
Small-loss Adaptive Regret for Online Convex Optimization

Wenhao Yang 1 2 Wei Jiang 1 Yibo Wang 1 2 Ping Yang 3 Yao Hu 3 Lijun Zhang 1 2

Abstract
To deal with changing environments, adaptive re-
gret has been proposed to minimize the regret over
every interval. Previous studies have established
a small-loss adaptive regret bound for general
convex functions under the smoothness condition,
offering the advantage of being much tighter than
minimax rates for benign problems. However, it
remains unclear whether similar bounds are at-
tainable for other types of convex functions, such
as exp-concave and strongly convex functions. In
this paper, we first propose a novel algorithm that
achieves a small-loss adaptive regret bound for
exp-concave and smooth function. Subsequently,
to address the limitation that existing algorithms
can only handle one type of convex functions, we
further design a universal algorithm capable of
delivering small-loss adaptive regret bounds for
general convex, exp-concave, and strongly con-
vex functions simultaneously. That is challenging
because the universal algorithm follows the meta-
expert framework, and we need to ensure that up-
per bounds for both meta-regret and expert-regret
are of small-loss types. Moreover, we provide a
novel analysis demonstrating that our algorithms
are also equipped with minimax adaptive regret
bounds when functions are non-smooth.

1. Introduction
Online convex optimization (OCO) is a powerful framework
for online learning, which enjoys both theoretical guaran-
tees and practical applications (Hazan, 2016). According to
the protocol of OCO, it can be seen as a structured repeated
game. At each round t, the online learner chooses a decision
wt from a given convex set W . After submitting this deci-

1National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China 2School of Artifi-
cial Intelligence, Nanjing University, Nanjing 210023, China
3Xiaohongshu Inc., Beijing, China. Correspondence to: Lijun
Zhang <zhanglj@lamda.nju.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

sion, a convex loss function ft : W 7→ R is revealed and
the online learner suffers a loss ft(wt). The learner aims to
minimize the cumulative loss over T rounds. To measure
the performance, static regret is typically used:

Regret(T ) =

T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w)

which is defined as the difference between the cumulative
loss of the online learner and that of the best decision chosen
in hindsight.

Since the seminal work of Zinkevich (2003), various algo-
rithms have been developed to minimize the static regret
(Shalev-Shwartz, 2011; Hazan, 2016). However, the static
regret is not suitable to changing environments because it
chooses a fixed comparator. To address this limitation, re-
cent advances in OCO introduce adaptive regret (Hazan &
Seshadhri, 2007), which measures the performance with
respect to a changing comparator. The goal is to minimize
the static regret of every interval [r, s] ⊆ [T ], i.e.,

Regret([r, s]) =

s∑
t=r

ft(wt)− min
w∈W

s∑
t=r

ft(w).

In the literature, several online algorithms have been pro-
posed to minimize the adaptive regret of convex functions,
which attain O(

√
(s− r) log s), O( dα log s log(s− r)) and

O( 1λ log s log(s− r)) adaptive regret for general convex, α-
exponentially concave (abbr. α-exp-concave) and λ-strongly
convex functions (Hazan & Seshadhri, 2007; Jun et al.,
2017a; Zhang et al., 2018) respectively, where d is the
dimensionality. Furthermore, when the loss functions
are also smooth, Zhang et al. (2019) demonstrate that
an O(

√
L∗
r,s logL

∗
1,s logL

∗
r,s) small-loss adaptive regret

bound (also known as first-order bound) is attainable for
general convex functions, where

L∗
r,s = min

w∈W

s∑
t=r

ft(w) (1)

is the total loss of the best decision over interval [r, s]. Such
bound is comparable to the O(

√
(s− r) log s) bound in the

worst case, but could be much tighter when the comparator
has a small loss. Note that in the studies of static regret, we
also have small-loss bounds for exp-concave and strongly
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Table 1. Comparative overview of related work on adaptive regret and our paper.

Method Loss Type Adaptive Regret

Hazan & Seshadhri (2009) α-exp-concave d
α log s log(s− r)

Zhang et al. (2019) convex & smooth
√
L∗
r,s logL

∗
1,s logL

∗
r,s

Zhang et al. (2021)
convex

√
(s− r) log s log(s− r)

α-exp-concave d
α log s log(s− r)

λ-strongly convex 1
λ log s log(s− r)

FLHS
(this work)

α-exp-concave & smooth d
α logL∗

1,s logL
∗
r,s

α-exp-concave d
α log s log(s− r)

USIA
(this work)

convex & smooth
√

L∗
r,s logL

∗
1,s logL

∗
r,s

α-exp-concave & smooth d
α logL∗

1,s logL
∗
r,s

λ-strongly convex & smooth 1
λ logL∗

1,s logL
∗
r,s

convex
√
(s− r) log s log(s− r)

α-exp-concave d
α log s log(s− r)

λ-strongly convex 1
λ log s log(s− r)

convex functions (Orabona et al., 2012; Wang et al., 2020).
As a result, it is natural to ask whether small-loss adap-
tive regret bounds can also be established for them which
motivates the study of this paper.

To minimize the adaptive regret, we adopt the two-level
framework where multiple experts are created dynamically
and aggregated by a meta-algorithm (Hazan & Seshadhri,
2007; Zhang et al., 2019; Wang et al., 2024). For exp-
concave and smooth functions, we propose Follow-the-
Leading-History for Smooth functions (FLHS) by com-
bining Follow-the-Leading-History (Hazan & Seshadhri,
2007) and problem-dependent intervals (Zhang et al.,
2019). Our method achieves an O( dα logL∗

1,s logL
∗
r,s)

small-loss adaptive regret for α-exp-concave and smooth
functions. Furthermore, we adapt FLHS to λ-strongly
convex and smooth functions by replacing its expert-
algorithm with S2OGD (Wang et al., 2020), resulting in
an O( 1λ logL∗

1,s logL
∗
r,s) small-loss adaptive regret for λ-

strongly convex and smooth functions.

Combined with the result of Zhang et al. (2019), small-loss
adaptive regret bounds have been successfully established
for general convex, exp-concave, and strongly convex func-
tions. However, the associated algorithms lack universality
and can only handle one type of convex functions, which
drives us to develop a Universal algorithm for exploiting
Smoothness to Improve the Adaptive regret (USIA). First,
we address the variability of function characteristics by
designing three types of expert-algorithms, specifically de-
signed for convex, strongly convex, and exp-concave func-
tions under the smoothness condition. Second, we con-
struct a set of problem-dependent intervals based on the
cumulative loss of the meta-algorithm, which is different

from Zhang et al. (2019) that rely on the performance of
the expert. These intervals are created dynamically, and
each of them is associated with multiple experts. Third,
inspired by universal algorithms for static regret (Zhang
et al., 2022b), we extend Adapt-ML-Prod (Gaillard et al.,
2014) to combine the predictions of dynamically created
experts, thereby equipping our algorithm with second-order
bounds that can exploit exp-concavity and strong convex-
ity. In this way, USIA attains O(

√
L∗
r,s logL

∗
1,s logL

∗
r,s),

O( dα logL∗
1,s logL

∗
r,s) and O( 1λ logL∗

1,s logL
∗
r,s) small-

loss adaptive regret bounds over any interval [r, s] ⊆ [T ]
for general convex, α-exp-concave and λ-strongly convex
functions respectively.

Furthermore, we also introduce an additional enhancement
to our algorithms, i.e., FLHS and USIA. Notably, previous
studies on adaptive regret for convex and smooth functions
(Zhang et al., 2019; Zhao et al., 2022) fall short in providing
theoretical guarantees for non-smooth functions. To avoid
this limitation, we provide a novel analysis demonstrating
that our algorithms maintain the minimax adaptive regret
bounds when functions are non-smooth.

Technical Challenge. The technical challenges in this paper
can be summarized into two aspects: (i) the first challenge
lies in algorithm design, specifically in enhancing Adapt-
ML-Prod as the meta-algorithm to aggregate dynamically
constructed experts and also enjoy universality. Addition-
ally, the dynamic construction of experts requires careful de-
sign to yield problem-dependent regret bounds; (ii) the sec-
ond challenge is to adapt the proposed algorithms (designed
for smooth functions) to non-smooth functions, which is
unexplored in the literature. Table 1 summarizes our results
in comparison with existing studies.
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 · · ·
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I2 [ ] [ ] [ ] [ ] [ · · ·
I3 [ ] [ · · ·

Figure 1. Geometric covering (GC) intervals. In the figure, each interval is denoted by [ ].

2. Related Work
We briefly review the development of adaptive regret, univer-
sal algorithms and parameter-free algorithms. The omitted
related work on static regret is included in Appendix A.

2.1. Adaptive Regret

Adaptive regret has been well studied in various settings (Lit-
tlestone & Warmuth, 1994; Freund et al., 1997; Adamskiy
et al., 2012; György et al., 2012; Wan et al., 2022; Zhang
et al., 2022a), such as prediction with expert advice (PEA)
and online convex optimization (OCO). Hazan & Seshadhri
(2007) first introduce the adaptive regret for OCO,

A-Regret(T ) = max
[r,s]⊆[T ]

Regret([r, s])

which is the maximum regret over any contiguous interval,
and propose Follow-the-Leading-History (FLH) to attain
an O( dα log2 T ) adaptive regret bound for α-exp-concave
functions. FLH is a two-level algorithm and contains 3
components:

• An expert-algorithm, which minimizes the static regret
over a given interval;

• Dynamically created intervals, each of which is associ-
ated with an expert-algorithm;

• A meta-algorithm, which aggregates the decisions of
active experts in each round.

FLH creates a set of intervals based on a data streaming
algorithm, and runs an instance of ONS as an expert over
every interval. Then, it uses a meta-algorithm based on
Fixed-Share algorithm (Herbster & Warmuth, 1998) to track
the best expert. Adamskiy et al. (2012) point out that FLH
creates and removes experts dynamically, which can be
modeled by sleeping experts (Freund et al., 1997). For
λ-strongly convex functions, we can also use online gra-
dient descent (OGD) as the expert-algorithm in FLH, and
obtain an O( 1λ log2 T ) adaptive regret bound (Zhang et al.,
2018; Wang et al., 2018). For general convex functions,
Hazan & Seshadhri (2007) modify FLH by replacing ONS
with OGD as the expert-algorithm, thereby achieving an
O(
√
T log3 T ) adaptive regret bound. In this way, efficient

FLH achieves an O(
√

T log3 T ) adaptive regret bound. The
limitation of the above bound is that it is not guaranteed to
perform well on short intervals, because the upper bound is

meaningless for intervals of length O(
√
T ).

To ensure a good performance on every interval, Daniely
et al. (2015) propose the strongly adaptive regret,

SA-Regret(T, τ) = max
[s,s+τ−1]⊆[T ]

Regret([s, s+ τ − 1])

which is defined as the maximum static regret over intervals
of length τ . Furthermore, they propose a novel way to
construct the set of intervals, named as geometric covering
(GC) intervals. Mathematically, GC intervals are defined as

I =
⋃

k∈N∪{0}

Ik, (2)

where Ik =
{
[i · 2k, (i+ 1) · 2k − 1] : i ∈ N

}
. A graphi-

cal illustration of GC intervals is given in Fig. 1. We observe
that each Ik is a partition of N \ {1, · · · , 2k − 1} to con-
secutive intervals of length 2k. For each of GC intervals,
Daniely et al. (2015) run an instance of online gradient
descent (OGD) as the expert-algorithm. Then, they intro-
duce a novel meta-algorithm, named as Strongly Adaptive
Online Learner (SAOL), which is similar to the multiplica-
tive weights method (Arora et al., 2012). SAOL attains
an O(

√
τ log T ) strongly adaptive regret bound, which is

further enhanced to O(
√
τ log T ) (Jun et al., 2017a).

When the loss functions are also smooth, the adaptive regret
of general convex and smooth functions can be improved
to O(log s

√
L∗
r,s) (Jun et al., 2017b). To deliver tighter

results, Zhang et al. (2019) propose problem-dependent in-
tervals, which make the number of experts dependent on
the total loss of the expert-algorithm instead of the time
length. Then, they develop SACS by running multiple in-
stances of SOGD over problem-dependent intervals and us-
ing AdaNormalHedge (Luo & Schapire, 2015) as the meta-
algorithm. For general convex and smooth functions, SACS
attains an O(

√
L∗
r,s logL

∗
1,s logL

∗
r,s) small-loss adaptive

regret bound. Following this research, Zhao et al. (2022)
propose an efficient method for adaptive regret that reduces
projection complexity. To achieve this goal, they refine
the construction of problem-dependent intervals and attain
min{O(

√
L∗
r,s logL

∗
1,s logL

∗
r,s), O(

√
(s− r) log T )} for

general convex and smooth functions. However, both of
them did not consider non-smooth functions. Moreover,
under the smoothness condition, small-loss adaptive regret
bounds for exp-concave functions and strongly convex func-
tions are still unknown in the literature.
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2.2. Universal Algorithms

Although there exist plenty of algorithms under the setting
of OCO, most of them can only handle one type of convex
functions and need to know the moduli of strong convexity
and exp-concavity beforehand. The requirement of domain
knowledge for choosing the optimal algorithm hinders their
applications to real-world problems, motivating the devel-
opment of universal algorithms for OCO.

The first universal algorithm for OCO is adaptive online
gradient descent (AOGD) (Bartlett et al., 2008). AOGD is
able to automatically interpolate between the O(

√
T ) regret

bound of general convex functions and the O(log T ) re-
gret bound of strongly convex functions. However, AOGD
suffers two restrictions, including its need for the modu-
lus of strongly convexity in each round and its suboptimal
O(

√
T ) regret bound for exp-concave functions. Another

milestone of universal algorithms is the multiple eta gra-
dient algorithm (MetaGrad) (van Erven & Koolen, 2016;
Mhammedi et al., 2019; van Erven et al., 2021), which
adapts to a much broader class of functions. Specifically,
MetaGrad attains O( dα log T ) and O(

√
T log log T ) regret

bound for α-exp-concave and general convex functions, re-
spectively. However, it treats strongly convex functions as
exp-concave, thus obtaining a suboptimal O( dλ log T ) re-
gret bound. Wang et al. (2019) overcome this problem by
developing Maler, which achieves minimax optimal regret
bounds for three types of convex functions simultaneously.
In a subsequent work, Wang et al. (2020) extend Maler
to support smoothness. Their universal algorithm, named
as UFO, obtains O(

√
L∗
T ), O( dα logL∗

T ) and O( 1λ logL∗
T )

regret bounds for general convex, α-exp-concave and λ-
strongly convex functions respectively.

However, most of existing universal methods (van Erven &
Koolen, 2016; Wang et al., 2019; 2020) require the experts to
process the surrogate losses, making it difficult to exploit the
structure of the original problem and utilize previous algo-
rithms. To address this limitation, Zhang et al. (2022b) pro-
pose a simple yet universal strategy for OCO (USC), which
allows the experts to process the original online functions
directly. The key idea is to run multiple expert-algorithms to
process the original online functions, and deploy Adapt-ML-
Prod (Gaillard et al., 2014) over linearized loss to aggregate
the decisions. In this way, USC can utilize the property of
exp-concavity and strongly convexity to yield a negligible
regret bound for the meta-algorithm. Advancing this line of
research, Yan et al. (2023) propose a multi-layer universal
algorithm equipped with gradient-variation bounds. Fur-
thermore, they construct novel surrogate losses to reduce
gradient query complexity. For adaptive regret, we note that
Zhang et al. (2021) have proposed a universal algorithm for
minimizing the adaptive regret of convex functions, but they
did not consider the smoothness condition.

2.3. Parameter-free Algorithms

Most of the existing online learning algorithms require the
knowledge about functions to set their parameters, such
as step size and the norm of gradients, thereby driving the
advancement of parameter-free online learning algorithms
(Orabona, 2014; Orabona & Pál, 2016; Cutkosky & Boa-
hen, 2016; 2017; Cutkosky & Orabona, 2018; Mhammedi
& Koolen, 2020). The study of parameter-free algorithms
mainly focuses on general convex functions, which is com-
plementary to the development of universal algorithms.

3. Main Results
We first present necessary preliminaries, and then provide
our proposed algorithms.

3.1. Preliminaries

We introduce the following standard assumptions used in
the studies of OCO (Hazan, 2016).
Assumption 3.1. The gradients of all functions are bounded
by G, i.e.,

max
w∈W

∥∇ft(w)∥ ≤ G,∀t ∈ [T ]. (3)

Assumption 3.2. The diameter of the domain W is bounded
by D, i.e.,

max
w,w′∈W

∥w −w′∥ ≤ D. (4)

Assumption 3.3. All the online functions are nonnegative
and H-smooth over W , i.e.,

∥∇ft(w)−∇ft(w
′)∥ ≤ H∥w −w′∥. (5)

for all w,w′ ∈ W , t ∈ [T ].
Assumption 3.4. The value of each function is bounded by
F , i.e.,

0 ≤ ft(w) ≤ F,∀w ∈ W,∀t ∈ [T ]. (6)

Clarifications on Assumption 3.4 It is worth mentioning
that our algorithms does not need to know the value of F ; in-
stead, it is only used in the theoretical analysis, which is con-
sistent with previous work for small-loss bounds (Orabona
et al., 2012; Zhang et al., 2019; Wang et al., 2020).

Next, we state the definitions of strongly convexity and
exp-concavity (Boyd & Vandenberghe, 2004; Cesa-Bianchi
& Lugosi, 2006), and introduce an important property of
exp-concave functions (Hazan et al., 2007, Lemma 3).
Definition 3.5. A function f : W 7→ R is λ-strongly convex
if

f(w′) ≥ f(w) + ⟨∇f(w),w′ −w⟩+ λ

2
∥w′ −w∥2,

for all w,w′ ∈ W .
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 · · ·
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 · · ·

C̃0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
C̃1 [ ] [ ] [ ] · · ·
C̃2 [ ] [ · · ·
C̃3 [ · · ·

Figure 2. Compact problem-dependent geometric covering (CPGC) intervals. In the figure, each interval is denoted by [ ].

Definition 3.6. A function f : W 7→ R is α-exp-concave if
exp(−αf(·)) is concave over W .

Lemma 3.7. For a function f : W 7→ R, where W has
diameter D, such that ∀w ∈ W , ∥∇f(w)∥ ≤ G and
exp(−αf(·)) is concave, we have

f(w′) ≥ f(w)+⟨∇f(w),w′−w⟩+β

2
⟨∇f(w),w′−w⟩2,

for all w,w′ ∈ W , where β = 1
2 min{ 1

4GD , α}.

3.2. Follow-the-leading-history for Smooth Functions

To utilize exp-concavity, we follow the structure of FLH
(Hazan & Seshadhri, 2009), which runs multiple experts
over a set of intervals and aggregates them by a meta-
algorithm. The regret over interval [r, s] can be decomposed
as the sum of the meta-regret and the expert-regret, i.e.,

s∑
t=r

ft(wt)− min
w∈W

s∑
t=r

ft(w)

=

s∑
t=r

ft(wt)−
s∑

t=r

ft(w
′
t)︸ ︷︷ ︸

meta-regret

+

s∑
t=r

ft(w
′
t)− min

w∈W

s∑
t=r

ft(w)︸ ︷︷ ︸
expert-regret

where wt and w′
t denote the output of the meta-algorithm

and an expert-algorithm in the t-th round. For expert-regret,
FLH runs ONS (Hazan et al., 2007) as the expert-algorithm
to attain an O( dα log(s− r)) regret bound. For meta-regret,
it uses a variant of Fixed-Share (Herbster & Warmuth, 1998)
as the meta-algorithm to achieve an O( 1

α log s) regret bound.
To obtain small-loss regret over interval [r, s], we need to
turn both bounds to depend on the cumulative loss.

Under the smoothness condition, ONS naturally attains a
small-loss regret bound for exp-concave functions (Orabona
et al., 2012). Thus, we can directly utilize theoretical guar-
antee of ONS to obtain small-loss expert-regret. However,
the meta-regret over interval [r, s] of FLH depends on the
number of intervals created till round s, which is problem-
independent and cannot exploit the smoothness property.
Inspired by Zhang et al. (2019), we construct intervals in a
problem-dependent way. In the following, we first review
the key procedures of problem-dependent intervals.

Review of Problem-dependent Intervals The basic idea
of problem-dependent intervals is to generate intervals based
on the real-time performance of an expert-algorithm. Specif-
ically, we run an instance of the expert-algorithm in round
si, where s1 = 1. When its cumulative loss becomes larger
than a threshold C in round si+α, we set si+1 = si+α+1
and restart the expert-algorithm. By repeating this process, a
sequence of points s1, s2, s3 · · · are generated, and we refer
to them as markers. Instead of using original time points,
we construct problem-dependent geometric covering (PGC)
intervals based on markers. The advantage of PGC intervals
is that the number of intervals depends on the total loss of
expert-algorithm instead of the time length.

Mathematically, PGC intervals are given by

Ĩ =
⋃

k∈N∪{0}

Ĩk, Ĩk =
{
[si·2k , s(i+1)·2k − 1] : i ∈ N

}
where for all k ∈ N ∪ {0}

Ĩk =
{
[si·2k , s(i+1)·2k − 1] : i ∈ N

}
.

Moreover, we can further simplify PGC intervals by remov-
ing overlapping intervals with the same point (Zhang et al.,
2019). To facilitate understanding, we first explain how
to compress the GC intervals in (2) to obtain compact GC
(CGC) intervals. Mathematically, CGC intervals are defined
as C =

⋃
k∈N∪{0} Ck, where Ck = {[i · 2k, (i+1) · 2k − 1] :

i is odd}. Following this idea, we can compress PGC inter-
vals similarly, and the compact PGC (CPGC) intervals are
given by

C̃ =
⋃

k∈N∪{0}

C̃k, C̃k =
{
[si·2k , s(i+1)·2k − 1] : i is odd

}
.

A graphical illustration of CPGC intervals is given in Fig. 2.

Our Approach According to the framework of FLH, our
algorithm also contains 3 components, including an expert-
algorithm, a set of intervals and a meta-algorithm. First,
we use ONS as our expert-algorithm. Then, we construct
CPGC intervals based on the real-time performance of ONS,
and associate each interval I = [sp, sq − 1] ∈ C̃ with an
instance of ONS that minimizes the regret during I . Finally,
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Algorithm 1 Follow-the-Leading-History for Smooth func-
tions (FLHS)

1: Initialize indicator NewInterval=true, the total number
of intervals m = 0, the index of the latest expert n = 0

2: for t = 1 to T do
3: if NewInterval is true then
4: Create an expert Et by running the algorithm of

ONS, and set Lt−1 = 0, pt,t = 1
m+1

5: Add Et to the set of active experts: At = At−1 ∪
{Et}

6: Reset the indicator NewInterval=false
7: Update the total number of intervals m = m+ 1
8: Set gt = j such that [m, j − 1] ∈ C and record the

index of the latest expert n = t
9: end if

10: Receive output wt,i from each expert Ei ∈ At

11: Submit wt in wt =
∑

Ej∈At
pt,jwt,j

12: Update the cumulative loss of the latest expert: Lt =
Lt−1 + ft(wt,n)

13: if Lt > C then
14: Set the indicator NewInterval=true
15: Remove experts whose ending times are sm+1−1:

At = At \ {Ei|gi = m+ 1}
16: end if
17: for all Ei ∈ At do
18: Update weight in (7)
19: if NewInterval is true then pt+1,i = (1 − (m +

1)−1)p̂t+1,i else pt+1,i = p̂t+1,i

20: end for
21: end for

we modify the meta-algorithm of FLH to accommodate
the new intervals. Let Et be the expert-algorithm created
in round t. FLH initializes the weight of Et to be 1/t
and multiplies the weight of other active experts by (1 −
1/t) which lead to problem-independent terms. To yield a
problem-dependent meta-regret, both the initial weight and
the updating rule need to be modified to benefit from CPGC
intervals. Specifically, we denote the number of dynamically
constructed experts by m, and then modify the initial and
updating weights to 1/m and (1− 1/m) accordingly.

Our Follow-the-Leading-History for Smooth functions
(FLHS) is summarized in Algorithm 1. To generate CPGC
intervals, we introduce a Boolean variable NewInterval to
indicate whether a new interval should be created. Further-
more, the total number of intervals and the index of the
latest expert are denoted by m and n, respectively. In each
round t, if NewInterval is true, we will create an expert
Et by running an instance of ONS, and introduce Lt−1 to
record the cumulative loss of the latest expert. In Step 4, we
initialize the weight of Et to be pt,t = 1/(m+ 1) which is
problem-dependent. We add Et to the active set At in Step

5. Then, we reset the indicator to be false and update the
total number of intervals (Steps 6 to 7). According to CPGC
intervals, we know that the m-th marker sm = t and the
ending time sj satisfies [m, j − 1] ∈ C. So we set gt = j
and record the index of the latest expert n = t in Step 8
and remove expert Et when m is going to reach gt in Step
15. In Step 10, we collect the predictions of all the active
experts, and aggregate them in Step 11. We keep track of
the latest expert and record its cumulative loss Lt. When
Lt is larger than the threshold C, we set NewInterval to be
true and remove experts whose ending times are sm+1 − 1
(Steps 13 to 16). In Step 18, FLHS updates the weight of
each active expert, i.e.,

p̂t+1,i =
pt,ie

−ηft(wt,i)∑
j∈At

pt,je−ηft(wt,j)
(7)

where η is the learning rate. To ensure that the sum of all
weights is 1, FLHS multiplies each weight by (1 − (m +
1)−1) if NewInterval is true because a new expert will be
created at next round.

In the following, we present theoretical guarantees of FLHS
for α-exp-concave and smooth functions.

Theorem 3.8. Under Assumptions 3.1, 3.2, 3.3 and 3.4,
if the online functions are α-exp-concave and appropriate
parameters are set, for any interval [r, s] ⊆ [T ] and any
w ∈ W , FLHS satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O

(
d

α
logL∗

1,s logL
∗
r,s

)
where L∗

1,s and L∗
r,s are defined in (1).

Remark In the literature, the state-of-art adaptive regret
bound for exp-concave functions is O( dα log s log(s − r))
of Hazan & Seshadhri (2009). We observe that the
problem-independent term log s log(s− r) is improved to
logL∗

1,s logL
∗
r,s in Theorem 3.8.

Then, we also prove that our proposed algorithm is equipped
with the following theoretical guarantee when dealing with
non-smooth functions.

Theorem 3.9. Under Assumptions 3.1, 3.2 and 3.4, if the
online functions are α-exp-concave and appropriate param-
eters are set, for any interval [r, s] ⊆ [T ] and any w ∈ W ,
FLHS achieves an O( dα log s log(s− r)) minimax adaptive
regret bound for non-smooth functions.

Remark When functions are non-smooth (without As-
sumption 3.3), we provide a novel analysis for problem-
dependent intervals to demonstrate that our algorithm can
also deliver a minimax adaptive regret bound, conferring
an advantage over previous studies on adaptive regret for
smooth functions (Zhang et al., 2019; Zhao et al., 2022).
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Parameter Setting According to the procedure of FLHS,
we need to set threshold C to construct CPGC intervals,
where C requires the problem-dependent parameters, such
as G, D, H and α. For non-smooth functions, we can set
H be any constant, e.g., 1. The detailed requirements of
threshold and the exact regret bounds of FLHS are included
in Appendix B.1.

Strongly Adaptive Regret We would like to further clar-
ify that our work focuses on strongly adaptive regret, which
was introduced to measure the performance of each interval,
with its bound reflecting the length of the interval. Notice
that our analysis is conducted for every interval [r, s] ⊆ [T ],
and our small-loss bound includes the cumulative loss L∗

r,s,
which in turn depends on the length of the interval. In
particular, when functions are non-smooth, we can derive
the existing strongly adaptive regret bounds from our the-
oretical guarantee. By substituting the regret bound from
Theorem 3.9 into the definition of strong adaptive regret,
we prove that FLHS achieves an O( dα log τ log T ) strongly
adaptive regret for α-exp-concave functions.

3.3. From Exp-concave to Strongly Convex

We proceed to discuss how to modify FLHS to obtain a
small-loss adaptive regret bound for λ-strongly convex and
smooth functions. It is established that strongly convex func-
tions with bounded gradients are also exp-concave (Zhang
et al., 2018, Lemma 2). Therefore, we can reuse the meta-
algorithm of FLHS. For the expert-algorithm, we replace
ONS with S2OGD (Wang et al., 2020), which is specially
designed for strongly convex and smooth functions. Next,
we establish the following theoretical guarantee λ-strongly
convex functions under the smoothness condition.

Theorem 3.10. Under the same assumptions as Theo-
rem 3.8, if the online functions are λ-strongly convex and
the learning rate η = λ

G2 , for any interval [r, s] ⊆ [T ] and
any w ∈ W , FLHS with S2OGD expert satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O

(
1

λ
logL∗

1,s logL
∗
r,s

)

where L∗
r,s is defined in (1). Furthermore, when functions

are non-smooth (without Assumption 3.3), FLHS achieves
an O( 1λ log s log(s− r)) adaptive regret bound.

Remark Compared with the O( 1λ log s log(s− r)) bound
of Zhang et al. (2018), our algorithm attains a small-loss
adaptive regret bound for λ-strongly convex and smooth
functions. Similar to Theorem 3.9, our algorithm can also
achieve a minimax adaptive regret bound when functions
are non-smooth.

3.4. A Universal Algorithm for Exploiting Smoothness

In this section, we develop a universal algorithm for exploit-
ing smoothness to improve the adaptive regret.

Expert-algorithm We run multiple experts simultane-
ously to deal with the uncertainty of the functions types, as
well as the modulus of exponentially concavity and strong
convexity. Specifically, We create three types of experts
by running the algorithm of SOGD, S2OGD and ONS to
address the uncertainty of the functions types, where SOGD
is designed for convex and smooth functions. To approx-
imate the modulus of exp-concavity and strong convexity,
we construct two finite sets Pstr and Pexp comprising pos-
sible values of the modulus, which are served as the in-
put parameters for S2OGD and ONS. Taking λ-strongly
convex functions as an example, assume that T is fixed
in advance and the unknown modulus λ is both upper
bounded and lower bounded, i.e., λ ∈ [1/T, 1], we construct
Pstr = {1/T, 2/T, 22/T, · · · , 2N/T} to be set of possible
values, where N = ⌈log2 T ⌉. The detailed procedure of
creating multiple experts is summarized in Appendix D.2.
Additionally, we also provide justifications in Appendix G
regarding the assumption of the bounded modulus, which is
commonly accepted in the majority of scenarios.

Meta-algorithm We choose Adapt-ML-Prod (Gaillard
et al., 2014) as Zhang et al. (2022b) have proved that its
meta-regret can automatically exploit the exp-concavity and
strong convexity by utilizing the linearized loss. Following
this idea, we extend Adapt-ML-Prod to support sleeping
experts so that our meta-algorithm can aggregate all the
decisions from dynamically created experts, and yield a
problem-dependent meta-regret.

Construction of Problem-dependent Intervals com-
pared with FLHS, we need to run multiple experts rather
than a single expert over an interval. In this scenario, we
explain that generating CPGC intervals based on the cumu-
lative loss of the expert-algorithm as Zhang et al. (2019)
will result in a suboptimal regret bound for convex and non-
smooth functions. Specifically, if we construct intervals
based on the total loss of the expert, we can obtain an opti-
mal regret bound over a CPGC interval [sa−1, sa − 1] ∈ C̃.
However, the problem arises when bounding the regret of a
sub-interval [r, sa − 1],

sa−1∑
t=r

ft(wt)−
sa−1∑
t=r

ft(w)

≤
sa−1∑

t=sa−1

ft(wt)−
sa−1∑

t=sa−1

ft(wt,sa−1
)︸ ︷︷ ︸

meta-regret

+

sa−1∑
t=sa−1

ft(wt,sa−1
)︸ ︷︷ ︸

≤C+F
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Algorithm 2 A Universal Algorithm for Exploiting Smooth-
ness to Improve the Adaptive Regret (USIA)

1: Initialize indicator NewInterval=true, the total number
of intervals m = 0

2: for t = 1 to T do
3: if NewInterval is true then
4: Create multiple experts for three types of convex

functions and add all the experts to the set active
experts: At = At−1 ∪ {Ek

t }
5: Reset the indicator NewInterval=false and update

the total number of intervals m = m+ 1
6: Initialize γk

t = ln(2m + 1), xk
t−1,t = 1 and

Lk
t−1,t = 0 for all the experts

7: Set gt = j such that [m, j − 1] ∈ C and L̂t−1 = 0
8: end if
9: Set ηkt,i and calculate the weight pkt,i by (8) for each

expert Ek
i ∈ At

10: Receive output wk
t,i from each expert Ek

i ∈ At

11: Calculate wt =
∑

Ek
j ∈At

pkt,jw
k
t,j and evaluate the

gradient ∇ft(wt)
12: Update the cumulative loss of the latest expert: L̂t =

L̂t−1 + ft(wt)
13: if L̂t > G(m) then
14: Set the indicator NewInterval=true
15: Remove experts whose ending times are t + 1:

At = At \ {Ek
i |gi = m+ 1}

16: end if
17: Observe the normalized linearized loss ℓkt,i of each

expert Ek
i ∈ At by (9)

18: Observe the meta loss ℓt =
∑

Ek
j ∈At

pkt,jℓ
k
t,j

19: Update Lk
t,i and xk

t,i of each expert Ek
i ∈ At by (10)

20: end for

where sa−1 ≤ r < sa. According to the theoretical guaran-
tee of Adapt-ML-Prod for convex and non-smooth functions,
the meta-regret will be

sa−1∑
t=sa−1

ft(wt)−
sa−1∑

t=sa−1

ft(wt,sa−1
) ≤ O

(√
sa − sa−1

)
.

Since there is no relationship between sa−1 and r, this
bound could be loose for convex functions over interval
[r, sa − 1]. To address this problem, we provide another
approach to bound the regret of a sub-interval [r, sa − 1] by

sa−1∑
t=r

ft(wt)−
sa−1∑
t=r

ft(w) ≤
sa−1∑
t=r

ft(wt) ≤
sa−1∑

t=sa−1

ft(wt),

which motivates us to directly control the cumulative loss of
the output wt from meta-algorithm during the construction
of CPGC intervals. Since the meta-algorithm aggregates
the experts over all the intervals, the cumulative loss of its

output depends on the number of intervals created till current
round, thereby rendering a fixed threshold of Zhang et al.
(2019) inadequate for intervals construction. Therefore,
we instead construct a threshold function G(a) based on
the cumulative loss varying with the number of intervals,
where a is the interval index. We also mention that such
technique also appears in Zhao et al. (2022), but their goal
is to reduce projection complexity, which is different from
ours. According to the theoretical guarantee, the meta-regret
exhibits only a logarithmic dependency on the number of
intervals, thus ensuring a tight regret bound within each
interval segment.

Our Universal algorithm for exploiting Smoothness to
Improve the Adaptive regret (USIA) is summarized in Al-
gorithm 2. To generate CPGC intervals, we introduce a
Boolean variable NewInterval to indicate whether a new
interval should be created and denote the total number
of intervals by m. In each round t, if NewInterval is
true, we create multiple experts Ek

t in Step 4, where
k = 1, · · · , 1 + 2⌈log2 T ⌉. Then, we reset the indicator
to be false and update the total number of intervals in Step 5.
Next, we initialize the γk

t , xk
t−1,t and Lk

t−1,t for each expert
Ek

t which are parameters for Adapt-ML-Prod in Step 6. In
Step 7, we introduce gt = j and L̂t−1 to record the ending
time of the m-th marker and the cumulative loss, repsec-
tively. In Step 9, we set the learning rate for each expert in
the active set and calculate the weight pkt,i:

ηkt−1,i = min

{
1

2
,

√
γk
i

1 + Lk
t−1,i

}
,

pkt,i =
ηkt−1,ix

k
t−1,i∑

Ek
j ∈At

ηkt−1,jx
k
t−1,j

.

(8)

In Step 10, USIA collects the predictions of all the active
experts, and aggregates them in Step 11. We keep track of
the aggregated prediction wt and record its cumulative loss
L̂t. When L̂t is larger than the threshold function G(m), we
set NewInterval to be true and remove experts whose ending
times are sm+1 − 1 (Steps 13 to 16). After evaluating the
gradient ∇ft(wt), we observe the normalized linearized
loss for all the active experts in Step 17, which is formulated
as,

ℓt,i =
⟨∇ft(wt),wt,i − w̄⟩+GD

2GD
∈ [0, 1]. (9)

In Step 18, we calculate the weighted average of ℓkt,i as the
loss of the meta-algorithm suffered in the t-th round. Finally,
we update the parameter Lk

t,i and xk
t,i in the set of active

experts according to the rule of Adapt-ML-Prod:

Lk
t,i = Lk

t−1,i + (ℓt − ℓkt,i)
2,

xk
t,i =

(
xk
t−1,i

(
1 + ηkt−1,i(ℓt − ℓkt,i)

)) ηk
t,i

ηk
t−1,i .

(10)
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Subsequently, we present the following theoretical guaran-
tee of USIA, and defer the details of expert-algorithms and
analysis in Appendix D.

Theorem 3.11. Under Assumptions 3.1, 3.2, 3.3 and 3.4, for
any interval [r, s] ⊆ [T ] and any w ∈ W , with appropriate
parameters set, if the online functions are α-exp-concave
with α ∈ [1/T, 1], USIA satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O

(
d

α
logL∗

1,s logL
∗
r,s

)
,

if the online functions are λ-strongly convex with λ ∈
[1/T, 1], USIA satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O

(
1

λ
logL∗

1,s logL
∗
r,s

)
,

if the online functions are general convex, USIA satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O
(√

L∗
r,s logL

∗
1,s logL

∗
r,s

)
,

where L∗
r,s is defined in (1). Moreover, when functions

are non-smooth, USIA achieves O( dα log s log(s − r)),
O( 1λ log s log(s − r)) and O(

√
(s− r) log s log(s− r))

adaptive regret for α-exp-concave, λ-strongly convex, and
general convex functions, respectively.

Remark Theorem 3.11 demonstrates that USIA is able
to attain small-loss adaptive regret bounds for three types
of loss functions simultaneously. Moreover, USIA is im-
plemented without knowing the modulus of exp-concavity
and strong convexity. When dealing with changing en-
vironments, USIA can also handle the case that the type
of functions changes between rounds. For example, un-
der the smoothness condition, suppose the online func-
tions are general convex during interval [r1, s1], then be-
come α-exp-concave in [r2, s2], and finally switch to λ-
strongly convex in [r3, s3]. When facing this function
sequence, USIA achieves O(

√
L∗
r1,s1 logL

∗
1,s1

logL∗
r1,s1),

O( dα logL∗
1,s2 logL

∗
r2,s2) and O( 1λ logL∗

1,s3 logL
∗
r3,s3) re-

grets over intervals [r1, s1], [r2, s2] and [r3, s3], respectively.
Furthermore, when the online functions are non-smooth, our
algorithm can also attain adaptive regret bounds for three
types of loss functions simultaneously.

Parameter Setting According to the procedure of USIA,
we need to set threshold G(m) to construct CPGC intervals,
where G(m) requires G, D, H and T in USIA. For non-
smooth functions, we can set H be any constant, e.g., 1.
The detailed requirements of threshold and the exact regret
bounds of USIA are included in Appendix D.1.

Reduce Gradient Query Complexity According to the
description of Algorithm 2, we need to construct O(log T )
CPGC intervals to adapt to the changing environment, and
each interval is associated with O(log T ) expert-algorithms
to address the uncertainty of the function. Therefore, USIA
maintains O(log2 T ) expert-algorithms which is the same
as that of existing universal algorithm for adaptive re-
gret (Zhang et al., 2021). Within the meta-expert framework,
each expert-algorithm needs to query the function gradient
once and evaluate the function value once per round, thus
leading to significant concerns about computational effi-
ciency. To address this limitation, we introduce an improved
implementation of USIA with one gradient query and one
value estimation per round in Appendix E.

4. Conclusion
In this paper, we develop an adaptive algorithm, named as
FLHS, which achieves a small-loss adaptive regret bound
for exp-concave functions. Additionally, we point out that a
small-loss adaptive regret bound for strongly-convex func-
tions is attainable by changing the expert-algorithm. Fur-
thermore, we propose a universal algorithm for exploiting
smoothness to improve the adaptive regret, namely USIA.
Under the smoothness condition, it delivers small-loss adap-
tive regret bounds for general convex, exp-concave and
strongly convex functions simultaneously. Finally, we prove
that our algorithms can also attain minimax optimal regret
bounds when functions are non-smooth, which offers a sig-
nificant advantage over previous studies.
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A. Omitted Related Work
In this section, we discuss some related work on static regret. For general convex functions, online gradient descent (OGD)
with step size ηt = O(1/

√
t) attains an O(

√
T ) regret bound (Zinkevich, 2003). For α-exp-concave functions, ONS is

equipped with O( dα log T ) regret bound, where d is the dimensionality (Hazan et al., 2007). For λ-strongly convex functions,
an O( 1λ log T ) regret bound is achievable by applying OGD with step size ηt = O(1/[λt]) (Shalev-Shwartz et al., 2007).
While the above regret bounds are minimax optimal for the corresponding type of functions (Abernethy et al., 2008), tighter
bounds are attainable if the loss functions are smooth. For general convex and smooth functions, OGD with a constant step
size attains an O(

√
L) regret bound (Srebro et al., 2010), where L is the upper bound of

∑T
t=1 ft(w) for any w ∈ W . For

general convex and smooth functions, OGD with a constant step size attains an O(
√
L) regret bound (Srebro et al., 2010),

where L is the upper bound of
∑T

t=1 ft(w) for any w ∈ W . However, the modulus of smoothness and upper bound L
are required to set the step size, which are typically unavailable in practice. Scale-free online gradient descent (SOGD)
(Zhang et al., 2019) is proposed to address this limitation, which is a special case of the Scale-free online mirror descent
(SOMD) (Orabona & Pál, 2018). SOGD achieves an O(

√
L∗
T ) small-loss regret bound for general convex functions, where

L∗
T = minw∈W

∑T
t=1 ft(w). For α-exp-concave and smooth functions, ONS is able to attain an O( dα logL∗

T ) small-loss
regret bound (Orabona et al., 2012). For λ-strongly convex and smooth functions, Wang et al. (2020) introduce smooth and
strongly convex online gradient descent (S2OGD) which yields an O( 1λ logL∗

T ) small-loss regret bound.

B. Follow-the-Leading-History for Exp-concave and Smooth functions
B.1. Exact Bounds for α-exp-concave and (Non-)Smooth Functions

Due to page limit in the main body, we present bounds using the big-O notation in the theorems. Here, we provide the exact
bounds.

For α-exp-concave and smooth functions, suppose

C ≥ d

β

√
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2 +

1

β
+ dHD2 (11)

where β = 1
2 min{ 1

4GD , α}. Under this condition, FLHS achieves the following regret bound
s∑

t=r

ft(wt)−
s∑

t=r

ft(w) ≤

(
1 +

⌈
log2

(
2 +

4

C

s∑
t=r

ft(w)

)⌉)
(MR(s) + ER(r, s)) + C + F

where

MR(s) =
2

α
ln

(
1 +

4

C

s∑
t=1

ft(w)

)

ER(r, s) =
d

2β
log

(
8Hβ2D2

d

s∑
t=r

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

)
+

1

2β
.

For α-exp-concave and non-smooth functions, FLHS achieves the following regret bound
s∑

t=r

ft(wt)−
s∑

t=r

ft(w)

≤
(
1 +

⌈
log2

(
4F

C
(s− r + 1) + 2

)⌉)(
2

α
ln

(
1 +

F

C
s

)
+

d

2β
log

(
β2G2D2

d
(s− r) + 1

)
+

1

2β

)
+ C + F.

B.2. Algorithm Description: Follow-the-Leading-History for Smooth functions

Highlight First of all, we make clarifications that the expert-algorithm must attain an anytime regret bound over CPGC
intervals, because we need to construct CPGC intervals based on the real-time performance of the expert-algorithm.

For exp-concave functions, we use Online Newton Step (ONS) as our expert-algorithm to minimize the regret during interval
[sp, sq − 1]. The generalized projection ΠΣ

W(·) is defined as

ΠΣ
W(x) = argmin

w∈W
(w − x)⊤Σ(w − x)

12
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which is used in Step 4 of Algorithm 3.

Algorithm 3 Expert Esp : Online Newton Step (ONS)

1: Initialize wsp be any point in W and Σsp−1 = 1
β2D2 Id,

2: for t = sp to sq − 1 do
3: Update Σt = Σt−1 + gtg

⊤
t where gt = ∇ft(wt,sp)

4: Calculate

wt+1,sp = ΠΣt

W

(
wt,sp − 1

β
Σ−1

t gt

)
5: end for

B.3. Proof of Theorem 3.8

First, we start with the meta-regret.

Lemma B.1. Under Assumptions 3.1, 3.2 and 3.3, if the online functions are α-exp-concave and the learning rate η = α,
for any interval [sp, sq − 1] ∈ C̃, the meta-regret of FLHS with respect to Esp satisfies

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp) ≤
2

α
ln

(
1 +

4

C

sq−1∑
t=1

ft(w)

)

where C is defined in (11).

Remark Compared with the problem-independent bound O
(
1
α log(sq − 1)

)
of efficient FLH, the meta-regret of our

FLHS is problem-dependent, since it depends on the cumulative loss of the expert instead of the time length.

For each CPGC interval I = [sp, sq − 1] ∈ C̃, we create an instance of Online Newton Step (ONS) (Hazan et al., 2007) as
expert-algorithm because it can attain a small-loss regret bound for exp-concave and smooth functions during I (Orabona
et al., 2012, Theorem 1).

Lemma B.2. Let β = 1
2 min{ 1

4GD , α}. Under Assumptions 3.1, 3.2 and 3.3, if the online functions are α-exp-concave, for
any interval [sp, sq − 1] ∈ C̃ and any w ∈ W , expert Esp satisfies

sq−1∑
t=sp

ft(wt,sp)−
sq−1∑
t=sp

ft(w) ≤ d

2β
log

8Hβ2D2

d

sq−1∑
t=sp

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

+
1

2β
.

For simplicity, we denote

MR(sq) =
2

α
ln

(
1 +

4

C

sq−1∑
t=1

ft(w)

)
,

ER(sp, sq) =
d

2β
log

8Hβ2D2

d

sq−1∑
t=sp

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

+
1

2β
.

Combining the meta-regret and expert-regret, we can obtain a small-loss bound for α-exp-concave and smooth functions
over any CPGC interval. Next, we extend this bound to any interval [r, s] ⊆ [T ].

The analysis is similar to the proof of Theorem 4 of Zhang et al. (2019). Let sa be the smallest marker that is larger than r,
and sb be the largest marker that is not larger than s. Then, we have

sa−1 ≤ r < sa, and sb ≤ s < sb+1.

13
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First, we bound the regret over interval [r, sa − 1]. We have

sa−1∑
t=r

ft(wt)−
sa−1∑
t=r

ft(w) ≤
sa−1∑
t=r

ft(wt) ≤
sa−1∑

t=sa−1

ft(wt)

≤
sa−1∑

t=sa−1

ft(wt)−
sa−1∑

t=sa−1

ft(wt,sa−1
) +

sa−1∑
t=sa−1

ft(wt,sa−1
)

≤MR(sa − 1) + C + F

where the last step is due to the construction rule of markers and Assumption 3.4. Next, we bound the regret over interval
[sa, s]. To proceed, we introduce the following property of CPGC intervals (Zhang et al., 2019, Lemma 11).

Lemma B.3. Let [sa, sb] ⊆ [T ] be an interval that starts from an marker sa and ends at another marker sb. Then, we can
find a sequence of consecutive intervals

I1 = [si1 , si2 − 1], I2 = [si2 , si3 − 1], · · · , Iv = [siv , siv+1
− 1] ∈ C̃

such that
i1 = a, iv ≤ b < iv+1, and v ≤ ⌈log2(b− a+ 2)⌉.

Note that
b < iv+1 ⇒ b+ 1 ≤ iv+1 ⇒ sb+1 − 1 ≤ siv+1 − 1 ⇒ s ≤ siv+1 − 1.

Thus, the interval [sa, s] is also covered by the sequence of intervals in the above lemma. Then, for the first v − 1 intervals,

sik+1
−1∑

t=sik

ft(wt)−
sik+1

−1∑
t=sik

ft(w) ≤ MR(sik+1
− 1) + ER(sik , sik+1

− 1),∀k ∈ [v − 1].

And for the last interval, we have

s∑
t=siv

ft(wt)−
s∑

t=siv

ft(w) ≤ MR(s) + ER(siv , s).

By adding them together, we have

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ (v + 1)MR(s) + vER(1, s) + C + F

≤ (1 + ⌈log2(b− a+ 2)⌉) (MR(s) + ER(1, s)) + C + F.

(12)

Finally, we provide an upper bound of b− a by summing (19) over i = a, · · · , b− 1 and arrive at

sb−1∑
t=sa

ft(w) ≥ C

4
(b− a) ⇒ b− a ≤ 4

C

sb−1∑
t=sa

ft(w) ≤ 4

C

s∑
t=r

ft(w).

B.4. Proof of Theorem 3.9

When functions are non-smooth, i.e., removing Assumption 3.3, the following analysis shows that FLHS with ONS expert
can also attain an adaptive regret bound for α-exp-concave functions. For expert-regret, since ONS is equipped with a
squared gradient-norm regret bound, we have

sq−1∑
t=sp

ft(wt,sp)−
sq−1∑
t=sp

ft(w) ≤ d

2β
log

(
β2G2D2

d
(sq − sp) + 1

)
+

1

2β
. (13)

14
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For meta-regret, from the construction of markers, we have

si+1−1∑
t=si

ft(wt,si) ≥ C.

Summing the above bound over i = 1, . . . ,m− 1, we attain

m ≤ 1 +
1

C

m−1∑
i=1

si+1−1∑
t=si

ft(wt,si) ≤ 1 +
1

C

sm−1∑
t=s1

F ≤ 1 +
F

C
(sq − 1)

which implies
sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp) ≤
2

α
ln

(
1 +

F

C
(sq − 1)

)
.

Combining the meta-regret and expert-regret, we can easily attain an adaptive regret bound for α-exp-concave and non-
smooth functions. Then, we extend to [r, s] ⊆ [T ] by repeating the above analysis.

We start with (12), and obtain

s∑
t=r

ft(wt)−
s∑

t=r

ft(w)

≤ (1 + ⌈log2(b− a+ 2)⌉)
(
2

α
ln

(
1 +

F

C
s

)
+

d

2β
log

(
β2G2D2

d
(s− r) + 1

)
+

1

2β

)
+ C + F.

(14)

For the upper bound of b− a, we get

b− a ≤ 4

C

sb−1∑
t=sa

ft(w) ≤ 4

C

s∑
t=r

ft(w) ≤ 4F

C
(s− r + 1).

Substituting the above bound into (14), we finish the proof.

B.5. Proof of Lemma B.1

According to Definition 3.6, we have

e−αft(wt) = e
−αft

(∑
Ej∈At

pt,jwt,j

)
≥
∑

Ej∈At

pt,je
−αft(wt,j)

which implies

ft(wt) ≤ − 1

α
ln
∑

Ej∈At

pt,je
−αft(wt,j).

Then, we have

ft(wt)− ft(wt,sp) ≤
1

α

ln e−αft(wt,sp ) − ln
∑

Ej∈At

pt,je
−αft(wt,j)


=

1

α
ln

e−αft(wt,sp )∑
Ej∈At

pt,je−αft(wt,j)

=
1

α
ln

(
1

pt,i
· pt,ie

−αft(wt,sp )∑
Ej∈At

pt,je−αft(wt,j)

)

=
1

α
ln

p̂t+1,sp

pt,sp
.

(15)

15
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When t = sp, we have

fsp(wsp)− fsp(wsp,sp) ≤
1

α

(
ln p̂sp+1,sp + lnmsp

)
where msp denotes the number of experts created till round sp. When t ̸= sp, we prove the following inequality

ft(wt)− ft(wt,sp) ≤
1

α

(
ln p̂t+1,sp − ln pt,sp

)
≤ 1

α

(
ln p̂t+1,sp − ln p̂t,sp + 1{NewInterval}

2

mt

)
where the last step is due to − ln(1− x) ≤ 2x when 0 < x ≤ 1

2 .

Summing (15) over t = sp, · · · , sq − 1, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp)

≤fsp(wsp)− fsp(wsp,sp) +
1

α

 sq−1∑
t=sp+1

(ln p̂t+1,sp − ln p̂t,sp) +

sq−1∑
t=sp+1

1{NewInterval} ·
2

mt


≤ 1

α
(lnmsp + ln p̂sq+1,sp︸ ︷︷ ︸

≤0

) +
1

α

msq−1∑
t=msp+1

2

t
≤ 1

α
lnmsp +

2

α
lnmsq−1 −

2

α
lnmsp+1

≤ 2

α
lnmsq−1.

(16)

Next, we need to provide a small-loss upper bound for msq−1. Note that in each interval [si, si+1 − 1], an expert Esi is
created by running ONS. According to (29), we have

si+1−1∑
t=si

ft(wt,si)−
si+1−1∑
t=si

ft(w) ≤ d

2β
log

(
8Hβ2D2

d

si+1−1∑
t=si

ft(w) + Ξ

)
+

1

2β

≤ d

2β

√√√√8Hβ2D2

d

si+1−1∑
t=si

ft(w) + Ξ +
1

2β

≤ 1 + d
√
Ξ

2β
+

dHD2

2
+

si+1−1∑
t=si

ft(w)

(17)

where Ξ = 4HβD2

d + 4HβD2 log 4HβD2

e + 2. On the other hand, from the construction of markers, we have

si+1−1∑
t=si

ft(wt,si) ≥ C.

Suppose

C ≥ d

β

√
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2 +

1

β
+ dHD2. (18)

Thus, we have
si+1−1∑
t=si

ft(w) ≥ 1

2

(
C −

(
1 + d

√
Ξ

2β
+

dHD2

2

))
(18)
≥ C

4
. (19)

Let m is the number of experts created till round t. Summing (19) over i = 1, · · · ,m− 1, we have

sm−1∑
t=s1

ft(w) ≥ C

4
(m− 1)

16



Small-loss Adaptive Regret for Online Convex Optimization

implying

m ≤ 1 +
4

C

sm−1∑
t=s1

ft(w) ≤ 1 +
4

C

t∑
t=1

ft(w). (20)

Combining (16) and (20), we can achieve the meta-regret of FLHS,

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp) ≤
2

α
ln

(
1 +

4

C

sq−1∑
t=1

ft(w)

)
= MR(sq − 1).

B.6. Proof of Lemma B.2

The analysis is similar the proofs of Theorem 1 of Orabona et al. (2012). For the convenience of notations, we suppose
wt = wt,sp , let yt+1 = wt − 1

βΣ
−1
t gt, and wt+1 = ΠΣt

W (yt+1), we have

yt+1 −w = wt −w − 1

β
Σ−1

t gt,

Σt(yt+1 −w) = Σt(wt −w)− 1

β
gt.

(21)

And we combine above equalities and arrive at

(yt+1 −w)⊤Σt(yt+1 −w) = (wt −w)⊤Σt(wt −w)− 2

β
g⊤
t (wt −w) +

1

β2
g⊤
t Σ

−1
t gt

≥ (wt+1 −w)⊤Σt(wt+1 −w).

(22)

Thus,

g⊤
t (wt −w) ≤ 1

2β
g⊤
t Σ

−1
t gt +

β

2
(wt −w)⊤Σt(wt −w)− β

2
(wt+1 −w)⊤Σt(wt+1 −w). (23)

Then summing over t = sp, · · · , sq − 1 and we attain

sq−1∑
t=sp

g⊤
t (wt −w) ≤ 1

2β

sq−1∑
t=sp

g⊤
t Σ

−1
t gt +

β

2
(wsp −w)⊤Σsp(wsp −w)

+
β

2

sq−1∑
t=sp+1

(wt −w)⊤(Σt − Σt−1)(wt −w)

− β

2
(wsq −w)⊤Σsq−1(wsq −w)

≤ 1

2β

sq−1∑
t=sp

g⊤
t Σ

−1
t gt +

β

2

sq−1∑
t=sp

⟨gt,wt −w⟩2

+
β

2
(wsp −w)⊤(Σsp − gspg

⊤
sp)(wsp −w).

(24)
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After that,
sq−1∑
t=sp

g⊤
t (wt −w)− β

2

sq−1∑
t=sp

⟨gt,wt −w⟩2

≤ 1

2β

sq−1∑
t=sp

g⊤
t Σ

−1
t gt +

β

2
(wsp −w)⊤(Σsp − gspg

⊤
sp)(wsp −w)

≤ 1

2β

sq−1∑
t=sp

g⊤
t Σ

−1
t gt +

1

2β
=

1

2β

sq−1∑
t=sp

Σ−1
t gtg

⊤
t +

1

2β

=
1

2β

sq−1∑
t=sp

Σ−1
t (Σt − Σt−1) +

1

2β

≤ 1

2β

sq−1∑
t=sp

log
|Σt|

|Σt−1|
+

1

2β
=

1

2β
log

|Σsq−1|
|Σsp−1|

+
1

2β

(25)

where the last inequality is obtained by Hazan et al. (2007, Lemma 12). It is easy to bound |Σsq−1| with sum of gradient
norm.

tr(Σsq−1) = tr(Σsp−1) +

sq−1∑
t=sp

∥gt∥2 =
d

β2D2
+

sq−1∑
t=sp

∥gt∥2

|Σsq−1| =

 1

β2D2
+

sq−1∑
t=sp

∥gt∥2/d

d (26)

where the last inequality is obtained by Jensen’s inequality. According to the definition of Σsp−1 and Lemma 3.7, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤
sq−1∑
t=sp

g⊤
t (wt −w)− β

2

sq−1∑
t=sp

⟨gt,wt −w⟩2

≤ d

2β
log

β2D2

d

sq−1∑
t=sp

∥gt∥2 + 1

+
1

2β
.

(27)

Next, we introduce the self-bounding property of smooth functions (Srebro et al., 2010, Lemma 3.1).

Lemma B.4. For an H-smooth and nonnegative function,

∥∇f(w)∥ ≤
√

4Hf(w),∀w ∈ W.

In this way, we attain

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤ d

2β
log

4Hβ2D2

d

sq−1∑
t=sp

ft(wt) + 1

+
1

2β
. (28)

To obtain the small-loss regret bound, we need the follow lemma (Orabona et al., 2012, Corollary 5).

Lemma B.5. Let a, b, c, d, x > 0 satisfy
x− d ≤ a ln(bx+ c).

Then

x− d ≤ a ln

(
2

(
ab ln

2ab

e
+ db+ c

))
.

18
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Finally, we finished the proof by combining (28) and Lemma B.5,

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤ d

2β
log

8Hβ2D2

d

sq−1∑
t=sp

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

+
1

2β

=ER(sp, sq − 1).

(29)

C. Follow-the-Leading-History for Strongly-convex and Smooth functions
C.1. Algorithm Description: Smooth and Strongly Convex OGD (S2OGD)

For λ-strongly convex functions, we use Smooth and Strongly Convex OGD (S2OGD) as our expert-algorithm, since it is
equipped with small-loss regret bound. The projection operator ΠW(·) is defined as

ΠW(x) = argmin
w∈W

∥w − x∥.

Algorithm 4 Expert Esp : Smooth and Strongly Convex OGD (S2OGD)
1: for t = sp to sq − 1 do
2: Update

wt+1 = ΠW (wt − αtgt)

where
αt =

γ

δ +
∑t

i=sp
∥gi∥2

, gt = ∇ft(wt).

3: end for

For each CPGC interval I = [sp, sq − 1] ∈ C̃, we create an instance of Smooth and Strongly Convex OGD (S2OGD) as
expert-algorithm because it can attain a small-loss regret bound for strongly convex and smooth functions during I (Wang
et al., 2020, Theorem 1).

Lemma C.1. Let γ = G2

λ and δ = G2. Under Assumptions 3.1 and 3.2, if the online functions are λ-strongly convex, for
any interval [sp, sq − 1] ∈ C̃ and any w ∈ W , expert Esp satisfies

sq−1∑
t=sp

ft(wt,sp)−
sq−1∑
t=sp

ft(w) ≤ λD2 +
G2

2λ
log

 1

G2

sq−1∑
t=sp

∥∇ft(wt,sp)∥2
 .

Furthermore, under Assumption 3.3, we have

sq−1∑
t=sp

ft(wt,sp)−
sq−1∑
t=sp

ft(w) ≤ G2

λ
ln

8H

G2

sq−1∑
t=sp

ft(w) + µ

+ λD2

where

µ =
8λHD2

G2
+

4H

λ
ln

4H + λe

eλ
+ 2 (30)

is a constant.

C.2. Proof of Theorem 3.10

We introduce the following property of strongly convex functions (Zhang et al., 2018, Lemma 2).
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Lemma C.2. Suppose a function f : W 7→ R is λ-strongly convex and ∥∇f(w)∥ ≤ G for all w ∈ W . Then, f(·) is
λ
G2 -exp-concave.

The above lemma implies that strongly convex functions with bounded gradients are also exp-concave. Thus, for λ-strongly
convex and smooth functions, when we set learning rate η = λ

G2 in FLHS, (16) implies

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp) ≤
2G2

λ
lnmsq−1. (31)

Then, we bound msq−1 by repeating the analysis of Theorem 3.8. Note that in each interval [si, si+1 − 1], an expert Esi is
created by running S2OGD. According to Lemma C.1, we have

si+1−1∑
t=si

ft(wt,si)−
si+1−1∑
t=si

ft(w) ≤ G2

λ
ln

(
8h

G2

si+1−1∑
t=si

ft(w) + µ

)
+ λD2

≤ G2

λ

√√√√ 8h

G2

si+1−1∑
t=si

ft(w) + µ+ λD2

≤ G2

λ

√
µ+

2hG2

λ2
+ λD2 +

si+1−1∑
t=si

ft(w)

(32)

where µ = 8λhD2

G2 + 4h
λ ln 4h+λe

eλ + 2. Suppose

C ≥ 2G2

λ

√
µ+

4hG2

λ2
+ 2λD2. (33)

Thus, we have
si+1−1∑
t=si

ft(w) ≥ 1

2

(
C −

(
G2

λ

√
µ+

2hG2

λ2
+ λD2

))
(33)
≥ C

4
. (34)

Let m is the number of experts created till round t. Summing (19) over i = 1, · · · ,m− 1, we have

sm−1∑
t=s1

ft(w) ≥ C

4
(m− 1)

implying

m ≤ 1 +
4

C

sm−1∑
t=s1

ft(w) ≤ 1 +
4

C

t∑
t=1

ft(w). (35)

Combining the meta-regret in (31) and expert-regret of Lemma C.1, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤ 2G2

λ
ln

(
1 +

4

C

sq−1∑
t=1

ft(w)

)
︸ ︷︷ ︸

MR(sq−1)

+
G2

λ
ln

8H

G2

sq−1∑
t=sp

ft(w) + µ

+ λD2

︸ ︷︷ ︸
ER(sp,sq−1)

.

Finally, we finish the proof by repeating the analysis of Theorem 3.8. Furthermore, we can also attain an adaptive regret
bound for λ-strongly convex and non-smooth functions. Due to the theoretical guarantee of S2OGD, we have

sq−1∑
t=sp

ft(wt,sp)−
sq−1∑
t=sp

ft(w) ≤ λD2 +
G2

2λ
log (sq − sp) = ERs(sp, sq).
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when functions are non-smooth, (31) implies that

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(wt,sp) ≤
2G2

λ
ln

(
1 +

F

C
(sq − 1)

)
= MRs(sq).

because

m ≤ 1 +
1

C

m−1∑
i=1

si+1−1∑
t=si

ft(wt,si) ≤ 1 +
1

C

sm−1∑
t=s1

F ≤ 1 +
F

C
(sq − 1).

Combining the meta-regret and expert-regret, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤ 2G2

λ
ln

(
1 +

F

C
(sq − 1)

)
+ λD2 +

G2

2λ
log (sq − sp) .

Then, we extend the above bound to any interval [r, s] ⊆ [T ] by repeating the analysis of Theorem 3.8.

D. Universal Algorithm for Exploiting the Smoothness to Improve the Adaptive Regret
D.1. Exact Bounds of USIA for (Non)-Smooth Functions

Due to page limit in the main body, we present bounds using the big-O notation in the theorems. Here, we provide the exact
bounds.

Suppose for the m-th interval,

G(m) = 4GDΓ(m) + 10HD2

(
Γ(m)√

ln(2m+ 1)
+

√
2

)2

+ 2

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
D
√

4G2 + 8HGDΓ(m)

where Γ(m) = ln(2m+ 1) + 2 ln(3 + 2 log2 T ). For α-exp-concave and smooth functions, USIA satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ (MR(s) + ER(r, s) + Ξ) log2

(
2 +

4

G(1)

s∑
t=r

ft(w)

)
+ G(a) + F

where

MR(s) =
(
4GD +

1

2β

)
ln

(
3 +

8

G(1)

s∑
t=1

ft(w)

)

ER(r, s) =
d

β
log

(
8Hβ2D2

d

s∑
t=r

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

)

Ξ =

(
4GD +

4

β

)
ϵ(T ) +

2

β
ϵ2(T ) +

1

β

G(a) + F ≤ O

(
log

sa−1∑
t=1

ft(w)

)
≤ O

(
log

s∑
t=1

ft(w)

)
.

For general convex and smooth functions, USIA has

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ A(s)v(r, s) +B(s)

√√√√v(r, s)

s∑
t=r

ft(w) + G(a) + F (36)
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where

A(s) = 4HD2 ln

(
3 +

8

G(1)

s∑
t=1

ft(w)

)
+ (8

√
2HD2 + 2GD + 1)

√√√√ln

(
3 +

8

G(1)

s∑
t=1

ft(w)

)

+
(
16HD2(

√
2 + 1) + 4GD + 2

)
ϵ(T ) + 16HD2ϵ2(T ) + 24HD2 + 2

√
2GD

B(s) =
√
4HD2

√√√√(ln(3 + 8

G(1)

s∑
t=1

ft(w)

)
+ 4(

√
2 + 1)ϵ(T ) + 4ϵ2(T )

)
ϵ(T ) = ln (3 + 2 log2 T )

v(r, s) = log2

(
2 +

4

G(1)

s∑
t=r

ft(w)

)

G(a) + F ≤ O

(
log

sa−1∑
t=1

ft(w)

)
≤ O

(
log

s∑
t=1

ft(w)

)
.

When deal with non-smooth functions, for α-exp-concave functions, USIA satisfies

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ (MR(s) + ER(r, s) + Ξ) log2

(
2 +

4F

G(1)
(s− r + 1)

)
+ G(a) + F

where

MR(s) =
(
4GD +

1

2β

)
ln

(
3 +

8F

G(1)
s

)
ER(r, s) =

d

2β
log

(
β2G2D2

d
(r − s) + 1

)
+

1

2β

Ξ =

(
4GD +

4

β

)
ϵ(T ) +

2

β
ϵ2(T ) +

1

β

G(a) + F ≤ O (log s) .

For general convex functions, USIA satisfies

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤2GD (MRc(s) + ϵ(T )) log2

(
2 +

4F

G(1)
(s− r + 1)

)
+G(a) + F

+GD
(√

2 + ϵ(T ) +
√

MRc(s)
)√

(s− r + 4) log2

(
2 +

4F

G(1)
(s− r + 1)

)

where MRc(s) = ln
(
3 + 2F

G(1) (s)
)

and ϵ(T ) = 2 ln(3 + log2 T )

D.2. Expert-algorithms for USIA

The projection operator ΠW(·) is defined as

ΠW(x) = argmin
w∈W

∥w − x∥.
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Algorithm 5 Expert Esp : Scale-free online gradient descent (SOGD)
1: for t = sp to sq − 1 do
2: Update

wt+1 = ΠW (wt − ηtgt)

where
ηt =

γ

δ +
∑t

i=sp
∥gi∥2

, gt = ∇ft(wt).

3: end for

The procedure of creating multiple experts is summarized as below. In Step 1, we initialize k = 1 to record the number
index for the expert-algorithm.

Pstr =
{
1/T, 2/T, 22/T, · · · , 2N/T

}
, Pexp =

{
1/T, 2/T, 22/T, · · · , 2N/T

}
where N = ⌈log2 T ⌉. For general convex functions, we create an expert by running the algorithm of SOGD to minimize the
linearized loss in Step 2. For λ-strongly convex functions, we construct a finite set Pstr containing possible values of the
modulus, which are served as the input parameters for S2OGD in Step 4. Similarly, for α-exp-concave, we construct a finite
set Pexp to be the input parameters for ONS in Step 7.

Algorithm 6 Expert-algorithms for USIA
1: Input: Initialize the number index of the expert-algorithm k = 1
2: Create an expert E1

t by running the algorithm of SOGD to minimize ℓ̂t(w) = ⟨∇ft(wt),w⟩
3: for all λ ∈ Pstr and k = k + 1 do
4: Create an expert Ek

t by running the algorithm of S2OGD with λ
5: end for
6: for all α ∈ Pexp and k = k + 1 do
7: Create an expert Ek

t by running the algorithm of ONS with α
8: end for

D.3. Proof of Theorem 3.11

We start with the meta-regret of USIA over any CPGC interval.

Lemma D.1. Under Assumptions 3.1 and 3.2, for the m-th interval [sp, sq − 1] ∈ C̃ we created and any w ∈ W , the
meta-regret of USIA with respect to Ek

sp satisfies

sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤ Γ(m)√
ln(2m+ 1)

√√√√1 +

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2 + Γ(m)

where Γ(m) = ln(2m+ 1) + 2 ln(3 + 2 log2 T ).

The main advantage of the above meta-regret is that it automatically utilizes the property of exp-concavity and strongly
convexity. We take α-exp-concave functions as an example to explain the reason why this meta-regret can deal with
exp-concavity. The definition of ℓt in Step 26 implies

ℓt =
∑

Ek
j ∈At

pkt,jℓ
k
t,j =

⟨∇ft(wt),wt − w̄⟩+GD

2GD
. (37)
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Combing Lemma D.1 with the definition of ℓt and ℓkt,sp in (37) and (9), we have

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

≤ Γ(m)√
ln(2m+ 1)

√√√√4G2D2 +

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩2 + 2GDΓ(m)

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

√√√√ Γ2(m)

ln(2m+ 1)

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩2

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

2β
· Γ2(m)

ln(2m+ 1)
+

β

2

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

2.

(38)

In the above derivation, the second inequality follows from the basic inequality
√
a+ b ≤

√
a+

√
b and the last inequality

utilizes 2ab ≤ a2 + b2. Thus, when the online functions are α-exp-concave, Lemma 3.7 implies

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w
k
t,sp)

≤
sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩ −

β

2

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

2

(38)
≤ 2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

2β
· Γ2(m)

ln(2m+ 1)

≤4GD (ln(2m+ 1) + ln(3 + 2 log2 T )) +
1

2β

(
ln(2m+ 1) + 8 ln(3 + log2 T ) +

4 ln2(3 + 2 log2 T )

ln(2m+ 1)

)
≤O

(
1

β
logm

)

(39)

where the last step is because we can treat the double logarithmic factor as constant (Chernov & Vovk, 2010; Luo & Schapire,
2015). From above discussions, we observe that USIA attains a logarithmic term regret bound for α-exp-concave functions
without knowing value of α. Based on Definition 3.5, the above derivation also holds for strongly convex functions.

Small-loss bound for m-th interval. Next, we provide a small-loss upper bound for m-th interval. First, from the first-order
condition of convex functions, we bound the meta-regret in Lemma D.1 by

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

≤ Γ(m)√
ln(2m+ 1)

√√√√4G2D2 +

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩2 + 2GDΓ(m)

≤2GDΓ(m) +
Γ(m)√

ln(2m+ 1)

√√√√4G2D2 +

sq−1∑
t=sp

∥∇ft(wt)∥2∥wt −wk
t,sp∥2

≤2GDΓ(m) +
Γ(m)D√
ln(2m+ 1)

√√√√4G2 +

sq−1∑
t=sp

∥∇ft(wt)∥2

≤2GDΓ(m) +
Γ(m)D√
ln(1 +m)

√√√√4G2 + 4H

sq−1∑
t=sp

ft(wt).

(40)
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Note that we run SOGD in each CPGC interval, thus we can directly use the theoretical guarantee of SOGD in each interval
[si, si+1 − 1] (Zhang et al., 2019, Theorem 2).
Lemma D.2. Set δ > 0 and α = D/

√
2. Under Assumptions 3.1, 3.2 and 3.3, for any interval [si, si+1 − 1] and any

w ∈ W , we have
si+1−1∑
t=si

⟨∇ℓ̂t(w
k
t,si),w

k
t,si −w⟩ ≤

√
2D2

√√√√δ +

si+1−1∑
t=si

∥∇ℓ̂t(wk
t,si)∥2

The theoretical guarantee of SOGD implies that

si+1−1∑
t=si

⟨∇ft(wt),w
k
t,si −w⟩ ≤

√
2D2

√√√√δ + 4H

si+1−1∑
t=si

ft(wt). (41)

Combining (40) and (41) (set δ = 4G2) on interval [si, si+1 − 1] (si = sp), we have

si+1−1∑
t=si

ft(wt)−
si+1−1∑
t=si

ft(w) ≤
si+1−1∑
t=si

⟨∇ft(wt),wt −w⟩

≤2GDΓ(m) +

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
D

√√√√4G2 + 4H

si+1−1∑
t=si

ft(wt)

≤2GDΓ(m) +

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
√
4HD2

√√√√G2

H
+

si+1−1∑
t=si

ft(wt).

Then we need the following lemma (Shalev-Shwartz, 2007, Lemma 19).
Lemma D.3. Let x, b, c ∈ R+. Then,

x− c ≤ b
√
x =⇒ x− c ≤ b2 + b

√
c.

Let

x =
G2

H
+

si+1−1∑
t=si

ft(wt),

c =
G2

H
+ 2GDΓ(m) +

si+1−1∑
t=si

ft(w),

b =

(
Γ(m)√

ln(2m+ 1)
+

√
2

)
√
4HD2,

we arrive at
si+1−1∑
t=si

ft(wt)−
si+1−1∑
t=si

ft(w)

≤2GDΓ(m) + 4HD2

(
Γ(m)√

ln(2m+ 1)
+

√
2

)2

+

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
√
4HD2

√√√√G2

H
+ 2GDΓ(m) +

si+1−1∑
t=si

ft(w)

≤2GDΓ(m) + 5HD2

(
Γ(m)√

ln(2m+ 1)
+

√
2

)2

+

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
D
√

4G2 + 8HGDΓ(m) +

si+1−1∑
t=si

ft(w).

(42)
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Then, we have

G(m) ≤
si+1−1∑
t=si

ft(wt) ≤ P (m) + 2

si+1−1∑
t=si

ft(w)

where

P (m) = 2GDΓ(m) + 5HD2

(
Γ(m)√

ln(2m+ 1)
+
√
2

)2

+

(
Γ(m)√

ln(2m+ 1)
+

√
2

)
D
√

4G2 + 8HGDΓ(m)

Γ(m) = ln(2m+ 1) + 2 ln(3 + 2 log2 T ).

Suppose G(m) = 2P (m),
si+1−1∑
t=si

ft(w) ≥ 1

2
(G(m)− P (m)) ≥ 1

4
G(m). (43)

Summing the above inequality over i = 1, · · · ,m− 1, we have

sq−1∑
t=1

ft(w) ≥
sm−1∑
t=s1

ft(w) ≥ 1

4

m−1∑
i=1

G(i) ≥ G(1)
4

(m− 1) ⇒ m ≤ 1 +
4

G(1)

sq−1∑
t=1

ft(w) (44)

where the last inequality utilizes the property of nondecreasing in G(·).

Small-loss bound for α-exp-concave functions. Combining (39) and (44), we can attain a small-loss adaptive regret bound
over any CPGC interval for α-exp-concave functions,

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w
k
t,sp)

≤
(
4GD +

1

2β

)
ln

(
3 +

8

G(1)

sq−1∑
t=1

ft(w)

)
+

(
4GD +

4

β

)
ϵ(T ) +

2

β
ϵ2(T )

where ϵ(T ) = ln(3 + 2 log2 T ). Then we combine the above bound with the small-loss bound of ONS expert. Let Ek
t,sp be

the ONS expert with α̂ ∈ Pexp and α̂ ≤ α < 2α̂. Since α-exp-concave functions are also α̂-exp-concave, we can directly
utilize the theoretical guarantee of ONS expert with α̂ to attain

sq−1∑
t=sp

ft(w
k
t,sp)−

sq−1∑
t=sp

ft(w)

≤ d

2β̂
log

8Hβ̂2D2

d

sq−1∑
t=sp

ft(w) +
4Hβ̂D2

d
+ 4Hβ̂D2 log

4Hβ̂D2

e
+ 2

+
1

2β̂

≤ d

β
log

8Hβ2D2

d

sq−1∑
t=sp

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2

+
1

β
.

We combine the meta-regret and expert-regret to achieve the final adaptive regret bound,

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤ MR(sq − 1) + ER(sp, sq − 1) + Ξ (45)
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where

MR(sq − 1) =

(
4GD +

1

2β

)
ln

(
3 +

8

G(1)

sq−1∑
t=1

ft(w)

)

ER(sp, sq − 1) =
d

β
log

8Hβ2D2

d

sq−1∑
t=sp

ft(w) +
4HβD2

d
+ 4HβD2 log

4HβD2

e
+ 2


Ξ =

(
4GD +

4

β

)
ϵ(T ) +

2

β
ϵ2(T ) +

1

β
.

Finally, we extend the above regret bound to any interval [r, s] ⊆ [T ] by repeating the analysis of Theorem 1, since they
enjoy the same order of meta-regret and expert-regret. We highlight the only difference in the analysis that we bound the
regret over interval [r, sa − 1],

sa−1∑
t=r

ft(wt)−
sa−1∑
t=r

ft(w) ≤
sa−1∑
t=r

ft(wt) ≤
sa−1∑

t=sa−1

ft(wt) ≤ G(a) + F ≤ O

(
log

sa−1∑
t=1

ft(w)

)
.

To proceed, we omit the analysis for λ-strongly convex functions because strongly convex functions with bounded gradients
are also exp-concave.

Small-loss bound for general convex functions. To deal with general convex functions, we go back to the first inequality
in (42),

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤2GDΓ(m) + 4HD2

(
Γ(m)√

ln(2m+ 1)
+
√
2

)2

+

(
Γ(m)√

ln(2m+ 1)
+
√
2

)
√
4HD2

√√√√G2

H
+ 2GDΓ(m) +

sq−1∑
t=sp

ft(w)

≤A(sq − 1) + B(sq − 1)

√√√√sq−1∑
t=sp

ft(w)

(46)

where

A(sq − 1) = 4HD2 ln

(
3 +

8

G(1)

sq−1∑
t=1

ft(w)

)
+ (8

√
2HD2 + 2GD + 1)

√√√√ln

(
3 +

8

G(1)

sq−1∑
t=1

ft(w)

)
+
(
16HD2(

√
2 + 1) + 4GD + 2

)
ϵ(T ) + 16HD2ϵ2(T ) + 24HD2 + 2

√
2GD

B(sq − 1) =
√
4HD2

√√√√(ln(3 + 8

G(1)

sq−1∑
t=1

ft(w)

)
+ 4(

√
2 + 1)ϵ(T ) + 4ϵ2(T )

)
ϵ(T ) = ln (3 + 2 log2 T )

Finally, we extend the above regret bound to any interval [r, s] ⊆ [T ] which is similar to the analysis of FLHS. Let sa be
the smallest marker that is larger than r, and sb be the largest marker that is not larger than s. We bound the regret over
[r, sa − 1],

sa−1∑
t=r

ft(wt)−
sa−1∑
t=r

ft(w) ≤
sa−1∑
t=r

ft(wt) ≤
sa−1∑

t=sa−1

ft(wt) ≤ G(a) + F ≤ O

(
log

sa−1∑
t=1

ft(w)

)
. (47)
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Then we bound the regret over [sa, s] by repeating the analysis of Theorem 3.8, for the first v − 1 intervals, (46) implies

sik+1
−1∑

t=sik

ft(wt)−
sik+1

−1∑
t=sik

ft(w) ≤ A(sik+1
− 1) + B(sik+1

− 1)

√√√√√sik+1
−1∑

t=sik

ft(w),∀k ∈ [v − 1].

And for the last interval, we have

s∑
t=siv

ft(wt)−
s∑

t=siv

ft(w) ≤ A(s) + B(s)

√√√√ s∑
t=siv

ft(w).

By adding them together, we attain

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ vA(s) +B(s)

v−1∑
k=1

√√√√√sik+1
−1∑

t=sik

ft(w) +

√√√√ s∑
t=siv

ft(w)


≤ vA(s) +B(s)

√√√√v

s∑
t=r

ft(w) + G(a) + F

where the last inequality is due to the Cauchy-Schwarz inequality. Finally, we use the upper bound of v by summing (43)
over i = a, · · · , b− 1 and finish the proof.

Adaptive regret bounds for non-smooth functions. We start with α-exp-concave functions to show that USIA can also
attain an adaptive regret bound for α-exp-concave and non-smooth functions. From the construction of markers, we have

si+1−1∑
t=si

ft(wt) ≥ G(i) ≥ G(1).

Summing the above bound over i = 1, . . . ,m− 1, we attain

m ≤ 1 +
1

G(1)

sm−1∑
t=s1

ft(wt) ≤ 1 +
1

G(1)

sm−1∑
t=s1

F ≤ 1 +
F

G(1)
(sq − 1).

Thus, (39) implies that

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w
k
t,sp)

≤4GD (ln(2m+ 1) + ln(3 + 2 log2 T )) +
1

2β

(
ln(2m+ 1) + 8 ln(3 + log2 T ) +

4 ln2(3 + 2 log2 T )

ln(2m+ 1)

)
≤
(
4GD +

1

2β

)
ln

(
3 +

2F

G(1)
(sq − 1)

)
+ 4

(
1 +

1

β

)
ln(3 + log2 T ) +

2

β
ln2(3 + log2 T ).

Then, we combine the meta-regret with the expert-regret of ONS. Finally, we extend to [r, s] ⊆ [T ] by repeating the above
analysis. Similarly, we can also have the same guarantee for for λ-strongly convex and non-smooth functions.
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For general convex and non-smooth, we modify (40) to achieve

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

≤2GDΓ(m) +
Γ(m)D√
ln(2m+ 1)

√√√√4G2 +

sq−1∑
t=sp

∥∇ft(wt)∥2

≤2GDΓ(m) +
Γ(m)GD√
ln(2m+ 1)

√
4 + (sq − sp)

≤2GD (MRc(sq) + ϵ(T )) +GD

(
ϵ(T ) +

√
MRc(sq)

)√
sq − sp + 4

(48)

where MRc(sq) = ln
(
3 + 2F

G(1) (sq − 1)
)

and ϵ(T ) = 2 ln(3 + log2 T ). Combining te above bound with expert-regret in
(41), we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤
sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩

≤2GD (MRc(sq) + ϵ(T )) +GD

(√
2 + ϵ(T ) +

√
MRc(sq)

)√
sq − sp + 4

Then, we extend this bound to any interval [r, s] ⊆ [T ] which is similar to the above analysis.

D.4. Proof of Lemma D.1

The analysis is similar to the proofs of Corollary 4 of Gaillard et al. (2014). We first introduce the following lemma.

Lemma D.4. Under Assumptions 3.1 and 3.2, for any interval [sp, sq − 1] ∈ C̃, the meta-regret of USIA with respect to Ek
sp

satisfies
sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤ 1

ηksp−1,sp

ln
1

xk
sp−1,sp

+

sq−1∑
t=sp

ηkt,sp(ℓt − ℓkt,sp)
2

︸ ︷︷ ︸
first term

+
1

ηksq−1,sp

ln(1 +
1

e

sq−1∑
t=1

∑
Ek

j ∈At

(
ηkt−1,j

ηkt,j
− 1)

︸ ︷︷ ︸
second term

)

(49)

where ηkt,sp = min

{
1
2 ,

√
γk
sp

1+Lk
t,sp

}
.

The proof of Lemma D.4 could be found below. Our goal of proof is attain the bounds of two terms in (49). The following
lemma (Gaillard et al., 2014, Lemma 14) will be useful.

Lemma D.5. Let a0 > 0 and a1, · · · , am ∈ [0, 1] be real numbers and let f : (0,+∞) → [0,+∞] be a nonincreasing
function. Then

m∑
i=1

aif(a0 + · · ·+ ai−1) ≤ f(a0) +

∫ a0+a1+···+am

a0

f(u)du.

For the first term in (49), we utilize the definition of learning rate and arrive at

sq−1∑
t=sp

ηt,sp(ℓt − ℓkt,sp)
2 ≤

√
γk
sp

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2√

1 + Lk
t−1,sp

.
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Then we apply Lemma D.5 with f(x) = 1/
√
x, and get

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2√

1 + Lk
t−1,sp

≤ 1√
1 + Lk

sp−1,sp

+

∫ Lk
sq−1,sp

Lk
sp−1,sp

1√
1 + u

du

≤ 1− 2
√
1︸ ︷︷ ︸

<0

+2

√√√√1 +

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2.

(50)

For the second term in (49), we have

sq−1∑
t=1

∑
Ek

j ∈At

(
ηkt−1,j

ηkt,j
− 1

)
≤

sq−1∑
t=1

∑
Ek

j ∈At

(√
1 + Lk

t,j

1 + Lk
t−1,j

− 1

)

=

sq−1∑
t=1

∑
Ej∈At

(√
1 +

(ℓt − ℓkt,j)
2

1 + Lk
t−1,j

− 1

)

≤ 1

2

sq−1∑
t=1

∑
Ek

j ∈At

(ℓt − ℓkt,j)
2

1 + Lk
t−1,j

=
1

2

∑
Ek

j ∈
⋃sq−1

i=1 Ai

(sq−1)∧ej∑
t=j

(ℓt − ℓkt,j)
2

1 + Lk
t−1,j

≤ 1

2

∑
Ek

j ∈
⋃sq−1

i=1 Ai

1 + ln

1 +

(sq−1)∧ej∑
t=j

Lk
t−1,j

− ln(1)


≤ 1

2

∑
Ek

j ∈
⋃sq−1

i=1 Ai

(1 + ln sq)

where ej denotes the ending time of an expert Ek
j and (sq − 1)∧ ej = min{sq − 1, ej}. In the above derivation, the second

inequality is attained by g(1 + z) ≤ g(1) + zg′(1), z ≥ 0 for any concave function g. For the third inequality, we apply
Lemma D.5 with f(x) = 1/x. From the structure of CPGC intervals, we have

ln

1 +
1

e

sq−1∑
t=1

∑
Ek

j ∈At

(
ηkt−1,j

ηkt,j
− 1

) ≤ ln

(
1 +

1

2e
n(1 + ln sq)

)
.

where n denotes the number of experts until round sq − 1. According to our algorithm USIA, [sp, sq − 1] ∈ C̃ denotes the
m-th interval we created. It is also easy to verify that m ≤ m′ ≤ 2m+ 1, where m′ denotes the number of intervals created
until round sq − 1, due to the construction of CPGC intervals. Because we create 1 + 2⌈log2 T ⌉ experts on each interval,
thus n ≤ (2m+ 1)(1 + 2⌈log2 T ⌉). Then we arrive at

ln

1 +
1

e

sq−1∑
t=1

∑
Ek

j ∈At

(
ηkt−1,j

ηkt,j
− 1

) ≤ ln(1 + 2m) + 2 ln(3 + 2 log2 T ) = Q(m).

After obtaining two bounds for the first term and second term, we now get back to (49). Because of the choice of
nonincreasing learning rates, we use ηksp−1,sp ≥ ηksq−1,sp and attain

sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤ 1

ηksq−1,sp

(
ln

1

xk
sp−1,sp

+Q(m)

)
+ 2

√√√√√γk
sp

1 +

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2

. (51)
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Now if
√
1 +

∑sq−1
t=sp

(ℓt − ℓkt,sp)
2 > 2

√
γk
sp then ηksq−1,sp ≤ 1/2, (51) is bounded by

sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤

√√√√1 +

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2

2
√
γk
sp +

ln 1
xk
sp−1,sp

+Q(m)√
γk
sp

 . (52)

Alternatively, if
√
1 +

∑sq−1
t=sp

(ℓt − ℓkt,sp)
2 ≤ 2

√
γk
sp then ηksq−1,sp = 1/2, (51) is bounded by

sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤ 2 ln
1

xk
sp−1,sp

+ 2Q(m) + 4γk
sp . (53)

Combining the bound in (52) and (53), we have

sq−1∑
t=sp

ℓt −
sq−1∑
t=sp

ℓkt,sp ≤
2γk

sp +Q(m)√
γk
sp

√√√√1 +

sq−1∑
t=sp

(ℓt − ℓkt,sp)
2 + 2Q(m) + 4γk

sp .

Then we set γk
sp = ln(2m+ 1) and finish the proof.

D.5. Proof of Lemma D.4

This lemma is an extension of Gaillard et al. (2014, Theorem 3) to sleeping experts. The analysis will rely on the following
lemma (Gaillard et al., 2014, Lemma 13).

Lemma D.6. For all x > 0 and all α ≥ 1, we have x ≤ xα + (α− 1)/e.

Following the proof of Gaillard et al. (2014), we start to analyze the meta regret for any interval [r, s] ∈ C̃. Let Xs =∑
Ek

j ∈As
xk
s,j , we bound lnXs from below and above. For the lower bound, we start with lnXs ≥ lnxk

s,j and arrive at

lnxk
s,j =

ηks,j
ηks−1,j

lnxk
s−1,j +

ηks,j
ηks−1,j

ln
(
1 + ηks−1,j(ℓs − ℓs,j)

)
≥

ηks,j
ηkr−1,j

lnxk
r−1,j +

s∑
t=r

ηkt,j
(
(ℓt − ℓt,j)− ηkt−1,j(ℓt − ℓt,j)

2
)

≥
ηks,j

ηkr−1,j

lnxk
r−1,j + ηks,j

(
s∑

t=r

(ℓt − ℓt,j)− ηkt−1,j(ℓt − ℓt,j)
2

) (54)

where the first inequality uses the inequality ln(1 + x) ≥ x− x2 for all x ≥ −1/2 (Cesa-Bianchi et al., 2005, Lemma 1)
and the second inequality utilizes the property of nonincreasing in learning rate.

We now bound from above. According to the definition of weight update, we have

∑
Ej∈At

(xk
t,j)

ηk
t−1,j

ηk
t,j =

∑
Ej∈At

xk
t−1,j(1 + ηkt−1,j(ℓt − ℓt,j))

=
∑

Ej∈At

xk
t−1,j + (

∑
Ej∈At

ηkt−1,jx
k
t−1,j)ℓt −

∑
Ej∈At

ηkt−1,jx
k
t−1,jℓt,j

=
∑

Ej∈At

xk
t−1,j

(55)

where the last equality is obtained by (8). Because we always have xk
t,j > 0 and

ηk
t−1,j

ηk
t,j

≥ 1, applying Lemma D.6 in (55)
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can make us obtain ∑
Ej∈At

xk
t,j ≤

∑
Ej∈At

(xk
t,j)

ηk
t−1,j

ηk
t,j +

1

e

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1)

=
∑

Ej∈At

(xk
t−1,j) +

1

e

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1).

(56)

Similar to the proof of Lemma, we sum (56) over t = 1, · · · , s and arrive at

s∑
t=1

∑
Ej∈At

xk
t,j ≤

s∑
t=1

∑
Ej∈At

(xk
t−1,j) +

1

e

s∑
t=1

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1)

which can be rewritten as

∑
Ej∈As

xk
s,j +

s−1∑
t=1

 ∑
Ej∈At\At+1

xk
t,j +

∑
Ej∈At∩At+1

xk
t,j


≤
∑

Ej∈A1

xk
0,j +

s∑
t=2

 ∑
Ej∈At\At−1

xk
t−1,j +

∑
Ej∈At∩At−1

xk
t−1,j

+
1

e

s∑
t=1

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1)

implying ∑
Ej∈As

xk
s,j +

s−1∑
t=1

∑
Ej∈At\At+1

xk
t,j

≤
∑

Ej∈A1

xk
0,j +

s∑
t=2

∑
Ej∈At\At−1

xk
t−1,j +

1

e

s∑
t=1

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1)

≤1 +
1

e

s∑
t=1

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1).

By the definition that weights are always non-negative, we can get the upper bound

Xs =
∑

Ej∈As

xk
s,j ≤ 1 +

1

e

s∑
t=1

∑
Ej∈At

(
ηkt−1,j

ηkt,j
− 1). (57)

We finish the proof by combing the upper bound and lower bound in (57) and (54).

E. Improved Implementation of USIA Algorithm
To equip the USIA algorithm with dual adaptivity to function types and changing environments, it maintains O(log2 T )
expert-algorithms which is the same as that of existing universal algorithm for adaptive regret (Zhang et al., 2021). Within
the meta-expert framework, each expert-algorithm needs to query the function gradient once and evaluate the function
value once per round, thus leading to significant concerns about computational efficiency. In this section, we introduce an
improved implementation of USIA with one gradient query and one value estimation per round.

E.1. Key Ideas

Note that the USIA algorithm constructs three types of expert-algorithms to address the uncertainty of function types, i.e.,
SOGD, S2OGD, and ONS, with each expert running the original loss function. To reduce the number of gradient queries,
the basic idea is to construct suitable surrogate losses for these expert-algorithms. For general convex functions, we can
construct the following linearized loss for each SOGD expert,

ℓ̂(w) = ⟨∇ft(wt),w⟩.
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The challenge lies in developing appropriate surrogate losses for the S2OGD and ONS expert, as they must meet the
following criteria: (i) inherently enjoying strong convexity or exponential concavity, (ii) enabling the expert-algorithms to
obtain small-loss bounds, and (iii) ensuring their compatibility with the linearized loss of the meta-algorithm within the
meta-expert framework. Next, we take strongly convex functions as an example to describe our proposed method. For
simplicity, we assume that λ is known and construct the following surrogate loss for the S2OGD expert Ek

t,sp ,

ℓstr
t,k(w) = ⟨∇ft(wt),w −wt⟩+

λ

2G2
∥∇ft(wt)∥2∥wt −w∥2. (58)

According to our derived Lemma E.3, the above surrogate loss is a λ
G2 ∥∇ft(wt)∥2-strongly convex functions with bounded

gradients, i.e., ∥∇ℓstr
t,k(w)∥2 ≤ (1 + D/G)2∥∇ft(wt)∥2. Therefore, the S2OGD expert Ek

t,sp can obtain the squared
gradient-norm bound according to Lemma E.4, i.e.,

ER(r, s) =
s∑

t=r

[ℓstr
t,k(w

k
t,sp)− ℓstr

t,k(w)] = O

(
1

λ
log

(
s∑

t=r

∥∇ft(wt)∥2
))

, (59)

which can be directly converted to a small-loss bound. Subsequently, we prove that our proposed surrogate loss is compatible
with the meta-algorithm within the meta-expert framework. For any interval [r, s] ⊆ [T ] and any w ∈ W , we have

s∑
t=r

ft(wt)−
s∑

t=r

ft(w)

≤
s∑

t=r

⟨∇ft(wt),wt −w⟩ −
s∑

t=r

λ

2
∥wt −w∥2

≤
s∑

t=r

⟨∇ft(wt),wt −wk
t,sp⟩+

s∑
t=r

⟨∇ft(wt),w
k
t,sp −w⟩ −

s∑
t=r

λ

2G2
∥∇ft(wt)∥2∥wt −w∥2

(58)
=

s∑
t=r

⟨∇ft(wt),wt −wk
t,sp⟩︸ ︷︷ ︸

meta-regret

+

s∑
t=r

[ℓstr
t,k(w

k
t,sp)− ℓstr

t,k(w)]︸ ︷︷ ︸
expert-regret

−
s∑

t=r

λ

2G2
∥∇ft(wt)∥2∥wk

t,sp −wt∥2︸ ︷︷ ︸
:=V s

r

(60)

where the first inequality is due to strong convexity, and the second inequality is because the gradients are bounded, and the
equality is according to the definition of surrogate losses in (58).

As outlined in the above analysis, the expert-regret can be bounded by (59). Next, we turn our focus to bounding the
meta-regret. According to our extended theoretical guarantee of Adapt-ML-Prod in Lemma D.1, the meta-regret enjoys the
second-order bound, i.e.,

s∑
t=r

⟨∇ft(wt),wt −wk
t,sp⟩ ≤ O

√√√√ s∑
t=r

⟨∇ft(wt),wt −wk
t,sp⟩2


≤ O

(
G2

λ

)
+

s∑
t=r

λ

2G2
∥∇ft(wt)∥2∥wt −wk

t,sp∥
2.

Substituting the meta-regret into (60), we arrive at

s∑
t=r

ft(wt)−
s∑

t=r

ft(w) ≤ O

(
G2

λ

)
+ ER(r, s).

It is worth noting that the negative term V s
r in (60) is cancelled by the last term in meta-regret, implying that the optimality

of the algorithm only depends on the expert-regret because O(G2/λ) is small. For exp-concave functions, we construct the
following surrogate loss,

ℓexp
t,k(w) = ⟨∇ft(wt),w −wt⟩+

β

2
⟨∇ft(wt),wt −w⟩2,
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and the analysis is similar. From the formulations of our proposed surrogate losses, it is evident that the expert-algorithms
only accesses ft(·) through ∇ft(·). Moreover, the only function value estimation occurs during the construction of problem-
dependent intervals. Therefore, equipped with our proposed surrogate losses, the USIA algorithm reduces the number
of gradient queries and value estimations per round from O(log2 T ) to 1. The theoretical guarantee of the improved
implementation of USIA is as follows.
Theorem E.1. Under the same assumptions as Theorem 3.11, by setting appropriate surrogate loss functions and parameters,
the improved implementation of USIA algorithm possesses the same theoretical guarantee as Theorem 3.11.

Remark Theorem E.1 demonstrates that our proposed surrogate losses can effectively reduce the gradient complexity of
USIA algorithm without sacrificing the optimality of adaptive regret bounds.

E.2. Algorithm Description: Improved Implementation of USIA

Algorithm 7 An Improved Implementation of USIA
1: Initialize indicator NewInterval=true, the total number of intervals m = 0
2: for t = 1 to T do
3: if NewInterval is true then
4: Create multiple experts by running Algorithm 8 and add all the experts to the set active experts: At = At−1∪{Ek

t }
5: Reset the indicator NewInterval=false and update the total number of intervals m = m+ 1
6: Initialize γk

t = ln(2m+ 1), xk
t−1,t = 1 and Lk

t−1,t = 0 for all the experts
7: Set gt = j such that [m, j − 1] ∈ C and L̂t−1 = 0
8: end if
9: Set ηkt,i and calculate the weight pkt,i by (8) for each expert Ek

i ∈ At

10: Receive output wk
t,i from each expert Ek

i ∈ At

11: Calculate wt =
∑

Ek
j ∈At

pkt,jw
k
t,j and evaluate the gradient ∇ft(wt)

12: Update the cumulative loss of the latest expert: L̂t = L̂t−1 + ft(wt)
13: if L̂t > G(m) then
14: Set the indicator NewInterval=true
15: Remove experts whose ending times are t+ 1: At = At \ {Ek

i |gi = m+ 1}
16: end if
17: Observe the normalized linearized loss ℓkt,i of each expert Ek

i ∈ At by (9)
18: Observe the meta loss ℓt =

∑
Ek

j ∈At
pkt,jℓ

k
t,j

19: Update Lk
t,i and xk

t,i of each expert Ek
i ∈ At by (10)

20: end for

Algorithm 8 Expert-algorithms for improved USIA
1: Input: Initialize the number index of the expert-algorithm k = 1
2: Create an expert E1

t by running the algorithm of SOGD to minimize ℓ̂t(w) = ⟨∇ft(wt),w⟩
3: for all λ̂ ∈ Pstr and k = k + 1 do
4: Create an expert Ek

t by running the algorithm of S2OGD to minimize ℓstr
t,k(·) in (62)

5: end for
6: for all α̂ ∈ Pexp and k = k + 1 do
7: Create an expert Ek

t by running the algorithm of ONS to minimize ℓexp
t,k(·) in (61)

8: end for

Our efficient implementation of the USIA algorithm is summarized in Algorithm 7 and the procedure of the expert-algorithms
is summarized in Algorithm 8. For expert-algorithms, the difference between USIA and its efficient version is that the ONS
expert and the S2OGD expert employ the different loss functions. Specifically, the ONS expert runs the following surrogate
loss,

ℓexp
t,k(w) =

β̂

2
⟨∇ft(wt),wt −w⟩2 + ⟨∇ft(wt),w −wt⟩, (61)

34



Small-loss Adaptive Regret for Online Convex Optimization

where β̂ = 1
2 min{ 1

4GD , α̂}. And, the S2OGD expert runs the following surrogate loss,

ℓstr
t,k(w) = ⟨∇ft(wt),w −wt⟩+

λ̂

2G2
∥∇ft(wt)∥2∥wt −w∥2. (62)

Other descriptions of meta-algorithm in improved USIA is same as that in USIA.

E.3. Proof of Theorem E.1

Adaptive regret bound for α-exp-concave functions. Let Ek
t,sp be the ONS expert with α̂ ∈ Pexp. To achieve one-gradient

evaluation, we need to construct the following surrogate loss for each ONS expert,

ℓexp
t,k(w) =

β̂

2
⟨∇ft(wt),wt −w⟩2 + ⟨∇ft(wt),w −wt⟩, (63)

where β̂ = 1
2 min{ 1

4GD , α̂}. Our proposed surrogate loss in (63) has the following property.

Lemma E.2. Under Assumptions 3.1 and 3.2, ℓexp
t,k(·) in (63) is β̂

2 -exp-concave, and

∥∇ℓexp
t,k(w)∥2 ≤ (1 + β̂GD)2∥∇ft(wt)∥2. (64)

When we employ ONS algorithm to minimize the above surrogate loss, we set the parameter to be β̂′ = 1
2 min{ 1

4G′D , β̂
2 }

where G′ = 4G2 denote the new upper bound of gradients. For expert Ek
t,sp equipped with α̂ ≤ α < 2α̂ , we can use the

theoretical guarantee of ONS to arrive at

sq−1∑
t=sp

ℓexp
t,k(w

k
t,sp)−

sq−1∑
t=sp

ℓexp
t,k(w) ≤ d

2β̂′
log

 β̂′2D2

d

sq−1∑
t=sp

∥∇ℓexp
t,k(w

k
t,sp)∥

2 + 1

+
1

2β̂

(64)
≤ d

2β̂′
log

 β̂′2D2(1 + β̂GD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

2β̂′

≤ d

β̃
log

β2D2(1 + βGD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

β̃
,

where β = 1
2 min{ 1

4GD , α} and β̃ = 1
2 min{ 1

16G2D , 1
4GD , α}. The last inequality is due to α̂ ≤ α < 2α̂ ⇒ β̂ ≤ β <

2β̂ ⇒ β̂′ ≤ β′ < 2β̂′ and definition of β′. According to the definition of surrogate loss, we have

sq−1∑
t=sp

ℓexp
t (wk

t,sp)−
sq−1∑
t=sp

ℓexp
t (w)

=

sq−1∑
t=sp

⟨∇ft(wt),w
k
t,sp −w⟩+ β̂

2

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

2 − β̂

2

sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩2

≤ d

β̃
log

β2D2(1 + βGD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

β̃
.

(65)

Next, we formulate the meta-regret of USIA in (38) as,

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

2β̂
· Γ2(m)

ln(2m+ 1)
+

β̂

2

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

2,

(66)
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where the last step we set β = β̂. Combining (65) with (66), we attain

sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩ =
sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩+

sq−1∑
t=sp

⟨∇ft(wt),w
k
t,sp −w⟩

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

2β̂
· Γ2(m)

ln(2m+ 1)

+
d

β̃
log

β2D2(1 + βGD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

β̃
+

β̂

2
⟨∇ft(wt),wt −w⟩2

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

β
· Γ2(m)

ln(2m+ 1)

+
d

β̃
log

β2D2(1 + βGD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

β̃
+

β

2
⟨∇ft(wt),wt −w⟩2.

Thus, for α-exp-concave functions, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w) ≤
sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩ − β

2
⟨∇ft(wt),wt −w⟩2

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

β
· Γ2(m)

ln(2m+ 1)

+
d

β̃
log

β2D2(1 + βGD)2

d

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

+
1

β̃
.

Next, we utilize Lemma B.4 and B.5 to convert the above bound to obtain

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

1

β
· Γ2(m)

ln(2m+ 1)
+

1

β̃

+
d

β̃
log

8Hβ2D2(1 + βGD)2

d

sq−1∑
t=sp

ft(w) + ϵ̃(T )


(67)

where
ϵ̃(T )

=
8Hβ2D2(1 + βGD)2

d

(
2GDΓ(m)√
ln(2m+ 1)

+ 2GDΓ(m) +
1

β
· Γ2(m)

ln(2m+ 1)
+

1

β

)
+8HβD2(1 + βGD)2 log(8HβD2(1 + βGD)2) + 2.

Note that ϵ̃(T ) = O(log T ) in the worst-case which can be treated as constant in double logarithmic term. Next, we utilize
small-loss upper bound for m in (44) to arrive at the small-loss bound for α-exp-concave functions, which is similar to (45).

Adaptive regret bound for λ-strongly convex functions. Similar to α-exp-concave functions, we also construct the
following surrogate loss for each S2OGD expert,

ℓstr
t,k(w) = ⟨∇ft(wt),w −wt⟩+

λ̂

2G2
∥∇ft(wt)∥2∥wt −w∥2, (68)

36



Small-loss Adaptive Regret for Online Convex Optimization

where Ek
t,sp be the S2OGD expert with λ̂ ∈ Pstr where λ̂ ≤ λ < 2λ̂. Our proposed surrogate loss in (68) has the following

property.

Lemma E.3. Under Assumptions 3.1 and 3.2, the loss function ℓstr
t,k(·) is λ̂

G2 ∥∇ft(wt)∥2-strongly convex, and

∥∇ℓstr
t,k(w)∥2 ≤

(
1 +

D

G

)2

∥∇ft(wt)∥2. (69)

From the upper bound of ∇ℓstr
t,k(·) according to Lemma E.3, we can see that the new upper bound of the gradients becomes

G′ = G+D. Thus, we need to refine the theoretical guarantee of S2OGD.

Lemma E.4. Under Assumptions 3.1 and 3.2, for the S2OGD expert Ek
t,sp with λ̂ ∈ Pstr, we have

sq−1∑
t=sp

ℓstr
t,k(w

k
t,sp)−

sq−1∑
t=sp

ℓstr
t,k(w) ≤ 1 +

(G+D)2

2λ̂
log

 λ̂

(G+D)2

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

 .

According to the definition of the surrogate loss, we have

sq−1∑
t=sp

ℓstr
t (wk

t,sp)−
sq−1∑
t=sp

ℓstr
t (w)

=

sq−1∑
t=sp

⟨∇ft(wt),w
k
t,sp −w⟩+ λ̂

2G2
∥∇ft(wt)∥2∥wt −wk

t,sp∥
2 − λ̂

2G2
∥∇ft(wt)∥2∥wt −w∥2

≤1 +
(G+D)2

λ
log

 λ

(G+D)2

sq−1∑
t=sp

∥∇ft(wt)∥2 + 1

 .

(70)

The meta-regret of USIA in (38) is formulated as,

sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

G2

2λ̂
· Γ2(m)

ln(2m+ 1)
+

λ̂

2G2

sq−1∑
t=sp

∥∇ft(wt)∥2∥wt −wk
t,sp∥

2,

(71)

where the last step we set β = λ̂. Combining (70) and (71), we have

sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩ =
sq−1∑
t=sp

⟨∇ft(wt),wt −wk
t,sp⟩+

sq−1∑
t=sp

⟨∇ft(wt),w
k
t,sp −w⟩

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

G2

2λ̂
· Γ2(m)

ln(2m+ 1)
+

λ̂

2G2

sq−1∑
t=sp

∥∇ft(wt)∥2∥wt −w∥2

+1 +
(G+D)2

λ
log

 λ

(G+D)2

sq−1∑
t=sp

∥∇ft(wt)∥2


≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

G2

λ
· Γ2(m)

ln(2m+ 1)
+

λ

2

sq−1∑
t=sp

∥wt −w∥2

+1 +
(G+D)2

λ
log

 λ

(G+D)2

sq−1∑
t=sp

∥∇ft(wt)∥2
 .

(72)
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Thus, for λ-strongly convex functions, we have

sq−1∑
t=sp

ft(wt)−
sq−1∑
t=sp

ft(w)

≤
sq−1∑
t=sp

⟨∇ft(wt),wt −w⟩ − λ

2

sq−1∑
t=sp

∥wt −w∥2

≤2GD

(
Γ(m)√

ln(2m+ 1)
+ Γ(m)

)
+

G2

λ
· Γ2(m)

ln(2m+ 1)

+1 +
(G+D)2

λ
log

 λ

(G+D)2

sq−1∑
t=sp

∥∇ft(wt)∥2
 .

(73)

Similar to α-exp-concave functions, we can utilize Lemma B.4 and B.5 to convert the above bound to obtain small-loss
adaptive regret bound for λ-strongly convex functions.

F. Supporting Lemmas
F.1. Proof of Lemma E.2

According to the definition of ℓexp
t (w) in (63), we have

∇ℓexp
t (w)∇ℓexp

t (w)⊤

=∇ft(wt)∇ft(wt)
⊤ + 2β̂∇ft(wt)(w −wt)

⊤∇ft(wt)∇ft(wt)
⊤

+β̂2∇ft(wt)∇ft(wt)
⊤(w −wt)(w −wt)

⊤∇ft(wt)∇ft(wt)
⊤

=(1 + 2β̂⟨∇ft(wt),w −wt⟩+ β̂2⟨∇ft(wt),w −wt⟩2)∇ft(wt)∇ft(wt)
⊤

⪯2∇ft(wt)∇ft(wt)
⊤ =

2

β̂
∇2ℓexp

t (w)

where ∇2ℓexp
t (w) denote the Hessian matrix of ℓexp

t (·) and the inequality is due to β̂ ≤ 1/(8GD). Therefore, ℓexp
t (·) is

β̂
2 -exp-concave (Hazan, 2016, Lemma 4.1). Then we provide the upper bound of ℓexp

t (·) as follows:

∥∇ℓexp
t (w)∥2 ≤

∥∥∥∇ft(wt)
(
1 + β̂⟨∇ft(wt),w −wt⟩

)∥∥∥2 ≤ (1 + β̂GD)2∥∇ft(wt)∥2.

F.2. Proof of Lemma E.3

According to the definition of ℓstr
t,k(w) in (68), we have

ℓstr
t,k(w

′) ≥ ℓstr
t,k(w) + ⟨∇ℓstr

t,k(w),w′ −w⟩+ λ̂

2G2
∥∇ft(wt)∥2∥w′ −w∥2

where w,w′ ∈ W . According to Definition 3.5, it can be seen that ℓstr
t,k(·) is λ̂

G2 ∥∇ft(wt)∥2-strongly convex. Next, we
provide the upper bound of the gradient of ℓstr

t,k(·) as follows:

∥∇ℓstr
t,k(w)∥2 ≤

∥∥∥∥∥∇ft(wt) +
λ̂

G2
∥∇ft(wt)∥2(w −wt)

∥∥∥∥∥
2

≤ ∥∇ft(wt)∥2 + 2
λ̂

G2
∥∇ft(wt)∥2⟨∇ft(wt),w −wt⟩+

λ̂2

G2
D2∥∇ft(wt)∥2

≤ (1 +
λ̂D

G
)2∥∇ft(wt)∥2.
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F.3. Proof of Lemma E.4

Let w′
t+1,k = wt,k − 1

αt
∇ℓstr

t,k(wt,k). According to Lemma E.3, we have

ℓstr
t,k(wt,k)− ℓstr

t,k(w) ≤ ⟨∇ℓstr
t,k(wt,k),wt,k −w⟩ − λ̂

2G2
∥∇ft(wt)∥2∥wt,k −w∥2

= αt⟨wt,k −w′
t+1,k,wt,k −w⟩ − λ̂

2G2
∥∇ft(wt)∥2∥wt,k −w∥2.

For the first term, we have

⟨wt,k −w′
t+1,k,wt,k −w⟩

=∥wt,k −w∥2 + ⟨w −w′
t+1,k,wt,k −w⟩

=∥wt,k −w∥2 − ∥w′
t+1,k −w∥2 − ⟨wt,k −w′

t+1,k,w
′
t+1,k −w⟩

=∥wt,k −w∥2 − ∥w′
t+1,k −w∥2 + ∥w′

t+1,k −wt,k∥2 + ⟨w′
t+1,k −wt,k,wt,k −w⟩

which implies that

⟨wt,k −w′
t+1,k,wt,k −w⟩ = 1

2

(
∥wt,k −w∥2 − ∥w′

t+1,k −w∥2 + ∥w′
t+1,k −wt,k∥2

)
.

Thus,
ℓstr
t,k(wt,k)− ℓstr

t,k(w) ≤αt

2

(
∥wt,k −w∥2 − ∥w′

t+1,k −w∥2
)

+
1

2αt
∥∇ℓstr

t,k(wt,k)∥2 −
λ̂

2G2
∥∇ft(wt)∥2∥wt,k −w∥2.

Summing the above bound up over t = sp to sq − 1, we attain

sq−1∑
t=sp

ℓstr
t,k(wt,k)−

sq−1∑
t=sp

ℓstr
t,k(w)

≤
αsp

2
∥wsp,k −w∥2 +

sq−1∑
t=sp

(
αt − αt−1 −

λ̂

G2
∥∇ft(wt)∥2

)
∥wt,k −w∥2

2

+

sq−1∑
t=sp

1

2αt
∥∇ℓstr

t,k(wt,k)∥2

≤1 +

sq−1∑
t=sp

1

2αt
∥∇ℓstr

t,k(wt,k)∥2 ≤ 1 +
(G+D)2

2λ̂

sq−1∑
t=sp

∥∇ft(wt)∥2

(G+D)2/λ̂+
∑t

i=sp
∥∇fi(wi)∥2

.

where the last two inequalities is due to αt = (1 + D/G)2 + λ̂
G2

∑t
i=sp

∥∇fi(wi)∥2 which is specifically set for new
surrogate loss. Finally, we utilize the following lemma to finish the proof (Hazan et al., 2007, Lemma 11).
Lemma F.1. Let l1,· · · ,lT and δ be non-negative real numbers. Then

T∑
t=1

l2t∑t
i=1 l

2
i + δ

≤ log

(
1

δ

T∑
t=1

l2t + 1

)
.

G. More Discussions
Bounded Modulus For α-exp-concave and λ-strongly convex functions, we assume that the modulus of the functions are
both upper bounded and lower bounded, i.e., λ ∈ [1/T, 1]. We remark that this assumption is generally acceptable in most
cases because it is unnecessary to explicitly consider the cases in which λ < 1/T and λ > 1. (i) When λ < 1/T , the regret
bound will become at least Ω(T ) due to the inverse dependence of the regret bound on λ. Thus, it is more appropriate to
treat these functions as general convex functions. (ii) When λ > 1, we observe that λ-strongly convex functions can also
be viewed as 1-strongly convex functions according to Definition 3.5. By treating these functions as 1-strongly convex
functions, we can establish the regret bound which remains optimal up to a constant factor, i.e., λ.
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Circumvent the Assumption on Bounded Modulus For the modulus of strong convexity λ, there exists a method to
remove the assumption that λ ≤ 1. The basic idea is to provide an upper bound for the modulus of strongly convexity under
Assumptions 3.1 (bounded gradients) and 3.2 (bounded domain). If the function f(·) is λ-strongly convex, then it satisfies

f(w)− f(w∗) ≥ λ

2
∥w −w∗∥2,

for all w ∈ W , where w∗ ∈ W is the minimizer of function f(·) (this property can be found in Eq. (2) of Hazan & Kale
(2014)). According to Assumption 3.1, we have

f(w)− f(w∗) ≤ G∥w −w∗∥.

We combine the above two inequality to attain
λ

2
∥w −w∗∥ ≤ G,

which holds for all w ∈ W . According to Assumption 3.2 that the diameter of decision domain is bounded by D, we can
always find a point w ∈ W such that ∥w −w∗∥ = D

2 (otherwise, the diameter will be strictly smaller than D). Therefore,
we provide an upper bound for modulus of strongly convexity that λ ≤ 4G

D .

Adapting to Non-smooth Functions when functions are non-smooth, we can set H be any constant, e.g., 1. Note that
the modulus of the smoothness H is only used to set parameter C in our algorithm. As a result, as long as H is a constant,
C would be a constant. In this way, the number of the intervals always satisfies m ≤ O(T ), which does not affect the
optimality of the regret bound according to our analysis of Theorem 3.8.
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