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Abstract
Given the critical role of graphs in real-world
applications and their high-security requirements,
improving the ability of graph neural networks
(GNNs) to detect out-of-distribution (OOD)
data is an urgent research problem. The recent
work GNNSAFE (Wu et al., 2023) proposes a
framework based on the aggregation of negative
energy scores that significantly improves the
performance of GNNs to detect node-level
OOD data. However, our study finds that score
aggregation among nodes is susceptible to
extreme values due to the unboundedness of the
negative energy scores and logit shifts, which
severely limits the accuracy of GNNs in detecting
node-level OOD data. In this paper, we propose
NODESAFE: reducing the generation of extreme
scores of nodes by adding two optimization terms
that make the negative energy scores bounded
and mitigate the logit shift. Experimental results
show that our approach dramatically improves
the ability of GNNs to detect OOD data at the
node level, e.g., in detecting OOD data induced
by Structure Manipulation, the metric of FPR95
(lower is better) in scenarios without (with) OOD
data exposure are reduced from the current SOTA
by 28.4% (22.7%). The code is available via
https://github.com/ShenzhiYang2000/NODESAFE.

1. Introduction
The graph is an essential data structure widely used in vari-
ous real-world domains, such as knowledge graphs (Baek
et al., 2020), social networks (Fan et al., 2019), point
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Figure 1. Visualization of negative energy scores of different nodes.
(a) OOD data generated by Structure Manipulation (Wu et al.,
2023), dark colors indicate higher scores, and arrows between
nodes indicate the direction of score aggregation. (b) ID dataset
for Cora, dark colors indicate lower scores. (c) Score frequency
density plots show our motivation: lowering the variance of scores
can better categorize ID and OOD data.

clouds (Shi & Rajkumar, 2020), and chemical analy-
sis (De Cao & Kipf, 2018). This has attracted a great deal
of interest from researchers, who have developed several
advanced models, such as the GCN(Kipf & Welling, 2016),
GAT(Veličković et al., 2017), JKNet (Xu et al., 2018), Mix-
Hop (Abu-El-Haija et al., 2019), etc. However, there are con-
cerns regarding the security issues that may arise when ap-
plying graph neural networks. During training, it is assumed
that both the training and testing data are in-distribution (ID).
However, this assumption may not always hold, as data can
change at any time. When graph neural networks encounter
out-of-distribution (OOD) data, they may make incorrect
predictions, potentially leading to serious consequences.
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Therefore, it is crucial to explore methods that enable graph
neural networks to detect OOD data effectively. Various
methods (Hendrycks & Gimpel, 2016; Liang et al., 2017;
Lee et al., 2018; Hendrycks et al., 2018; Liu et al., 2020)
have been developed to identify out-of-distribution (OOD)
data, with a primary focus on i.i.d. samples, such as im-
ages. Some work (Li et al., 2022; Bazhenov et al., 2022;
Liu et al., 2023; Guo et al., 2023; Ding & Shi, 2023) has
also been done on OOD detection at the graph level in the
graph domain, but these methods cannot be directly applied
to OOD detection at the node level since each graph can still
be viewed as i.i.d samples while nodes are not. In addition,
there is a relative lack of methods (Zhao et al., 2020; Stadler
et al., 2021) specifically designed to detect node-level OOD
data on graphs. Recently, inspired by the label propagation
algorithm (Raghavan et al., 2007), (Wu et al., 2023) pro-
pose a node-level OOD detection method called GNNSAFE,
which aggregates negative energy scores and significantly
improves the accuracy of OOD node detection. It is con-
sidered the most efficient method for detecting node-level
OOD data on graphs.

However, we have observed that the aggregation of negative
energy scores among nodes suffers from excessive variance
in both ID and OOD data. This is because the node’s nega-
tive energy score updates are easily affected by the extreme
scores of neighboring nodes. For instance, as illustrated in
Figure 1 (a) and (b), if a node has a high (resp. low) score,
score propagation will tend to increase (resp. decrease) the
scores of its neighboring nodes. This leads to an increase in
the variance of the scores for both OOD and ID samples and
an increase in the overlap of scores between OOD and ID
samples. As shown in Figure 1(c), our work explores how
to reduce the generation of extreme scores to decrease the
variance of scores for both OOD and ID samples, thereby re-
ducing the overlap of scores between OOD and ID samples
to achieve better OOD detection performance.

Specifically, we have identified two main reasons for the
generation of extreme node scores. First, the negative en-
ergy scores are unbounded, which is the fundamental cause
of generating extreme scores. To address this issue, we
added an optimization term to minimize the variance of
the logit 2-norms of different samples, thereby making the
negative energy scores bounded. Second, logit shift may
occur during the node classification optimization process,
which is the direct cause. Logit shift means that adding an
arbitrary constant to the logit will not affect the model’s su-
pervised classification performance but will cause changes
in the negative energy scores. To address this issue, we aim
to reduce the variance of the summation of logits as an op-
timization objective. Our method, NODESAFE, combines
these two optimization objectives to converge the negative
energy scores of ID and OOD data to their respective means,
thereby achieving better separation of ID and OOD data. In

summary, our contributions are as follows:

1. We reveal how extreme scores during score aggrega-
tion affect the node-level OOD detection performance
of GNNs and propose NODESAFE with two constraints
to curb the generation of extreme scores. To our knowl-
edge, we are the first to enhance GNN’s OOD detection
capability from both the upper and lower bounds of the
2-norm of logits.

2. We have conducted extensive experiments on a large
number of real-world datasets and multiple OOD data
generation scenarios, which demonstrates that NODE-
SAFE significantly improves the node-level OOD detec-
tion performance of GNNs in various scenarios, e.g., in
detecting OOD data generated by Structure Manipulation
(Wu et al., 2023), we have reduced the FPR95 (lower
is better) metrics of the scenarios without (with) OOD
data exposure by 28.4% (22.7%) compared to the current
SOTA method GNNSAFE.

3. We have performed a sound theoretical analysis of
NODESAFE, which is simple but clearly explains the
reason for its remarkable effect.

2. Background
This section introduces the background knowledge neces-
sary for our work. Section 2.1 presents the graph neural
network (GNN) definition. Section 2.2 describes the Out-
of-Distribution (OOD) problem. Section 2.3 introduces
energy-based OOD methods, including the current state-of-
the-art node-level OOD detection method GNNSAFE (Wu
et al., 2023).

2.1. Graph Neural Network

Let G = {V, E} denote an undirected graph, where V and E
are the sets of nodes and edges, respectively, Xv ∈ R|V|×dv

denote the matrix of features of the nodes. Here, the repre-
sentation of a node v can be defined as hv. Graph neural
networks (GNNs) aim to update the representation of the
given graph G by leveraging its topological structure. For
the representation hv of node v, its propagation of the k-th
layer GNN is represented as:

h
(k)
v = f(h

(k−1)
v ; θ)

= UP(k)
(
AGG(k)

(
h
(k−1)
u : ∀u ∈ N (v) ∪ v

))
(1)

where f(·; θ) denotes the GNN encoder, θ represents all
trainable parameters of GNN encoder. AGG(·) denotes a
trainable function that aggregates messages from the neigh-
bors of node v, N (v) represents the set of neighbors. UP(·)
denotes a trainable function that updates the representation
of node v with the current representation of v and the aggre-
gated vector. In the node classification task, the zv obtained
after hv passes through the classification layer is usually
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called logit. After logit passes through softmax, the proba-
bilities p(y|z) of different categories are obtained as follows:
p(y|z) = ezy∑C

c=1 ezc
where C denotes the number of classes.

2.2. Problem Statement: Out-of-distribution Detection

Within the realm of machine learning, the concept of out-of-
distribution (OOD) detection pertains to the identification
of instances x ∈ X that lie outside the data distribution Din

(ID) upon which the model is trained. OOD detection entails
the utilization of scoring functions to ascertain confidence
levels for each instance, as outlined below:

g(x) =

{
in S(x) ≥ γ
out S(x) ≤ γ

(2)

where S(x) represents a scoring function, with γ typically
chosen to guarantee a high percentage, such as 95%, of ID
data that is correctly classified. In line with convention,
instances with elevated scores derived from the function
S(x) are classified as ID, while those with lower scores are
classified as OOD.

2.3. Energy-based OOD Detection Method

OOD detection in scenarios where samples are indepen-
dent. An energy-based model (EBM)(LeCun et al., 2006;
Liu et al., 2020; Wu et al., 2023) establishes a connection
between classification models and energy models by con-
structing a function E(x) : RD → R. This function maps
each point x ∈ RD (such as logit z) to a nonprobabilistic
scalar known as energy. The mapping is represented as
follows:

E(z) = −log

C∑
c=1

ezc (3)

In the context of classification scenarios, reducing the nega-
tive log-likelihood function serves to decrease the energy of
data within the distribution, as illustrated below:

Lnll = E(z,y)∼Din

(
− logp(y|z)

)
= E(z,y)∼Din

(
− zy + log

C∑
c=1

ezc
) (4)

By defining the energy E(z, y) = −zy, we can rewrite the
NLL loss as:

Lnll = E(z,y)∼Din

(
E(z, y) + log

∑
c ̸=y

e−E(z,c)
)

(5)

Eq. 5 shows that E(z) decreases with Lnll during the op-
timization process. However, to comply with convention,
i.e., Eq. 2, we use negative energy −E(z) as the scoring
function.

In the case of OOD data exposure, past work(Liu et al.,
2020; Wu et al., 2023) expands the energy interval between

ID and OOD data with two squared hinge losses as follows:

Lreg = E(zin,y)∼Din

(
max(0, E(zin)−min)

2
)

+ E(zout,y)∼Dout

(
max(0,mout − E(zout))

2
) (6)

where min and mout denote the separate margin hyperpa-
rameters respectively. The overall optimization objectives
for fine-tuning the model using exposed OOD data with a
trade-off hyper-parameter α are as follows:

LOOD = Lnll + α · Lreg (7)

OOD detection in scenarios where samples are not inde-
pendent. Based on the energy-based approach (Liu et al.,
2020) for OOD detection on independent samples and in-
spired by label propagation, GNNSAFE (Wu et al., 2023)
introduces negative energy score aggregation to iteratively
propagate the scores among interconnected nodes to amplify
the difference in scores between ID data and OOD data:

E(k) = ηE(k−1) + (1− η)D−1AE(k−1) (8)

where D and A respectively represent the degree matrix
and adjacency matrix. η ∈ [0, 1] is a hyper-parameter that
controls the intensity of energy fusion. k is the number of
iteration hops for energy aggregation.

However, GNNSAFE does not account for the impact of
extreme values during energy score aggregation. For OOD
nodes, extremely high energy scores are outliers, while
for ID nodes, extremely low energy scores are outliers.
We provide the following proof: For OOD node i, if∑

j ηijE
(k−1)
j∑

j ηij
> E

(k−1)
i as the neighboring node j with

extremely high energy score existing, we can re-write Eq. 8
as the scalar-form for each instance:

E
(k)
i = ηE

(k−1)
i + (1− η)

∑
j ηijE

(k−1)
j∑

j ηij

> ηE
(k−1)
i + (1− η)E

(k−1)
i

> E
(k−1)
i

(9)

The derivation above demonstrates that OOD nodes with
extremely high energy scores will increase the energy scores
of neighboring nodes, thereby affecting OOD detection.
Conversely, ID nodes with extremely low energy scores will
decrease the energy scores of neighboring nodes, similarly
affecting OOD detection. Therefore, we need to restrict the
occurrence of extreme energy scores in both OOD and ID.

3. Method
This section describes our improvements to the aggrega-
tion of negative energy scores. Section 3.1 describes our
motivation, and Section 3.2 presents our proposed method,
NODESAFE.
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3.1. Motivation

In the following discussion, we will delve into the reasons
for the large variance in the respective scores of the ID data
and the OOD data.
Proposition 3.1. Logit Shift: Consider the softmax function
denoted by σ for the softmax cross-entropy loss. Given any
constant s, if c = argmaxi(zi), then the identity σc(z+s) =
σc(z) always holds.
Proposition 3.2. Boundlessness of energy: Given any con-
stant s, if s ≤ 0, we have −∞ < −E(z + s) ≤ −E(z),
and if s > 0, +∞ > −E(z+ s) > −E(z).

We give the proofs of Proposition 3.1 and 3.2 in the ap-
pendix A.1 and A.2, respectively. From Proposition 3.1,
we observe that there may be logit shifts even if samples
can be correctly classified. While logit shifts do not affect
sample classification, they significantly affect negative en-
ergy scores. Due to the unbounded nature of the negative
energy scores, as demonstrated in Proposition 3.2, when s
is extremely small or large, they exhibit minimal or high
scores, respectively, for samples from ID or OOD data.
During score aggregation on the graph, scores that devi-
ate significantly from the mean can influence the scores of
neighboring nodes, thereby increasing the variance of scores
for samples within ID and OOD, respectively. Consequently,
this variability impacts the performance of OOD detection
by GNNs. Therefore, we posit that reducing the variance of
sample scores can enhance OOD detection performance on
the graph, as illustrated in Figure 1(c). Our approach aims
to mitigate extreme score values, fostering a bounded and
more uniform distribution of scores for data within ID and
OOD, respectively.

3.2. NODESAFE: Bounded and Uniform Negative
Energy Score Aggregation

As analyzed above, the root reason for generating extreme
scores is that they lack upper and lower bounds. Therefore,
we address this issue by constraining the 2-norm of the logit
to create upper and lower bounds for negative energy scores,
as follows:

Mnorm =
1

|V|
∑
v∈V

∥zv∥2 (10)

Lbound = M−1
norm · Ez∼Dtr

(
(∥z∥2 −

1

|V|
∑
v∈V

∥zv∥2)2
)

(11)

where ∥zv∥2 =
√∑

i∈v zi denotes the 2-norm of the logit
zv. To ensure numerical stability during the optimization
process, we use the ratio of variance to mean as the opti-
mization objective; the smaller, the better.
Proposition 3.3. For logit vectors with equal 2-norms
of Mnorm, their upper bound for negative energy scores

(−E)upper = logC + Mnorm√
C

, and the lower bound

(−E)lower = logC − Mnorm√
C

.

We give the proof of the Proposition 3.3 in the appendix A.3.
Proposition 3.3 shows that when the logit of all samples is
distributed on a hypersphere with a radius of Mnorm, it can
effectively prevent the generation of high and minimal neg-
ative energy scores. For the logit shift, we take the variance
of the logit summation as the optimization objective; the
smaller, the better, as follows:

Msum =
1

|V|
∑
v∈V

Σ(zv) (12)

Lv
uniform = (Σ(zv)−

1

|V|
∑
i∈V

Σ(zi))
2 (13)

Luniform =
∑

d∈(in,out)

M−1
sum · Ezv∼Dd

(Lv
uniform) (14)

where Σ(zv) denotes
∑

i z
i
v. Note that Mnorm and Msum

serve solely as scaling coefficients and do not participate
in gradient propagation. Unlike Lbound, Luniform is calcu-
lated separately for ID and OOD samples (if there is OOD
exposure). In Appendix A.4, we provide a theoretical analy-
sis of Lbound and Luniform, computing their gradients and
demonstrating their impact on the logit z, as well as their en-
hancement of the OOD detection performance of the model.
The final optimization objective for our method is composed
as follows:

LUB = (λ1 · Luniform + (1− λ1) · Lbound) (15)
LALL = LOOD + λ2 · LUB (16)

where λ1 and λ2 are hyper-parameters.

4. Experiment
This section outlines our experimental validation process.
Section 4.1 details the experimental dataset, metrics, and
baseline methodologies. Section 4.2 showcases the primary
experimental findings.

4.1. Setup

Datasets and Splits We utilize five widely used real-
world datasets in node classification tasks: Cora (Kipf &
Welling, 2016), Citeseer (Kipf & Welling, 2016), Pubmed
(Kipf & Welling, 2016), ogbn-Arxiv (Hu et al., 2020), and
Twitch-Explicit (Wu et al., 2022). Specifically, Twitch
is employed for the multi-graph scenario, where out-of-
distribution samples originate from a different graph (or
subgraph) disconnected from any nodes in the training set.
The other datasets are used for the single graph scenario,
where OOD test samples exist on the same graph as training
samples but are not observed during the training process.
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Table 1. Out-of-distribution detection performance measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on datasets Cora, Citeseer, Pubmed
with three OOD types (Structure Manipulation, Feature Interpolation, Label Leave-out ) (Wu et al., 2023). We use the same GCN as
GNNSAFE(Wu et al., 2023) as the backbone in all experiments.

Metric Model OOD Cora Citeseer PubMed
Expo S F L S F L S F L

FP
R

95
(↓

)

MSP No 87.30 64.88 34.99 85.03 71.27 51.97 84.08 69.38 46.19
ODIN No 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Mahalanobis No 98.19 99.93 90.77 99.13 99.73 86.32 97.59 84.93 78.21
Energy No 88.74 65.81 41.08 87.59 69.67 38.76 78.90 62.47 45.14
GKDE No 84.34 68.24 88.95 93.71 71.22 50.61 81.52 68.56 69.52
GPN No 76.22 56.17 37.42 78.26 73.14 41.37 80.33 61.79 50.23

GNNSAFE No 73.15 38.92 30.83 74.72 68.83 36.53 44.64 33.89 36.49
GNNSAFE w/ LLN No 61.04 38.44 34.99 76.35 72.35 37.32 75.10 49.93 32.29
NODESAFE (ours) No 25.63 23.08 29.41 57.89 42.47 29.30 23.80 22.01 25.01

OE Yes 95.31 83.79 46.55 95.37 81.09 45.99 83.52 74.58 60.30
Energy FT Yes 67.73 47.53 37.83 76.44 64.08 31.60 92.04 90.00 25.59

GNNSAFE++ Yes 53.51 27.73 34.08 70.72 72.98 29.30 34.43 26.30 33.63
GNNSAFE++ w/ LLN Yes 51.99 32.72 28.40 74.81 75.47 30.55 91.58 86.17 27.81
NODESAFE++ (ours) Yes 23.34 14.73 22.52 52.60 40.49 29.04 14.52 24.45 23.81

A
U

R
O

C
(↑

)

MSP No 70.90 85.39 91.36 66.34 78.32 88.42 74.31 83.28 85.71
ODIN No 49.92 49.88 49.80 49.23 49.86 51.33 49.76 49.67 56.24

Mahalanobis No 46.68 49.93 67.62 45.26 49.92 53.46 55.28 69.12 75.77
Energy No 71.73 86.15 91.40 65.62 79.19 89.98 74.33 84.16 86.81
GKDE No 68.61 82.79 57.23 61.48 74.68 82.69 74.02 82.25 83.36
GPN No 77.47 85.88 90.34 70.55 78.46 85.65 74.96 82.56 86.51

GNNSAFE No 87.52 93.44 92.80 79.79 83.46 90.01 87.52 94.28 88.02
GNNSAFE w/ LLN No 88.33 93.26 93.50 84.67 88.11 90.47 89.31 92.07 91.12
NODESAFE (ours) No 94.07 95.30 93.80 88.40 90.41 91.66 94.13 95.97 93.80

OE Yes 67.98 81.83 89.47 58.74 72.06 89.44 74.41 82.34 81.97
Energy FT Yes 75.88 88.15 91.36 68.87 79.23 91.34 73.54 78.95 91.83

GNNSAFE++ Yes 90.62 95.56 92.75 82.43 83.27 91.57 90.62 95.16 87.98
GNNSAFE++ w/ LLN Yes 90.13 94.11 93.83 84.93 87.68 91.00 86.21 87.56 89.66
NODESAFE++ (ours) Yes 94.64 96.56 94.88 86.90 91.14 91.98 96.30 95.26 93.48

A
U

PR
(↑

)

MSP No 45.73 73.70 78.03 34.78 55.48 64.03 17.44 39.29 34.98
ODIN No 27.01 26.96 24.27 23.07 23.11 17.97 4.83 4.83 13.49

Mahalanobis No 29.03 31.95 42.31 21.20 31.20 35.47 8.38 15.09 23.40
Energy No 46.08 74.42 78.14 33.63 55.94 64.10 17.32 39.10 36.00
GKDE No 44.26 66.52 27.50 31.55 50.25 61.21 16.89 32.41 34.63
GPN No 53.26 73.79 77.40 41.12 53.21 62.32 17.54 39.75 35.12

GNNSAFE No 77.46 88.19 82.21 60.81 67.02 65.26 62.74 71.66 44.77
GNNSAFE w/ LLN No 78.13 86.89 85.19 69.73 76.20 67.69 58.72 64.21 54.33
NODESAFE (ours) No 83.98 88.82 85.22 75.93 79.30 68.15 71.29 78.22 71.98

OE Yes 46.93 70.84 77.01 30.07 48.80 62.74 16.74 38.60 29.88
Energy FT Yes 49.18 75.99 78.49 36.01 55.69 66.66 18.00 37.21 52.39

GNNSAFE++ Yes 81.88 90.27 82.64 65.58 68.06 65.48 72.78 77.47 41.43
GNNSAFE++ w/ LLN Yes 81.61 88.82 84.17 70.90 76.10 67.57 57.25 58.53 44.87
NODESAFE++ (ours) Yes 85.63 91.96 86.66 71.41 79.48 68.97 81.88 78.12 53.45

We follow the partitioning standards of GNNSAFE (Wu
et al., 2023) for dataset splits. For the Cora, Citeseer, and
Pubmed datasets, we employ three approaches to generate
OOD data: Structure Manipulation, Feature Interpolation,
and Label Leave-out. For the Twitch dataset, OOD samples
are derived from other graphs. We divide the samples based
on temporal context for the Arxiv dataset. More specific
details are elaborated in the Appendix B.1.

Metric We adhere to the common practice of using AU-
ROC, AUPR, and FPR95 as evaluation metrics for OOD
detection. The performance of ID data is measured by ac-
curacy on test nodes. Further details are provided in the
Appendix B.3.

Baselines We conduct a comparative analysis between
two categories of methods for OOD detection. The first
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Table 2. Out-of-distribution detection results are measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on the Twitch dataset, where nodes in
different subgraphs are considered OOD data, and the Arxiv dataset, where papers published after 2017 are treated as OOD data. The
in-distribution testing accuracy is reported for calibration. Detailed results on each OOD dataset (i.e., subgraph or year) are presented in
Appendix C. GPN reports an out-of-memory issue on Arxiv with a 24GB GPU.

Model OOD Twitch Arxiv
Expo AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑)

MSP No 33.59 49.14 97.45 68.72 63.91 75.85 90.59 53.78
ODIN No 58.16 72.12 93.96 70.79 55.07 68.85 100.00 51.39

Mahalanobis No 55.68 66.42 90.13 70.51 56.92 69.63 94.24 51.59
Energy No 51.24 60.81 91.61 70.40 64.20 75.78 90.80 53.36
GKDE No 46.48 62.11 95.62 67.44 58.32 72.62 93.84 50.76
GPN No 51.73 66.36 95.51 68.09 - - - -

GNNSAFE No 66.82 70.97 76.24 70.40 71.06 80.44 87.01 53.39
GNNSAFE w/ LLN No 57.50 68.27 94.12 67.10 71.50 80.71 85.93 46.34
NODESAFE (ours) No 89.99 93.33 47.00 71.79 72.44 81.51 84.27 51.20

OE Yes 55.72 70.18 95.07 70.73 69.80 80.15 85.16 52.39
Energy FT Yes 84.50 88.04 61.29 70.52 71.56 80.47 80.59 53.26

GNNSAFE++ Yes 95.36 97.12 33.57 70.18 74.77 83.21 77.43 53.50
GNNSAFE++ w/ LLN Yes 95.33 97.39 33.81 70.11 72.21 81.57 85.49 46.36
NODESAFE++ (ours) Yes 98.50 99.18 3.43 71.85 75.49 83.71 75.24 52.93

Table 3. Ablation experiment. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Cora, Twitch, and Arxiv, where
the results presented by Cora are averaged across the three OOD generation methods of Structure Manipulation, Feature Interpolation, and
Label Leave-out.

Model OOD Cora Arxiv Twitch
Expo AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓)

NODESAFE No 94.39 86.01 26.04 72.44 81.51 84.27 89.99 93.33 47.00
NODESAFE w/o Luniform No 92.57 84.33 32.07 71.86 81.12 85.35 86.23 91.14 63.54

NODESAFE w/o Lbound No 69.25 60.18 77.55 61.54 70.89 89.76 65.42 70.75 85.19
NODESAFE++ Yes 95.36 88.08 20.20 75.49 83.71 75.24 98.50 99.18 3.43

NODESAFE++ w/o Luniform Yes 93.16 86.47 26.43 73.17 82.04 78.65 96.23 97.75 16.44
NODESAFE++ w/o Lbound Yes 81.86 75.77 50.21 63.02 71.21 89.15 81.51 82.76 57.49

category comprises baseline models that primarily focus
on OOD detection in the visual domain, where inputs are
assumed to be i.i.d. sampled: MSP(Hendrycks & Gimpel,
2016), ODIN (Liang et al., 2017), Mahalanobis (Lee et al.,
2018), OE (Hendrycks et al., 2018) (trained with OOD
exposure), Energy, and Energy Fine-Tune (Liu et al., 2020),
which are also trained with OOD exposure. The second
category consists of baseline models specifically designed
for handling node-level OOD data on graphs. We compared
three methods: GKDE(Zhao et al., 2020), GPN(Stadler
et al., 2021) and the current sota method GNNSAFE (Wu
et al., 2023). In addition, we compare our NODESAFE
with a similar work, LogitNorm (Wei et al., 2022), which is
implemented by normalizing the logit vector during training
so that it has a constant norm, as follows:

LLN = Llogit norm(z, y) = −log
ezy/(τ∥z∥)∑C
c=1 e

zc/(τ∥z∥)
(17)

where τ denotes the temperature coefficient.

4.2. Results

(a) w/ LCE (b) w/ LCE + LLN (c) w/ LCE + LUB

Figure 2. Visualizing 2D logits of nodes using GAT for node classi-
fication on the Cora dataset. The 2D logits are derived by splitting
a single classification linear layer, RD → RC , into two consec-
utive linear layers, RD → R2 → RC . Here, D represents the
node representation dimension, C is the number of classification
categories, and we visualize the logit in R2 space.

How does LUB affect the detection performance of OOD
samples from different sources? The introduction of the
LUB optimization term results in a significant improvement
in the model’s detection capability. For instance, Tables 1
and 2 illustrate the FPR95 metric for OOD data originating
from Structure Manipulation. When LUB is incorporated, in
scenarios without (with) OOD data exposure, it leads to an
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(a) Energy (b) GNNSAFE (c) GNNSAFE w/ LLN (d) NODESAFE (ours)

(e) Energy-FT (f) GNNSAFE++ (g) GNNSAFE++ w/ LLN (h) NODESAFE++ (ours)

Figure 3. The Negative Energy Score distributions on Twitch where nodes in different sub-graphs are OOD samples.

(a) GNNSAFE ( ID ) (b) NODESAFE ( ID ) (c) GNNSAFE ( OOD ) (d) NODESAFE ( OOD )

Figure 4. Visualization of negative energy scores for different nodes. We compare the distribution of scores of GNNSAFE and NODESAFE
on ID and OOD nodes after score aggregation on the Cora dataset.

(a) Epoch (b) λ1 (c) λ2

Figure 5. Hyperparameter analysis on the Twitch dataset.

average FPR95 reduction of 28.4% (22.7%). Similarly, for
OOD data from Feature Interpolation, LUB achieves an aver-
age reduction of 18% (15.8%). In contrast, Label Leave-out
achieves an average decrease of 6.8% (5.8%) in scenarios
without (with) OOD data exposure. For time-based OOD
data, LUB results in an average decrease of 2.74% (2.19%)

in scenarios without (with) OOD data exposure. In multi-
graph datasets with OOD data originating from other graphs,
LUB leads to an average reduction of 29.2% (30.1%) in sce-
narios without (with) OOD data exposure.

Remarkably, LUB has demonstrated substantial perfor-
mance improvement in model detection for OOD samples
in scenarios without OOD data exposure, addressing chal-
lenges associated with the limited availability of OOD data
in real-world scenarios. The performance improvement of
LUB for OOD data based on the temporal split is more
limited compared to Structure Manipulation, Feature Inter-
polation, and Label Leave-out. We believe there are two
possible reasons for this: 1. The closeness of the negative
energy scores between the ID data and the OOD data, in
this case, leads to similar means. 2. The performance of
supervised classification on ID data is not good enough;

7
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hence, the generated logits are more confusing. Therefore,
LUB brings limited improvement in OOD detection perfor-
mance. Our future research work will aim to make further
improvements.

What is the difference between our method LUB and
LogitNorm LLN? Logitnorm is implemented by normal-
izing the logit vector to have a constant norm during training.
Since LogitNorm only uses mathematical normalization to
convert the logit, the logit formed by it still has significant
variance on 2-norm, such as in Fig. 2. As a result, Logit-
Norm does not bring as effective a boost to OOD detection
at the node level as our approach NODESAFE, as verified
by the experimental results in Tables 1 and 2.

What are the effects of Luniform and Lbound on OOD de-
tection, respectively? We conduct ablation experiments
on the Cora, Arxiv, and Twitch datasets. From Table 3, We
observe that the direct use of Luniform does not significantly
improve the out-of-distribution detection of the model. We
speculate that this may be due to the lack of upper and lower
bound constraints on the negative energy score, making
it challenging to achieve robust control of the logit shift.
Conversely, the effect of Lbound alone already provides a
notable enhancement, indicating that the unboundedness of
the negative energy scores is the root cause of the excessive
variance of the aggregated scores. Therefore, we conclude
that the combination of Luniform and Lbound is more effec-
tive in improving the performance of OOD detection.

Visualization of different methods. Fig. 3 shows the
frequency density plots of the negative energy scores of the
samples obtained by the different methods on the Twitch
dataset, where the Twitch-ES graph is used as OOD data.
We find that the negative energy scores of the LUB order ID
data and the OOD data were significantly closer to the mean,
which led to a good classification of the sample points that
also deviated from the mean. In scenarios with OOD data
exposure, the combined effect of LUB and hinge loss Lreg

makes it more likely to detect OOD data successfully. Fig.
4 shows the distribution of GNNSAFE and NODESAFE
negative energy scores after aggregation. The results demon-
strate that without LUB, the variance of the negative energy
scores for both ID and OOD is higher, and the extreme
scores significantly affect the scores of neighboring nodes.
After adding the LUB constraint, the number of nodes with
extreme scores is significantly reduced, and the overall of
each of the ID and OOD nodes becomes more uniform.

Hyperparameter analysis. Fig. 5(a) shows the relation-
ship between LUB addition at different epochs and the final
ID accuracy and FPR95 (solid line), with the dashed line
indicating the GNNSAFE benchmark. We find LUB works
better when the model is good at the supervised classifica-

tion task. Because the logit at the beginning of training is
chaotic, adding LUB in this case not only cannot enhance
the OOD detection ability of the model but also affects the
supervised classification performance of the model. Fig.
5(b) shows that performance is improved in both Luniform

and Lbound ratios between 10−4 and 10−2 orders of mag-
nitude, with the best results at 10−3. Fig. 5(c) shows that
the performance is improved in the ratio of LOOD and LUB

between 10−1 and 101 orders of magnitude, with the best
results at 100.

5. Related Work
Graph-level out-of-distribution detection Some OOD
detection methods proposed in the vision domain can be
directly used for graph-level OOD detection, which can
be roughly divided into two groups. One group aims to
design scoring functions that can be directly used for graph-
level OOD detection, such as OpenMax score (Bendale &
Boult, 2016), MSP(Hendrycks & Gimpel, 2016), ODIN
(Liang et al., 2017), Mahalanobis (Lee et al., 2018), En-
ergy, and Energy Fine-Tune (Liu et al., 2020), ReAct (Sun
et al., 2021), GradNorm score (Huang et al., 2021), and non-
parametric KNN-based score (Sun et al., 2022; Zhu et al.,
2022). Another group addresses the out-of-distribution de-
tection problem by training-time regularization(Lee et al.,
2018; Bevandić et al., 2018; Hendrycks et al., 2018; Geif-
man & El-Yaniv, 2019; Malinin & Gales, 2018; Mohseni
et al., 2020; Jeong & Kim, 2020; Chen et al., 2021; Wei
et al., 2021; 2022; Ming et al., 2022b;a). In addition, there
has been some work on graph-domain-specific methods. A
recent study (Li et al., 2022) models the graph generation
process by defining a variational distribution used to in-
fer the environment. Furthermore, (Bazhenov et al., 2022)
considers the graph OOD detection problem from the uncer-
tainty estimation perspective and finds that it is essential to
consider both graph representations and predictive classifi-
cation distributions. GOOD-D (Liu et al., 2023) develops
a novel graph contrastive learning framework for detect-
ing graphs without relying on ground truth labels. Using
data-centric operations, (Guo et al., 2023) designs a graph
OOD detection adaptive amplifier post-framework. (Ding
& Shi, 2023) exploits substructures to learn powerful repre-
sentations for OOD detection. These graph-level works still
study different graphs as independent samples and cannot
be directly used for node-level OOD detection.

Node-level out-of-distribution detection By collecting
evidence from the given labels of training nodes, (Zhao et al.,
2020) designs a graph-based kernel Dirichlet distribution
estimation (GKDE) method for accurately predicting node-
level Dirichlet distributions and detecting out-of-distribution
(OOD) nodes. (Stadler et al., 2021) proposes a new model,
Graph Posterior Networks (GPNs), which explicitly per-

8



Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs

forms Bayesian a posteriori updating for predicting interde-
pendent nodes. Inspired by the label propagation algorithm,
(Wu et al., 2023) proposes on-graph OOD detection based
on aggregating negative energy scores. Compared to the
work on OOD detection at the graph level, less effort has
been devoted to OOD detection at the node level, which
remains an urgent research problem.

6. Conclusion
We propose a node-level graph OOD detection based on
bounded and uniform negative energy score aggregation.
Specifically, we find that graph OOD detection based on
negative energy score aggregation suffers from extreme
score variance in both ID and OOD samples. This phe-
nomenon arises for two reasons: one is due to the negative
energy scores being unbounded, and the other is due to logit
shifts. Logit shifts are the direct cause of the excessive score
variance. In contrast, the unboundedness of the negative
energy scores is the root cause, which provides the condi-
tions for generating extreme scores in the ID and the OOD
samples. For these two causes, we make the negative energy
scores bounded as well as mitigate the logit shift through
two optimization objectives Lbound and Luniform that bound
the variance, respectively. Experimental results show that
our approach significantly improves the node-level OOD
detection performance.
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A. Proof of Technical Results
A.1. Proof of Proposition 3.1

Proof. Consider the softmax function denoted by σ for the softmax cross-entropy loss. Given any constant s, if
c = argmaxi(zi), then

σ(zc + s) =
exp(zc + s)∑D
j=1 exp(zj + s)

=
exp(zc)exp(s)∑D
j=1 exp(zj)exp(s)

= σ(zc)

Thus, Proposition 3.1 is proved.

A.2. Proof of Proposition 3.2

Proof. From Eq.3, if s ≤ 0, we have,

−∞ < −E(z+ s) = log

C∑
c=1

e(zc+s) = log

C∑
c=1

ezc + s ≤ −E(z)

Similarly, if s > 0, we have,

+∞ > −E(z+ s) = log

C∑
c=1

e(zc+s) = log

C∑
c=1

ezc + s > −E(z)

Thus, Proposition 3.2 is proved.

A.3. Proof of Proposition 3.3

Since the log function is monotonically increasing, we simplify the problem of deriving an upper bound for the negative
energy score −E as follows:

Maximize f(z) =

C∑
c=1

ezc

Subject to g(z) =

C∑
c=1

(zc)
2 − (Mnorm)

2 = 0

Define the Lagrangian function:

L(z, λ) = f(z)− λg(z)

We aim to prove that at a stationary point (z0, λ0), satisfying the conditions:

∇L(z0, λ0) = 0,

g(z0) = 0,

The Lagrangian function attains an extremum.
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Proof. Taking partial derivatives of the Lagrangian function:

∂L

∂z1
=

∂f

∂z1
− λ

∂g

∂z1
= 0,

∂L

∂z2
=

∂f

∂z2
− λ

∂g

∂z2
= 0,

...
∂L

∂zC
=

∂f

∂zC
− λ

∂g

∂zC
= 0,

∂L

∂λ
= −g(z0) = 0.

Solving this system of equations gives (z0, λ0).

When λ0 = 0, for any zi ∈ z, we have,

ezi = 0

Which does not hold.

When λ0 ̸= 0, for any zi ∈ z, we have,

λ =
ezi

2zi

then, for any zj ∈ z0, we have,

ezj − zj
zi

· ezi = 0

When logit z0 is a positive definite matrix, and

z1 = z2 = · · · = zC =

√
M2

norm

C

We have the following upper bound on the negative energy score:

(−E)upper = logC +

√
M2

norm

C

Similarly, when logit z0 is a negative definite matrix, and

z1 = z2 = · · · = zC = −
√

M2
norm

C

We have the following lower bound on the negative energy score:

(−E)lower = logC −
√

M2
norm

C
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A.4. More Analysis on LUB

A.4.1. HOW DOES Lbound WORK?

We give the gradient of Lbound over logit z as follows:

∂Lbound

∂zi
=

∂Lbound
∂∥z∥2︷ ︸︸ ︷

1

Mnorm|V|
·
(
2(∥z∥2 −

1

|V|
·

|V|∑
j=1

∥zj∥2) · (1−
1

|V|
) +

∑
zm ̸=z

2(∥zm∥2 −
1

|V|
·

|V|∑
j=1

∥zj∥2) · (
−1

|V|
)
)

·
(
(

C∑
j=1

z2j )
−1
2 · zi

)
︸ ︷︷ ︸

∂∥z∥2
∂zi

We find that when ∥z∥2 deviates from the mean 1
|V| ·

∑|V|
j=1∥zj∥2, ∂Lbound

∂∥z∥2
produces a gradient that brings ∥z∥2 closer to the

mean. Interestingly, ∂∥z∥2

∂zi
can be viewed as a scaling factor that acts with strength proportional to |zi|.

A.4.2. HOW DOES Luniform WORK?

We give the gradient of Luniform over logit z as follows:

∂Luniform

∂zi
=

∂Luniform
∂Σ(z)︷ ︸︸ ︷

1

Msum|V|
·
(
2(Σ(z)− 1

|V|
·

|V|∑
j=1

Σ(zj)) · (1−
1

|V|
) +

∑
zm ̸=z

2(Σ(zm)− 1

|V|
·

|V|∑
j=1

Σ(zj)) · (
−1

|V|
)
)
·

∂Σ(z)
∂zi︷︸︸︷
1

We find that when Σ(z) deviates from the mean 1
|V| ·

∑|V|
j=1 Σ(zj),

∂Luniform

∂Σ(z) produces a gradient that brings Σ(z) closer to

the mean. ∂Σ(z)
∂zi

shows that the strength of Luniform’s action is independent of zi, and shifts z as a whole. According to
Proposition 3.1, this shift does not change the supervised classification results.

B. Experimental Details
We supplement experiment details for reproducibility. Our implementation is based on Ubuntu 20.04, Cuda 12.1, Pytorch
1.12.0, and Pytorch Geometric 2.1.0.post1. All the experiments run with an NVIDIA 3090 with 24GB memory.

B.1. Dataset Information

The datasets used in our experiment are publicly available as standard benchmarks for evaluating graph learning models.
For ogbn-Arxiv, we utilize the preprocessed dataset and data loader provided by the OGB package. We use the data loader
provided by the Pytorch Geometric package for other datasets.

• Cora dataset, widely used in graph-based machine learning, is a citation network often applied to node classification
and link prediction tasks. It provides a rich representation of scholarly connections with 2,708 nodes, 5,429 edges,
1,433 features, and seven classes. Following the GNNSAFE (Wu et al., 2023), we employ three approaches to
synthetically generate Out-of-Distribution (OOD) data, as outlined in Section 4.1, where under the Label Leave-out,
we take four classes of the samples as ID data and three classes as OOD data. For training/validation/testing, we adopt
a semi-supervised learning approach inspired by (Kipf & Welling, 2016), utilizing the specified data splits on the
in-distribution data.

• Citeseer dataset is a citation network commonly applied to node classification and link prediction tasks. It compre-
hensively represents citation relationships with 3,327 nodes, 4,732 edges, 3,703 features, and six classes. We use
three strategies to generate synthetic OOD data (see Section 4.1 for details), where under the Label Leave-out setting,
we take four classes of the samples as ID data and two as OOD data. For training/validation/testing, we adhere to
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the semi-supervised learning setting introduced by (Kipf & Welling, 2016), utilizing the provided data splits on the
in-distribution data.

• PubMed dataset is another citation network commonly employed in graph-based machine learning and network analysis
tasks, focusing on biomedical literature. The Pubmed dataset comprises 19,717 nodes, 44,338 edges, 500 features, and
three classes. The nodes represent scientific papers, and the features encompass bag-of-words representations of the
paper content. We use three strategies to generate synthetic OOD data (see Section 4.1 for details), where under the Label
Leave-out, we take two classes of the samples as ID data and one class as OOD data. For training/validation/testing,
we adhere to the semi-supervised learning setting introduced by (Kipf & Welling, 2016), utilizing the provided data
splits on the in-distribution data.

• Twitch-Explicit dataset comprises multiple graphs, with each subgraph representing a distinct social network in a
specific region. Within this dataset, nodes correspond to game players on Twitch, and edges signify mutual follow-up
relationships between users. Node features include embeddings representing the games played by Twitch users, while
the label class indicates whether a user streams mature content. Subgraph sizes vary, ranging from 1,912 to 9,498
nodes, with edge numbers spanning 31,299 to 153,138. A shared feature dimension of 2,545 is maintained across
all subgraphs. Following the methodology outlined in GNNSAFE (Wu et al., 2023) and detailed in Section 4.1, we
designate subgraph DE as in-distribution data, employing random splits with a ratio of 1:1:8 for training, validation,
and testing. Additionally, subgraph EN serve as out-of-distribution (OOD) exposure, while ES, FR, and RU are utilized
for OOD testing data.

• ogbn-Arxiv dataset is a comprehensive graph dataset that captures citation information from 1960 to 2020. Each
node represents a paper, with its subject area serving as the label for prediction. Edges in the graph denote citation
relationships, and every node is associated with a 128-dimensional feature vector derived from the word embeddings
of its title and abstract. As outlined in Section 4.1, we utilize time information to partition the in-distribution and
out-of-distribution data. For the in-distribution subset, we employ random splits in a 1:1:8 ratio for training, validation,
and testing. Our partitioning approach for the in-distribution and OOD data differs from the original splitting strategy
proposed by (Hu et al., 2020), which relied on-time information to split training and test nodes. In our configuration,
the random splitting ensures that the training, validation, and testing nodes (of in-distribution data) are drawn from an
identical distribution distinct from the OOD data.

B.2. Implementation Details

Architecture Our primary encoder backbone is a Graph Convolutional Network (GCN)-based encoder. Additionally, we
explore other models, including Multi-Layer Perceptron (MLP), Graph Attention Network (GAT), Jumping Knowledge
Network (JKNet), and MixHop, for further investigation. We summarize the architectural details of all the encoder backbones
used in our experiments as follows:

• GCN: This architecture comprises 2 GCNConv layers with a hidden size 64, ReLU activation function, self-loop
mechanism, and batch normalization.

• MLP: The MLP architecture consists of 2 fully connected layers with a hidden size 64 and ReLU activation function.

• GAT: The GAT model includes 2 GATConv layers with a hidden size 64, ELU activation function, head number [2, 1],
and batch normalization.

• JKNet: This architecture includes 2 GCNConv layers with a hidden size 64, ReLU activation function, self-loop
mechanism, and batch normalization. The jumping knowledge module utilizes max pooling.

• MixHop: The MixHop model comprises 2 MixHop layers with a hop number of 2, a hidden size 64, a ReLU activation
function, and batch normalization.

Hyper-parameters We Follow the GNNSAFE(Wu et al., 2023) to set the hyper-parameters min, mout, α, η and K.
Additionally, we consider grid-search for λ1 ∈ {0.0001, 0.001, 0.01, 0.1, 1} and λ2 ∈ {0.01, 0.1, 1, 10, 100}, and we use
λ1 = 0.001 and λ2 = 1 as the default setting.
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Training Details In each run, we train the model with 200 epochs as a fixed budget and report the testing performance
produced by the epoch where the model yields the lowest classification loss on validation data.

Competitors We use the results reported in the (Wu et al., 2023) for the baseline MSP, ODIN, Mahalanobis, Energy and
Energy FT, GKDE, GPN, GNNSAFE, and GNNSAFE++. We use the hyperparameters recommended in it for LogitNorm
(Liu et al., 2020).

B.3. Evaluation Metrics

We provide more details concerning the evaluation metrics we used in our experiment. The metrics FPR95, AUROC (Area
Under the Receiver Operating Characteristic curve), and AUPR (Area Under the Precision-Recall curve) are commonly
used in binary classification tasks to assess the performance of machine learning models.

• FPR95 is a specific operating point on the ROC curve. It represents the false positive rate when the true positive rate is
fixed at 95%. In other words, it indicates the rate of false positives when the model achieves a high level of sensitivity
(95% true positive rate).

• AUROC measures the area under the ROC curve, a graphical representation of the trade-off between true positive
rate (sensitivity) and false positive rate (1-specificity) for different classification thresholds. An AUROC score of 1.0
indicates a perfect classifier, while a score of 0.5 corresponds to a random classifier.

• AUPR measures the area under the precision-recall curve, which plots precision (positive predictive value) against
recall (sensitivity) for different classification thresholds. AUPR is particularly useful when the data is imbalanced, as
it focuses on the classifier’s performance in the positive class. Similar to AUROC, a higher AUPR indicates better
classifier performance.

C. Additional Experiment Results
We supplement more experimental results in this section. In specificin Table 6, 7 and 8, we report the AUROC/AUPR/FPR95
and in-distribution testing accuracy on Cora, Citeseer, and Pubmed as complementary for Table 1 in the main text. Besides,
we report detailed OOD detection performance on each OOD dataset (different subgraphs for Twitch and other years for
Arxiv) in Table 4 and 5 complementary for Table 2 in the main text.

Table 9 compares the models’ training time (TR) per epoch and inference time (IN) of all the models. Our implementation is
based on Ubuntu 20.04, Cuda 12.1, Pytorch 1.12.0, and Pytorch Geometric 2.1.0.post1. All the experiments run with an
NVIDIA 3090 with 24GB memory. The results indicate that the additional training cost brought by our methods compared
to the previous SOTA method GNNSAFE is almost negligible.

Additionally, we conduct experiments comparing the convergence speed of the models. Table 10 demonstrates that compared
to GNNSAFE, our NODESAFE exhibits significantly faster convergence speed and better OOD detection performance.
This indicates that Lbound and Luniform regularization can allow the energy of ID and OOD to reach a stable distribution
more quickly, while also significantly enhancing the ability of GNN to detect OOD nodes.

Figure 6 compares the performance of GNNSAFE, GNNSAFE++, NODESAFE, and NODESAFE++ w.r.t. the use of
different encoder backbones including MLP, GCN, GAT, JKNet, and MixHop for the three OOD types of Cora. We observe
that the relative performance of the five models is generally consistent with the results in Table 1.
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Table 4. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Twitch.

Model OOD Twitch-ES Twitch-FR Twitch-RU
Expo AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓)

MSP No 37.72 53.08 98.09 21.82 38.27 99.25 41.23 56.06 95.01
ODIN No 83.83 80.43 33.28 59.82 64.63 92.57 58.67 72.58 93.98

Mahalanobis No 45.66 58.82 95.48 40.40 46.69 95.54 55.68 66.42 90.13
Energy No 38.80 54.23 95.70 57.21 61.48 91.57 57.72 66.68 87.57
GKDE No 48.70 61.05 95.37 49.19 52.94 95.04 46.48 62.11 95.62
GPN No 53.00 64.24 95.05 51.25 55.37 93.92 50.89 65.14 99.93

GNNSAFE No 49.07 57.62 93.98 63.49 66.25 90.80 87.90 89.05 43.95
GNNSAFE w/ LLN No 60.87 74.94 93.72 52.15 58.63 96.52 59.49 71.25 92.11

NODESAFE No 94.44 95.78 25.84 96.12 97.30 24.93 79.40 86.91 90.24
OE Yes 55.97 69.49 94.94 45.66 54.03 95.48 55.72 70.18 95.07

Energy FT Yes 80.73 87.56 76.76 79.66 81.20 76.39 93.12 95.36 30.72
GNNSAFE++ Yes 94.54 97.17 44.06 93.45 95.44 51.06 98.10 98.74 5.59

GNNSAFE++ w/ LLN Yes 96.70 98.43 24.35 91.20 94.64 68.63 98.09 99.09 8.44
NODESAFE++ Yes 97.66 98.86 3.10 97.94 98.75 7.86 99.75 99.88 0.05

Table 5. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on ogbn-Arxiv.

Model OOD Arxiv-2018 Arxiv-2019 Arxiv-2020
Expo AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓) AUROC(↑) AUPR(↑) FPR95(↓)

MSP No 61.66 70.63 91.67 63.07 66.00 90.82 67.00 90.92 89.28
ODIN No 53.49 63.06 100.00 53.95 56.07 100.00 55.78 87.41 100.00

Mahalanobis No 57.08 65.09 93.69 56.76 57.85 94.01 56.92 85.95 95.01
Energy No 61.75 70.41 91.74 63.16 65.78 90.96 67.70 91.15 89.69
GKDE No 56.29 66.78 94.31 57.87 62.34 93.97 60.79 88.74 93.31
GPN No —- —- —- —- —- —- —- —- —-

GNNSAFE No 66.47 74.99 89.44 68.36 71.57 88.02 78.35 94.76 83.57
GNNSAFE w/ LLN No 66.89 75.31 88.33 68.91 71.97 86.95 78.72 94.84 82.52

NODESAFE No 67.90 76.33 87.30 69.85 73.15 85.38 79.59 95.08 80.10
OE Yes 67.72 75.74 86.67 69.33 72.15 85.52 72.35 92.57 83.28

Energy FT Yes 69.58 76.31 82.10 70.58 72.03 81.30 74.53 93.08 78.36
GNNSAFE++ Yes 70.40 78.62 81.47 72.16 75.43 79.33 81.75 95.57 71.50

GNNSAFE++ w/ LLN Yes 67.73 76.40 87.86 69.58 73.27 86.81 79.33 95.04 81.79
NODESAFE++ Yes 71.13 79.19 79.73 72.92 76.18 77.30 82.42 95.73 68.71

Table 6. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Cora.
Model OOD Cora-Structure Cora-Feature Cora-Label

Expo AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑)
MSP No 70.90 45.73 87.30 75.50 85.39 73.70 64.88 75.30 91.36 78.03 34.99 88.92
ODIN No 49.92 27.01 100.00 74.90 49.88 26.96 100.00 75.00 49.80 24.27 100.00 88.92

Mahalanobis No 46.68 29.03 98.19 74.90 49.93 31.95 99.93 74.90 67.62 42.31 90.77 88.92
Energy No 71.73 46.08 88.74 76.00 86.15 74.42 65.81 76.10 91.40 78.14 41.08 88.92
GKDE No 68.61 44.26 84.34 73.70 82.79 66.52 68.24 74.80 57.23 27.50 88.95 89.87
GPN No 77.47 53.26 76.22 76.50 85.88 73.79 56.17 77.00 90.34 77.40 37.42 91.46

GNNSAFE No 87.52 77.46 73.15 75.80 93.44 88.19 38.92 76.40 92.80 82.21 30.83 88.92
GNNSAFE w/ LLN No 88.33 78.13 61.04 80.00 93.26 86.89 38.44 80.80 93.50 85.19 34.99 89.24

NODESAFE No 94.07 83.98 25.63 77.20 95.30 88.82 23.08 78.70 93.80 85.22 29.41 89.87
OE Yes 67.98 46.93 95.31 71.80 81.83 70.84 83.79 73.30 89.47 77.01 46.55 87.97

Energy FT Yes 75.88 49.18 67.73 75.50 88.15 75.99 47.53 75.30 91.36 78.49 37.83 90.51
GNNSAFE++ Yes 90.62 81.88 53.51 76.10 95.56 90.27 27.73 76.80 92.75 82.64 34.08 91.46

GNNSAFE++ w/ LLN Yes 90.13 81.61 51.99 79.70 94.11 88.82 32.72 79.70 93.83 84.17 28.40 89.56
NODESAFE++ Yes 94.64 85.63 23.34 76.40 96.56 91.96 14.73 77.10 94.88 86.66 22.52 91.46
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Table 7. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Citeseer.
Model OOD Citeseer-Structure Citeseer-Feature Citeseer-Label

Expo AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑)
MSP No 66.34 34.78 85.03 65.60 78.32 55.48 71.27 66.20 88.42 64.03 51.97 89.36
ODIN No 49.23 23.07 100.00 66.10 49.86 23.11 100.00 65.80 51.33 17.97 100.00 89.36

Mahalanobis No 45.26 21.20 99.13 60.70 49.92 31.20 99.73 53.30 53.46 35.47 86.32 72.51
Energy No 65.62 33.63 87.59 65.20 79.19 55.94 69.67 64.50 89.98 64.10 38.76 90.58
GKDE No 61.48 31.55 93.71 64.70 74.68 50.25 71.22 64.20 82.69 61.21 50.61 89.16
GPN No 70.55 41.12 78.26 65.80 78.46 53.21 73.14 63.20 85.65 62.32 41.37 89.30

GNNSAFE No 79.79 60.81 74.72 64.90 83.46 67.02 68.83 64.40 90.01 65.26 36.53 90.58
GNNSAFE w/ LLN No 84.67 69.73 76.35 65.40 88.11 76.20 72.35 65.40 90.47 67.69 37.32 86.93

NODESAFE No 88.40 75.93 57.89 69.90 90.41 79.30 45.47 68.60 91.66 68.15 29.30 90.58
OE Yes 58.74 30.07 95.37 59.00 72.06 48.80 81.09 60.50 89.44 62.74 45.99 87.23

Energy FT Yes 68.87 36.01 76.44 63.00 79.23 55.69 64.08 64.40 91.34 66.66 31.60 90.58
GNNSAFE++ Yes 82.43 65.58 70.72 65.90 83.27 68.06 72.98 65.10 91.57 65.48 29.30 88.15

GNNSAFE++ w/ LLN Yes 84.93 70.90 74.81 65.50 87.68 76.10 75.47 65.30 91.00 67.57 30.55 84.50
NODESAFE++ Yes 86.90 71.41 52.60 65.00 91.14 79.48 40.49 66.50 91.98 68.97 29.04 88.15

Table 8. OOD detection results measured by AUROC (↑) / AUPR (↑) / FPR95 (↓) on Pubmed.
Model OOD Pubmed-Structure Pubmed-Feature Pubmed-Label

Expo AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑) AUROC(↑) AUPR(↑) FPR95(↓) ID ACC(↑)
MSP No 74.31 17.44 84.08 75.10 83.28 39.29 69.38 75.00 85.71 34.98 46.19 100.00
ODIN No 49.76 4.83 100.00 75.30 49.67 4.83 100.00 75.30 56.24 13.49 100.00 100.00

Mahalanobis No 55.28 8.38 97.59 69.30 69.12 15.09 84.93 73.00 75.77 23.40 78.21 97.52
Energy No 74.33 17.32 78.90 75.60 84.16 39.10 62.47 75.50 86.81 36.00 45.14 100.00
GKDE No 74.02 16.89 81.52 75.20 82.25 32.41 68.56 74.10 83.36 34.63 69.52 100.00
GPN No 74.96 17.54 80.33 75.80 82.56 39.75 61.79 74.50 86.51 35.12 50.23 100.00

GNNSAFE No 87.52 62.74 44.64 75.80 94.28 71.66 33.89 76.40 88.02 44.77 36.49 100.00
GNNSAFE w/ LLN No 89.31 58.72 75.10 74.90 92.07 64.21 49.93 73.00 91.12 54.33 32.29 93.61

NODESAFE No 94.13 71.29 23.80 77.00 95.97 78.22 22.01 77.60 93.80 71.98 25.01 100.00
OE Yes 74.41 16.74 83.52 72.90 82.34 38.60 74.58 73.10 81.97 29.88 60.30 99.02

Energy FT Yes 73.54 18.00 92.04 75.80 78.95 37.21 90.00 75.30 91.83 52.39 25.59 100.00
GNNSAFE++ Yes 90.62 72.78 34.43 76.10 95.16 77.47 26.30 76.80 87.98 41.43 33.63 96.07

GNNSAFE++ w/ LLN Yes 86.21 57.25 91.58 73.30 87.56 58.53 86.17 72.90 89.66 44.87 27.81 91.89
NODESAFE++ Yes 96.30 81.88 14.52 74.50 95.26 78.12 24.45 77.30 93.48 53.45 23.81 100.00

Table 9. Comparison of training time per epoch and inference time of all the models. Our implementation is based on Ubuntu 20.04, Cuda
12.1, Pytorch 1.12.0, and Pytorch Geometric 2.1.0.post1. All the experiments run with an NVIDIA 3090 with 24GB memory.

Model Cora Citeseer Pubmed Twitch Arxiv
TR(s) IN(s) TR(s) IN(s) TR(s) IN(s) TR(s) IN(s) TR(s) IN(s)

MSP 0.006 0.003 0.007 0.003 0.019 0.053 0.006 0.029 0.040 0.161
ODIN 0.006 0.005 0.007 0.006 0.017 0.099 0.006 0.059 0.017 0.009

Mahalanobis 0.007 0.047 0.008 0.053 0.023 0.343 0.007 0.004 0.022 0.032
Energy 0.008 0.010 0.009 0.011 0.036 0.051 0.008 0.035 0.059 0.179
GKDE 0.007 0.015 0.008 0.017 0.022 0.075 0.004 0.031 0.028 0.159
GPN 7.336 25.730 8.290 29.075 9.071 36.322 2.081 10.132 - -
OE 0.011 0.012 0.012 0.014 0.037 0.052 0.009 0.032 0.072 0.234

Energy FT 0.012 0.003 0.014 0.003 0.042 0.054 0.012 0.038 0.064 0.203
GNNSAFE 0.008 0.004 0.009 0.005 0.037 0.052 0.008 0.036 0.058 0.204

GNNSAFE++ 0.012 0.004 0.014 0.005 0.045 0.060 0.012 0.038 0.070 0.222
NODESAFE (ours) 0.008 0.004 0.009 0.005 0.039 0.054 0.009 0.037 0.060 0.206

NODESAFE++ (ours) 0.013 0.004 0.015 0.005 0.049 0.062 0.014 0.040 0.073 0.233

Table 10. Comparison of Convergence Speed. The epoch with the minimum loss on the validation set is considered the best epoch (the
smaller the epoch, the faster the convergence speed), and its corresponding AUROC (the higher the better) is recorded.

Model Cora Citeseer Pubmed Twitch Arxiv
Best Epoch(↓) AUROC(↑) Best Epoch(↓) AUROC(↑) Best Epoch(↓) AUROC(↑) Best Epoch(↓) AUROC(↑) Best Epoch(↓) AUROC(↑)

GNNSAFE 148 87.52 123 79.79 167 87.52 156 66.82 145 71.06
NODESAFE 61 94.07 66 88.40 76 94.13 87 89.99 111 72.44

GNNSAFE++ 176 81.88 157 65.58 165 72.78 169 95.36 154 74.77
NODESAFE++ 56 94.64 97 86.90 119 96.30 98 98.50 127 75.49
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Figure 6. Performance comparison of GNNSAFE, GNNSAFE++, NODESAFE and NODESAFE++ w.r.t. different encoder backbones on
Cora with three OOD types.
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