either generalize better or worse without
clearcut (dis)advantages, as opposed to the case on ho-
mophilic graphs where GNN is provably at an advantage,
which explains the diverse empirical results when compar-
ing GNNs with MLPs in prior work.

◦ 2) As we now turn to the NTK’s time evolution in Fig. 3,
an additional phenomenon we found across all datasets is
the overall increase of kernel-target alignment A (Θt,Θ

∗)

during the training process. This indicates that the train-
ing process enables real-world GNNs to adjust their NTK’s
feature space such that the kernel matrix leans towards an
ultimately homoplilic graph structure (i.e. Θ∗) to adapt to
heterophilic datasets (and consequently different evolution-
ary trends of A (Θt,A) for hemophiliac and heterophilic
datasets). Such a phenomenon has also been found for other
models in vision tasks (Baratin et al., 2021).

Additionally, since our analysis also applies to other forms
of A for feature propagation in GNNs, it could also poten-
tially explain how some specialized models with different
instantiations of A (e.g. signed propagation) can mitigate
the heterophily issue. We also refer readers to Appendix C.4
for a discussion of how our insights can be potentially used
to guide designing new GNN architectures for handling
heterophily.

7. Discussions
Abridged Related Work. Most existing work on the-
oretical aspects of GNNs focuses on representation
and generalization (see Jegelka (2022) and references
therein) while their optimization properties remains under-
explored (Zhang et al., 2020; Xu et al., 2021a; Yadati, 2022;
Huang et al., 2023). Specifically, existing work in represen-
tation (or expressiveness) does not provide answers to what
exactly GNN functions are found during the optimization
process. For generalization, prior work is insufficient to ex-
plain the effects of training, which is widely-recognized as
a crucial ingredient, and does not connect to heterophily, a
relevant aspect in practice. (See a comprehensive discussion
of related work in Appendix A)

Applicability and Future Directions. Our insights apply
to both transductive and inductive settings (Appendix C.1),
other loss functions (Appendix C.2), multi-dimensional out-
puts (Appendix C.3), different GNN (or graph Transformer)
architectures that conform to our definition. The analytical
framework could also be extended to other tasks (which
are left as future work); for instances, for graph classifica-
tion or regression, the definition of GNTK in (5) should be
modified to the graph-level one (Du et al., 2019b); for link
prediction and self-supervised learning, the loss function
in the derivation of (5) should be adjusted accordingly. A
similar message passing process in function space would
still hold in these settings. The framework could also be po-
tentially adapted to analyze other GNN issues, such as over-
smoothing and over-squashing, though specific considera-
tions may be required. While this paper focuses specifically
on studying the role of graph structures in optimization, the
framework can potentially also be used to study the effects
of different model architectures by noting that the definition
of A in the paper is associated with GNN architectures (2).
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A. Unabridged Related Work
This section discusses more related works that are not covered in the main text and those related works that are already
covered but in greater depth.

A.1. Optimization and Training Dynamics

Towards deeper understanding of the success and limitation of GNNs, many works focus on the representation power
of GNNs (Maron et al., 2019; Xu et al., 2019; Oono & Suzuki, 2019; Chen et al., 2019; Dehmamy et al., 2019; Sato
et al., 2019; Loukas, 2020). While these works formalize what functions a GNN can possibly represent, they do not
provide answers to which specific GNN function will be found during optimization process or whether the learned GNN
function will successfully generalize. In contrast, theoretical understandings of the optimization properties of GNNs are
scarce. Specifically, Zhang et al. (2020) prove the global convergence of a one-layer GNN with assumptions on the training
algorithm built on tensor initialization and accelerated gradient descent; Xu et al. (2021a) analyze the convergence rate of
linearized GNNs with focus on training dynamics in weight space and empirical risk; Yadati (2022) analyze optimization
properties of a two-layer GCN by introducing a convex program; Huang et al. (2023) characterize signal learning and noise
memorization in two-layer GCN and compare it to CNNs. However, none of existing studies study the training dynamics of
GNNs in function space, which is our focus and could lead to a wealth of new insights that are theoretically and practically
valuable.

A.2. In- and Out-of-Distribution Generalization

Existing works in generalization of GNNs focus on their in-distribution (Scarselli et al., 2018; Verma & Zhang, 2019; Du
et al., 2019b; Liao et al., 2020) and out-of-distribution generalization properties (Yehudai et al., 2021; Xu et al., 2021b;
Wu et al., 2022; Yang et al., 2023). For node-level tasks which are challenging due to the dependency between samples,
most prior art study the generalization bound of GNNs based on complexity of model class (Scarselli et al., 2018; Baranwal
et al., 2021; Garg et al., 2020; Ma et al., 2021) or algorithmic stability (Verma & Zhang, 2019; Zhou & Wang, 2021; Cong
et al., 2021). The former line of works do not consider the optimization, which however is a critical ingredient of finding
generalizable solutions; the latter line of works consider the training algorithm, but their bounds as the number of epochs
becomes large. Moreover, there is no existing work (to the best of our knowledge) formally connecting generalization and
heterophily, though their connections are tacitly implied in many empirical results, e.g. (Zhu et al., 2020; 2021; Zheng et al.,
2022). The most related work in GNN generalization is (Yang et al., 2023) wherein the authors found vanilla MLPs with
test-time message passing operations can be as competitive as different GNN counterparts, and then analyzed generalization
of GNNs using node-level GNTK with attention to feature-wise extrapolation. Our results agree with and complement
(Yang et al., 2023) by noting that our analysis is applicable for all inductive, transductive and training without graph settings
(cf. Appendix C.1).

A.3. Graph-Based Semi-Supervised Learning (Label Propagation)

One of most popular type of semi-supervised learning methods is graph-based methods (Chapelle et al., 2009), where label
propagation (Szummer & Jaakkola, 2001; Zhu & Ghahramani, 2002; Zhu et al., 2003; Zhou et al., 2003; Chapelle et al.,
2009; Koutra et al., 2011; Gatterbauer et al., 2015; Yamaguchi et al., 2016; Iscen et al., 2019) is one of the most classic
and widely-used algorithms. The algorithm relies on external data structure, usually represented by a graph adjacency
matrix A ∈ {0, 1}n×n, to propagate ground-truth labels of labeled samples to infer unlabeled ones, and it is still under
active research nowadays, e.g. (Pukdee et al., 2023; Lee et al., 2022), mainly due to its efficiency and scalability. The label
propagation algorithm can usually be induced from minimization of a quadratic objective (Zhou et al., 2003):

E = ∥F−Y∥2 + λTr
[
[F,F′]⊤(In −A) [F,F′]

]
, (17)

motivated from the Dirichlet energy to enforce smoothness of predictions according to sample relations. Notice the minima
of this objective does not minimize the squared loss part ∥F−Y∥2 due to the regularization of the second term. In contrast,
the proposed RP algorithm has similar smoothness effects but minimizes the squared loss. Moreover, some previous
works attempt to explore the interconnections between LP and GNNs from different perspectives such as feature/label
influence (Wang & Leskovec, 2021), generative model (Jia & Benson, 2022). Compared with them, we first show the exact
equivalence of classification results between LP and the first step training of GNN (on node embeddings and with squared
loss).
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B. Theoretical Results
B.1. Derivation of (4) and (5): Training Dynamics of General Parameterized Model

Recall that for supervised learning, one is interested in minimizing the squared error L using gradient descent (GD),

L =
1

2
∥Ft −Y∥2, ∂Wt

∂t
= −η∇WL. (18)

Let Rt = Y − Ft and R′
t = Y′ − F′

t denote residuals for the labeled and unlabeled sets.

For the training set, we have

∂Ft

∂t
(19)

=
∂Ft

∂Wt

∂Wt

∂t
(Chain rule) (20)

= − η ∂Ft

∂Wt
∇WL (GD training) (21)

= − η ∂Ft

∂Wt
∇WFt ∇FtL (Chain rule) (22)

= − η ∇WFt
⊤ ∇WFt ∇Ft

L (Change of notation) (23)

= − η Θt(X,X)∇Ft
L (Neural tangent kernel) (24)

= η Θt(X,X)Rt (Loss function) (25)

Incorporating the test set, we have

∂[Rt,R
′
t]

∂t
(26)

=
∂[Rt,R

′
t]

∂Wt

∂Wt

∂t
(Chain rule) (27)

= − η ∂[Rt,R
′
t]

∂Wt
∇WL (GD training) (28)

= − η ∂[Rt,R
′
t]

∂Wt
∇W[Ft,F

′
t] ∇[Ft,F′

t]
L (Chain rule) (29)

= η ∇W[Ft,F
′
t]
⊤ ∇W[Ft,F

′
t] ∇[Ft,F′

t]
L (Change of notation) (30)

= η Θt([X,X
′], [X,X′]) ∇[Ft,F′

t]
L (Neural tangent kernel) (31)

= η Θt([X,X
′], [X,X′]) ∇[Ft,F′

t]
1

2
∥Ft −Y∥2F (Loss function) (32)

= − η Θt([X,X
′], [X,X′]) [Rt,0] (Compute gradient) (33)

where

Θt([X,X
′], [X,X′]) ≜

[
Θt(X,X) Θt(X,X

′)
Θt(X

′,X) Θt(X
′,X′)

]
(34)

is the NTK matrix in Rn×n. Discretizing the residual dynamics with step size ∆t = 1 and rearranging the equation gives[
Rt+1,R

′
t+1

]
= −η

[
Θt(X,X) Θt(X,X

′)
Θt(X

′,X) Θt(X
′,X′)

]
[Rt,0] + [Rt,R

′
t] . (35)

or [
Rt+1,R

′
t+1

]
= −η Θt(X̄, X̄)[Rt,0] + [Rt,R

′
t] . (36)
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B.2. Proof of Theorem 3.2: Convergence of RP, Connection with Kernel Regression

In this proof we examine generic RP iterations of the form given by[
Rt+1,R

′
t+1

]
= −ηS[Rt,0] + [Rt,R

′
t] , (37)

where S is an arbitrary symmetric matrix as similarity measure (S = AK for the basic version of RP in (6)) with block
structure aligned with the dimensions of Rt and R′

t respectively

S =

[
SXX SXX′

SX′X SX′X′

]
, (38)

where SXX ∈ Rnl×nl is a principal submatrix of S ∈ Rn×n corresponding to the training set. According to (37), the
explicit form of training residuals can be written as

Rt+1 = (Inl
− ηSXX)Rt

= (Inl
− ηSXX)

t+1
Y (39)

and testing residuals can be written as

R′
t+1 = −ηSX′XRt +R′

t = −η
t∑

i=0

SX′XRi

= −ηSX′X

t∑
i=0

(Inl
− ηSXX)

i
Y (40)

To analyze their convergence, we consider three variants based on the property of SXX: 1) SXX is positive definite; 2) SXX

is positive semi-definite (but not positive definite); 3) SXX is not positive semi-definite.

For the first variant, we stipulate SXX is positive definite. In this case, sufficiently small step size η < 2/σmax[SXX],
where σmax[SXX] is the largest eigenvalue of SXX, ensures each diagonal element in Inl

− ηSXX to lie between (−1, 1).
Therefore, as t→∞, the power and geometric series of Inl

− ηSXX converge to

(Inl
− ηSXX)

t+1 → Q(Inl
− ηΛ[SXX])∞Q−1 = 0,

t∑
i=0

(Inl
− ηSXX)

i → (Inl
− (Inl

− ηSXX))−1 = (ηSXX)−1.
(41)

Plugging them back into (39) and (40) gives us

Rt → 0, R′
t → −SX′XS−1

XXY. (42)

Correspondingly, by noting that Y′ = 0 at initialization, we have

Ft → Y, F′
t → SX′XS−1

XXY. (43)

Namely, for positive definite SXX, the converged model predictions F∞ perfectly fit the training labels Y, and we
further assume that S is positive definite, (43) is equivalent to the solution of kernel regression with respect to the kernel
κ(x,x′) = AK

xx′ .

For the second variant, we stipulate that SXX is positive semi-definite (but not positive definite), which implies that
SXX = BB⊤ for some tall matrix B ∈ Rnl×r that is full column rank. Suppose PC(B) = B(B⊤B)−1B⊤ and
PN(B⊤) = Inl

− PC(B) denotes the projection matrices onto the column space of B and null space of B⊤. By their
construction,

PC(B)B = B, PN(B⊤)B = 0. (44)

For training residuals, we may form the decomposition

Rt+1 = (Inl
− ηBB⊤)t+1Y

= (Inl
− ηBB⊤)t+1PC(B)Y + (Inl

− ηBB⊤)t+1PN(B⊤)Y (45)
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Table 2: Summary of the convergence of residual propagation. The convergence of model predictions can be inferred by
Ft = Y −Rt and F′

t = −R′
t.

SXX S Convergence of Rt Convergence of R′
t Counterpart

PD PSD 0 −SX′XS−1
XXY Kernel Regression

PD not PSD 0 −SX′XS−1
XXY Unique

PSD (but not PD) PSD
(
Inl
−B(B⊤B)−1B⊤)Y −B′(B⊤B)−1B⊤Y Linear Regression

PSD (but not PD) not PSD
(
Inl
−B(B⊤B)−1B⊤)Y Not Converge Unique

not PSD not PSD Not Converge Not Converge Unique

It follows that, for the first term on the RHS of (45),

(Inl
− ηBB⊤)t+1PC(B)Y = (Inl

− ηBB⊤)t+1BB†Y

= (Inl
− ηBB⊤)t(Inl

− ηBB⊤)BB†Y

= (Inl
− ηBB⊤)tB(Ir − ηB⊤B)B†Y

= B(Ir − ηB⊤B)t+1B†Y

→ 0, (46)

where B† = (B⊤B)−1B⊤ is the pseudo inverse of B. The convergence also requires η < 2/σmax[SXX].

For the second term on the RHS of (45), we have

(I− ηBB⊤)t+1PN(B⊤)Y = (I− ηBB⊤)t(PN(B⊤) − ηB(PN(B⊤)B)⊤)Y

= (I− ηBB⊤)tPN(B⊤)Y

= PN(B⊤)Y (47)

It follows that
Rt → PN(B⊤)Y =

(
Inl
−B(B⊤B)−1B⊤)Y, (48)

which is equivalent to optimal training residuals of linear regression (Boyd & Vandenberghe, 2004).

However, in our case, the testing residuals will not necessarily converge for arbitrary SX′X since the geometric series in
(40) diverges outside (−1, 1). Nevertheless, we can further stipulate S is also positive semi-definite. In this case, we have
SX′X = B′B⊤ for another tall matrix B′ ∈ Rnu×r. Correspondingly, the testing residuals can be written as

R′
t+1 = −ηB′B⊤

t∑
i=0

(
Inl
− ηBB⊤)i Y

= −ηB′
t∑

i=0

(
Ir − ηB⊤B

)i
B⊤Y

= −ηB′
t∑

i=0

(
Ir − ηB⊤B

)i
B⊤Y

→ −ηB′(Ir − (Ir − ηB⊤B))−1B⊤Y

= −B′(B⊤B)−1B⊤Y. (49)

For the last variant, if SXX is not positive semi-definite, it is no longer possible to guarantee convergence from arbitrary
initializations. Rather we can only establish that solutions of the form described above can serve as fixed points of the
iterations.

To summarize, for the RP algorithm in (6) where S = AK , if step size is sufficiently small η < 2σ−1
max[A

K
XX], both Rt and

R′
t converge as t→∞ for positive definite AK

XX or positive semi-definite AK . In practice, one can choose K as an even
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number or letting A← αA+(1−α)In for α >= 1
2 to enforce positive semi-definiteness of AK . However, in practice, we

did not find that test performance was compromised when the algorithm does not converge. Table 2 gives a clear overview
of the convergence of RP and connection with existing learning algorithms.

B.3. Computation of Node-Level GNTK

We present the recurrent formula for computing of GNTK in node-level tasks. Suppose the GNN is denoted as f(xi;A) ∈ R
where the input is node feature xi, the graph structure A is used for cross-instance feature propagation at each layer, weights
are W. The GNTK in node-level tasks is defined as

Θt(xi,xj ;A) =

〈
∂ft(xi;A)

∂Wt
,
∂ft (xj ;A)

∂Wt

〉
, (50)

for a pair of nodes (i.e. data points) at optimization time index t. Intuitively, the kernel function measures quantifies
similarity between seen and unseen instances based on how differently their outputs given by the GNN change by an
infinitesimal perturbation of weights (which we will show is biased by the adjacency matrix used for feature propagation in
GNNs).

Note that we consider transductive learning here, which is more convenient. For inductive learning, one should replace X̄
with X, and A with its submatrix AXX. Let us denote GNTK with/without feature propagation at ℓ-th layer as Θ(ℓ)/Θ̄(ℓ),
covariance matrix of outputs of ℓ-th layer with/without feature propagation as Σ(ℓ)/Σ̄(ℓ), covariance matrix of the derivative
to ℓ-th layer layer as Σ̇(ℓ). The recurrent formula for computing node-level GNTK for infinitely-wide GNNs can be written
as the following. The initialization of GNTK for graph regression is given as

Θ̄(1)(xi,xj ;A) = Σ̄
(1)

(xi,xj ;A) = x⊤
i xj , (51)

We also write matrix form of computing GNTK here in order to give clearer intuitions of how the adjacency matrix can be
naturally encoded into the computation of Θ in node regression tasks:

Θ̄(1)(X̄, X̄;A) = Σ̄
(1) (

X̄, X̄;A
)
= X̄⊤X̄. (52)

Propagation. The feature propagation operation (i.e. Z← AZ) at each layer corresponds to

Σ(ℓ−1) (xi,xj ;A) =
∑
i′∈Ni

∑
j′∈Nj

Aii′Ajj′Σ̄
(ℓ−1)

(xi′ ,xj′ ;A)

Θ(ℓ−1) (xi,xj ;A) =
∑
i′∈Ni

∑
j′∈Nj

Aii′Ajj′Θ̄
(ℓ−1) (xi′ ,xj′ ;A) ,

(53)

where Ni denote neighboring nodes of xi including xi itself. For GCN where A is defined as a symmetric normalized
adjacency matrix, we have Aij = Aji = 1/

√
didj . The above equation can be compactly described in a matrix form:

Σ(ℓ−1)
(
X̄, X̄;A

)
= A Σ̄

(ℓ−1) (
X̄, X̄;A

)
A

Θ(ℓ−1)
(
X̄, X̄;A

)
= A Θ̄(ℓ−1)

(
X̄, X̄;A

)
A.

(54)

The multiplication of A before Θ̄
(ℓ−1) (

X̄, X̄;A
)

gives row-wise weighted summation and after Θ̄(ℓ−1) (
X̄, X̄;A

)
gives

column-wise weighted summation.

Transformation. Let T and Ṫ be functions from 2× 2 positive semi-definite matrices Λ to R given by{
T (Λ) = E[σ(a)σ(b)]
Ṫ (Λ) = E [σ′(a)σ′(b)]

(a, b) ∼ N (0,Λ) (55)
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where σ′ is the derivative of the activation function. Then, the feature transformation process (i.e. Z = σ(ZW)) then
corresponds to:

Σ̄
(ℓ)

(xi,xj ;A) = cσT
(

Σ(ℓ−1)(xi,xi;A) Σ(ℓ−1) (xi,xj ;A)

Σ(ℓ−1) (xj ,xi;A) Σ(ℓ−1) (xj ,xj ;A)

)
,

Σ̇
(ℓ)

(xi,xj ;A) = cσṪ
(

Σ(ℓ−1)(xi,xi;A) Σ(ℓ−1) (xi,xj ;A)

Σ(ℓ−1) (xj ,xi;A) Σ(ℓ−1) (xj ,xj ;A)

)
.

(56)

The layer-wise computation for Θ is given as

Θ̄(ℓ)
(
X̄, X̄;A

)
= Θ(ℓ−1)

(
X̄, X̄;A

)
⊙ Σ̇

(ℓ) (
X̄, X̄;A

)
+ Σ̄(ℓ)

(
X̄, X̄;A

)
, (57)

where ⊙ denotes Hadamard product. For a ℓ-layer GNN, the corresponding GNTK is given by Θ(ℓ)(X̄, X̄;A), which is
abbreviated as Θ(ℓ) in the main text.

B.4. Proof of Theorem 4.2: Two-Layer GNN

Consider a two-layer GNN defined as

{f(x;A)}x∈X̄ = [F,F′] = A
1√
m
σ
(
AX̄W(1)

)
W(2) (58)

where m is the width and σ is ReLU activation. Following previous works that analyze two-layer fully-connected neural
networks (Arora et al., 2019; Du et al., 2019c), we consider optimization of the first layer weights W(1) while fixing the
second-layer weights. In this case, the two-layer GNTK is defined as

Θ(2)(xi,xj ;A) =

〈
∂f(xi;A,W)

∂W(1)
,
∂f(xj ;A,W)

∂W(1)

〉
. (59)

We can derive the the explicit form formula for computing it in overparameterized regime based on the general formula
for arbitrarily deep GNNs given in Appendix. B.3 (or directly calculating ∂f(xi;A,W)/∂W(1) by using chain rule).
Consequently, we have

Θ(2)(xi,xj ;A) =
∑

i′∈N (i)

∑
j′∈N (j)

Aii′Ajj′
(
[AX̄]⊤i′ [AX̄]j′

)
Ew∼N (0,1)

[
1
{
w⊤[AX̄]i′ ≥ 0,w⊤[AX̄]j′ ≥ 0

}] (60)

whereN (i) denote the set of neighboring nodes, w ∈ Rd is sampled from Gaussian distribution, and 1 is indicator function.

Case 1. If we stipulate the input features are represented by an identity matrix, i.e. X̄ = In, it follows that

Θ(2)(xi,xj ;A) =
∑

i′∈N (i)

∑
j′∈N (j)

Aii′Ajj′
(
A⊤

i′Aj′
)
Ew∼N (0,1)

[
1
{
w⊤Ai′ ≥ 0,w⊤Aj′ ≥ 0

}]

=
∑

i′∈N (i)

∑
j′∈N (j)

Aii′Ajj′

A⊤
i′Aj′(π − arccos(

A⊤
i′Aj′

∥Ai′∥∥Aj′∥
))

2π
.

(61)

The above equation can be written neatly in the matrix form

Θ(2)(X̄, X̄;A) = A(A2 ⊙ S)A, where Sij = (π − arccos(
A⊤

i Aj

∥Ai∥∥Aj∥
))/2π. (62)

The matrix S reweights each entry in A2 by the similarity of neighborhood patterns of xi and xj . Substituting it to (5) gives
us the training dynamics of overparameterized two-layer GNN[

Rt+1,R
′
t+1

]
= −ηA(A2 ⊙ S)A[Rt,0] + [Rt,R

′
t] . (63)
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Case 2. If we stipulate the input features are node embeddings from spectral decomposition of a full-rank adjacency
matrix, i.e. X̄ ≜ argminB ∥A−BB⊤∥2F . We have

Θ(2)(xi,xj ;A)

=
∑

i′∈N (i)

∑
j′∈N (j)

Aii′Ajj′A
3
i′j′Ew∼N (0,1)

[
1
{
w⊤[AX̄]i′ ≥ 0,w⊤[AX̄]j′ ≥ 0

}]

=
∑

i′∈N (i)

∑
j′∈N (j)

Aii′Ajj′

A3
i′j′(π − arccos(

[AX̄]⊤
i′ [AX̄]j′

∥[AX̄]i′∥∥[AX̄]j′∥
))

2π
.

(64)

The above equation can be written neatly in the matrix form

Θ(2)(X̄, X̄;A) = A(A3 ⊙ S̃)A, where S̃ij = (π − arccos(
[AX̄]⊤i [AX̄]j
∥[AX̄]i∥∥[AX̄]j∥

))/2π. (65)

The matrix S̃ reweights each entry in A3 by the similarity of aggregated node embeddings [AX̄]i and [AX̄]j . Substituting
it to (5) gives us the training dynamics of overparameterized two-layer GNN[

Rt+1,R
′
t+1

]
= −ηA(A3 ⊙ S̃)A[Rt,0] + [Rt,R

′
t] . (66)

B.5. Proof: Arbitrarily Deep Decoupled GNN

Before analyzing the training dynamics of deep GNNs, let us first consider an arbitrarily deep standard fully-connected neural
networks, which is denoted as MLP(X̄) with weights W. We also denote its corresponding NTK in overparameterized
regime as Θ(ℓ)(X̄, X̄). For input features as an identity matrix X̄ = In, we have the following permutation invariant
property of Θ(ℓ)(X̄, X̄).
Lemma B.1 (Permutation Invariance of NTK). For arbitrarily deep and infinitely wide fully-connected neural networks
MLP(X̄) with ReLU activation and standard NTK parameterization, the corresponding NTK Θ(ℓ)(X̄, X̄) for onehot vector
inputs is permutation invariant. Namely for arbitrary permutation function ψ on input set X̄

Θ(ℓ)(ψ(X̄), ψ(X̄)) = Θ(ℓ)(X̄, X̄). (67)

Proof. Recall that in the explicit form computation for NTK of fully-connected neural networks (Jacot et al., 2018; Lee
et al., 2019), the NTK and NNGP for a (ℓ+ 1)-layer network is produced from the NTK and NNGP for a ℓ-layer network.
Therefore, to prove the permutation invariance of NTK of an arbitrarily deep fully-connected neural network, we need only
to prove the permutation invariance of Θ(1) and Σ(1), which are defined as the inner product of input features

Θ(1)(X̄, X̄) = Σ(1)(X̄, X̄) = X̄X̄⊤. (68)

Since arbitrary permutation function ψ on X̄ can be expressed as

ψ(X̄) =

c∏
i=0

TiX̄ (69)

for some row-interchanging elementary matrices {Ti}ci=0. It follows that

Θ(1)(ψ(X̄), ψ(X̄)) =

c∏
i=0

TiX̄(

c∏
i=0

TiX̄)⊤

=

c∏
i=0

TiX̄X̄⊤
c∏

i=0

T⊤
c−i

= T0 · · ·TcT
⊤
c · · ·T⊤

0

= In

= Θ(1)(X̄, X̄). (70)

By induction, it follows that Θ(ℓ)(X̄, X̄) is also permutation invariant.
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Now, let us consider a deep GNN defined as
[F,F′] = Aℓ MLP(X̄) (71)

where MLP(X̄) is a L-layer infinitely-wide fully-connected neural network with ReLU activation. Then, the corresponding
node-level GNTK matrix is defined as〈

∂Aℓ MLP(X̄)

∂W
,
∂Aℓ MLP(X̄)

∂W

〉
= AℓΘ(L)(X̄, X̄)Aℓ. (72)

Since the NTK matrix Θ(L)(X̄, X̄) is permutation invariant with diagonal values being larger than non-diagonal values, we
can write it as

Θ(L)(X̄, X̄) = c′(I+ c11⊤) (73)

for some constants c′ and c determined by the depth of the network L. Substituting it to (5) gives us the training dynamics
of infinitely-wide and arbitrarily-deep GNN[

Rt+1,R
′
t+1

]
= −ηAℓ(I+ c11⊤)Aℓ[Rt,0] + [Rt,R

′
t] . (74)

B.6. Proof of Corollary 4.4: Linear GNN

For linear GNN defined as [F,F′] = AℓX̄W. The corresponding node-level GNTK Θ
(1)
t for linear GNN is naturally

constant and can be computed as

Θ
(1)
t

(
X̄, X̄;A

)
= ∇W[F,F′]⊤∇W[F,F′]

= AℓX̄(AℓX̄)⊤.
(75)

Case 1. When the input X̄ is defined as an identity matrix, we have

AℓX̄(AℓX̄)⊤ = A2ℓ (76)

which is also a special case of Theorem 4.3 where the backbone MLP model is one layer and consequently c = 0. Based on
(5), the training dynamics of linear GNN can be written as[

Rt+1,R
′
t+1

]
= −ηA2ℓ[Rt,0] + [Rt,R

′
t] (77)

which is equivalent to the basic version of RP in (6) with K = 2ℓ.

Case 2. When the input X̄ is obtained from (full-rank) graph spectral decomposition, we have

AℓX̄(AℓX̄)⊤ = AℓX̄X̄⊤Aℓ = A2ℓ+1. (78)

In this case, the training dynamics of linear GNN can be written as[
Rt+1,R

′
t+1

]
= −ηA2ℓ+1[Rt,0] + [Rt,R

′
t] (79)

which is equivalent to the basic version of RP in (6) with K = 2ℓ+ 1. For non-PSD adjacency matrix A, we also have the
approximation AℓX̄⊤X̄Aℓ ≈ A2ℓ+1. However, in this case, the basic RP algorithm in (6) can not be implemented by the
conventional (deep) learning framework (cf. Theorem 3.2).

B.7. Derivation of (16): Generalization Bound

Based on the Rademacher complexity-based generalization bound for kernel regression in (Bartlett & Mendelson, 2002), for
training data {(xi, yi)}nl

i=1 drawn i.i.d. from an underlying distribution P , arbitrary loss function l : R× R→ [0, 1] that is
1-Lipschitz in the first argument such that l(y, y) = 0, we have that with probability at least 1− δ, the population risk of
kernel regression with respect to the limit NTK Θ has upper bound (see proof in Bartlett & Mendelson (2002); Arora et al.
(2019); Du et al. (2019b))

E(x,y)∼P [l (f(x), y)] = O

√Y⊤Θ−1Y · Tr(Θ)

nl
+

√
log(1/δ)

nl

 . (80)
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We now assume an extreme case where the limit NTK matrix is determined by the graph, i.e. Θ = (I − αA)−1 =

limk→∞
∑k

i=0(αA)i, which is equivalent to the propagation matrix adopted by the converged LP algorithm,2 and is a valid
kernel matrix by noting that the spectral radius ρ(A) ≤ 1 for normalized adjacency matrix A and α < 1. For Y⊤Θ−1Y,
we have

Y⊤Θ−1Y = Y⊤Y − αY⊤AY

= nl − α⟨YY⊤,A⟩F
= nl − cA(Θ∗,A) (81)

where c = α∥Θ∗∥F ∥A∥F is a constant. For Tr(Θ), we have

Tr(Θ) =

nl∑
i=1

1

1− ασi(A)
≤ nl

1− ασmax(A)
= O(nl), (82)

where σmax(A) ≤ 1 is the maximal eigenvalue of A. It follow that the population risk has upper bound

E(x,y)∼P [l (f(x), y)] = O

√nl − cA(Θ∗,A)

nl
+

√
log(1/δ)

nl

 . (83)

B.8. Proof of Theorem 5.2: Bayesian Optimality of GNN

Setup. In this proof, we consider the following setup. Suppose all possible samples are given by inputs X = {xi}Ni=1 and
labels Y = {y(xi)}Ni=1 that are randomly generated from an unknown distribution P , where N could be arbitrarily large
and both X and Y are assumed to be unobserved. For binary classification, we also have y ∈ {−1, 1} with balanced label
distribution, i.e. E[y] = 0. Given that for an arbitrary pair of instances x and x′, the probability that they share the same
label is defined by a large matrix A ∈ RN×N :

P (y(x) = y(x′)) = Axx′ , (84)

where Axx′ is an element in A that corresponds to sample pair x and x′. Our task is to find the optimal kernel function
whose corresponding kernel regression predictive function fker(·) minimizes the population risk

E(x,y)∼P

[
(fker(x)− y(x))2

]
. (85)

Proof. Next, we give solution to the optimal kernel function that minimizes the population risk in the above setting. For
data randomly generated from P and conditioned on (84), the random labels have covariance matrix Σ(X,X) ∈ RN×N

which satisfies

Σ(x,x′) = E(x,y)∼P [(y(x)− E[y])(y(x′)− E[y])]
= E(x,y)∼P [y(x)y(x′)]

= 2Axx′ − 1.

(86)

Let us consider kernel regression w.r.t. a kernel κ, whose corresponding predictive function fker(x) on all possible
unobserved samples X and Y is given by

fker(x) = κ(x,X)K(X,X)−1Y = M⊤
xY. (87)

where Mx ∈ RN is a vector associated with sample x defined as M⊤
x = κ(x,X)K(X,X)−1. Note that we do not

differentiate training or testing samples here since all inputs and labels are assumed to be unseen. We aim to search the
optimal kernel function that minimizes the population risk, which can be achieved if the risk for each sample x is minimized.
Specifically, for an arbitrary sample x, its risk is

Ey

[
(fker(x)− y(x))2

]
= Ey

[(
M⊤

xY − y(x)
)2]

= M⊤
xΣ(X,X)Mx − 2M⊤

xΣ(X,x) +Σ(x,x). (88)

2With slight abuse of notation, we denote by A the adjacency matrix for the training set, and Θ∗ the optimal kernel matrix for the
training set.
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To find the optimal kernel that minimizes the risk, we differentiate it w.r.t. Mx,

∇MxE(x,y)∼P

[
(fker(x)− y(x))2

]
= 2Σ(X,X)Mx − 2Σ(X,x) (89)

which gives us the minimizer
M⊤

x = Σ(x,X)Σ(X,X)−1. (90)

And since M⊤
x = κ(x,X)K(X,X)−1, the population risk is minimized on each single data point for optimal kernel κ∗

whose kernel matrix is
K∗(X,X) = 2A− 1. (91)

Remark. The above analysis also generalize to the setting when A is defined over a subset of all possible samples, in which
case the optimal kernel matrix is still 2A− 1 but it is no longer possible to minimize population risk outside the coverage of
A.

C. Additional Discussions
C.1. Different Settings

Transductive (semi-supervised) and inductive (supervised) learning are two types of common settings in node-level
classification tasks. The former incorporates unlabeled nodes (testing samples) in the training process while the latter only
has access to unlabeled nodes for inference. Recall that the residual propagation process of general parameterized models
with arbitrary unseen testing samples can be written as

[
Rt+1,R

′
t+1

]
= −η


Θt(X,X)︸ ︷︷ ︸

nl×nl

Θt(X,X
′)

Θt(X
′,X)︸ ︷︷ ︸

(n−nl)×nl

Θt(X
′,X′)

 · [Rt,0]︸ ︷︷ ︸
n

+ [Rt,R
′
t]︸ ︷︷ ︸

n

. (92)

For node-level tasks, the difference between transductive and inductive settings boils down to different feature map of the
kernel function for training and testing sets. To be specific:

Transductive learning. For transductive learning or semi-supervised learning, the residual propagation can be written as

[
Rt+1,R

′
t+1

]
= −η


Θt(X,X;A)︸ ︷︷ ︸

nl×nl

Θt(X,X
′;A)

Θt(X
′,X;A)︸ ︷︷ ︸

(n−nl)×nl

Θt(X
′,X′;A)

 · [Rt,0]︸ ︷︷ ︸
n

+ [Rt,R
′
t]︸ ︷︷ ︸

n

. (93)

where Θt(X,X;A) is the node-level GNTK defined in Sec. 4. This equation is equivalent to the one presented in the main
text, i.e. (5).

Inductive learning. Let us denote AXX the submatrix of A corresponding to the training set. For inductive learning or
supervised learning, the residual propagation can be written as

[
Rt+1,R

′
t+1

]
= −η


Θt(X,X;AXX)︸ ︷︷ ︸

nl×nl

Θ
(ind)
t (X,X′;A)

Θ
(ind)
t (X′,X;A)︸ ︷︷ ︸

(n−nl)×nl

Θ
(ind)
t (X′,X′;A)

 · [Rt,0]︸ ︷︷ ︸
n

+ [Rt,R
′
t]︸ ︷︷ ︸

n

, (94)

Let us denote predictions (for the training set) given by the GNN model with matrix AXX as Find, and the predictions (for
the testing set) given by the GNN model with matrix A as F′

trans, we have

Θt(X,X;AXX) = ∇WF⊤
ind∇WFind,

Θ
(ind)
t (X′,X;A) = ∇WF′⊤

trans∇WFind.
(95)

In this case, the n× n matrix is still a valid kernel matrix with graph implicit bias (cf. Appendix B.3), and thus our insights
from the transductive setting still holds.
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Training without graph. Another interesting setting studied recently (Yang et al., 2023) is using vanilla MLP for training
and then adopts the GNN architecture in inference, which leads to the so-called PMLP that can accelerate training without
deteriorating the generalization performance. In this setting, the residual propagation can be written as

[
Rt+1,R

′
t+1

]
= −η


Θt(X,X)︸ ︷︷ ︸

nl×nl

Θ
(pmlp)
t (X,X′;A)

Θ
(pmlp)
t (X′,X;A)︸ ︷︷ ︸

(n−nl)×nl

Θ
(pmlp)
t (X′,X′;A)

 · [Rt,0]︸ ︷︷ ︸
n

+ [Rt,R
′
t]︸ ︷︷ ︸

n

, (96)

where Θt(X,X) is equivalent to the NTK matrix of fully-connected neural networks. This is equivalent to the inductive
setting where the graph adjacency matrix used in training is an identity matrix: let us denote predictions (for the training set)
given by MLP as Fmlp, we have

Θt(X,X) = ∇WF⊤
mlp∇WFmlp,

Θ
(ind)
t (X′,X;A) = ∇WF′⊤

trans∇WFmlp.
(97)

The success of PMLP is consistent with the insight that the residual flow between training and testing sets with graph
implicit bias is important to explain the generalization of GNNs.

C.2. Other Loss Functions

It is worth noting that residual propagation process is not exclusive to the squared loss. While our analysis focuses on the
squared loss, similar residual propagation schemes can be obtained with other loss functions that will change the original
linear residual propagation process to non-linear. Therefore, the insight still holds for other loss functions.

Mean squared error. For completeness, let us rewrite the residual propagation process for general parameterized model
(e.g. linear model, fully-connected neural network, GNN) with squared loss here, with derivation given in Appendix B.1[

Rt+1,R
′
t+1

]
= −η Θt(X̄, X̄)[Rt,0] + [Rt,R

′
t] , (98)

which is a linear propagation process, where Θt(X̄, X̄) = ∇W[Ft,F
′
t]
⊤ ∇W[Ft,F

′
t] ∈ Rn×n.

Mean absolute error. If the loss function is a MAE (a.k.a. L1) loss L = ∥Ft − Y∥1, then the residual propagation
process can be revised as [

Rt+1,R
′
t+1

]
= −η Θt(X̄, X̄)[sgn(Rt),0] + [Rt,R

′
t] , (99)

where sgn(x) is the sign function that output 1 is x > 0 otherwise −1, and could be thought of as coarsening the residual
information to a binary value.

Cross-entropy. For the CE loss commonly used for classification tasks, we define the residual as Rt = Y−σFt, where σ
here denotes sigmoid activation and applies on every element in vector Ft. The residual propagation process can be revised
as [

Rt+1,R
′
t+1

]
= −η Θt(X̄, X̄)[c(Rt),0] + [Rt,R

′
t] , (100)

where the function c(·) denotes multiplying a scaling factor 1/(1− σft(xi))σft(xi) to each residual for re-weighting. This
scaling factor up-weights smaller residuals whose corresponding predictions are more confident, and down-weights larger
residuals whose predictions are less confident.

C.3. Multi-Dimensional Output

In this section, we discuss the modification of analysis for training dynamics of GNNs when outputs f(x) ∈ Rc is multi-
dimensional. For the multi-dimensional output case where f(x) ∈ Rc and c is the dimension of outputs, let Ft ∈ Rnlc×1

and Rt ∈ Rnlc×1 be model prediction and residuals in vector forms. Then, the residual dynamics for the training set (which
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Figure 4: Visualization of NTK of well-trained GCN on a node classification benchmark (Cora). 50 nodes are randomly
selected for clearity. From left to right are c× c, n× n, nc× nc NTK matrices, where the former two matrices are obtained
by averaging the nc× nc NTK matrix at dimension n and c respectively. The diagonal patterns in the first and last matrix
verifies that our analysis for finitely-wide GNNs in binary classification also applies to multi-class classification setting.

can straight-forwardly incorporate testing samples similar to the derivation in Appendix B.1) is revised as

∂Rt

∂t
=

∂Rt

∂Wt
· ∂Wt

∂t
(Chain rule) (101)

= −η · ∂Rt

∂Wt
· ∇WL (GD training) (102)

= −η · ∂Rt

∂Wt
· ∇WFt · ∇fL (Chain rule) (103)

= η · ∇⊤
WFt︸ ︷︷ ︸

nlc×|W|

· ∇WFt︸ ︷︷ ︸
|W|×nlc

· ∇fL︸︷︷︸
nlc×1

(Change of notation) (104)

= η ·Θt(X,X)︸ ︷︷ ︸
nlc×nlc

· ∇fL︸︷︷︸
nlc×1

(105)

= −η ·Θt(X,X)︸ ︷︷ ︸
nlc×nlc

· Rt︸︷︷︸
nlc×1

(Squared loss). (106)

Compared with residual propagation process for scalar output, the residual propagation process for multi-dimensional
output additionally incorporate flow of residual across different dimensions. However, for infinite neural networks, the NTK
Θ(X,X) for multi-dimensional output (Jacot et al., 2018) can be written as

Θ(X,X)︸ ︷︷ ︸
nlc×nlc

= Θ̄(X,X)︸ ︷︷ ︸
nl×nl

⊗ Ic︸︷︷︸
c×c

. (107)

Namely, there is no cross-dimension flow in residual propagation and our analysis for scalar output can be trivially adapted
to the multi-dimensional output case. For finite neural networks, while cross-dimension residual propagation is theoretically
inevitable, one can still resort the the above decomposition as approximation. For example, we can define pseudo NTK as

Θ̄t(X,X) =

(
∇W

c∑
h=1

[Ft]h

)⊤(
∇W

c∑
h=1

[Ft]h

)
, (108)

and recent works (Mohamadi & Sutherland, 2023) has proved that such a kernel function can be used to approximate the
original nlc× nlc kernel matrix: ∥∥Θ̄t (xi,xj)⊗ Ic −Θt (xi,xj)

∥∥
F

∥Θt (xi,xj)∥F
∈ Õ

(
n
− 1

2

l

)
. (109)
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To empirically verify this for finitely-wide GNNs, we visualize the NTK matrix for real-world GNNs in Cora dataset in
Fig. 4. Therefore, our insights for both infinitely-wide GNNs and finitely-wide GNNs still hold in multi-dimensional case,
which are also verified by our experiments.

C.4. Practical Implications for Heterophily

The analysis in works can be used to provide high-level design principles for handling heterophily. For instances:

Increasing A (A,Θ∗) by designing propagation matrices that deviate from the original adjacency matrix, such that the
resulting GNN NTK could better align with the optimal kernel matrix, can lead to better generalization performance.
Moreover, this perspective helps to substantiate certain existing heuristics for handling heterophily, such as assigning
negative weights to edges;

Decreasing A (Θt,Θ
∗) by designing non-standard GNN architectures, i.e., that deviate from our defintion in Section 2, can

reduce the degradation of NTK-target alignment caused by heterophily; in doing so, the negative effects of heterophilic
graphs on generalization can also be mitigated. Incidently, this also helps to quantify regimes where non-GNN architectures
such as MLPs can sometimes perform better.

We note also that even the extremely simple RP algorithm that naturally emerges from our analysis works well in practice
handling heterophily. See Appendix E for empirical examples.

D. Implementation Details
D.1. Experiments in Section 3.2

Arxiv, Proteins and Products (Hu et al., 2020) are three relatively large datasets containing 169343, 132534 and
2449029 nodes respectively.

• The Arxiv dataset represents the citation network between all computer science arxiv papers. Each node is associated
with a feature vector representing the averaged embeddings of words in the title and abstract of that paper and the task
is to predict the subject areas.

• For Proteins dataset, nodes represent proteins and edges represent biologically significant associations between
proteins, categorized by their types. The task is to predict the presence or absence of 112 protein functions as a
multi-label binary classification problem.

• The Products dataset is an Amazon product co-purchasing network where nodes are products in Amazon and links
represent two products are purchased together. The feature for each node is dimensionality-reduced bag-of-words for
the product descriptions and the task is predict the category of a product.

We follow the original splitting of (Hu et al., 2020) for evaluation. The statistics of these datasets are shown in Table 3.

We compare GRP with several classic methods for learning on graphs: standard MLP, Label Propagation (LP) (Zhu et al.,
2003), LinearGNN (SGC) (Wu et al., 2019), GNN (GCN) (Kipf & Welling, 2017). Except the results of linear GNN which
are from our reproduction, the results of other baselines align with the results reported in the OGB leaderboard, where the
detailed implementation and hyperparameter setup can be found. 3 The LP algorithm reported in Tab. 1 follows the standard
implementation that is ran until convergence, while the LP algorithm reported in Fig. 2 does not run until convergence in
order to align with the proposed RP algorithm.

For hyperparamter search of RP, we adopt grid search for the RP algorithm with the step size η from
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, the power K ranging from 1 to 10. For Arxiv, Proteins and Products, K is
chosen as 7, 1, 8 respectively. Since both LP and GRP are deterministic algorithms, their standard deviations are 0. All
experiments are conducted on Quadro RTX 8000 with 48GB memory.

3https://ogb.stanford.edu/docs/leader_nodeprop
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Table 3: Statistics of 17 datasets.

Type Dataset # Nodes (n) # Edges (e) # Features (d) # Class (c) # Tasks Split

OGB
Arxiv 169,343 1,166,243 128 40 1 Public
Proteins 132,534 39,561,252 8 2 112 Public
Products 2,449,029 61,859,140 100 47 1 Public

Homophilic

Cora 2,708 10,556 1,433 7 1 Public
Citeseer 3,327 9,104 3,703 6 1 Public
Pubmed 19,717 88,648 500 3 1 Public
Computers 13,752 491,722 767 10 1 80%/10%/10%
Photo 7,650 238,162 745 8 1 80%/10%/10%
CS 18,333 163,788 6,805 15 1 80%/10%/10%
Physics 34,493 495,924 8,415 5 1 80%/10%/10%

Heterophilic

roman-empire 22662 32927 300 18 1 Public
amazon-ratings 24,492 93,050 300 5 1 Public
minesweeper 10,000 39,402 7 2 1 Public
tolokers 11,758 519,000 10 2 1 Public
questions 48,921 153,540 301 2 1 Public
Texas 183 325 1,703 5 1 Public

Synthetic Synthetic 2,000 8,023 ∼ 8,028 100 5 1 100/500/1000

D.2. Experiments in Section 6

We conduct experiments on real-world benchmark datasets Cora and Texas, and a synthetic dataset generated by the
stochastic block model. For the synthetic dataset, we set number of blocks as 5 (i.e. number of classes) with each block
having 400 nodes. Each node is associated with a 100-dimensional informative input feature vector. For the homophilic
version of the dataset, the 5×5 edge probability matrix is defined as P = 0.01 ·I5, i.e. nodes in the same block are connected
with probability 0.01, and we gradually change this matrix in the generation process until there are only heterophilic edges
left in the dataset, i.e. P = 0.0025 · 11⊤ − 0.0025 · I5. The statistics of these datasets are shown in Table 3. Note that we
do not consider the large-scale datasets as in Section 3.2, since the computing NTK matrix is extremely costly in memory,
especially for GNNs in node-level tasks where the output for an instance is also related to input features of other instances
and mini-batch partitioning can not be directly adopted.

For the model, we choose a two-layer GCN with width 16, bias term and ReLU activation for all datasets. In order to control
the variable, when comparing NTK of the model using different graph structures, we fix the weights in the model, which is
achieved by training on a fixed graph structure but evaluate the NTK matrix (and test performance) using different graph
structure. For real-world datasets, we use the original graph for training which is equivalent to the standard training, and
for synthetic dataset, we use an identity matrix for training in which case the model is equivalent to the recently proposed
PMLP (Yang et al., 2023) model that has shown to as effective as GNNs in the supervised learning setting. The optimization
algorithm is gradient descent with learning rates 1e − 2, 3e − 4, 5e − 5 respectively for Cora, Texas, Synthetic
respectively, momentum 0.9 and weight decay 5e− 4. The loss function is the standard cross-entropy loss for multi-class
classification.

Since the NTK matrix for multi-dimensional output is a nc× nc matrix, where c is the output dimension, we follow prior
work (see Mohamadi & Sutherland (2023) and references therein) and compute the n× n NTK matrix by averaging over
the dimension c. The graph adjacency matrix we consider here is defined as A4 in order to align with our theoretical result
for two-layer infinitely-wide GNN in Theorem 4.2. We also normalize these matrices before computing the alignment
following (Cortes et al., 2012; Baratin et al., 2021) as a standard way of preprocess.

D.3. Algorithm Description

Recall the basic version of RP can be described by the following iterative forward propagation process:

[
Rt+1,R

′
t+1

]
= −ηAK [Rt,0] + [Rt,R

′
t] . (110)
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The intial conditions are

[R0,R
′
0] = [Y − F0,0− F′

0] , (111)

where F0 = 0 and F′
0 = 0. For real-world applications where the outputs are usually multi-dimensional, say, multi-class

classification with c classes, we define: Y = {yi}
nl
i=1 ∈ Rnl×c where yi is a onehot vector, A ∈ Rn×n is the same standard

normalized adjacency matrix in GCN (Kipf & Welling, 2017). The pseudo code for the basic version of RP are shown in the
following algorithm.

Algorithm 1 Basic version of residual propagation.
Input: Raw graph adjacency matrix A, ground-truth labels for training samples Y, step size η, power K.
Compute the normalized graph adjacency matrix by A← D− 1

2 (A+ I)D− 1
2

Initialize R0 ← Y ∈ Rnl×c

Initialize R′
0 ← 0 ∈ R(n−nl)×c

while Validation performance increases do
Label/residual propagation on the graph:
R̃t−1 ← [Rt−1,0] ∈ Rn×c

for i← 1 to K do
R̃t−1 ← A R̃t−1

Update residuals [Rt,R
′
t]← [Rt−1,R

′
t−1]− ηR̃t−1

Output prediction for testing samples F′ = −R′

E. Additional Experiments
E.1. Incorporating Input Features

For smaller datasets where node features are often more useful (i.e. the dimension of node features is closer to the size of
dataset, for example in Citeseer, the node feature dimension is even larger than the size of dataset), we consider the
following generalized RP algorithm that combines kernel methods to leverage node feature information in the propagation
process [

Rt+1,R
′
t+1

]
= −ηAKK(X̄, X̄)AK [Rt,0] + [Rt,R

′
t] , where R0 = Y,R′

0 = 0, (112)

where K(X̄, X̄) ∈ Rn×n could be specified as arbitrary kernel functions (such as Sigmoid kernel, Gaussian kernel, etc.)
that is applied to compute pairwise similarities. This variant of RP could also be treated as propagation on kernel’s RKHS,
i.e.

AKK(X̄, X̄)AK = (AKK(X̄, ·))(AKK(X̄, ·))⊤, (113)

which is impossible to directly implement in practice but can be achieved by our proposed RP.

With this implementation, RP can still run efficiently by treating the computation of the kernel matrix as a part of data
prepossessing. Specifically, we will test Gaussian kernel which is defined as

K(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
, (114)

while in practice one can treat the kernel function as a hyperparameter to tune for even better performance. The pseudo code
for this version of RP are shown in the following algorithm.
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Algorithm 2 Generalized residual propagation with kernel functions.
Input: Raw graph adjacency matrix A, ground-truth labels for training samples Y, input features X and X′, step size η,

power K.
Compute the normalized graph adjacency matrix by A← D− 1

2 (A+ I)D− 1
2

Compute the kernel matrix based on input features K([X,X′], [X,X′])
Initialize R0 ← Y ∈ Rnl×c

Initialize R′
0 ← 0 ∈ R(n−nl)×c

while Validation performance increases do
Label/residual propagation on the graph:
R̃t−1 ← [Rt−1,0] ∈ Rn×c

for i← 1 to K do
R̃t−1 ← A R̃t−1

R̃t−1 ← K([X,X′], [X,X′]) R̃t−1

for i← 1 to K do
R̃t−1 ← A R̃t−1

Update residuals [Rt,R
′
t]← [Rt−1,R

′
t−1]− ηR̃t−1

Output prediction for testing samples F′ = −R′

E.2. Homophilic Datasets

To evaluate the generalized RP algorithm in (112), we experiment on 7 more (smaller) datasets: Cora, Citeseer,
Pubmed, Computer, Photo, CS, Physics. For Cora, Citeseer, Pubmed, we follow the public split, while for
other datasets, we randomly split them into training/validation/testing sets based on ratio 8/1/1. Statistics of these datasets
are reported in Table. 3. For RP, we tune the hyperparameters K and σ. For baselines (Wu et al., 2019; Kipf & Welling,
2017; Xu et al., 2018; Klicpera et al., 2019), we tune the hyperparameters provided in their original paper and report mean
and standard deviation of testing accuracy with 20 different runs.

The results are reported in Table. 4. We found the proposed RP almost always achieves the best or second best performance,
and outperforms GCN in 6 out of 7 datasets even using no learnable parameters. In terms of the average performance, RP
achieved the highest ranking out of all popular GNN models considered. Better performance can potentially be achieved by
considering more advanced kernel functions or other specialized propagation matrices.

E.3. Heterophilic Datasets

For a comprehensive evaluation, we further consider 5 heterophilic benchmarks roman-empire, amazon-ratings,
minesweeper, tolokers, questions from a recent paper Platonov et al. (2023), which has addressed some draw-
backs of existing datasets used for evaluating models designed specifically for heterophily. We use 10 existing standard
train/validation/test splits provided in their paper, and statistics of these datasets are also reported in Table. 3. Baselines are
recently proposed strong GNN models that are carefully designed to tackle the heterophily problem.

The results are reported in Table. 5. We observed that the proposed RP maintains a strong level of performance when
compared to these meticulously designed models, surpassing 6 out of the 9 in terms of average performance. It is important
to note that RP has been proven to be suboptimal when applied to heterophilic graphs and is orthogonal to various other
techniques designed for addressing this challenge. These observations suggest that there is significant untapped potential for
further improvement of the algorithm to address this issue.
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Table 4: Performance of generalized RP on homophilic datasets. We mark the first and second place with gold and silver,
and compare its performance with GCN by ∆GCN .

Model Cora Citeseer Pubmed Computer Photo CS Physics Avg.

MLP 59.7 ± 1.0 57.1 ± 0.5 68.4 ± 0.5 85.42 ± 0.51 92.91 ± 0.48 95.97 ± 0.22 96.90 ± 0.27 79.49
SGC 81.0 ± 0.5 71.9 ± 0.5 78.9 ± 0.4 89.92 ± 0.37 94.35 ± 0.19 94.00 ± 0.30 96.19 ± 0.13 86.61
GCN 81.9 ± 0.5 71.6 ± 0.4 79.3 ± 0.3 92.25 ± 0.61 95.16 ± 0.92 94.10 ± 0.34 96.64 ± 0.36 87.28
JKNet 81.3 ± 0.5 69.7 ± 0.2 78.9 ± 0.6 91.25 ± 0.76 94.82 ± 0.22 93.57 ± 0.49 96.31 ± 0.29 86.55

APPNP 82.6 ± 0.2 71.7 ± 0.5 80.3 ± 0.1 91.81 ± 0.78 95.84 ± 0.34 94.41 ± 0.29 96.84 ± 0.26 87.64

RP (Ours) 82.7 ± 0.0 73.0 ± 0.0 80.1 ± 0.0 92.00 ± 0.00 95.55 ± 0.00 94.60 ± 0.00 96.75 ± 0.00 87.81
∆GCN + 0.8 + 1.4 + 1.2 - 0.25 + 0.39 + 0.19 + 0.11 + 0.53

Table 5: Performance of generalized RP on heterophilic datasets. The first three datasets use Accuracy, and the last two
datasets use ROC-AUC. We report the ranking of RP among all baselines.

Model roman-empire amazon-ratings minesweeper tolokers questions Avg.

ResNet 65.88 ± 0.38 45.90 ± 0.52 50.89 ± 1.39 72.95 ± 1.06 70.34 ± 0.76 61.39
H2GCN (Zhu et al., 2020) 60.11 ± 0.52 36.47 ± 0.23 89.71 ± 0.31 73.35 ± 1.01 63.59 ± 1.46 64.64
CPGNN (Zhu et al., 2021) 63.96 ± 0.62 39.79 ± 0.77 52.03 ± 5.46 73.36 ± 1.01 65.96 ± 1.95 59.02

GPR-GNN (Chien et al., 2021) 64.85 ± 0.27 44.88 ± 0.34 86.24 ± 0.61 72.94 ± 0.97 55.48 ± 0.91 64.88
FSGNN (Maurya et al., 2022) 79.92 ± 0.56 52.74 ± 0.83 90.08 ± 0.70 82.76 ± 0.61 78.86 ± 0.92 76.87

GloGNN (Li et al., 2022) 59.63 ± 0.69 36.89 ± 0.14 51.08 ± 1.23 73.39 ± 1.17 65.74 ± 1.19 57.35
FAGCN (Bo et al., 2021) 65.22 ± 0.56 44.12 ± 0.30 88.17 ± 0.73 77.75 ± 1.05 77.24 ± 1.26 70.50

GBK-GNN (Du et al., 2022) 74.57 ± 0.47 45.98 ± 0.71 90.85 ± 0.58 81.01 ± 0.67 74.47 ± 0.86 73.58
JacobiConv (Wang & Zhang, 2022) 71.14 ± 0.42 43.55 ± 0.48 89.66 ± 0.40 68.66 ± 0.65 73.88 ± 1.16 69.38

RP (Ours) 66.01 ± 0.56 47.95 ± 0.57 80.48 ± 0.76 78.05 ± 0.90 76.39 ± 1.16 69.78
Ranking 4 / 10 2 / 10 7 / 10 3 / 10 3 / 10 4 / 10

30


