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Abstract
Contrastive Language-Image Pre-training (CLIP)
on large image-caption datasets has achieved re-
markable success in zero-shot classification and
enabled transferability to new domains. How-
ever, CLIP is extremely more vulnerable to tar-
geted data poisoning and backdoor attacks, com-
pared to supervised learning. Perhaps surpris-
ingly, poisoning 0.0001% of CLIP pre-training
data is enough to make targeted data poisoning at-
tacks successful. This is four orders of magnitude
smaller than what is required to poison supervised
models. Despite this vulnerability, existing meth-
ods are very limited in defending CLIP models
during pre-training. In this work, we propose
a strong defense, SAFECLIP, to safely pre-train
CLIP against targeted data poisoning and back-
door attacks. SAFECLIP warms up the model by
applying unimodal contrastive learning (CL) on
image and text modalities separately. Then, it di-
vides the data into safe and risky sets, by applying
a Gaussian Mixture Model to the cosine similarity
of image-caption pair representations. SAFECLIP
pre-trains the model by applying the CLIP loss
to the safe set and applying unimodal CL to im-
age and text modalities of the risky set separately.
By gradually increasing the size of the safe set
during pre-training, SAFECLIP effectively breaks
targeted data poisoning and backdoor attacks with-
out harming the CLIP performance. Our exten-
sive experiments on CC3M, Visual Genome and
MSCOCO demonstrate that SAFECLIP signifi-
cantly reduces the success rate of targeted data
poisoning attacks from 93.75% to 0% and that of
various backdoor attacks from up to 100% to 0%,
without harming CLIP’s performance1.
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1. Introduction
Pre-training large vision-language models on extensive
image-caption data crawled from the internet has achieved
remarkable success in zero-shot classification and robust-
ness to distribution shift. CLIP learns image and text rep-
resentations in a shared space by maximizing the agreement
between the paired image-text representations, and minimiz-
ing the agreement between the unpaired ones. This allevi-
ates the need for high-quality annotations and allows scaling
up the pre-training data to millions (Radford et al., 2021)
and billions of examples (Jia et al., 2021). Despite its supe-
rior performance, CLIP is extremely vulnerable to targeted
data poisoning and backdoor attacks, where an adversary
injects a subset of malicious examples in the training data
to change the prediction of particular examples at test time.
Perhaps surprisingly, poisoning only 0.0001% and 0.01% of
the pre-training data is enough to make targeted data poison-
ing and backdoor attacks successful, respectively (Carlini
et al., 2023; Carlini & Terzis, 2021). Considering that the
large pre-training data of CLIP is often crawled from the
internet, such attacks are very easy to perform in practice.

Despite this vulnerability, protecting CLIP against targeted
data poisoning and backdoor attacks during pre-training has
remained largely unaddressed. The only recently proposed
method, RoCLIP, aims to disassociate the poisoned image-
caption pairs during pre-training by pairing each image
representation with its most similar caption representation
in a random caption pool (Yang & Mirzasoleiman, 2023).
However, RoCLIP can suffer significant performance drop
in downstream performance, limiting its real-world applica-
tion. Two other methods proposed to clean an already poi-
soned pre-trained CLIP, by fine-tuning on a clean data of the
same scale as pre-training (Yang et al., 2023), or fine-tuning
on a clean subset of pre-training data using contrastive learn-
ing on image and text modalities (Bansal et al., 2023). The
first method is clearly not applicable to pre-training, and the
second one even increases the attack success rate if applied
during pre-training on poisoned data, as confirmed in (Yang
& Mirzasoleiman, 2023).

Protecting CLIP against targeted data poisoning and back-
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Pre-training CLIP against Targeted Data Poisoning and Backdoor Attacks

door attacks during pre-training is indeed very challenging.
This is because training only once on the poisoned pairs can
make the attack successful. In contrast, in the supervised
setting the model should be trained on the poisoned data
for several epochs before the attack succeeds (Biggio et al.,
2012; Turner et al., 2019). Thus, to protect CLIP during
pre-training, it is cruical to entirely exclude the poisoned
examples from the pre-training pipeline.

In this work, we propose an effective defense, SAFECLIP,
against strong targeted data poisoning and backdoor attacks
during pre-training CLIP, without compromising its per-
formance. SAFECLIP warms up the model by applying
separate unimodal contrastive losses to image and caption
modalities to reduce the initial similarity of poisoned image-
caption representations. Then, it applies the CLIP loss once
to all pairs with a low learning rate to initially associate the
image-caption representations, while maintaining a low sim-
ilarity for poisoned pairs. Subsequently, SAFECLIP employs
a Gaussian Mixture Model (GMM) on cosine similarity of
image-caption representations to divide the examples into
safe and risky sets. SAFECLIP pre-trains the model using
the CLIP loss on the safe set and unimodal contrastive losses
on image and caption modalities of the risky set. Through-
out training, SAFECLIP updates and expands the safe set. In
doing so, it effectively prevents the poisoned image-caption
pairs to be associated and successfully breaks the attack.
At the same time, it maintains model performance with the
increasing training data size.

We conduct extensive experiments on three image-caption
datasets with different sizes and data distributions, namely
Conceptual Captions 3M (CC3M) (Sharma et al., 2018),
Visual Genome (VG) (Krishna et al., 2017), and MSCOCO
(Lin et al., 2014), that are poisoned with various targeted
data poisoning and backdoor attacks. We show that
SAFECLIP successfully defends CLIP against targeted
data poisoning and backdoor attacks during pre-training,
reducing success rate of targeted poisoning attacks from
93.75% to 0%, and backdoor attacks from up to 100% to
0%, without compromising CLIP’s zero-shot and linear
prob performance.

2. Related Work
Unimodal Contrastive Learning (CL) Unimodal con-
trastive learning is among the most successful methods
for representation learning (Chen et al., 2020; Caron et al.,
2020; Chen & He, 2021). CL maximizes the agreement
between different augmented views of the same example
(positive pairs) while minimizing it for different examples
(negative pairs). A recent body of work aimed to further
improve the performance of CL, by improving the consis-
tency of the representations via momentum encode (He
et al., 2020), eliminating the need for negative pairs (Grill
et al., 2020), or removing redundancy between components

of the representation vectors (Zbontar et al., 2021). Most
relevant to our work is NNCLR, which enriches the learned
representations by keeping a memory bank of augmented
representations and using each example’s nearest neighbor
in it as its positive pair (Dwibedi et al., 2021).

Contrastive Language-Image pre-training (CLIP) Large
vision-language models like CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) achieved a remarkable success
by contrastive pre-training on 400M and 1B image-caption
pairs crawled from the web. Recent work tried to improve
the data efficiency and performance of CLIP. Specifically,
DeCLIP (Li et al., 2021) uses SimSiam (Chen & He, 2021)
and Masked Language Modeling (Devlin et al., 2018) to
match the augmented views of the image representations
and the augmented views of the text representations, to
improve the data efficiency of CLIP. CyCLIP (Goel et al.,
2022) emphasizes the importance of in-modal consistency
and cross-modal consistency between text and image modal-
ity. SLIP (Mu et al., 2022) improves the performance by
including unimodal contrastive learning on images using
SimCLR, which maximizes the agreement between differ-
ent views of the same augmented image while minimizing
agreement between augmented views of different images.

Targeted Data Poisoning and Backdoor Attacks on CLIP
CLIP is highly susceptible to various types of targeted data
poisoning and backdoor attacks (Carlini & Terzis, 2021;
Yang et al., 2023). Targeted data poisoning attacks (TDPA)
aim to deceive the model into misclassifying a specific test
example by modifying the captions of a small subset of the
training data. Backdoor attacks (BA) involve embedding a
backdoor trigger into a small subset of examples in the train-
ing data, with the goal of causing the model to misclassify
any test images with the same trigger. A backdoor trigger
can be either visible, like a distinguishable patch, or invis-
ible, like patterned noise points or patterned image defor-
mation (Chen et al., 2017; Gu et al., 2017; Nguyen & Tran,
2021). Adding trigger to only 0.01% of the pre-training data
can cause the model to misclassify the backdoored exam-
ples. TDPA is even more effective, requiring only 0.0001%
of the data to be poisoned (Carlini & Terzis, 2021).

Protecting CLIP against Targeted Data Poisoning and
Backdoor Attacks Despite the vulnerability of CLIP to
TDPA and BA, existing defense methods are very limited.
RoCLIP (Yang & Mirzasoleiman, 2023) is the only pro-
posed defense for protecting CLIP during pre-training. Ro-
CLIP first augments image-caption pairs using techniques
such as random cropping and color jittering. Subsequently,
it matches each image with its nearest-neighbor caption in a
pool of random captions. The caption representation pool is
updated at the end of every epoch. RoCLIP, however, may
lead to a significant performance drop when defending a
higher amount of poisons.
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Figure 1: Cosine similarities between image-caption
representations. While CLIP directly associate the poisoned
image-caption pairs, SAFECLIP clusters the images and cap-
tions in the same category and pushes away poisoned pairs.

Two recent works proposed data cleansing for fine-tuning
CLIP, or cleaning a poisoned pre-trained CLIP during fine-
tuning. (Yang et al., 2023) proposed dropping examples that
have a low image-caption similarity based on a clean pre-
trained CLIP, to cleanse the fine-tuning data. This method
requires a clean pre-trained model, and a proper threshold
to filter the poisons without discarding a large amount of
clean data. This threshold varies for different attack types
and is difficult to pre-compute. To clean a poisoned CLIP
with TDPA, (Yang et al., 2023) proposed fine-tuning on
a clean dataset of the same size as the pre-training data.
Moreover, to clean a poisoned CLIP with BA, (Bansal et al.,
2023) proposed CleanCLIP, which fine-tunes the model on
a clean subset of the pre-training data with CLIP loss and
CL loss on image and text modalities. The first method is
clearly not applicable to pre-training and the second one,
as shown in (Yang & Mirzasoleiman, 2023), can increase
the attack success rate when applied to the poisoned data.
This is because CL cluster the backdoored images and their
cpations, and the CLIP loss can even better associate the
backdoored images with the poisoned captions.

In this work, we propose the first effective defense for
protecting CLIP against strong TDPA (0.05%) and BA
(0.05%− 0.15%) during pre-training, without compromis-
ing the model’s performance.

3. Preliminary
3.1. Contrastive Language-Image Pre-training (CLIP)

Consider a dataset D = {(xxxI
i ,xxx

T
i )}ni=1 of n image-captions

pairs, where xxxI
i and xxxT

i are the image and caption of the ith

pair. The CLIP architecture consists of an image encoder
fI : I → Rd and a text encoder fT : T → Rd to encode
images and captions. The encoded representations are pro-
jected into the same space and are normalized to have unit
ℓ2-norm. We denote the resulting image and text representa-
tions by zzzIi , zzz

T
i . To create the multi-modal interaction, the

InfoNCE loss is applied to pull the projected representations
of every image-caption pair together while pushing apart the

projected representations of unpaied images and captions in
the same mini-batch. Formally, for a mini-batch of N pairs,
the CLIP loss is defined as:

LCLIP =− 1

2N

N∑
j=1

log

[
exp

(〈
zzzIj , zzz

T
j

〉
/τ

)∑N
k=1 exp

(〈
zzzIj , zzz

T
k

〉
/τ

)]

− 1

2N

N∑
k=1

log

[
exp

(〈
zzzIk , zzz

T
k

〉
/τ

)∑N
j=1 exp

(〈
zzzIj , zzz

T
k

〉
/τ

)] ,

(1)

where τ is a trainable temperature parameter, and ⟨., .⟩
is the inner product between two representations. The
performances of CLIP is evaluated with zero-shot or
linear-probe, as we discuss next.

Zero-shot classification. Zero-shot classification assess
the generalizability and transferability of the model to
unseen tasks. It transforms the downstream labels into
natural language captions using the provided engineered
prompt templates, such as "A photo of a {label}"
(Radford et al., 2021). Then, it calculates the cosine
similarity between the representations of a given image
and each prompt, and predicts the label with the highest
image-prompt similarity.

Linear probe classification. Linear probe classification
refers to evaluating the extracted representations from the
pre-trained image encoder for training a linear classifier on
the downstream labeled data.

3.2. Targeted Data Poisoning and Backdoor Attacks

Targeted data poisoning and backdoor attacks poison CLIP
by injecting a set of poisoned image-caption pairs to the pre-
training data. Let Dp = {(xxxI

i ,xxx
T
c )|xxxI

i ∈ It,xxxT
c ∈ Tadv}

be the injected poisoned pairs, where It is the poisoned
image(s) and Tadv is the set of adversarial caption related to
the adversarial label yadv . To construct the poisoned caption
set, one can search the training dataset for all captions that
contain the adversarial label and use these captions as the
adversarial captions. Another approach is to use CLIP’s set
of 80 different prompt-engineered text descriptions (Rad-
ford et al., 2021) to construct captions for the adversairal
label, and then either use a subset of them or repeat them as
necessary. In our work, we construct Tadv from the training
dataset, which is consistent with the construction methods
used in (Carlini & Terzis, 2021; Yang et al., 2023; Yang &
Mirzasoleiman, 2023; Bansal et al., 2023).

Targeted data poisoning attacks aim to misclas-
sify a particular test example, xxxI

i , as yadv. Hence,
Dp = {(xxxI

i ,xxx
T
c )|xxxT

c ∈ Tadv}.

Backdoor attacks introduce a trigger patch to a set of poi-
soned images. The goal is to misclassify any test exam-
ples with the trigger patch, xxxI

i ⊕ patch, as yadv. Hence,
Dp = {(xxxI

i ⊕ patch, xT
c )|xxxI

i ∈ I,xxxT
c ∈ Tadv}. In contrast
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to targeted data poisoning attacks which target a particular
test example, backdoor attacks inject random images with
the backdoor trigger, paired with the adversarial captions.

Adversary Objective The primary objective of the
adversary is to manipulate the output representations
of CLIP, such that certain images are misclassified into
adversarial categories instead of their true categories, while
the other images are classified correctly.

Adversary Capabilities We assume that the adversary has
limited control over the pre-training data, and can inject
a small number of poisoned examples (≤ 0.05% of the
dataset size for TDPA and ≤ 0.15% of the dataset size
for BA) into the training dataset. Adversary also has the
knowledge of the model structure, the training algorithm,
and the hyperparameter used by their victim, but they
cannot modify the training process directly.

4. Method
Motivation Targeted data poisoning and backdoor attacks
can succeed extremely fast when pre-training CLIP models.
For example, when pre-training on a dataset with 0.01% poi-
son rate, as shown in Appendix, Fig. 4a, the poisoned pairs
become inseparable from the clean pairs after 1 pre-training
epochs. Thus, to prevent the model from being poisoned, it
is essential to filter out the majority of poisoned pairs before
the pre-training starts, and keep them out throughout the
pre-training. If the model avoids training on or is exposed
to only a limited amount of the poisoned data, the represen-
tations of poisoned images and captions do not get close
during pre-training, and the attack fails.

Main Idea To achieve this, SAFECLIP warms up the model
with a few unimodal CL epochs on image and text modali-
ties separately. In doing so, it clusters similar images and
texts, and thus pushes away poisoned images from their
adversarial captions that belong to another category. Sub-
sequently, SAFECLIP applies the CLIP loss once to all ex-
amples with a very small learning rate to associate large
clusters of similar image-caption pairs. As a result, as poi-
soned images and their captions are pushed apart during
unimodal CL warmup, their cosine similarity remains small.
This warmup helps separate poisoned pairs from clean pairs.
SAFECLIP then separates image-caption pairs into a safe
set containing examples with very high cosine similarity
between their image-caption representations, and a risky set
otherwise. Subsequently, it pre-trains the model by applying
the CLIP loss to data in the safe set and unimodal CL loss to
data in the risky set. Then, SAFECLIP gradually increases
the size of the safe set. This method maintains a low poison
ratio in the safe set, effectively defending against strong
attacks while boosting the downstream performance. In
summary, to prevent the model from being poisoned, SAFE-
CLIP consists of three steps: (1) A few epochs of unimodal

Figure 2: SAFECLIP fits a two-components Gaussian Mix-
ture Model (GMM) to the post-warmup cosine similarity,
selecting the safe set based on the chosen threshold t. This
approach reduces the poison rate to as low as 3.75e−4%.

CL warmup; (2) Applying CLIP loss with very small learn-
ing rate to all examples; (3) Pre-training with CLIP loss on
safe set with high cosine similarity, and unimodal loss on
the risky set, while gradually increasing the size of the safe
set. The effect of SAFECLIP on image and text encoders
is shown in Fig 1. CLIP directly aligns the paired image-
caption representations, and is thus prone to being poisoned.
On the other hand, SAFECLIP only clusters images and
captions in the same category. In doing so, it reduces the
similarity of poisoned image-caption representations, which
allows SAFECLIP to successfully defend strong poisoning
and backdoor attacks.

Next, we will discuss each step in more details.

4.1. Unimodal CL Warmup: Pushing Adversarial
Captions away from Poisoned Images

SAFECLIP applies unimodal CL to image and text modal-
ities separately. In doing so, it clusters similar images and
captions while keeping poisoned images apart from their ad-
versarial caption. Effectively, during unimodal CL warmup,
poisoned images and adversarial captions, belonging to dif-
ferent categories, cluster with examples in their own cate-
gory and move away from each other in the representation
space. For example, to poison an image of ‘cat’ with a
‘plane’ caption, the image needs to move closer to the plane
text cluster and away from the cat image cluster in the repre-
sentation space. The closer the image is to its true cat repre-
sentation cluster at the beginning of training, the more chal-
lenging it becomes to poison the image. Same argument ap-
plies to captions. As unimodal CL does not match poisoned
images with captions, it does not risk poisoning the models.
Only r=5 epochs of unimodal CL is sufficient on various var-
ious datasets and attack types, as we will confirm in Sec. 5.2.

Nearest-Neighbors When the poison rate is high, poisoned
images, which are either identical images (TDPA) or images
sharing the backdoor patch (BA) cluster tightly together
in the representation space. To avoid this and enrich the
representation quality, we incorporate a nearest neighbor
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(NN) pool in our unimodal CL training for finding positive
pairs (Dwibedi et al., 2021). Instead of matching augmented
views of the same image or caption, we match each represen-
tation with its NN in a random pool of image representations.
The pool is initialized with random example representations
and is updated with current mini-batch representations, dis-
placing the oldest in the pool. By introducing more diverse
positive pairs, SAFECLIP prevents clustering of poisoned
images and adversarial captions, and can separate the poi-
soned pairs more effectively, as we will empirically confirm
in Sec. 5.2. The unimodal CL loss is defined as:

Lunimodal = − log
exp

(〈
NN(zzzi,P), zzz+i

〉
/τ

)∑N
k=1 exp

(〈
NN(zzzi,P), zzz+k

〉
/τ

) (2)

where zzzi is the output image/text representation and zzz+i is
the augmented view of the image/text representation, and
NN(zzzi,P) is the NN operator defined as:

NN(zzzi) = argminppp∈P∥zzzi − ppp∥2. (3)

4.2.Separating Safe&Risky (Potentially Poisoned) Data

While unimodal CL clusters similar images and captions
in their respective representation spaces, the image-caption
pairs often remain relatively distant from each other. Thus,
to effectively associate these image-caption representations
and distinguish the potentially poisoned pairs, we apply the
CLIP loss with a very low learning rate once to all image-
caption pairs. In Sec.5.2, we will confirm that lowering
learning rate of CLIP by a factor of 0.01 minimally asso-
ciates the image-caption pairs without poisoning the model,
across various datasets and attack types. As shown in Fig
4b, the warmup results in a significant separation between
poisoned and clean pairs.

Subsequently, we calculate the cosine similarities of all pairs
of image-caption representations and divide examples into
a safe and a risky sets based on their cosine similarities. To
do so, we fit a two-component Gaussian Mixture Model
(GMM) to the cosine similarities using the Expectation-
Maximization (EM) algorithm (Permuter et al., 2006). For
each image-caption pair i, we calculate the probability pi
of its image-caption cosine similarity to be in the Gaussian
component with larger mean, containing pairs with highest
cosine similarity. We put pairs with a very high pi, i.e.,
pi > t = 0.9 into the safe set, and put the remaining pairs
in the risky set. In our experiments (c.f. Sec. 5.2), we show
that threshold of 0.9 is effective across different datasets and
attack types. Fig. 2 shows how GMM successfully separates
the safe and risky sets. By selecting only the data pairs with
high confidence, SAFECLIP decreases the poison rate in the
safe set (from initial 0.05%) to as low as 0.000375%.

4.3. Applying CLIP to Safe and CL to Risky Data

SAFECLIP pre-trains the model by applying the CLIP loss
only to the safe data, to match their image-caption pairs.
Meanwhile, rather than discarding the risky data, it contin-
ues to train on their images and captions separately using
unimodal CL losses. This further helps separating clean and
poisoned pairs, as discussed in the previous section. How-
ever, two concerns still remain: (1) Some poisoned pairs
may still be in the safe set; (2) Model’s performance may suf-
fer as the CLIP loss is not applied to majority of examples.

To address these concerns: (1) We apply data augmentation
to the examples in the safe set used in the CLIP loss. Data
augmentation has two advantages: Firstly, it can signifi-
cantly strengthen defenses against various attacks (Yang &
Mirzasoleiman, 2023). Secondly, it improves the model’s
performance (Li et al., 2021). We use the SimCLR image
augmentation method including random image cropping,
horizontal flipping, color jittering, grayscale conversion,
and blurring (Chen et al., 2020). For text modality, we used
the same Easy Data Augmentation proposed in (Wei & Zou,
2019), which applies simple text token transformation like
synonym replacement and random delete. (2) Moreover,
at the end of each epoch, we evaluate the cosine similarity
of all examples. Then, we update the safe set and increase
its size by s = 1%. Larger s% speeds up training, while
exposing increase the risk of being poisoned. We empiri-
cally confirm that this conservative choice of s = 1% is safe
across various datasets and attacks.

With the above update strategy, even when few poisoned
pairs enter the safe set, SAFECLIP can filter them out in the
next epoch. At the same time, more training on clean data
with CLIP loss and on risky data with unimodal CL loss
allows the model to learn better representations and better
identify and discard the poisoned pairs during pre-training.
Additionally, since we progressively increase the proportion
of safe data during training, by the end of the training, the
majority of the data will be part of the safe data and will
be trained on with CLIP loss, thereby resolving the perfor-
mance issue. The loss of the mixed training is defined as:

LSAFECLIP(D) = Lunimodal(Drisky) + LCLIP(Dsafe_aug). (4)

Note that, during mixed training, we still apply nearest-
neighbors for unimodal CL.

SAFECLIP’s pseudocode is illustrated in Appendix, Alg. 1.

5. Experiments
In this section, we evaluate the effectiveness of SAFECLIP
against strong TDPA and BAs. We first introduce the exper-
imental setup, and then present our main results. We finish
by an ablation study on different components of SAFECLIP.

Pre-training Data To cover a wide range of dataset distri-
butions, we consider three datasets with various distribu-
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Table 1: Effectiveness of SAFECLIP in defending against various adversarial attacks, measured by Attack Success Rate
(ASR). SAFECLIP achieves a strong defense across datasets and attacks, outperforming RoCLIP by 37.5% on Visual
Genome in defending against Targeted Data Poisoning Attacks (TDPAs) and by 4.6% in defending against Blended
Backdoor Attacks (BA). Table 2 shows that SAFECLIP maintains the performance of CLIP while RoCLIP drops it by 10%.

Dataset CC1M CC3M

Attacks TDPA BadNet Label Consis Blended WaNet TDPA BadNet Label Consis Blended WaNet

CLIP 93.75% 100% 71.0% 99.3% 96.3% 93.75% 100% 58.3% 100% 96%
RoCLIP 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
SAFECLIP 0% 0% 0% 0% 0% 0% 0% 0% 0.3% 0%

Dataset MSCOCO Visual Genome

Attacks TDPA BadNet Label Consis Blended WaNet TDPA BadNet Label Consis Blended WaNet

CLIP 62.5% 31.0% 71.6% 95.3% 7.6% 62.5% 1.3% 28.6% 90.3% 18.6%
RoCLIP 0% 0% 0% 2.6% 0% 37.5% 0% 0% 9.6% 0%
SAFECLIP 0% 0% 0% 2% 0% 0% 0% 0% 5% 0%

Table 2: Downstream linear probe and zero-shot (top 1) accuracy of pre-training on CC3M. The highest performance is bold
and the lowest underscored. The last column highlights the average improvement over CLIP across 10 datasets. SAFECLIP,
on average, achieves similar downstream performance to CLIP, while RoCLIP experiences a performance loss of nearly
10% in both linear probe and zero-shot evaluations.
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0-shot 16.7 13.0 19.4 3.3 1.2 50.8 48.2 18.9 3.7 1.0 -
CLIP lin-prb 100 54.8 33.2 58.8 18.8 80.2 77.8 54.7 58.4 28.5 -

0-shot 6.8 5.5 5.8 2.6 0.6 21.9 24.2 6.3 4.6 1.1 -9.7
RoCLIP lin-prb 91.2 47.9 21.8 47.8 17.4 66.5 67.1 45.9 53.5 23.3 -8.3

0-shot 17.5 11.1 18.2 1.5 0.9 54.4 54.7 22.6 3.6 1.1 +0.9
SAFECLIP lin-prb 99.8 53.3 34.3 58.1 21.3 81.1 78.3 54.2 62.9 26.9 +0.5

tions and sizes, namely Conceptual Captions 3M (CC3M)
(Sharma et al., 2018), Visual Genome (VG) (Krishna et al.,
2017), and MSCOCO (Lin et al., 2014). Additionally, fol-
lowing (Yang & Mirzasoleiman, 2023), we randomly sam-
ple 1M image-caption pairs from CC3M (termed CC1M)
to demonstrate SAFECLIP’s defense capabilities in datasets
of varying sizes. The details of each dataset are listed in
Appendix 7.1. We consistently employ a single set of hyper-
parameters, i.e., s=1%, r=5, lrlow=5e−6, t = 0.9, across
all our experiments. This demonstrates that SAFECLIP can
provide effective defense against different types of attacks,
across various datasets with different sizes and distributions.

Setup We use open-source implementation of CLIP as our
base model. Similar to the setup in (Radford et al., 2021), we
utilize a ResNet-50 as the image encoder and a transformer
as the text encoder. In each experiment, except RoCLIP, all
models are trained from scratch for 48 epochs. For RoCLIP,
we set the matching frequency to 2, as required for defense
against a high poison rate of 0.05%, and train for 24 epochs
as recommended, as more training significantly increases
the attack success rates (Yang & Mirzasoleiman, 2023).

Downstream Datasets To evaluate the downstream perfor-
mance of our model, we conduct linear probe and zero-shot
classifications, as introduced in Sec. 3.1, on 10 widely
used datasets (Radford et al., 2021; Li et al., 2021; Yang &
Mirzasoleiman, 2023) listed in Appendix, Table 11.

Adversarial Attacks To evaluate the effectiveness of our
defense, we consider five different attack baselines: tar-
geted data poisoning attacks (TDPA), backdoor attacks (BA)
with visible triggers like BadNet, with invisible triggers like
Blended and WaNet, and label consistent backdoor attacks.
Examples of different backdoor patterns are presented in
Appendix Fig. 3 (Carlini & Terzis, 2021; Gu et al., 2017;
Nguyen & Tran, 2021; Chen et al., 2017; Turner et al., 2019),
For TDPAs, we randomly select 16 different images from
the CC3M validation set as our target images. For each tar-
get image, we choose a random class from the ImageNet1K
dataset (Deng et al., 2009), and construct an adversarial
caption set related to the label as discussed in Sec. 3.2. We
set the poison rate for all datasets as 0.05%. For BAs, we
randomly select images from the CC3M validation data and
apply the corresponding backdoor triggers. For each attack,
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we choose a random class from the ImageNet1K dataset
(Deng et al., 2009) and construct the adversarial caption set
related to the label as discussed in Sec. 3.2. Each back-
doored image is paired with a random poisoned caption
from the adversarial caption set. Following (Bansal et al.,
2023), we set the backdoor rate for BadNet Attack to 0.05%,
and the backdoor rate for other four backdoor attacks to
0.15% (otherwise they cannot poison CLIP successfully).

Defense Baselines We consider RoCLIP, the only exist-
ing pre-training defense, as our baseline (Yang & Mirza-
soleiman, 2023). RoCLIP pairs each image representation
with its nearest neighbor caption in a pool of random caption
representations. We measure the effectiveness of attacks
using attack success rate (ASR). For TDPA, ASR is mea-
sured as the fraction of target images that are classified as
the adversarial label. For BA, ASR is measured as the frac-
tion of test images containing the backdoor triggers that are
classified as the adversarial label.

5.1. SAFECLIP Defends CLIP & Preserves Performance
Here, we evaluate the performance of SAFECLIP against
TDPA and BAs. We compare SAFECLIP with CLIP and
RoCLIP, based on both ASR and downstream performance.
Table 1 shows that adversarial attacks are highly effective
against CLIP, with ASRs over 60% for TDPA on all datasets
and above 90% for some BAs. This highlights the signif-
icant challenge of ensuring CLIP robustness. SAFECLIP
effectively reduces the ASR to nearly 0% across all datasets
for both TDPA and BAs. Even in TDPA where only a few
images are targeted, SAFECLIP’s defense is strong, with
very few successful attacks. We see that while RoCLIP and
SAFECLIP can both defend the model relatively well, Ro-
CLIP is less consistent than SAFECLIP. Notably, RoCLIP’s
ASR on TDPA in the VG dataset is 37.5% higher than SAFE-
CLIP ’s, and on Blended is 4.6% higher. Importantly, Table 2
shows that while SAFECLIP maintains a comparable perfor-
mance to CLIP, RoCLIP significantly harms the overall per-
formance by nearly 10% on both zero-shot and linear probe.

5.2. SAFECLIP Ablation Study and Sensitivity Analysis

SAFECLIP warms up the model by applying 5 epochs uni-
modal CL followed by applying CLIP loss to all examples
once with lrlow = 5e−6. Here, we illustrate the necessity of
each of these components. We conduct our experiments on
various datasets against TDPA with a poison rate of 0.05%.

Impact of Unimodal CL Warmup Table 3 shows the
proportion of poisoned data remained in the safe set af-
ter warmup. Rows 1 to 3 indicates that, increasing unimodal
training epochs significantly lowers the poison rate. Specif-
ically, we observe a 0.91% drop in the poison rate when
increasing the number of unimodal CL epochs from 1 to 5.
However, extending the warmup duration beyond 5 epochs

Table 3: Effect of # of CL warmup epochs and # of times
CLIP loss is applied to examples with lower learning rate.

# CL epochs # CLIP epochs Poison Rate in Dsafe

5 1 0.09%
1 1 1%
10 1 0.03%
5 0 12.28%
5 2 6.8%

results in diminishing returns, i.e., 10 epochs of unimodal
training only marginally reduces the poison rate in the safe
set from 0.09% to 0.03%. In our experiments, we con-
sistently apply 5 epochs of unimodal CL warmup across
various datasets and attack types. As shown in Table 1, this
approach yields robust defense across different scenarios,
confirming its broad effectiveness.

Impact of CLIP loss with Low Learning Rate Next, we
conduct an ablation study on the number of times CLIP
loss is applied with low learning rate to all examples. As
shown in Table 3, rows 1 and 4, in the absence of any CLIP
warmup, 12.28% of the poisoned pairs remain in the safe
set. This occurs because, without any CLIP training, the
image representations do not correlate well with the caption
representations. On the other hand, it is critical to avoid
extensive training with the CLIP loss on the full dataset
before filtering out the poisoned pairs. As shown in row 5,
applying even one additional epoch of CLIP training with a
low learning rate of 5e−6 introduces 6.8% more poisoned
pairs in the safe set. Next, we explored the learning rate’s

Table 4: Attack success rates of SAFECLIP against TDPA on
various datasets, with differing values of low learning rates
when applying CLIP loss to separate safe and risky sets.

lrlow 5e−6 1e−5 5e−5

CC1M 0% 0% 0%
COCO 0% 0% 0%
VG 0% 0% 0%

sensitivity during the slow-paced CLIP warmup, with results
shown in Table 4. We examined a range of low learning
rates from 5e−6 to 5e−5 across various datasets and found
consistent strong defense against TDPA. This indicates that
SAFECLIP is not sensitive to lrlow and does not require
precise tuning.

Impact of unimodal CL during Pre-training SAFECLIP
applies unimodal CL to the risky data during pre-training.
Table 5 shows that applying unimodal CL to the risky set
is essential, to prevent poisons from getting into the safe set
and poisoning the model. Otherwise, the ASR significantly
increases at the end of training across all datasets.

Impact of Nearest Neighbor We also conducted experi-
ments on the impact of nearest-neighbors on SAFECLIP de-
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fense. Table 5 shows that, without the NN pool, the ASR sig-
nificantly increases at the end of training across all datasets.

Impact of GMM Threshold Using a lower GMM threshold
allows SAFECLIP to train with more data, but it significantly
increases the risk of the model being poisoned. Table 6
demonstrates that across all datasets, a lower threshold leads
to a significant increase in poison rates. For instance, re-
ducing the threshold from 0.9 to 0.5 results in 8 times more
poisoned pairs in COCO, 17 times more in CC1M, and a 0.3
increase in poison rate for VG. Conversely, a higher thresh-
old, while reducing the poison rate, leads to substantial per-
formance losses for SAFECLIP due to reduced training data.
For example, a 0.05 threshold increase results in CC1M be-
ing trained on half the data and COCO on over ten times less
data. These findings highlight the importance of an optimal
threshold for SAFECLIP’s effectiveness. Through extensive
experimentation, we determined that a threshold of t = 0.9
works well for all datasets, by making a balance between
large training data and maintaining a low poison rate.

Table 5: Impact of applying unimodal CL to risky set, or
not using Nearest Neighbor (NN) with CL.

Dataset SAFECLIP ASR (No CL) ASR (No NN w. CL)

CC1M 0% 12.5% 12.5%
COCO 0% 12.5% 25.0%
VG 0% 12.5% 25.0%

Table 6: Total poison ratio of the safe set after filtering with
different GMM thresholds. The ratio of data in safe set is
shown in parentheses. The initial poison rate is 0.05%.

Dset t = 0.95 t=0.9 t = 0.7 t = 0.5

CC1M 0 (5.8) 3.75e−4 (11.4) 3.13e−3 (29.0) 6.25e−3 (45.2)
COCO 0 (0.7) 2.5e−3 (10.3) 1.13e−2 (42.3) 2.13e−2 (62.7)
VG 0 (0.0) 0 (7.2) 7.5e−3 (45.3) 1.88e−2 (65.6)

SAFECLIP’s Usage of Pre-training Data SAFECLIP ap-
plies the CLIP loss only to the data in the safe set to protect
the model. Thus, it only pre-trains CLIP on a fraction of data.
Nevertheless, SAFECLIP can benefit from more data with ex-
tended training. To confirm this, we extend our experiment
on CC1M to 64 epochs and attack the models with targeted
data poisoning (TDPA) and BadNet backdoor attacks. The
results are shown in Table 7. By the end of training, 80% of
the data is included in the safe set. SAFECLIP achieves much
higher zero-shot and linear probe accuracy on CIFAR-10,
CIFAR100, and ImageNet1K, confirming that SAFECLIP
can effectively utilize more data. Notably, longer training
with SAFECLIP does not introduce more poisoned pairs in
the safe set, and the ASR remains unchanged.

SAFECLIP’s Complexity and Overhead Next, we mea-
sure SAFECLIP’s average overhead per epoch on all datasets,
relative to standard CLIP pre-training. For reference, each

Table 7: Extended training for 64 epochs effectively improve
the data usage of SAFECLIP and its performance.

Method Task C10 C100 I1K TDPA BadNet

SAFECLIP
0-shot 39.7 10.41 9.87 0% 0%lin-prb 71.9 47.32 24.53

SAFECLIP-64 0-shot 43.1 14.4 12.6 0% 0%lin-prb 75.0 50.6 28.7

CLIP 0-shot 34.9 7.3 9.6 93.8% 100%lin-prb 70.5 45.8 22.2

CLIP epoch is considered equivalent to a value of 1. Ta-
ble 8 shows that every SAFECLIP’s unimodal CL warm-up
epoch and applying the CLIP loss with small learning rate
take a similar amount of time to a CLIP pre-training epoch.
Separating the safe set from the risky set with GMM takes
approximately 0.35 times the duration of a CLIP epoch,
but is required only once during the entire training. Up-
dating safe and risky sets takes 0.1 of a CLIP epoch time.
While RoCLIP is slightly more efficient than SAFECLIP, it
is important to highlight the significant difference in their
downstream performances, as demonstrated in Table 2. We
include SAFECLIP’s efficient implementations and its time
complexity compared to popular defense methods in su-
pervised learning settings in Sec. 7.2. Compared to such
defenses, SAFECLIP is orders of magnitude more efficient.

Table 8: Time complexity of SAFECLIP relative to CLIP.

Structure Time

SAFECLIP: Unimodal CL epoch 1
SAFECLIP: Pre-training epoch (CLIP+CL) 1
SAFECLIP: GMM (required only once) 0.35
SAFECLIP: Updating Safe & Risky sets 0.1
CLIP epoch 1
RoCLIP epoch 1.06

Effectiveness of SAFECLIP on Different Data Scales We
conduct an ablation study to examine the effectiveness of
SAFECLIP on different subsets of CC3M during warm-up
epochs. We study two factors: the fraction of examples in
the safe set, which reflects the model’s final performance,
and the fraction of poisoned examples per attack that re-
mained in the safe set, which indicates the risk of model
poisoning during pre-training. We considered TDPA and
BadNet with a poison rate of 0.05%. Table 12 demon-
strate that SAFECLIP can consistently reduce the poison
rate across datasets of different sizes. Larger datasets allow
SAFECLIP to find a larger safe set after warm-up, improv-
ing its data usage. Notably, the poison rate within the safe
set decreases significantly as dataset size increases, particu-
larly from 100K to 1M. This indicates that SAFECLIP can
effectively protect CLIP pre-training on large datasets.
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5.3. SAFECLIP is Robust against Adaptive Attacks

Next, we discuss two potential adaptive attacks against
SAFECLIP, and show that they cannot affect SAFECLIP.

Attacks against Unimodal CL Unimodal CL training dur-
ing both the warmup and pre-training phases is crucial for
SAFECLIP to separate poisoned data from clean data. How-
ever, this makes SAFECLIP susceptible to adversarial attacks
targeting unimodal CL, e.g. those proposed in (Kim et al.,
2020), where backdoor triggers are patched onto unlabeled
training images of a chosen target category. If such images
are included in the risky set and are trained on with uni-
modal CL, they could risk backdooring SAFECLIP during
linear probe evaluation. Next, we show that SAFECLIP re-
mains robust against these attacks. For inclusion in the CLIP
pre-training data, backdoored images need to be paired with
captions. If paired with captions from another category, they
make a version of targeted data poisoning attack that we
have already studied in our paper. Therefore, we assume
the target images are paired with correct category captions.
Given the low backdoor rate and the dissimilarity of back-
doored images to their category, such images do not align
closely with the adversarial text category after applying the
CLIP loss with low learning rate and end up in the risky
set. Using the NN pool and data augmentation in SAFE-
CLIP’s unimodal CL effectively counters backdoor attacks.
Given the low backdoor rate, these methods prevent clus-
tering of such images in the representation space. As the
backdoored images do not end up in the safe set and do not
cluster tightly in the image representation space, they can-
not poison the model (zero-shot or linear-probe evaluation).
To confirm this, we conduct experiments on CC1M dataset
with increased backdoor rates (up to 0.15%). Post-warmup,
94.5% of backdoored images were in the risky set, yet SAFE-
CLIP maintained a 0% ASR in linear-probe classification,
underscoring its resilience to these adaptive attacks.

Attacks against Semi-supervised Learning Adversarial
attacks on semi-supervised learning models, such as those
described in (Carlini, 2021), pose another potential threat.
In these attacks, adversary generates unlabeled images
that interpolate between a labeled image xxxi from the target
category and an unlabeled image xxxj . The goal is to cause
xxxj to be misclassified as the target category. To be added
to CLIP pre-training data, poisoned images required to
be paired with captions. In particular, to be misclassified
as target, adversarial captions should belong to the target
category. Among the interpolated images, the ones that are
more similar to xxxi do not pose any risk of poisoning for the
model. The ones that are more similar to xxxj but are paired
with target-related captions act as a weaker targeted data
poisoning attack on CLIP, which we have studied in our
paper. SAFECLIP effectively identifies such examples as
risky, and pre-trains CLIP robustly against such attacks.

5.4. SAFECLIP is Robust against Stronger Attacks

Attacks with Higher Poison Rate Our experiments already
confirm the effectiveness of SAFECLIP for poison ratio up to
0.05%. Here, we explore a higher poison ratio of 0.1% and
0.5% using the same hyperparameter setting on MSCOCO
and CC1M. Table 9 shows that with a higher poison ratio,
SAFECLIP can still defend the attack successfully.

Table 9: SAFECLIP defends attacks with higher poison rate

TDPA BadNet
Poison Rate 0.05% 0.1% 0.05% 0.1% 0.5%

MSCOCO 0% 0% 0% 0% 0%
CC1M 0% 6.25% 0% 0% -

Multi-trigger backdoor attacks We also study SAFE-
CLIP’s effectiveness against multi-trigger backdoor attacks
(Li et al., 2024) on MSCOCO. We considered two backdoor
strategies: (1) Hybrid-Trigger Backdoor Attack (HTBA),
where for every backdoored image, multiple (distinct)
triggers are patched onto the image; (2) Parallel Backdoor
Attack (PBA), where multiple distinct subsets of images with
different backdoor triggers are injected into the pre-training
dataset. Each subset may correspond to either the same
target class (All2One), or different target classes (All2All).
In parallel and hybrid-trigger backdoor attacks, we consider
the same backdoor triggers from the main experiments,
namely BadNet, WaNet, and Blended. For All2One attacks
and HTBA, we consider a random target category and a
total poison rate of 0.05%. For All2All attacks, we select
three random categories (one for each backdoor trigger)
as the target classes, with a poison rate of 0.05% for each.
Table 10 shows that SAFECLIP can successfully defend all
the attacks and reduce the ASR to 0%.

Table 10: SAFECLIP against Multi-trigger backdoor attacks.

Strategy Attack Success Rate

HTBA 0%
PBA: All2One 0%
PBA: All2All 0%

6. Conclusion
We proposed SAFECLIP, an effective method for safely pre-
train CLIP against targeted data poisoning and backdoor
attacks. Using unimodal CL warmup and CLIP warmup
with low learning rate, SAFECLIP filters majority of the poi-
sons before pre-training and defends the model during pre-
training by applying the CLIP loss to pairs with high similar-
ity and applying unimodal CL to rest of the examples. We
showed that SAFECLIP lowers the success rate of targeted
data poisoning attacks from 93.75% to 0% and that of var-
ious backdoor attacks from as high as 100% to 0%, without
adversely affecting CLIP’s performance on various datasets.
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7. Appendix
7.1. Benchmark Datasets

Pretrain dataset MSCOCO: MSCOCO (Lin et al., 2014) is
a large-scale dataset for object detection, segmentation, and
captioning. It features 80 object categories, with each image
accompanied by 5 captions. For our analysis, we randomly
select one caption per image. The total dataset size is 80K
images.

Visual Genome: Visual Genome (Krishna et al., 2017) is
a comprehensive dataset for region captions. It comprises
10877 images and 5.4 million region descriptions. For each
image, we randomly select 5 region descriptions and merge
them into one caption.

Conceptual Captions: Conceptual Captions (Sharma et al.,
2018) is a vast, web-scale image captioning dataset that
encompasses a wide variety of image styles and caption
formats.

downstream dataset To evaluate the downstream perfor-
mance of our model, we conduct linear probe and zero-shot
classifications, as introduced in Sec. 3.1, on 10 widely
used datasets (Radford et al., 2021; Li et al., 2021; Yang &
Mirzasoleiman, 2023) listed in Table 11.

Table 11: Details of downstream datasets.
Dataset Classes Train Size Test Size

CIFAR10 10 50,000 10,000
CIFAR100 100 50,000 10,000
Food-101 101 75,750 25,250
DTD 47 3,760 1,880
FGVC Aircraft 100 6,667 3,333
Flowers-102 102 2,040 6,149
Caltech-101 102 3,060 6,085
OxfordIIITPet 37 3,680 3,669
Stanford Cars 196 8,144 8,041
ImageNet1K 1000 50,000 50,000

(a) Blended (b) WaNet (c) BadNets

Figure 3: Backdoor attacks used in our evaluations.

7.2. SAFECLIP’s Complexity and Overhead

We note that although SAFECLIP introduces additional over-
head, different steps can be implemented efficiently without
compromising the model’s performance or defense capabili-
ties, as discussed below.

Table 12: Defense of SAFECLIP on datasets of different
sizes. Safe Set % indicates the fraction of examples in the
safe set after warm up, and Safe Set Poison Rate indicates
the fraction of poisoned examples per attack that remained
in the safe set

Dataset Safe Set % Safe Set Poison Rate
CC3M 17.79% 0.000606%
CC1M 11.38% 0.000375%
CC100K 6.25% 0.00176%
Unfiltered 100% 0.05%

Table 13: SAFECLIP with different model structures

Model Structure TDPA BadNet

ResNet50 0% 0%
ViT-B/32 0% 0%

Number of CL Epochs: As shown in Table 3, the effect
of more unimodal CL epochs diminishes after 1 epoch, and
even 1 epoch of unimodal CL is enough to filter most of
the poisoned examples. After 5 epochs, there is no benefit
for unimodal CL on any dataset. We observed this trend on
various datasets of different sizes and distributions and do
not expect SAFECLIP to require more than 5 unimodal CL
epochs on any dataset.

Data Partitioning to Safe and Risky Sets: As demon-
strated in Figure 2, following the warm-up phase, the major-
ity of the poisoned data pairs have a low cosine similarity.
Note that at every epoch, SAFECLIP only incorporates an
additional 1% of data from the risky set. Therefore, to up-
date the safe and risky sets at the beginning of every epoch,
SAFECLIP only needs to re-evaluate a portion of the data
with high cosine similarity from the previous epoch, rather
than the entire dataset. This approach significantly reduces
the overhead associated with the method. In our experi-
ments, we only re-evaluate the cosine similarities of the top

(a) CLIP (b) SAFECLIP

Figure 4: Distribution of Image-Caption Cosine Similarities
After 1 epoch of Pre-Training with (a) CLIP and (b) SAFE-
CLIP. While the poisoned pairs become indistinguishable
from the clean pairs in CLIP, the warm-up helps SAFECLIP
separate the clean data pairs from the poisoned data pairs.
For clearer visualization, the distributions of poisoned and
clean pairs are normalized.
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Table 14: Hyperparameters of our experiments

Dataset lrlow lr Batch Size

CC3M 5e-6 5e-4 512
CC1M 5e-6 5e-4 512
COCO 5e-6 5e-4 256
VG 5e-6 5e-4 256

Algorithm 1 SAFECLIP

Input: Image encoder fI , text encoder fT , image pool PI , text
pool PT , unimodal warmup epochs r, training epochs T , GMM
threshold t, increment ratio s, small learning rate llow
Data: Dataset of image-caption pairs D = {(xI

i , x
T
i )}ni=1,

XI = {xI
i }ni=1,XT = {xT

i }ni=1

for epoch = 1 to r do
Train fI with Lunimodal_NN(XI , PI) in Eq 2
Train fT with Lunimodal_NN(XT , PT ) in Eq. 2

end for
Update fI , fT by training onD with LCLIP in Eq. 1 using llow
for epoch = r to T do
pclean ← GMM

(
fI(x

I
i ), fI(x

T
i )

)
if epoch = r then
Dsafe ← all data where pclean > t, filtering out a safe set of
training ratio m%

else
Sort pclean in a decreasing manner
Dsafe ← top m% of data

end if
Drisky ← D \ Dsafe
Dsafe_aug ← augmented examples in Dsafe
Train fI , fT with LSAFECLIP(D) = Lunimodal_NN(Drisky) +
LCLIP(Dsafe_aug)
m← m+ s

end for

30% of the dataset from the previous epoch, which reduced
the overhead to 0.1 CLIP epoch time. On all our training
datasets, this efficient implementation obtains a safe set
with a similar average poison rate compared to the safe set
obtained via full data evaluation.

Compared to popular defense methods in the supervised
setting, SAFECLIP has a small overhead. With 5 unimodal
CL warm-up epochs, SAFECLIP increases the total training
time by about 29.84%. In contrast, supervised defenses (Peri
et al., 2020; Geiping et al., 2021; Chen et al., 2018; Tran
et al., 2018) increase training time by up to 866.67%. We
see that the additional computational overhead of SAFECLIP
is relatively low compared to supervised defense methods.

7.3. Hyperparameter Tuning

We include the hyperparameter settings of our experiments
in Table 14. There are few key hyperparameters for tuning:

Number of CL epochs: As shown in Table 3, the effect of
more unimodal CL epochs diminishes after 1 epoch, and
even 1 epoch of unimodal CL is enough to filter most of the

Table 15: Training time of SAFECLIP compared to super-
vised defense methods. We measure the increased training
time of different methods compared to their regular training
time without defenses.

Method Increased Time
DeepKNN 866.67%
Spectral Signatures 166.67%
Activation Clustering 106.67%
Adv. Poisoning 653.33%
SAFECLIP (5 CL epoch) 29.84%
SAFECLIP (1 CL epoch) 17.34%

poisoned examples. After 5 epochs, there is no benefit for
unimodal CL on any of the datasets. We observed this trend
on various datasets of different size and distribution and we
do not expect SAFECLIP to require more than 5 in-modal
CL epochs on any dataset.

Small learning rate: For the small learning rate of training 1
epoch with CLIP loss, we showed in table 4 that SAFECLIP
is not sensitive to the choice of the small learning rate and
about 0.01x the original learning rate works well on various
datasets with different distributions and sizes.

SAFECLIP with different model architecture CLIP has
two variations in its vision model, ResNet, which we used in
our original experiments, and ViT, which we report here. We
attack the model with TDPA and BadNet backdoor with a
poison rate of 0.05%, consistent with the setting in the paper.
As shown in Table 13, in both architectures, SAFECLIP can
defend the model with the same hyperparameter setting.

Limitation. SAFECLIP warms up the model with in-
modality CL followed by 1 CLIP epoch with small learning
rate to distinguish the clean and poisoned pairs. However,
if the number of injected poisons are too high, SAFECLIP
may not be able to distinguish the poisoned pairs from the
clean pairs. From our experiments, we were not able to
effectively distinguish the majority of poisoned pairs after
warmup, when poison rate is as high as 0.5%. If a small
clean dataset of image-caption pairs is available, SAFECLIP
can leverage that to defend a much higher poison rate.
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