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Abstract
Aligning text-to-image diffusion model (T2I) with
preference has been gaining increasing research
attention. While prior works exist on directly
optimizing T2I by preference data, these meth-
ods are developed under the bandit assumption
of a latent reward on the entire diffusion reverse
chain, while ignoring the sequential nature of the
generation process. This may harm the efficacy
and efficiency of preference alignment. In this
paper, we take on a finer dense reward perspec-
tive and derive a tractable alignment objective
that emphasizes the initial steps of the T2I re-
verse chain. In particular, we introduce tempo-
ral discounting into DPO-style explicit-reward-
free objectives, to break the temporal symmetry
therein and suit the T2I generation hierarchy. In
experiments on single and multiple prompt gen-
eration, our method is competitive with strong
relevant baselines, both quantitatively and qual-
itatively. Further investigations are conducted
to illustrate the insight of our approach. Source
code is available at https://github.com/
Shentao-YANG/Dense_Reward_T2I .

1. Introduction
Text-to-image diffusion model (T2I, Ramesh et al., 2022;
Saharia et al., 2022), trained by large-scale text-image pairs,
has achieved remarkable success in image generation. As
an effort towards more helpful and less harmful generations,
methods have been proposing to align T2I with preference,
partially motivated by the progress of human/AI-feedback
alignment for large language models (LLMs) (Bai et al.,
2022b; OpenAI, 2023; Touvron et al., 2023). Prior works
in this field typically optimize the T2I against an explicit re-
ward function trained in the first place (Wu et al., 2023b; Xu
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et al., 2023; Lee et al., 2023b). To remove the complexity in
the modeling and computing of an explicit reward function,
recent work has generalized direct preference optimization
(DPO, Rafailov et al., 2023) from LLM into T2I’s prefer-
ence alignment (Wallace et al., 2023a), under a counterpart
assumption of DPO that there is a latent reward function
evaluating the entire diffusion reverse chain as a whole.

While DPO-style approaches have shown impressive poten-
tial, from the reinforcement learning (RL) perspective, these
methods typically formulate the diffusion reverse chain as a
contextual bandit, i.e., treating the entire generation trajec-
tory as a single action; though the diffusion reverse chain is
intrinsically a sequential generation process (Sohl-Dickstein
et al., 2015; Ho et al., 2020). Since the reverse chain typi-
cally requires tens or even thousands of steps (Song et al.,
2020; 2021), such a bandit assumption, in particular, of a
reward function on the whole chain/trajectory, can lead to a
combinatorially large decision space over all timesteps. This
issue is twined with the well-known sparse reward (delayed
feedback) issue in RL (Andrychowicz et al., 2017; Liu et al.,
2019), where an informative feedback is only provided after
generating the entire trajectory. We hereafter use “sparse
reward” to refer to this issue. Without considering the se-
quential nature of the generation process, it is known from
RL and LLM literature that this sparse reward issue, which
often comes with high gradient variance and low sample
efficiency (Guo et al., 2022), can clearly hurt model training
(Marbach & Tsitsiklis, 2003; Takanobu et al., 2019).

In this paper, we contribute to the research on DPO-style
explicit-reward-free alignment methods by taking on a finer-
grain dense-reward perspective, motivated by recent studies
on the latent preference-generating reward function in NLP
(e.g., Yang et al., 2023) and robotics (e.g., Kim et al., 2023;
Hejna et al., 2023). Instead of the hypothetical trajectory-
level reward function, we assume a latent reward function
that can score each step of the reverse chain, in hoping
an easier learning problem from the RL viewpoint (e.g.,
Laidlaw et al., 2023). Inspired by studies on diffusion and
T2I generation that the initial portion of the reverse chain
sets up the image outline based on the given text conditional,
and image’s high-level attributes and aesthetic shapes (Ho
et al., 2020; Wang & Vastola, 2023), we hypothesize that
emphasizing those initial steps in T2I’s preference alignment
can help efficacy and efficiency, since those steps can be
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more directly related to the final de-noised image’s being the
preferred one. Under this hypothesis, we break the temporal
symmetry in the DPO-style alignment losses by introducing
the temporal discounting factor, a key RL ingredient, into
T2I’s alignment. Practically, we develop a lower bound of
the resulting Bradley-Terry preference model (Bradley &
Terry, 1952), which leads to a tractable loss to train a T2I
for preference alignment in an explicit-reward-free manner.

We test our method on the task of single prompt generation,
which is easier for investigation; and the more challenging
multiple prompt generation, where we align our T2I with
the preference pertaining to one set of prompts and evaluate
on another large-scale set of prompts. On both tasks, our
method exhibits competitive quantitative and qualitative
performance against strong baselines. We conduct further
studies on the effectiveness of emphasizing the initial steps
of the reverse chain in T2I’s alignment, which to our best
knowledge has not been well investigated in literature.

2. Main Method
2.1. Notations and Assumptions

In this section, we state the notations and assumptions for
deriving our method. As discussed in Section 1, our first
and foremost assumption is a latent dense reward.
Assumption 2.1. There is a latent reward function r(st, at)
that can score each step t of the T2I reverse chain.

We adopt the notations in prior works (e.g., Fan et al., 2023;
Black et al., 2023) to formulate the diffusion reverse process
under the conditional generation setting as an Markov de-
cision process (MDP), specified byM = (S,A,P, r, γ, ρ).
Specifically, let πθ be the T2I with trainable parameters θ,
i.e., the policy network; {xt}0t=T be the diffusion reverse
chain of length T ; and c be the text conditional, i.e., the
conditioning variable. We have, ∀ t,

st ≜ (xt, t, c) , πθ(at | st) ≜ pθ(xt−1 |xt, t, c),

at ≜ xt−1 , ρ(s0) ≜ (N (0, I), δ(T ), δ(c)),

P(st+1 | st, at) ≜ δ(xt−1, t− 1, c) , r(st, at) , γ ∈ [0, 1],

where δ(·) is the delta measure and P(· | st, at) is a de-
terministic transition. We denote generically the reverse
chain generated by a T2I under the text conditional c as
a trajectory τ , i.e., τ ≜ (s0, a0, s1, a1, . . . , sT ) ⇐⇒
(xT ,xT−1, . . . ,x0) | c . Note that for notation simplicity, c
is absorbed into the state part of τ .

Similar to Wallace et al. (2023a), we consider the setting
where we are given two trajectories (reverse chains) with
equal length T . For simplicity, assume that τ1 is the better
one, i.e., τ1 ≻ τ2. Let tuple ord ≜ (1, 2) and σ(·) denotes
the sigmoid function, i.e., σ(x) = 1/(1 + exp (−x)) .

As in standard RL settings (Sutton & Barto, 2018; Yang
et al., 2022b), the reward function r in M needs to be

bounded. Without loss of generality, we assume r(s, a) ∈
[0, 1], and thus r(s, a) may be interpreted as the probability
of satisfying the preference when taking action a at state s.
Assumption 2.2. InM, ∀ (s, a) ∈ S×A, 0 ≤ r(s, a) ≤ 1.

The performance of a (generic) policy π is typically evalu-
ated by the expected cumulative discounted rewards (Sutton
& Barto, 2018), which is defined as,

η(π) ≜ E
[∑T

t=0 γ
t r(st, at) | s0 ∼ ρ, at ∼ π, st+1 ∼ P

]
. (1)

Assumption 2.3. Based on Eq. (1), we assume that for
a (generation) trajectory τ = (s0, a0, s1, a1, . . . , sT ), its
quality is evaluated by e(τ) ≜

∑T
t=0 γ

t r(st, at) .
Remark 2.4 (Practical Rationality of e(τ)). Since the final
step of the reverse chain depends on all previous steps, a
score or (human) evaluation on the final de-noised image
should indeed evaluate the whole corresponding de-noising
chain, i.e., the entire generation trajectory τ . This notion is
particularly intuitive when the de-noising process is deter-
ministic, e.g., DDIM (Song et al., 2020). Though motivated
from the RL viewpoint (Eq. (1)), in evaluating a T2I’s gener-
ation, typically humans first check its conceptual shapes and
matching with the text prompt; and if that’s OK, then look
at finer details in the image. Thus, the initial steps of the
reverse chain, which set up image outlines (Section 1), can
play a more important role in an image’s being preferred.
This insight is distilled into e(τ) by using γ < 1, which
emphasizes the contribution from the initial steps.

2.2. Method Derivation

The derivation of our method is inspired by the RL literature
(e.g., Kakade & Langford, 2002; Schulman et al., 2015;
Peng et al., 2019) and DPO (Rafailov et al., 2023). Due to
the space limit, in this section we only present the key steps.
A step-by-step derivation is deferred to Appendix B.

Directly optimizing η(π) in Eq. (1) requires constantly sam-
pling from the current learning policy, which can be less
practical for T2I’s preference alignment. We are therefore
motivated by the cited literature to consider an approximate
off-policy objective. Specifically, we employ the initial
pre-trained T2I, denoted as πI ; and generate the off-policy
trajectories by some “old” policy πO, where πO may be
chosen as πI or some saved policy checkpoint not far from
πI . We denote dπO

(s) as the stationary distribution of πO

(detailed in Appendix B.2.1). To avoid generating unnatu-
ral images, we impose a KL regularization towards πI on
the learning policy π. Together, we arrive at the following
regularized policy optimization problem

argmax
π

Es∼dπO
(s)Ea∼π(a | s) [r(s, a)]

− C · Es∼dπO
(s) [DKL (π(· | s) ∥πI(· | s))]

s.t.

∫
A
π(a | s) da = 1, ∀ s ∈ S ,

(2)
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where C is a tuning regularization/KL coefficient.

By solving the first-order condition of the Lagrange form of
Eq. (2), we can get the optimal (regularized) policy π∗ as

π∗(a | s) = exp (r(s, a)/C)πI(a | s) /Z(s) , (3)

where Z(s) denotes the partition function, taking the form

Z(s) =

∫
A
exp (r(s, a)/C)πI(a | s) da .

We also have the relation between π∗ and r, as

r(s, a) = C log [π∗(a | s)/πI(a | s)] + C logZ(s) . (4)

For a given trajectory τ = (s0, a0, s1, a1, . . . , sT ), after
plugging in Eq. (4), e(τ) can be expressed by π∗ as

e(τ) = C
∑T

t=0

[
γt log π∗(at | st)

πI(at | st)

]
+ C logZ(τ) . (5)

where we denote logZ(τ) ≜
∑T

t=0 γ
t logZ(st) for nota-

tion simplicity since the discounted sum is over all st ∈ τ .

Under the Bradley-Terry (BT) model, by plugging in Eq. (5),
the probability of ord under {e(τk)}2k=1 and hence π∗ is

Pr
(
ord |π∗, {e

(
τk
)
}2k=1

)
= σ

(
e
(
τ1
)
− e

(
τ2
))

=

exp

(
C
∑T

t=0 γ
t log

π∗(a1
t | s1t)

πI(a1
t | s1t )

)
Z
(
τ1
)C

∑2
i=1 exp

(
C
∑T

t=0 γ
t log

π∗(ai
t | sit)

πI(ai
t | sit)

)
Z (τ i)

C
.

(6)

Eq. (6), however, contains the intractable partition functions
Z(τ1) and Z(τ2). We will provide a tractable lower bound
of Eq. (6) by arguing that Z(τ1) ≥ Z(τ2). Our argument is
based on the reward-shaping technique (Ng et al., 1999).

Definition 2.5 (Reward Shaping). A shaping-reward func-
tion Φ is a real-valued function on the state space, Φ : S→
R. It induces a new MDPM′ = (S,A,P, r′, γ, ρ) where
r′(s, a) ≜ r(s, a) + Φ(s).

Lemma 2.6 (Invariance of Optimal Policy under Reward
Shaping). The optimal (regularized) policy Eq. (3) under the
reward-shaped MDPM′ is the same as that in the original
MDPM .

The proof is deferred to Eq. (19) in Appendix B.2.2. Note
thatM′ andM share the same state and action space. Thus,
it makes sense to consider the invariance of the optimal
policy, where invariance means at each state taking the same
action with the same probability.

Definition 2.7. The equivalence class [r] of the reward
function r is the set of all reward functions that can be
obtained from r by reward shaping, i.e., ∀ r′ ∈ [r],∃Φ :
S→ R, s.t. r′(s, a)− r(s, a) = Φ(s),∀ s ∈ S , a ∈ A .

Remark 2.8. By Lemma 2.6, all reward functions in [r] share
the same optimal (regularized) policy as r, i.e., Eq. (3).

We are now able to justify our argument: Z(τ1) ≥ Z(τ2).
Theorem 2.9. Under Assumption 2.2, and a sufficiently
large regularization coefficient C, for any finite number
K ≥ 2 of trajectories {τk}Kk=1 where τ1 ≻ τ2 ≻ · · · ≻ τK ,
∃ r′ ∈ [r], s.t., Z(τ1) ≥ Z(τ2) ≥ · · · ≥ Z(τK) under r′.

We defer the proof of Theorem 2.9 to Appendix B.3.2.
Remark 2.10. For the value of C, as we will see in the proof,
we technically require that ∀(s, a) ∈ S × A, r(s, a)/C ≤
const ≈ 1.79. Under Assumption 2.2, C ≥ 0.56 will suf-
fice. We note that this technical requirement helps reducing
the search space of the hyperparameter C in practice.
Remark 2.11. By Lemma 2.6, r′ in Theorem 2.9 and the
original r lead to the same optimal policy π∗, which is our
ultimate target. Due to this invariance, for notation simplic-
ity, we hereafter refer to r′ as r, though we may actually
work in the “equivalent” MDPM′ = (S,A,P, r′, γ, ρ).

With Theorem 2.9, we can provide a simpler lower bound
to Pr(ord |π∗, {e

(
τk
)
}2k=1) in Eq. (6),

Pr
(
ord |π∗,

{
e
(
τk
)}2

k=1

)
≥

exp

(
C
∑T

t=0 γt log
π∗(a1

t | s1t)
πI(a1

t | s1t )

)
∑2

i=1 exp

(
C
∑T

t=0 γt log
π∗(ai

t | sit)
πI(ai

t | sit)

) . (7)

Recall that e(τ) evaluates a trajectory τ ’s quality, and
thus a better trajectory comes with a higher e(τ). Hence
Pr(ord |π∗, {e(τk)}2k=1) = maxPr(· |π∗, {e(τk)}2k=1),
i.e., underM with πI and conditioning on π∗, ord should
be the most probable ordering under the BT model shown
in Eq. (6). Thus, in order to approximate π∗, we train πθ

by maximizing the lower bound Eq. (7) of the correspond-
ing BT likelihood of ord, which leads to the negative-log-
likelihood loss function for training πθ as

Lγ(θ | ord, {e(τk)}2k=1)

=− log σ

(
CEt∼Cat({γt})

[
log

πθ

(
a1t | s1t

)
πI (a1t | s1t )

− log
πθ

(
a2t | s2t

)
πI (a2t | s2t )

])
,

(8)

where Cat({γt}) denotes the categorical distribution on
{0, . . . , T} with the probability vector {γt/

∑
t′ γ

t′}Tt=0

and C is overloaded to absorb the normalization constant.

Interpretation. To see what Lγ(θ | ord, {e(τk)}2k=1),
our loss in Eq. (8), is doing, let’s calculate its gradient.

Since Eq. (8) is an objective for minimization problem, the
gradient update direction is−∇θLγ . For notation simplicity,

we denote ẽ(τk) ≜ C
∑T

t=0 γ
t log

πθ(a
k
t | skt )

πI(ak
t | skt )

. We have

∂ (−Lγ(θ | ord, {e(τk)}2k=1))

∂ θ
=

exp
(
ẽ
(
τ2
)
− ẽ

(
τ1
))

1 + exp (ẽ (τ2)− ẽ (τ1))︸ ︷︷ ︸
(*)

×C

×
T∑

t=0

γt
(
πI(a

1
t | s1t )∇θ logπθ(a

1
t | s1t )− πI(a

2
t | s2t )∇θ log πθ(a

2
t | s2t )

)
.

(9)
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Algorithm 1 Outline of Our Off-policy Learning Routine.

Input: Prompt distribution p(c), T2I πθ, training steps
Mtr, trajectory collect period Mcol, # prompts to collect
trajectories Npr, # trajectories for each prompt Ntraj .
Initialization: Sample Npr prompts {c} ∼ p(c), get
Ntraj trajectories for each c .
for iter ∈ {1, . . . ,Mtr} do

Sample a mini-batch B ≜ {(τ1i , τ2i )ci
}i from storage.

Optimize πθ via Eq. (8) using B.
if iter % Mcol == 0 then

Re-sample Npr prompts {c} ∼ p(c), get Ntraj tra-
jectories for each c, and update the storage.

end if
end for

Detailed derivation is in Appendix B.3.1. The term (*) is
high when ẽ(τ2) > ẽ(τ1), i.e., in the unwanted case where
the discounted (relative) likelihood of the inferior trajectory
τ2 is higher. In that case, we increase the likelihood of
(st, at) ∈ τ1 and decrease (st, at) ∈ τ2. Note that this
mechanism is weighted by γt, with which we emphasize the
earlier steps in the reverse chain. As discussed in Section 1,
this could be more effective in getting desirable final images.

Additionally, for (st, at), if πI(at | st) is small, our changes
(increase or decrease likelihood) can be small too. This may
be interpreted as those (st, at) are at the edge of the initial
distribution threatening the generation of realistic images.
Meanwhile, if πI(at | st) is high, our changes can be also
high, since we now have more “room” for improving and our
gradient utilizes this to achieve safe and effective training.

2.3. Practical Implementation

In practice, we assume that πθ is optimized over a given
prompt distribution p(c), where p(c) = δ(c) if we fine-tune
πθ on a single prompt c, and p(c) = Unif(D(c)) for a
dataset D(c) of prompts if tuning πθ on multiple prompts.

We implement our algorithm as an online off-policy learning
routine. Similar to prior RL works (e.g., Mnih et al., 2013;
Lillicrap et al., 2016), we iterate between (1) using the
current πθ to sample Ntraj trajectories for each of the Npr

prompts sampled from p(c); and (2) training πθ via Eq. (8)
on mini-batches of trajectories sampled from all stored. To
mimic the classical RLHF settings (e.g., Ziegler et al., 2019;
Ouyang et al., 2022), we set Ntraj = 5 ≥ 2 for resource
efficiency. In calculating the loss Eq. (8), we sample Nstep

timesteps from Cat({γt}) to estimate the expectation inside
σ(·). Algo. 1 outlines the key steps of our method.

2.4. Connection with the DPO Objective.

The original DPO loss (Eq. (7) in Rafailov et al. (2023)) can
be obtained as a variant of Eq. (8) when setting γ = 1, after
factorizing out the probability at each step t. Using γ = 1

in our formulation is equivalent to the DPO-style trajectory-
level bandit setting since γ = 1 makes the contribution of
each timestep t to e(τ) symmetric, i.e., each timestep is
equally important, and therefore each timestep t is symmet-
ric in the loss as well. Likewise, in DPO-style trajectory-
level bandit setting, since the trajectory as a whole receives
a single reward, this reward/evaluation does not distinguish
each step t within the trajectory either, making each timestep
t symmetric again in the training loss, same as our variant
with γ = 1. Due to this connection in the loss, we refer to
this variant as “trajectory-level reward,” indistinguishable
to whether it actually comes from a trajectory-level bandit
setting or our formulation but with γ = 1. As a reminder,
in our formulation, if we set γ < 1, then the contribution
of each timestep t to e(τ) will not be symmetric, since ear-
lier steps will be emphasized. This leads to the desirable
asymmetry of timestep t in the loss, as shown in Eq. (8).

3. Related Work
T2I’s Alignment with Preference. There have been grow-
ing interests in aligning T2I’s, or more broadly diffusion
models’, generations to (human) preferences. Efforts have
been putting on tuning the models on curated data (Podell
et al., 2023; Dai et al., 2023) or re-captioning existing image
datasets (Betker et al., 2023; Segalis et al., 2023), to bias T2I
generation towards better text fidelity and aesthetics. These
data enhancement efforts may complement our method.

To more directly optimize the feedback, methods have been
proposing to fine-tune T2I with respect to (w.r.t.) reward
models pre-trained on large-scale human preference datasets
(Xu et al., 2023; Wu et al., 2023a; Kirstain et al., 2023). Lee
et al. (2023a) and Wu et al. (2023b) adapt the classical su-
pervised training by fine-tuning T2I via reward-weighted
likelihood or discarding low-reward images, with online
versions extended by Dong et al. (2023). By formulating the
denoising process as an MDP, policy gradient methods are
adopted to fine-tune T2I for specific rewards (Fan & Lee,
2023; Fan et al., 2023; Black et al., 2023) or polishing the
input prompts (Hao et al., 2022). Further assuming a differ-
entiable reward function, a more direct alignment/feedback-
optimization can be achieved by backpropagating the reward
function’s gradient through the reverse chain (e.g., Clark
et al., 2023; Prabhudesai et al., 2023; Wallace et al., 2023b).
Although optimizing w.r.t. explicit rewards have shown effi-
cacy and efficiency, it requires a stronger assumption than
our method on having an explicit scalar reward function,
while assuming analytic gradients of the reward function is
even stronger. By contrast, our method only requires binary
comparison between generated images/trajectories, which
is among the simplest in T2I’s preference alignment.

Most close to our work, Diffusion-DPO (Wallace et al.,
2023a) also considers an explicit-reward-free T2I alignment
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Figure 1: ImageReward scores for the seen prompts in the single prompt experiments. “Orig.” denotes the original SD1.5. “SFT” is the
supervised fine-tuned model. “Traj.” denotes the classical DPO-style objective discussed in Section 2.4, i.e., assuming trajectory-level
reward. All our produced results are the average over 100 samples. Horizontal line indicates the best baseline result.
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Figure 2: Aesthetic scores for the seen prompts in the single prompt experiments. Number reporting and abbreviations follow Fig.1.

method. It is nevertheless developed under a different set-
ting where the generation latents are discarded, and thus it
needs to approximate the reverse process with the forward.
However, given the relatively-small scale of the preference
alignment stage, storing the reverse chains can be both fea-
sible and straightforward. We thereby eschew such an ap-
proximation and use the exact generation latents. More im-
portantly, as in DPO (Rafailov et al., 2023), Diffusion-DPO
is derived by assuming reward on the whole chain/trajectory,
obtainable as a variant of our method (Section 2.4) and dis-
tinct from our dense reward perspective. In experiments, we
validate the efficacy of our perspective by comparing with
this approach of “trajectory-level reward.”

Appendix E reviews literature on (1) dense v.s. sparse train-
ing guidance for sequential generative models, (2) charac-
terizing the (latent) preference generation distribution, and
(3) learning-from-preference in related fields.

4. Experiments
To straightforwardly evaluate our method’s ability to satisfy
preference, motivated by recent papers in directly tuning
T2I w.r.t. pre-trained rewards (Section 3) and relevant pa-
pers in NLP (e.g., Ramachandran et al., 2021; Feng et al.,
2023; Yang et al., 2023), in our experiments, we use the
following logics: We obtain preference among multiple
trajectories by some open-source scorer trained on data
of human preference over T2I’s generations; and test our
method’s ability in increasing the score, as an indication of
the model’s improved alignment with (human) preference.
The scorer factors in text fidelity. For preference simulation,
given a prompt and Ntraj corresponding images, the higher
the score, the more preferable the image is.

For computational efficiency, our policy πθ is implemented
as LoRA (Hu et al., 2021) added on the U-net (Ronneberger
et al., 2015) module of a frozen pre-trained Stable Diffusion

Table 1: Seen and unseen prompts in Section 4.1 for each domain.
Domain Seen Unseen

Color A green colored rabbit. A green colored cat.
Count Four wolves in the park. Four birds in the park.

Composition A cat and a dog. A cat and a cup.
Location A dog on the moon. A lion on the moon.

v1.5 (SD1.5, Rombach et al., 2022), and we only train the
LoRA parameters. With SD1.5, the generated images are of
resolution 512 × 512. For all our main results, we set the
discount factor γ to be γ = 0.9. We perform ablation study
on the γ value in Section 4.3 (b). As in prior works (e.g., Fan
et al., 2023; Black et al., 2023), in both sampling trajectories
and generating evaluation images, we use DDPM sampler
with 50 inference steps and classifier-free guidance (Ho &
Salimans, 2022). We use the default guidance scale of 7.5.
Source code is publicly released.

4.1. Single Prompt

Settings. To facilitate investigation, we first test our
method on the single-text-prompt setting in DPOK (Fan
et al., 2023), i.e., using one prompt during LoRA fine-tuning.
As in DPOK, the goal is to test our method on training the
policy T2I to achieve generating objects with specified col-
ors, counts, or locations, or generating composition of two
objects. We borrow the seen (training) and unseen prompts
from DPOK, which are tabulated in Table 1. In all single
prompt experiments, we use the explicit reward model in
DPOK, ImageReward (Xu et al., 2023), to generate prefer-
ence. We report both ImageReward and (Laion) Aesthetic
score (Schuhmann et al., 2022), averaged over 100 gener-
ated images.

Implementation. For a fair comparison, we collect the
same total amount of 20000 images/trajectories as DPOK.
Rather than its fully-online image-collection strategy, we are
motivated by recent RLHF works (e.g., Ziegler et al., 2019;
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Figure 3: Generated images in the single prompt experiment for both seen and unseen prompts (Table 1). Each comparison is generated
from the same random seed. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Stiennon et al., 2020; Bai et al., 2022a) to more practically
divide our trajectory collection into four stages, where each
stage collects 5000 trajectories and discards the previously
collected ones. As in DPOK, we use LoRA with rank 4 and
train the model for a total of Mtr = 10000 steps, and hence
Mcol = 2500 steps, Npr = 1000. We set the KL coefficient
C = 10 and Nstep = 3. Section 4.3 (c) ablates the value of
C. More details on hyperparameters are in Appendix F.1.

Results. We compare our method with the the origi-
nal SD1.5 (“Orig.”), supervised fine-tuned model (“SFT”),
DPOK, and the classical DPO-style objective, i.e., the ap-
proach of assuming trajectory-level reward, which is abbre-
viated as “Traj.”. As discussed in Section 2.4, “Traj.” can
be obtained by setting γ = 1 in our loss Eq. (8). We follow
the DPOK paper to plot the ImageReward in Fig. 1 and
Aesthetic score in Fig. 2 for the seen prompts, where the
results for “Orig.”, “SFT”, and DPOK are directly from the
DPOK paper. Fig. 3 shows examples of the generated im-
ages from both our method and the baselines. More image
comparisons are deferred to Appendix G.1.

As shown in Fig. 1 and Fig. 2, our method can improve both
ImageReward, the preference generating metric, and the un-
seen Aesthetic score. The higher scores of our method over
DPOK on both metrics validate the efficacy of our method
for T2I’s preference alignment. Comparing with “Traj.”, our
method improves more over the original SD1.5, which we
attribute to our dense reward perspective, implemented by
introducing temporal discounting to emphasize the initial
steps of the diffusion reverse chain. From Fig. 3, it is clear
that, on both seen and unseen text prompts, our method
generates images that are not only faithfully matched with
the prompts, but also of higher aesthetic quality, e.g., having
more colorful details and/or backgrounds. Section 4.3 (a)

compares the generation trajectories of our method and the
baselines. Indeed, our method generates the desired shapes
earlier, which explains why it produces better final images.

4.2. Multiple Prompts

Settings. We consider a more challenging setting where
we apply our method to train a T2I on the HPSv2 (Wu
et al., 2023a) train prompts and evaluate on the HPSv2 test
prompts, which have no intersection with the train prompts.
We obtain preference by HPSv2 and report the average
of both HPSv2 and Aesthetic score over all HPSv2 test
prompts. Due to the large test-set size (3200 prompts), we
follow the HPSv2 paper to generate one image per prompt
for evaluation.

Implementation. We use the same trajectory-collection
strategy as in the single prompt experiments (Section 4.1).
Due to the task complexity and the large size of the HPSv2
train set (> 100, 000 prompts), we collect a total of 100, 000
trajectories, divided into ten collection stages. Each stage
collects 10, 000 trajectories and discards the previously col-
lected ones. We use LoRA with rank 32 and train the model
for a total of Mtr = 40, 000 steps, and hence Mcol = 4000
steps, Npr = 2000. We set the KL coefficient C = 12.5 and
ablates the value of C in Section 4.3 (c). We use Nstep = 1
based on compute constraints such as GPU memory. Ap-
pendix F.2 provides more hyperparameter settings.

Results. Table 2 shows the HPSv2 and Aesthetic score
for our method and selected relevant and/or strong baselines
from the HPSv2 paper, with the full set of baselines deferred
to Table 4 of Appendix A. All baselines available in HPSv2
Github Repository are directly cited. As in Section 4.1,
we further compare with the classical DPO-style objective
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Table 2: HPSv2 and Aesthetic score for the multiple prompt experiment. Shown here are results for selected relevant and/or strong
baselines, with full set of results in Table 4 of Appendix A. The first four result columns are the four styles in HPSv2 test set and “Average”
is the overall average. Best result in each metric is bold. Note that HPSv2 paper and Github repository do not report Aesthetics score.

Model Animation Concept-art Painting Photo Average Aesthetic

DALL·E 2 27.34 26.54 26.68 27.24 26.95 -
Stable Diffusion v1.5 27.43 26.71 26.73 27.62 27.12 5.62
Stable Diffusion v2.0 27.48 26.89 26.86 27.46 27.17 -
SDXL Refiner 0.9 28.45 27.66 27.67 27.46 27.80 -
Dreamlike Photoreal 2.0 28.24 27.60 27.59 27.99 27.86 -

Trajectory-level Reward 29.37 28.81 28.83 29.16 29.04 5.94
Ours 30.46 29.95 30.01 29.93 30.09 6.31

Figure 4: Generated images in the multiple prompt experiment from our method and baselines, with prompts. “DL” denotes Dreamlike
Photoreal 2.0, the best baseline from HPSv2 paper. “Traj. Rew.” is the classical DPO-style objective of assuming trajectory-level reward.

of assuming trajectory-level reward (Section 2.4). Fig. 4
shows examples of generated images from our method and
baselines, with more image comparisons in Appendix G.2.

As seen in Table 2, our method is able to improve the pref-
erence generating metric, HPSv2, and the unseen Aesthetic
score. The improvement from our method is larger than the
variant of assuming trajectory-level reward, validating our
insight of emphasizing the initial part of the T2I generation
process, a product of our distinct dense reward perspective.
In Fig. 4, we see that our method generates images well
matched with the text prompts, in some cases better than
the baselines, e.g., on the prompts of “a girl at night,” “fox
knight,” and “scooter with a dog on.” From both short and
the more challenging long prompts, our method is able to
generate vivid images, often with sophisticated aesthetic
shapes. Together with the image examples in Appendix G.2,

Fig. 4 qualitatively validates the efficacy of our method.

4.3. Further Study

This section considers the following four research questions
to better understand our method.

(a): Does the T2I trained by our method indeed generate
the desired shapes earlier in the diffusion reverse chain?

As discussed in Section 1, we hypothesize that emphasizing
the initial steps of the T2I generation trajectory can help
the effectiveness and efficiency of preference alignment.
As a verification, Fig. 5 digs into the generated images of
the prompt “A green colored rabbit.” in the single prompt
experiment, by showing the generation trajectories corre-
sponding to the images in Fig. 3. Specifically, we compare
our method and the baselines on the images x̂0 predicted
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Figure 5: Generation trajectories from our method and the baselines on the prompt “A green colored rabbit.” in the single prompt
experiment, correspond to the images in Fig. 3. Shown are the x̂0 predicted from the latents at the specified steps of the reverse chain.
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(b) Multiple (HPSv2)
Figure 6: Preference generating metrics over the training process,
for the single and multiple prompt experiments under various dis-
count factor γ. x-axis represents t% of the training process. In (a)
all lines start from −0.02 at 0%, the value of “Orig.” in Fig. 1a.
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Figure 7: Preference generating metrics with error bars showing one
standard deviation, for the single and multiple prompt experiments
under various KL coefficient C. Horizontal line indicates the best
baseline result from Fig. 1a and Table 2.

from the latents at the specified timesteps of the reverse
chain. More trajectory comparisions are in Appendix G.3.

As shown in Fig. 5, and in particular the steps circled out by
the red rectangle therein, our method can generate identifi-
able shapes of a rabbit as early as at Steps 3 and 5, while the
baselines are still largely unrecognizable, e.g., similar to a
mouse. At step 11, our method is able to produce a relatively
complete image to the given prompt, while the baselines
are much cruder. This comparison confirms that, with the
incorporation of γ < 1, our method can match the given
prompt earlier in the reverse chain, and thereby more steps
later in the chain can be allocated to polish pictorial details
and aesthetics, leading to better/preferable final images.

(b): What will happen if we change the value of γ?

To investigate the impact of temporal discount factor γ on
training T2I for preference alignment, we consider more
values of γ between γ = 0.9 used in our main results,
and γ = 1 in the classical approach of trajectory-level
reward. Fig. 6 plots the preference generating metrics over
the training process, under γ ∈ {0.9, 0.95, 0.99, 1.0}, for
the single prompt (“A green colored rabbit.”) and multiple
prompt experiments. We use the same evaluation protocols
as in the main results. For HPSv2, we plot the average over
the test set. Patterns on other single prompts are similar.

As shown in Fig. 6, using a smaller temporal discount factor,
such as γ = 0.9 or γ = 0.95, trains T2I faster and better,
compared to larger γ values, especially the classical DPO-
style loss of γ = 1. Recall from Section 1 that a smaller
γ emphasizes more on the initial part of the reverse chain,
while a sparse trajectory-level reward, equivalent to γ = 1,
can incur training instability. In Fig. 6, on both experiments,
γ = 0.9 or γ = 0.95 generally leads to larger improvement
at the beginning of the training process. This validates our
intuition and prior study that stressing the earlier steps of the
reverse chain could improve the training efficiency of align-
ing T2I with preference. From Fig. 6, even using γ = 0.99,
a small break on the temporal symmetry in the DPO-style
losses, can improve training efficiency and stability over
the classical setting of γ = 1. This further corroborates the
efficacy of our dense reward perspective on T2I’s alignment.
Appendix C further discusses the effect of γ on training T2I.

(c): Is our method robust to the choice of KL coefficient C?

To study the sensitivity of our method to the KL coefficient
C in our loss Eq. (8), we vary the value of C from the values
set in Sections 4.1 and 4.2. Fig. 7 plots the scores of the
preference generating metrics for experiments in the single
prompt (“A green colored rabbit.”) and multiple prompts.
Other single prompts show similar patterns. For HPSv2, we
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Table 3: Human evaluation on the multiple prompt experiment.
Shown are our “win rate” against the baselines specified in Fig. 4,
i.e., the percentage of times our method is preferred in binary
comparisons. Detailed description on the setup is in Appendix F.3.

Opponent SD1.5 Dreamlike Traj. Rew.

Win Rate 76.8% 68.3% 65.1%

again plot the average over the test set, with Aesthetic and
breakdown scores for each style in Table 5 at Appendix A.

From Fig. 7, we see that our method is generally robust
across a range of KL coefficient C. A small value of C may
be prone to overfitting while a large value may distract/slow
the training process, both of which deteriorate the results.

(d): Are the images from our method preferred by humans?

To further verify our method, we collect human evaluations
on the generated images in the multiple prompt experiment,
where binary comparisons between two images from two
models are conducted. Table 3 shows the “win rate” of our
method over each of the baselines in Fig. 4. Detailed setups
of the human evaluation are provided in Appendix F.3.

The preference for our method over each baseline is evident
in Table 3. Recall that the preference source, HPSv2 scorer,
is trained on human preference data. The gain of our method
over raw SD1.5 verifies the efficacy of our method in align-
ing T2I with preference. Further, images from our method
are more often preferred over the corresponding images
from the classical trajectory-level reward approach. This
again validates our dense reward perspective that introduces
temporal discounting into T2I’s preference alignment.

5. Conclusion
To suit the explicit-reward-free preference-alignment loss to
the sequential generation nature of T2I and improve on the
classical trajectory-level reward assumption, in this paper,
we take on a dense reward perspective and introduce tem-
poral discounting into the alignment objective, motivated
by both an easier learning task in RL and the generation
hierarchy of T2I reverse chain. By experiments and further
studies, we validate the efficacy of our method and reveal its
key insight. Future work may involve extending our method
to noisy preference labels and applying it to broader applica-
tions, such as text-to-video or image-to-image generation.

Impact Statement
Our paper contributes to the ongoing research on increas-
ing helpfulness and decreasing harmfulness of generative
models, by proposing a method that seeks to improve the
efficacy and efficiency of aligning T2I with preference. Of a
special note, our method does not require training an explicit
reward model, which can potentially save some compute

and resources. On the other hand, as prior preference align-
ment methods, it is possible that our method will be misused
to train malicious T2I by aligning with some unethical or
ill-intended preference. This potential negative impact may
be alleviated by a more closer monitoring on the datasets
and preference sources to which our method is applied.

Limitations
As with classical off-policy RL and RLHF methods, our
method’s iteration between model training and data collec-
tion incurs additional complexity and costs, compared to
the pure offline approach of gathering data only once prior
to policy training. On the other hand, it is known that off-
policy methods can reduce the mismatch between learning
policy’s generation distribution and the data distribution,
and generally lead to more stable training and better results
than pure offline methods. Another limitation of our method
is that our method requires storing the generation reverse
chains. Though this is feasible and straightforward given
the relatively-small scale of the preference alignment stage,
our approach does raise extra CPU-memory and/or storage
requirements, compared to only storing the final images and
discarding all generation latents. As an example, in our ex-
periments with SD1.5, storing the generation latents requires
about two times more CPU memory (not GPU memory), cal-
culated as 50×4×642/(5122×3)×(16/8) ≈ 2.08, where
the last multiplier comes from the fact that our generation
latents are stored in bfloat16 format and the final images
are in uint8. This limitation may be further alleviated by
using a more advanced diffusion/T2I sampler.
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A. Tabular Results

Table 4: HPSv2 and Aesthetic score for the multiple prompt experiment in Section 4.2. The first four result columns are the four styles
in the HPSv2 test set and “Average” is the overall average. “Trajectory-level Reward” is the classical DPO-style objective discussed in
Section 2.4, which assumes a latent trajectory-level reward function evaluating the entire T2I reverse chain as a whole. All baselines
benchmarked in the HPSv2 paper are directly cited from the official Github Repository. Our produced results follow the testing principle
in the HPSv2 paper and GitHub Repository. We bold the best result in each metric. Note that the HPSv2 paper and Github Repository do
not report the Aesthetic score.

Model Animation Concept-art Painting Photo Average Aesthetic

GLIDE 23.34 23.08 23.27 24.50 23.55 -
LAFITE 24.63 24.38 24.43 25.81 24.81 -
VQ-Diffusion 24.97 24.70 25.01 25.71 25.10 -
FuseDream 25.26 25.15 25.13 25.57 25.28 -
Latent Diffusion 25.73 25.15 25.25 26.97 25.78 -
DALL·E mini 26.10 25.56 25.56 26.12 25.83 -
VQGAN + CLIP 26.44 26.53 26.47 26.12 26.39 -
CogView2 26.50 26.59 26.33 26.44 26.47 -
Versatile Diffusion 26.59 26.28 26.43 27.05 26.59 -
DALL·E 2 27.34 26.54 26.68 27.24 26.95 -
Stable Diffusion v1.4 27.26 26.61 26.66 27.27 26.95 -
Stable Diffusion v1.5 27.43 26.71 26.73 27.62 27.12 5.62
Stable Diffusion v2.0 27.48 26.89 26.86 27.46 27.17 -
Epic Diffusion 27.57 26.96 27.03 27.49 27.26 -
DeepFloyd-XL 27.64 26.83 26.86 27.75 27.27 -
Openjourney 27.85 27.18 27.25 27.53 27.45 -
MajicMix Realistic 27.88 27.19 27.22 27.64 27.48 -
ChilloutMix 27.92 27.29 27.32 27.61 27.54 -
Deliberate 28.13 27.46 27.45 27.62 27.67 -
SDXL Base 0.9 28.42 27.63 27.60 27.29 27.73 -
Realistic Vision 28.22 27.53 27.56 27.75 27.77 -
SDXL Refiner 0.9 28.45 27.66 27.67 27.46 27.80 -
Dreamlike Photoreal 2.0 28.24 27.60 27.59 27.99 27.86 -

Trajectory-level Reward 29.37 28.81 28.83 29.16 29.04 5.94
Ours 30.46 29.95 30.01 29.93 30.09 6.31

Table 5: HPSv2 and Aesthetic score for the ablation study on KL coefficient C in Section 4.3 (c). Shown here are breakdown scores of
our main method (γ = 0.9) in the multiple prompt experiment under various value of C, together with the best baseline in Table 4 of
Appendix A. The first four result columns are the four styles in HPSv2 test set and “Average” is the overall average. Within subscript is
one standard deviation, as plotted in Fig. 7b, calculated by the principle described in the HPSv2 paper and GitHub Repository.

Model HPSv2

Animation Concept-art Painting Photo Averaged Aesthetic

Baseline 29.37 28.81 28.83 29.16 29.04 5.94
C = 7.5 30.16 29.59 29.64 29.76 29.79 (0.26) 6.24
C = 10.0 30.36 29.87 29.91 29.80 29.99 (0.23) 6.29
C = 12.5 30.46 29.95 30.01 29.93 30.09 (0.22) 6.31
C = 15.0 30.30 29.72 29.74 29.77 29.88 (0.20) 6.23
C = 20.0 30.28 29.73 29.76 29.95 29.93 (0.20) 6.17
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B. Detailed Method Derivation and Proofs
In this section, we provide a detailed step-by-step derivation of our method. For completeness and better readability, some
materials in Section 2 will be restated.

B.1. Notation and Assumptions

This section restates the notations and assumptions in Section 2.1 for convenience.

Assumption 2.1. There is a latent reward function r(st, at) that can score each step t of the T2I reverse chain.

We adopt the notations in prior works (e.g., Fan et al., 2023; Black et al., 2023) to formulate the diffusion reverse process
under the conditional generation setting as an Markov decision process (MDP), specified by M = (S,A,P, r, γ, ρ).
Specifically, let πθ be the T2I with trainable parameters θ, i.e., the policy network; {xt}0t=T be the diffusion reverse chain
of length T ; and c be the conditioning variable, i.e., the text conditional in our setting. We have, ∀ t,

st ≜ (xt, t, c) , at ≜ xt−1 , πθ(at | st) ≜ pθ(xt−1 |xt, t, c) ,

P(st+1 | st, at) ≜ δ(xt−1, t− 1, c) , ρ(s0) ≜ (N (0, I), δ(T ), δ(c)) , r(st, at) , γ ∈ [0, 1] ,

where δ(·) is the delta measure and P(st+1 | st, at) is a deterministic transition. We denote the reverse chain generated by a
(generic) T2I under the text conditional c as a trajectory τ , i.e., τ ≜ (s0, a0, s1, a1, . . . , sT ) ⇐⇒ (xT ,xT−1, . . . ,x0) | c.
Note that for notation simplicity, c is absorbed into the state part of trajectory τ .

Similar to Wallace et al. (2023a), in the method derivation, we consider the setting where we are given two diffusion reverse
chains (trajectories) with equal length T . For presentation simplicity, assume that τ1 is the better trajectory, i.e., τ1 ≻ τ2.
Let tuple ord ≜ (1, 2) and σ(·) denotes the sigmoid function, i.e., σ(x) = 1

1+exp(−x) .

Since in practice the state space of the T2I reverse chain is the continuous embedding space, it is self-evident to assume that
any two trajectories do not cross with each other, as follows.

Assumption B.1 (No Crossing Trajectories). ∀ τ i ̸= τ j , sit ̸= sjt , ∀ t ∈ {0, . . . , T}.

Furthermore, as in the standard RL setting (Sutton & Barto, 2018; Yang et al., 2022b), the reward function r inM needs to
be bounded. Without loss of generality, we assume r(s, a) ∈ [0, 1], and thus r(s, a) may be interpreted as the probability of
satisfying the preference when taking action a at state s.

Assumption 2.2. InM, ∀ (s, a) ∈ S× A, 0 ≤ r(s, a) ≤ 1.

In RL problems, the performance of a (generic) policy π is typically evaluated by the expected cumulative discounted
rewards (Sutton & Barto, 2018), which is defined as,

η(π) ≜ E

[
T∑

t=0

γt r(st, at) | s0 ∼ ρ(·), at ∼ π(· | st), st+1 ∼ P(· | st, at),∀ t ≥ 0

]
. (10)

Note that Eq. (10) above is an extended version of Eq. (1) in Section 2.1.

Assumption 2.3. Based on Eq. (1), we assume that for a (generation) trajectory τ = (s0, a0, s1, a1, . . . , sT ), its quality is
evaluated by e(τ) ≜

∑T
t=0 γ

t r(st, at) .

Remark 2.4 in Section 2.1 provides a discussion on the practical rationality of e(τ) in T2I’s preference alignment.
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B.2. Step-by-step Derivation of Our Method

B.2.1. EXPRESSION OF e(τ)

We can express η(π) in Eq. (10) by the (discounted) stationary distribution dπ(s) of the policy π, defined as dπ(s) ∝∑T
t=0 γ

t Pr(st = s |π,P), up to a (positive) normalizing constant (Yang et al., 2022a;c). We have

η(π) = Eat∼π,st+1∼P

[
T∑

t=0

γt r(st, at)

]
=

T∑
t=0

∫
S
Pr(st = s |π,P)

∫
A
π(a | s) γt r(s, a) da ds

=

∫
S

T∑
t=0

γt Pr(st = s |π,P)
∫
A
π(a | s) r(s, a) dads

∝
∫
S
dπ(s)

∫
A
π(a | s) r(s, a) da ds = Es∼dπ(s)Ea∼π(a | s) [r(s, a)] .

The goal of RL is to maximize the expected cumulative discounted rewards η(π), which is unfortunately difficult due to the
complicate relationship between dπ(s) and π. We therefore optimize an off-policy approximation of η(π) by employing an
approximation approach common in prior RL works (e.g., Kakade & Langford, 2002; Peters et al., 2010; Schulman et al.,
2015; Abdolmaleki et al., 2018; Peng et al., 2019). Specifically, we change dπ(s) to dπO

(s) for some “old” policy πO, from
which we generate the off-policy trajectories/data. We further add a KL regularization on π towards the initial pre-trained
model πI to avoid generating unnatural images. In sum, we arrive at the following constrained policy search problem

argmax
π

Es∼dπO
(s)Ea∼π(a | s) [r(s, a)]

s.t. DKL (π(· | s) ∥πI(· | s)) ≤ ϵ , ∀ s ∈ S∫
A
π(a | s) da = 1, ∀ s ∈ S,

(11)

where πO may be chosen as πI or some saved policy checkpoint not far away from πI .

Enforcing the pointwise KL-regularization in Eq. (11) is difficult, as in AWR (Peng et al., 2019), we change the pointwise
KL-regularization into enforcing the regularization only in expectation Es∼dπO

[· · · ] and change Eq. (11) into a regularized
maximization problem

argmax
π

Es∼dπO
(s)Ea∼π(a | s) [r(s, a)]− C · Es∼dπO

(s) [DKL (π(· | s) ∥πI(· | s))]

s.t.

∫
A
π(a | s) da = 1, ∀ s ∈ S.

(12)

The Lagrange form of the maximization problem Eq. (12) is

L(π) ≜ Es∼dπO
(s)Ea∼π(a | s) [r(s, a)]− C · Es∼dπO

(s) [DKL (π(· | s) ∥πI(· | s))] +
∫
S
αs

(
1−

∫
A
π(a | s) da

)
ds .

(13)

∀ s ∈ S, a ∈ A, the optimal policy under L(π) can be obtained by setting the derivatives w.r.t. π(a | s) equal to 0. We have

∂ L(π)
∂ π(a | s) = dπO

(s)r(s, a)− CdπO
(s) log π(a | s)− CdπO

(s) + CdπO
(s) log πI(a | s)− αs = 0

=⇒ r(s, a) = C log
π∗(a | s)
πI(a | s)

+ C +
αs

dπO
(s)

(14)

where π∗ is the optimal policy under r.

From Eq. (14), we can also get the formula for the optimal policy π∗ as

π∗(a | s) = exp

(
1

C
r(s, a)

)
πI(a | s) exp

(
−1− αs

CdπO
(s)

)
≜ exp

(
1

C
r(s, a)

)
πI(a | s)

1

Z(s)
, (15)
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where Z(s) denotes the partition function, taking the form

Z(s) =

∫
A
exp

(
1

C
r(s, a)

)
πI(a | s) da.

For a given trajectory τ = (s0, a0, s1, a1, . . . , sT ), the quality evaluation e(τ) can be expressed by π∗ as

e(τ) ≜
T∑

t=0

γt r(st, at) = C

T∑
t=0

γt log
π∗(at | st)
πI(at | st)

+ C

T∑
t=0

γt

(
1 +

αst

CdπO
(st)

)

= C

T∑
t=0

γt log
π∗(at | st)
πI(at | st)

+ C

T∑
t=0

γt logZ(st).

(16)

Since the trajectory τ and hence all st’s are given, Z(st)’s are constant and the summation over logZ(st) is a “property” of
the trajectory τ , we thus denote logZ(τ) ≜

∑T
t=0 γ

t logZ(st) for notation simplicity. Then the formula for e(τ) becomes

e(τ) = C

T∑
t=0

[
γt log

π∗(at | st)
πI(at | st)

]
+ C logZ(τ) . (17)

B.2.2. LOSS FUNCTION FOR T2I/POLICY TRAINING

Recall that we are given two diffusion reverse chains (trajectories)
{
τ1, τ2

}
with equal length T . Also recall the notation

that τ1 is the better trajectory, i.e., τ1 ≻ τ2, the tuple ord ≜ (1, 2) and σ(·) denotes the sigmoid function. Under the
Bradley-Terry model of pairwise preference, the probability of ord under

{
e
(
τk
)}2

k=1
and hence π∗ is

Pr
(
ord |π∗,

{
e
(
τk
)}2

k=1

)
=

exp
(
e
(
τ1
))

exp (e (τ1)) + exp (e (τ2))
= σ

(
e
(
τ1
)
− e

(
τ2
))

, (18)

where we explicitly put π∗ into the conditioning variables for better readability.

From Eq. (17), e
(
τ1
)

and e
(
τ2
)

respectively contains the “partition functions” Z(τ1) and Z(τ2), both of which are
intractable. We argue that Z(τ1) ≥ Z(τ2), which will be critical for providing a tractable lower bound of Eq. (18) that
cancels out these partition functions. Our argument is based on the reward-shaping technique (Ng et al., 1999), as follows.

Definition 2.5 (Reward Shaping). A shaping-reward function Φ is a real-valued function on the state space, Φ : S→ R. It
induces a new MDPM′ = (S,A,P, r′, γ, ρ) where r′(s, a) ≜ r(s, a) + Φ(s).

Lemma 2.6 (Invariance of Optimal Policy under Reward Shaping). The optimal (regularized) policy Eq. (3) under the
reward-shaped MDPM′ is the same as that in the original MDPM .

Remark B.2. The only difference between the MDPsM andM′ is the reward function (r v.s. r′). In particular, they share
the same state and action space. Therefore, it make sense to consider the invariance of the optimal policy in these two MDPs.
Invariance means that, in these two MDPs, at each state, the optimal policies take the same action with the same probability.

Proof of Lemma 2.6. Denote the optimal policy under the MDPM′ as π∗′
, we have

π∗′
(a | s) = exp

(
1
C (r(s, a) + Φ(s))

)
πI(a | s)∫

A exp
(
1
C (r(s, a) + Φ(s))

)
πI(a | s) da

=
exp

(
1
CΦ(s)

)
exp

(
1
C r(s, a)

)
πI(a | s)

exp
(
1
CΦ(s)

) ∫
A exp

(
1
C r(s, a)

)
πI(a | s) da

= π∗(a | s),
(19)

since exp
(
1
CΦ(s)

)
is independent of the integration dummy-variable a in the denominator.

Definition 2.7. The equivalence class [r] of the reward function r is the set of all reward functions that can be obtained from
r by reward shaping, i.e., ∀ r′ ∈ [r],∃Φ : S→ R, s.t. r′(s, a)− r(s, a) = Φ(s),∀ s ∈ S , a ∈ A .

Remark 2.8. By Lemma 2.6, all reward functions in [r] share the same optimal (regularized) policy as r, i.e., Eq. (3).

With the reshaping technique, we can justify our previous argument that Z(τ1) ≥ Z(τ2) as follows.
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Theorem 2.9. Under Assumption 2.2, and a sufficiently large regularization coefficient C, for any finite number K ≥ 2 of
trajectories {τk}Kk=1 where τ1 ≻ τ2 ≻ · · · ≻ τK , ∃ r′ ∈ [r], s.t., Z(τ1) ≥ Z(τ2) ≥ · · · ≥ Z(τK) under r′.

We defer the proof of Theorem 2.9 to Section B.3.
Remark 2.10. For the value of C, as we will see in the proof, we technically require that ∀(s, a) ∈ S × A, r(s, a)/C ≤
const ≈ 1.79. Under Assumption 2.2, C ≥ 0.56 will suffice. We note that this technical requirement helps reducing the
search space of the hyperparameter C in practice.
Remark 2.11. By Lemma 2.6, r′ in Theorem 2.9 and the original r lead to the same optimal policy π∗, which is our ultimate
target. Due to this invariance, for notation simplicity, we hereafter refer to r′ as r, though we may actually work in the
“equivalent” MDPM′ = (S,A,P, r′, γ, ρ).

With Theorem 2.9, we can lower bound Pr
(
ord |π∗,

{
e
(
τk
)}2

k=1

)
in Eq. (18) by a simpler formula. After plugging the

expression of e(τ) w.r.t. the optimal policy π∗ in Eq. (17), we have,

Pr
(
ord |π∗,

{
e
(
τk
)}2

k=1

)
=

exp

(
C
∑T

t=0 γ
t log

π∗(a1
t | s1t)

πI(a1
t | s1t )

)
Z
(
τ1
)C

∑2
i=1 exp

(
C
∑T

t=0 γ
t log

π∗(ai
t | sit)

πI(ai
t | sit)

)
Z (τ i)

C

≥
exp

(
C
∑T

t=0 γ
t log

π∗(a1
t | s1t)

πI(a1
t | s1t )

)
Z
(
τ1
)C

∑2
i=1 exp

(
C
∑T

t=0 γ
t log

π∗(ai
t | sit)

πI(ai
t | sit)

)
Z (τ1)

C

=

exp

(
C
∑T

t=0 γ
t log

π∗(a1
t | s1t)

πI(a1
t | s1t )

)
∑2

i=1 exp

(
C
∑T

t=0 γ
t log

π∗(ai
t | sit)

πI(ai
t | sit)

) .

(20)

By our definition on the quality evaluation e(τ), a better trajectory τ comes with a higher e(τ). Hence
exp

(
e
(
τ1
))

/
(∑2

i=1 exp
(
e
(
τ i
)))
≥ exp

(
e
(
τ2
))

/
(∑2

i=1 exp
(
e
(
τ i
)))

. In other words, among
{
τ1, τ2

}
, τ1 should

have the highest chance of being ranked top under the Bradley-Terry preference model Eq. (18) induced by the true reward
r(s, a). Thus we conclude that Pr

(
ord |π∗,

{
e
(
τk
)}2

k=1

)
= maxPr

(
· |π∗,

{
e
(
τk
)}2

k=1

)
, i.e., in the MDPM (orM′)

with the addition of (πI , C) and conditioning on π∗, ord should be the most probable ordering under the Bradley-Terry
model Eq. (18). Thus, in order to approximate π∗, our parametrized policy πθ ought to maximize the likelihood of ord
under the corresponding Bradley-Terry model constructed by substituting π∗ with πθ. Based on this intuition, we train πθ by
maximizing the lower bound of the Bradley-Terry likelihood of ord in Eq. (20), which leads to the negative-log-likelihood
objective for an minimization problem for training πθ as

Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

)
=− log σ

(
C

T∑
t=0

γt

[
log

πθ

(
a1t | s1t

)
πI (a1t | s1t )

− log
πθ

(
a2t | s2t

)
πI (a2t | s2t )

])

=− log σ

(
C × 1− γT+1

1− γ
Et∼Cat({γt})

[
log

πθ(a
1
t | s1t )

πI(a1t | s1t )
− log

πθ(a
2
t | s2t )

πI(a2t | s2t )

])
=− log σ

((
C × 1− γT+1

1− γ

)
Et∼Cat({γt})

[
log

πθ(a
1
t | s1t )

πI(a1t | s1t )
− log

πθ(a
2
t | s2t )

πI(a2t | s2t )

])
=− log σ

(
C Et∼Cat({γt})

[
log

πθ(a
1
t | s1t )

πI(a1t | s1t )
− log

πθ(a
2
t | s2t )

πI(a2t | s2t )

])
with C ← C × 1− γT+1

1− γ
,

(21)

where Cat ({γt}) denotes the categorical distribution on {0, . . . , T} with the probability vector {γt/
∑

t′ γ
t′}Tt=0; and C is

overloaded to absorb the normalization constant, which is legitimated given that C itself is a hyperparameter and so does C
times the normalization constant.
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B.3. Proofs

B.3.1. DERIVATION OF THE GRADIENT IN EQ. (9)

Here we derive the gradient of Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

)
in Eq. (21) with respect to θ, which is presented in Section 2.2.

Since Eq. (21) is an objective for a minimization problem, the gradient update direction is−∇θLγ

(
θ | ord,

{
e
(
τk
)}2

k=1

)
=

∇θ

(
−Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

))
. The gradient can be derived by chain rule as follows. For notation simplicity, we

denote ẽ(τk) ≜ C
∑T

t=0 γ
t log

πθ(ak
t | skt )

πI(ak
t | skt )

. We have

−Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

)
= − log

(
1 + exp

(
ẽ
(
τ2
)
− ẽ

(
τ1
)))

∂
(
−Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

))
∂ (ẽ (τ2)− ẽ (τ1))

= − exp
(
ẽ
(
τ2
))

exp (ẽ (τ1)) + exp (ẽ (τ2))

∀ k = 1, 2,
∂ ẽ
(
τk
)

∂ θ
= C

T∑
t=0

γt∇θ log
πθ

(
akt | skt

)
πI

(
akt | skt

) = C

T∑
t=0

γtπI

(
akt | skt

)
πθ

(
akt | skt

)∇θπθ

(
akt | skt

)
= C

T∑
t=0

γtπI

(
akt | skt

)
∇θ log πθ

(
akt | skt

)

∂
(
−Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

))
∂ θ

=
∂
(
−Lγ

(
θ | ord,

{
e
(
τk
)}2

k=1

))
∂ (ẽ (τ2)− ẽ (τ1))

(
∂ ẽ
(
τ2
)

∂ θ
− ∂ ẽ

(
τ1
)

∂ θ

)

= − exp
(
ẽ
(
τ2
))

exp (ẽ (τ1)) + exp (ẽ (τ2))

(
∂ ẽ
(
τ2
)

∂ θ
− ∂ ẽ

(
τ1
)

∂ θ

)

=
exp

(
ẽ
(
τ2
))

exp (ẽ (τ1)) + exp (ẽ (τ2))

(
∂ ẽ
(
τ1
)

∂ θ
− ∂ ẽ

(
τ2
)

∂ θ

)

=
exp

(
ẽ
(
τ2
)
− ẽ

(
τ1
))

1 + exp (ẽ (τ2)− ẽ (τ1))
× C ×

T∑
t=0

γt

(
πI

(
a1t | s1t

)
∇θ log πθ

(
a1t | s1t

)
− πI

(
a2t | s2t

)
∇θ log πθ

(
a2t | s2t

))
.

B.3.2. PROOF OF THEOREM 2.9

As a reminder, in Theorem 2.9 we consider a more general case where we are given a finite number K of trajectories whose
preference ordering is assume to be τ1 ≻ τ2 ≻ · · · ≻ τK . Each trajectory τk takes the form τk = (sk0 , a

k
0 , s

k
1 , a

k
1 , . . . , s

k
T ).

A Simplified Case without Reward Shaping.

To gain some intuitions, we first present a simplified setting where the distribution πI is deterministic on the given samples,
i.e., πI

(
ait | sit

)
= δ

(
ait | sit

)
. In this scenario, Theorem 2.9 can be proved without using the reward-shaping argument.

We now state and proof this special case of Theorem 2.9.

Theorem B.3 (A special case of Theorem 2.9). If the sampling distribution πI

(
ait | sit

)
= δ

(
ait | sit

)
, then the original

reward function r(s, a) satisfies Z(τ1) ≥ Z(τ2) ≥ · · · ≥ Z(τK) .
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Proof. Our target is ∀ k ∈ {1, . . . ,K} , i ∈ {k, . . . ,K},

Z(τk) ≥ Z(τ i) ⇐⇒ logZ(τk) ≥ logZ(τ i) ⇐⇒
T∑

t=0

γt logZ
(
skt
)
≥

T∑
t=0

γt logZ
(
sit
)

⇐⇒
T∑

t=0

γt
(
logZ

(
skt
)
− logZ

(
sit
))
≥ 0.

In the special case of πI

(
ait | sit

)
= δ

(
ait | sit

)
, with the original reward function r(s, a), we have

Z
(
sit
)
=

∫
A
exp

(
1

C
r
(
sit, a

))
πI

(
a | sit

)
da = exp

(
1

C
r
(
sit, a

i
t

))
=⇒ logZ

(
sit
)
=

1

C
r
(
sit, a

i
t

)
=⇒ logZ

(
skt
)
− logZ

(
sit
)
=

1

C

(
r
(
skt , a

k
t

)
− r

(
sit, a

i
t

))
=⇒

T∑
t=0

γt
(
logZ

(
skt
)
− logZ

(
sit
))

=
1

C

T∑
t=0

γt
(
r
(
skt , a

k
t

)
− r

(
sit, a

i
t

))
.

Since τk ≻ τ i ⇐⇒ e
(
τk
)
> e

(
τ i
)
, plugging in the definition of e (τ), we get,

e
(
τk
)
> e

(
τ i
)
⇐⇒

T∑
t=0

γtr(skt , a
k
t ) ≥

T∑
t=0

γtr(sit, a
i
t) ⇐⇒

T∑
t=0

γt
(
r(skt , a

k
t )− r(sit, a

i
t)
)
≥ 0 ⇐⇒

T∑
t=0

γt logZ
(
skt
)
≥

T∑
t=0

γt logZ
(
sit
)
⇐⇒ logZ

(
τk
)
≥ logZ

(
τ i
)
⇐⇒ Z

(
τk
)
≥ Z

(
τ i
)
.

Hence the original reward function r(s, a), without shaping, satisfies the ordering Z
(
τk
)
≥ Z

(
τ i
)
. Notice that all the

above steps are “⇐⇒ ” and recall our assumption that τ1 ≻ τ2 ≻ · · · ≻ τK =⇒ τk ≻ τ i ⇐⇒ k ≤ i. It is clear that
such an ordering is transitive, in a sense that, if τk ≻ τ i ≻ τ j , then

τk ≻ τ i =⇒ k ≤ i

τ i ≻ τ j =⇒ i ≤ j

}
=⇒ k ≤ j =⇒ Z

(
τk
)
≥ Z

(
τ j
)
.

Since k is arbitrary, we conclude that Z(τ1) ≥ Z(τ2) ≥ · · · ≥ Z(τK), as desired.

The General Case

We repead Theorem 2.9 here for better readability.

Theorem 2.9. Under Assumption 2.2, and a sufficiently large regularization coefficient C, for any finite number K ≥ 2 of
trajectories {τk}Kk=1 where τ1 ≻ τ2 ≻ · · · ≻ τK , ∃ r′ ∈ [r], s.t., Z(τ1) ≥ Z(τ2) ≥ · · · ≥ Z(τK) under r′.

As discussed in Remark 2.10, for the value of C, we technically requires that ∀ (s, a) ∈ S× A, r(s, a)/C ≤ const ≈ 1.79.
Hence, under Assumption 2.2, C ≥ 0.56 will suffice. This provides some information on the setting of hyperparameter C.

Proof. Under the shaped reward r′(s, a) = r(s, a) + Φ(s), Z
(
skt
)

takes the form

Z
(
skt
)
=

∫
A
exp

(
1

C
r
(
skt , a

)
+

1

C
Φ
(
skt
))

πI

(
a | skt

)
da

= exp

(
1

C
Φ
(
skt
))∫

A
exp

(
1

C
r
(
skt , a

))
πI

(
a | skt

)
da

= exp

(
1

C
Φ
(
skt
))

Ea∼πI(· | skt )

[
exp

(
1

C
r
(
skt , a

))]
.
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Taking log on both sides of the equation, by Jensen’s inequality, we have

logZ
(
skt
)
=

1

C
Φ
(
skt
)
+ logEa∼πI(· | skt )

[
exp

(
1

C
r
(
skt , a

))]
≥ 1

C
Φ
(
skt
)
+ Ea∼πI(· | skt )

[
1

C
r
(
skt , a

)]
.

On the other hand, we also have

Z
(
sit
)
= exp

(
1

C
Φ
(
sit
))∫

A
exp

(
1

C
r
(
sit, a

))
πI

(
a | sit

)
da = exp

(
1

C
Φ
(
sit
))

Ea∼πI(· | sit)

[
exp

(
1

C
r
(
sit, a

))]
,

Taking log again on both sides of the equations, we have

logZ
(
sit
)
=

1

C
Φ
(
sit
)
+ log

(
Ea∼πI(· | sit)

[
exp

(
1

C
r
(
sit, a

))])
≤ 1

C
Φ
(
sit
)
+ Ea∼πI(· | sit)

[
exp

(
1

C
r
(
sit, a

))]
− 1

≤ 1

C
Φ
(
sit
)
+ Ea∼πI(· | sit)

[
1 +

1

C
r
(
sit, a

)
+

1

C2
r2
(
sit, a

)]
− 1

≤ 1

C
Φ
(
sit
)
+ Ea∼πI(· | sit)

[
1

C
r
(
sit, a

)
+

1

C2
r
(
sit, a

)]
=

1

C
Φ
(
sit
)
+

C + 1

C2
Ea∼πI(· | sit)

[
r
(
sit, a

)]
where the first inequality is because ∀x > 0, log x ≤ x − 1; the second inequality is because ex ≤ 1 + x + x2,∀x <
const ≈ 1.79; the third inequality is because Assumption 2.2, i.e., ∀ (s, a) ∈ S× A, 0 ≤ r(s, a) ≤ 1.

Combining the above analysis, we have

logZ
(
skt
)
− logZ

(
sit
)
≥ 1

C
Φ
(
skt
)
+ Ea∼πI(· | skt )

[
1

C
r
(
skt , a

)]
− 1

C
Φ
(
sit
)
− C + 1

C2
Ea∼πI(· | sit)

[
r
(
sit, a

)]
≥ 1

C

(
Φ
(
skt
)
− Φ

(
sit
))
− C + 1

C2

where the second inequality is again due to Assumption 2.2, i.e., 0 ≤ r(s, a) ≤ 1.

Summing over t, we have

T∑
t=0

γt
(
logZ

(
skt
)
− logZ

(
sit
))
≥ 1

C

T∑
t=0

γt
(
Φ
(
skt
)
− Φ

(
sit
))
− C + 1

C2

1− γT+1

1− γ
≥? 0 ,

where the desired final inequality of ≥ 0 holds if

T∑
t=0

γt
(
Φ
(
skt
)
− Φ

(
sit
))
≥ C + 1

C

1− γT+1

1− γ
,

where C+1
C

1−γT+1

1−γ < ∞ is finite. Therefore, there exists a finite shaping function Φ(s) satisfying the above constraint,
which can restore the order of Z(τk) and Z(τ i) to be Z(τk) ≥ Z(τ i).

Furthermore, this restoration is transitive in the sense that, for τk ≻ τ i ≻ τ j and the corresponding Z(τk), Z(τ i), and
Z(τ j), if

∑T
t=0 γ

t
(
Φ
(
skt
)
− Φ

(
sit
))
≥ C + 1

C

1− γT+1

1− γ
=⇒ Z(τk) ≥ Z(τ i)

∑T
t=0 γ

t
(
Φ
(
sit
)
− Φ

(
sjt

))
≥ C + 1

C

1− γT+1

1− γ
=⇒ Z(τ i) ≥ Z(τ j),
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then logZ(τk)− logZ(τ j) ≥ 0 ⇐⇒ Z(τk) ≥ Z(τ j), because,

logZ(τk)− logZ(τ j) =
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)
≥ 0 ,

since by Assumption 2.2, C ≥ 0.56 is positive.

It follows that for K trajectories τ1 ≻ τ2 ≻ · · · ≻ τK , we can restore the order of Z
(
τk
)
’s by at most (K−1) requirements

on the reward-shaping function Φ(s), taking the form,

T∑
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γt
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Φ
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)
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))
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Φ
(
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t

)
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(
sKt
))
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C
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1− γ
.

Since each of these (K − 1) requirements only specify a finite lower bound on the discounted sum of the difference of
the reward-shaping function Φ(·) on two trajectories, it is clear that there exists a finite reward-shaping function Φ(s)
satisfying these requirements. Hence, there exists a shaped reward function r′ ∈ [r], r′(s, a) = r(s, a) + Φ(s), such that
Z(τ1) ≥ · · · ≥ Z(τK) under r′.

C. The Smaller γ, The Better?
Though it would be great if “the smaller γ, the better result”, this is unfortunately not true. In the multiple prompt experiment,
as shown in Fig. 6b, γ = 0.95 is slightly better than γ = 0.9 towards the end of training.

As another verification, we re-run our single prompt experiment (“A green colored rabbit.”) under γ = 0.8. Fig. 8 compares
its performance with γ ∈ {0.9, 1.0} at each decile of the training process. From Fig. 8, we see that γ = 0.8 is again better
than the classical setting of γ = 1.0 and indeed trains faster than γ = 0.9 in the first 20% of the training process. However,
in the second half of training, γ = 0.8 is less stable and its performance is inferior to γ = 0.9.

Recall that during training, the smaller γ, the more emphasis is on the initial steps of the reverse chain. As shown in Fig. 8, a
too-small γ may thus have a stronger tendency of overfitting, leading to a more varying training process and inferior final
result. Further, during training, a too-small γ may pay too-few attention to the later steps of the reverse chain that generate
image details, resulting in less preferable image generations.

From Figs. 6b and 8, we conclude that while a sensible incorporation of γ < 1 can outperform the classical setting of
γ = 1, final performance is not monotone with γ. The optimal γ value can be task specific. In our experiments, we find that
γ = 0.9 or 0.95 can be a good starting point.

D. Discussion on Our Method’s Applicability to Real Human Preference
In the experiments (Section 4), we use human-preference scorers for quantitatively verifying our method’s ability to satisfy
(human) preferences, which also facilitates reproducibility. Human-preference scorers are also essential for further studies
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Figure 8: ImageReward over the training process for the single prompt experiment on the color-domain prompt “A green colored rabbit.”,
with γ ∈ {0.8, 0.9, 1.0}. As in Fig. 6a, x-axis represents t% of the training process and all lines start from −0.02 at 0%, the value of
“Orig.” in Fig. 1a.

of our proposed method in Section 4.3 (b) and (c). Apart from the numeric scores, we present image samples and conduct a
human evaluation (Section 4.3 (d)) to verify our method’s ability in generating (human) preferable images.

As presented in Section 2, our method does not make assumptions about the preference source. Thus, a reward function is
not an intrinsic requirement of our method. Being agnostic to the preference source, our method is readily applicable to
(real) human preferences as well.

Adapting the classical off-policy RLHF paradigm in the literature (e.g., Ziegler et al., 2019; Stiennon et al., 2020; Menick
et al., 2022; Bai et al., 2022a), a simple workflow of applying our method to real human preferences iterate on:

1. Generate trajectories from the latest policy, gather human preferences on the corresponding images, and store the
quantities required in Section 2;

2. Continue training the T2I by our proposed loss for a chosen number of steps, utilizing the newly collected human data.

Given its similarity with the cited RLHF literature, we believe that this workflow is indeed practical for human-in-the-loop.

E. More Related Works
Dense v.s. Sparse Training Guidance for Sequential Generative Models. By its sequential generation nature, T2Is
are instances of generative models with sequential nature, which further includes, e.g., text generation models, (Devlin
et al., 2018; Lewis et al., 2019; Radford et al., 2019) and dialog systems (Chen et al., 2017; Kwan et al., 2022). Similar to
T2I’s alignment (Section 3), a classical guiding signal for training sequential generative models is the native trajectory-level
feedback such as the downstream test metric (e.g., Ryang & Abekawa, 2012; Ranzato et al., 2015; Rennie et al., 2017; Paulus
et al., 2017; Shu et al., 2021; Lu et al., 2022; Snell et al., 2022). As discussed in Section 1, ignoring the sequential-generation
nature can incur optimization difficulty and training instability due to the sparse reward issue (Guo et al., 2022; Snell et al.,
2022). In RL-based methods for training text generation models, in particular, it has become popular to incorporate into
the training objective a per-step KL penalty towards the uniform distribution (Guo et al., 2022; Deng et al., 2022), the
initial pre-trained model (Ziegler et al., 2019; Ramamurthy et al., 2022), the supervised fine-tuned model (Jaques et al.,
2019; Stiennon et al., 2020; Jaques et al., 2020; Ouyang et al., 2022), or some base momentum model (Castricato et al.,
2022), to “densify” the sparse reward. Although a per-step KL penalty does help the RL-based training, it can be less
task-tailored should one regularizes the generative models towards those generic distributions, especially regarding the
ultimate training goal — optimizing the desired trajectory-level feedback. As discussed in Yang et al. (2023) (Appendix F),
when combined with the sparse reward issue, such a KL regularization can in fact distract the training of text generation
models from improving the received feedback, especially for the initial steps of the generation process, which unfortunately
will affect all subsequent generation steps.

In some relatively restricted settings, task-specific dense rewards have been explored for training text generation models.
With the assumption of abundant expert data for supervised (pre-)training, Shi et al. (2018) use inverse RL (Russell, 1998) to
infer a per-step reward; Guo et al. (2018) propose a hierarchical approach; Yang et al. (2018) learn LM discriminators; while
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Lin et al. (2017) and Yu et al. (2017) first learn a trajectory-level adversarial reward function similar to a GAN discriminator,
before applying the expensive and high-variance Monte-Carlo rollout to simulate per-step rewards. In the code generation
domain, Le et al. (2022) use some heuristic values related to the trajectory-level evaluation, without explicitly learning
per-step rewards.

Inspired by preference learning in robotics (e.g., Christiano et al., 2017), methods have been recently developed to learn
a dense per-step reward function whose trajectory-level aggregation aligns with the preference ordering among multiple
alternative generations. These methods have been applied to both sufficient-data and low-data regime, in applications of
training task-oriented dialog systems (e.g., Ramachandran et al., 2021; Feng et al., 2023) and fine-tuning text-sequence
generation models (Yang et al., 2023).

Motivated by this promising direction in prior work and an easier learning problem in RL, in this paper, we continue the
research on dense training guidance for sequential generative models, by assuming that the trajectory-level preferences are
generated by a latent dense reward function. Through incorporating the key RL ingredient of temporal discounting factor γ,
we break the temporal symmetry in the DPO-style explicit-reward-free alignment loss. Our training objective naturally suits
the T2I generation hierarchy by emphasizing the initial steps of the T2I generation process, which benefits all subsequent
generation steps and thereby improves both effectiveness and efficiency of training, as shown in our experiments (Section 4).

Characterizing the (Latent) Preference Generation Distribution. Since preference comparisons are typically performed
only among the fully-generated trajectories, aligning trajectory generation with preference mostly requires characterizing
how preference is originated from per-step rewards, as part of the preference model’s assumptions. In the imitation learning
literature, preference model is classical chosen to be the Boltzmann distribution over the undiscounted sum of per-step
rewards (Christiano et al., 2017; Brown et al., 2019; 2020). Several advances have been made on the characterization of
the preference model, especially for accommodating the specific nature of concrete tasks. In robotics, Kim et al. (2023)
proposes to model the (negative) potentials of the Boltzmann distribution by learning a weighted-sum to aggregate the
per-step rewards over the entire trajectory. Motivated by the simulated robotics benchmark of location/goal reaching, an
alternative formulation has been developed that models the potentials of the preference Boltzmann distribution by the
optimal advantage function or regret (Knox et al., 2022; 2023; Hejna et al., 2023). Of a special note, though the objective
in CPL (Eq. (5) in Hejna et al. (2023)) looks similar to our Eq. (8), in experiments, CPL actually sets γ = 1 (Page 29
Table 6 of Hejna et al. (2023)), making their actual loss indeed being the “trajectory-level reward” variant discussed in
Section 2.4. Apart from robotic tasks, in text-sequence generation, Yang et al. (2023) take into account the variable-length
nature of the tasks, e.g., text summarization, and propose to incorporate inductive bias into modelling the potentials of the
preference Boltzmann distribution, through a task-specific selection on how the per-step rewards should be aggregated over
the trajectory. In this paper, we are among the earliest works to consider the characterization of the preference model in
T2I’s alignment. By incorporating temporal discounting (γ < 1) into the preference Boltzmann distribution, we cater for the
generation hierarchy of the diffusion and T2I reverse chain (Ho et al., 2020; Wang & Vastola, 2023). Through experiment
results and further study (Section 4, especially Section 4.3 (a) & (b)), we demonstrate that temporal discounting can be
useful for effective and efficient T2I preference alignment.

Learning-from-preference in Related Fields. As discussed before, learning-from-preference has been a longstanding
problem in robotics/control tasks (Akrour et al., 2011; 2012; Fürnkranz et al., 2012) and has recently been scaled up to
train deep-neural-network-based policies (Christiano et al., 2017; Ibarz et al., 2018; Bıyık et al., 2019; Brown et al., 2019;
2020; Lee et al., 2021; Shin et al., 2021; Hejna & Sadigh, 2023a;b). These methods typically start by learning a reward
function from data of pairwise comparisons or rankings, before using RL algorithms for policy optimization. Motivated
by its success in robotics, learning-from-preference is adopted in the field of natural language generation to improve text
summarization (Ziegler et al., 2019; Stiennon et al., 2020) and has become a de-facto ingredient in the recent trend of LLMs
and conversational agent (e.g., Ouyang et al., 2022; Bai et al., 2022a; Menick et al., 2022; OpenAI, 2023). Apart from
the fine-tuning stage, learning-from-preference has also been applied to the pre-training stage, though only use the sparse
trajectory-level evaluation (Korbak et al., 2023). To alleviate the modelling and compute complexity of an explicit reward
model, following the maximum-entropy principle in control and RL (Ziebart et al., 2008; Ziebart, 2010; Finn et al., 2016),
DPO-style objectives (e.g., Rafailov et al., 2023; Tunstall et al., 2023; Azar et al., 2023; Yuan et al., 2023; Zhao et al., 2023;
Ethayarajh et al., 2023) directly train the LLMs to align with the preference data, without explicitly learning a deep neural
network for the reward function. In this paper, we are among the earliest to study the extension of learning-from-preference
into T2I’s preference alignment. By taking a dense-reward perspective, we contribute to the DPO-style explicit-reward-free
methods by developing a novel objective that emphasizes the initial part of the sequential generation process, which better
accommodates the generation hierarchy of diffusion models and T2Is (Ho et al., 2020; Wang & Vastola, 2023). We validate
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our perspective through experiments in Section 4.

F. Experiment Details
We note that in mini-batch training of Eq. (8), for the the sampled mini-batch B ≜ {(τ1i , τ2i )ci

}i, each trajectories in
the trajectory tuple (τ1i , τ

2
i ) corresponds to the same text prompt ci, which makes the preference comparison between

trajectories valid. Different trajectory tuples may correspond to different text prompts in the multiple prompt experiments.

We implement our method based on the source code of DPOK (Fan et al., 2023), and inherit as many of their designs and
hyperparameter settings as possible, e.g., the specific U-net layers to add LoRA. In the notation of Section 2, the LoRA
parameters are our trainable policy parameter θ. To further save GPU memory, the entire training process is conducted under
bfloat16 precision. For training stability, we are motivated by PPO (Schulman et al., 2017) and DPOK to clip all log
density ratios log πθ(at | st)

πI(at | st) to be within [−ϵ, ϵ], since log (1± ϵ) ≈ ±ϵ. Without further tuning, we set ϵ = 1e− 4 in single
prompt experiments as in DPOK, and ϵ = 5e− 4 in multiple prompt experiments.

Below we discuss the hyperparameter settings specific to our single and multiple prompt experiments.

Table 6: Key hyperparameters for T2I (policy) training in the
single prompt experiments.

Hyperparameter Value

Mtr 10000
Mcol 2500
Npr 1000
Ntraj 5
Nstep 3
C 10.0
γ 0.9
Batch Size 4
LoRA Rank 4
Optimizer AdamW
Learning Rate 3e-5
Weight Decay 2e-3
Gradient Norm Clipping 1.0
Learning Rate Scheduler Constant
Preference Source ImageReward

Table 7: Key hyperparameters for T2I (policy) training in the
multiple prompt experiments.

Hyperparameter Value

Mtr 40000
Mcol 4000
Npr 2000
Ntraj 5
Nstep 1
C 12.5
γ 0.9
Batch Size 32
LoRA Rank 32
Optimizer AdamW
Learning Rate 2e-5
Weight Decay 1.5e-3
Gradient Norm Clipping 0.05
Learning Rate Scheduler Constant
Preference Source HPSv2

F.1. Single Prompt Experiments

Table 6 tabulates the key training hyperparameters, where we use the Adam optimizer with decoupled weight decay (AdamW,
Loshchilov & Hutter, 2017).

F.2. Multiple Prompt Experiments

We note that we obtained the HPSv2 train prompts by email correspondence with HPSv2’s authors. We produce all results
by following the testing principle in the HPSv2 paper and the official GitHub Repository. Table 7 tabulates the key training
hyperparameters, where we again use the AdamW optimizer. In the qualitative comparisons (Fig. 4 and Appendix G.2),
image samples for the baseline “Dreamlike Photoreal 2.0” are directly from the officially released HPSv2 benchmark images.

F.3. Setups of the Human Evaluation

In our human evaluation (Section 4.3 (d)), we generally adopt the principle in prior work (e.g., Wu et al., 2023a; Xu et al.,
2023; Wallace et al., 2023a) to evaluate the generated images’ fidelity to the text prompt, as well as their overall quality. We
use the same set of baseline methods as in Fig. 4, since we view this set as both representative and minimal. In conducting
this evaluation, we randomly sampled 200 prompts from the HPSv2 test set. Note that though we use the same set of baseline
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methods, the sampled text prompts are not necessarily the same as those shown in Fig. 4 and Appendix G.2. We asked
20 qualified evaluators for binary comparisons between two images, each from a different model, based on the provided
corresponding text prompt. The method names were anonymized. The evaluators were asked to read the text prompt and
select which one of the two images is better, in terms of both text fidelity and image quality. To reduce randomness and bias
in human judgement, we ensured that all binary comparisons would be evaluated multiple times by the same or a different
evaluator. In Table 3, we report the “win rate” of our method, i.e., the percentage of binary comparisons with the stated
opponent where the image from our method is preferred. Note that the “win rate” is averaged over all comparisons between
the specified two parties. We leave as future work a more comprehensive and larger scale human evaluation for our method.

G. More Generated Images
G.1. More Images from the Single Prompt Experiment

Figure 9: Single prompt experiment: randomly sampled generated images for the prompt “A green colored rabbit.”, from our method and
the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 10: Single prompt experiment: randomly sampled generated images for the prompt “Four wolves in the park.”, from our method
and the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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Figure 11: Single prompt experiment: randomly sampled generated images for the prompt “A cat and a dog.”, from our method and the
baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 12: Single prompt experiment: randomly sampled generated images for the prompt “A dog on the moon.”, from our method and
the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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Figure 13: Single prompt experiment: randomly sampled generated images for the prompt “A green colored cat.”, from our method and
the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 14: Single prompt experiment: randomly sampled generated images for the prompt “Four birds in the park.”, from our method and
the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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Figure 15: Single prompt experiment: randomly sampled generated images for the prompt “A cat and a cup.”, from our method and the
baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 16: Single prompt experiment: randomly sampled generated images for the prompt “A lion on the moon.”, from our method and
the baselines in Fig. 3. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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G.2. More Images from the Multiple Prompt Experiment

Figure 17: Multiple prompt experiment: generated images from our method and the baselines in Fig. 4 on randomly sampled prompts
from the HPSv2 test set. “DL” denotes Dreamlike Photoreal 2.0, the best baseline from the HPSv2 paper. “Traj. Rew.” denotes the
classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 18: Multiple prompt experiment: generated images from our method and the baselines in Fig. 4 on randomly sampled prompts
from the HPSv2 test set. “DL” denotes Dreamlike Photoreal 2.0, the best baseline from the HPSv2 paper. “Traj. Rew.” denotes the
classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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Figure 19: Multiple prompt experiment: generated images from our method and the baselines in Fig. 4 on randomly sampled prompts
from the HPSv2 test set. “DL” denotes Dreamlike Photoreal 2.0, the best baseline from the HPSv2 paper. “Traj. Rew.” denotes the
classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

Figure 20: Multiple prompt experiment: generated images from our method and the baselines in Fig. 4 on randomly sampled prompts
from the HPSv2 test set. “DL” denotes Dreamlike Photoreal 2.0, the best baseline from the HPSv2 paper. “Traj. Rew.” denotes the
classical DPO-style objective of assuming trajectory-level reward (Section 2.4).
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Figure 21: Multiple prompt experiment: generated images from our method and the baselines in Fig. 4 on randomly sampled prompts
from the HPSv2 test set. “DL” denotes Dreamlike Photoreal 2.0, the best baseline from the HPSv2 paper. “Traj. Rew.” denotes the
classical DPO-style objective of assuming trajectory-level reward (Section 2.4).

G.3. More Generation Trajectories

Recall that for all generation trajectories, we present the (decoded) x̂0 predicted from the latents at the specified timesteps
of the diffusion/T2I reverse chain. A brief discussion on each figure is in its caption.

Figure 22: Generation trajectories for the prompt “A dog on the moon.”, correspond to the images in Fig. 3 from our method and the
baselines. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4). Our method generates
the required shape of a dog as early as at Step 11, when the shapes in the baselines are mostly unrecognizable. At Step 13, our method is
able to give a rather complete generation for the input prompt. Subsequent steps in the reverse chain are then allocated to polish the image
details, leading to better final image.
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Figure 23: Generation trajectories for the prompt “Four wolves in the park.”, correspond to the images in Fig. 3 from our method and the
baselines. “Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4). Our method generates
outlines of the requires shapes (four wolves) as early as at Steps 9 and 11, earlier than the baselines especially the “Traj. Rew.”.

Figure 24: Generation trajectories for the prompt “A cat and a dog.”, correspond to the images in Fig. 3 from our method and the baselines.
“Traj. Rew.” denotes the classical DPO-style objective of assuming trajectory-level reward (Section 2.4). Our method generates the
outlines of the desired shapes as fast as at Steps 3 and 5, especially when compared to the baselines DPOK and raw SD1.5. This helps our
method in generating a more reasonable and better final image.
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