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Abstract
How to explain temporal models is a significant
challenge due to the inherent characteristics of
time series data, notably the strong temporal de-
pendencies and interactions between observations.
Unlike ordinary tabular data, data at different time
steps in time series usually interact dynamically,
forming influential patterns that shape the model’s
predictions, rather than only acting in isolation.
Existing explanatory approaches for time series
often overlook these crucial temporal interactions
by treating time steps as separate entities, lead-
ing to a superficial understanding of model be-
havior. To address this challenge, we introduce
FDTempExplainer, an innovative model-agnostic
explanation method based on functional decom-
position, tailored to unravel the complex inter-
play within black-box time series models. Our ap-
proach disentangles the individual contributions
from each time step, as well as the aggregated
influence of their interactions, in a rigorous frame-
work. FDTempExplainer accurately measures the
strength of interactions, yielding insights that sur-
pass those from baseline models. We demonstrate
the effectiveness of our approach in a wide range
of time series applications, including anomaly de-
tection, classification, and forecasting, showing
its superior performance to the state-of-the-art
algorithms.

1. Introduction
Explanatory methods hold paramount significance across di-
verse realms of scientific research, where the need to under-
stand the predictions of complex models is essential for both
validation and application (Tjoa & Guan, 2020; Yang et al.,
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2023; Amann et al., 2020). Time series data, by virtue of its
omnipresence, capture the dynamic evolution of variables
across a spectrum of fields including economics (Kendall &
Hill, 1953), meteorology (Campbell & Diebold, 2005), and
public health (Zeger et al., 2006). However, the investigation
into explaining the predictions of time series models—a crit-
ical piece in the puzzle of model transparency—has not kept
pace with the demands of researchers and practitioners. The
ability to explain time series model predictions is crucial;
it not only demystifies the decision-making process (Koo
et al., 2016) but also instills trust and fosters practical in-
sights for stakeholders (Ivaturi et al., 2021; Mobley, 2002;
Ismail Fawaz et al., 2019).

The unique characters of time series data pose distinct chal-
lenges when it comes to elucidating different model pre-
dictions. Firstly, the high degree of temporal dependency
(including the commonly used autocorrelation) inherent in
time series data complicates the task of identifying the influ-
ence of specific inputs on the model outputs. In particular,
many of existing explanatory methods (e.g., perturbation-
based methods) rely on generating artificial samples for
explanation, which do not follow the underlying complex
temporal dependency relationship in the time series data,
leading to the out-of-distribution (OOD) problem. Secondly,
events occurring at a given time point can have enduring ef-
fects on subsequent observations, encapsulating phase shifts
that ripple through future data points. In fact, the informa-
tion of a phase change at one time step is embedded in all
the following steps, and the resulting accumulation effect of
events make accurate explaining challenging. Thirdly, we
need to consider not only a single time point (e.g., points
corresponding to events), but also time series subsequence
in explanation. As opposed to the impact of isolated obser-
vations as events, some subsequence plays important role
in time series tasks. Take subsequence anomaly detection
as an example, anomalies are determined based on the col-
lective behavior of a time series subsequence rather than a
singular time point (Boniol & Palpanas, 2020). Similarly,
in forecasting, successive observations often compose pe-
riodic motifs or exhibit slowly evolving trends that have a
profound influence on subsequent values within the series.

Although various general explanatory methods, such as
LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee,
2017), integrated gradient (Sundararajan et al., 2017), and

1



Explain Temporal Black-Box Models via Functional Decomposition

DeepLIFT (Shrikumar et al., 2017), have been proposed in
the literature (Ribeiro et al., 2016; Lundberg & Lee, 2017;
Sundararajan et al., 2017; Shrikumar et al., 2017), the inher-
ent complexities of time series data make these traditional
methods not fully applicable (Ismail et al., 2020). In partic-
ular, many of them suffer from the OOD problem, and often
ignore the effects of preceding time steps on subsequent
observations. Recently, some methods have been proposed
and mitigate the OOD problem by learning counterfactual
samples (Tonekaboni et al., 2020; Leung et al., 2023; Meng
et al., 2023; Enguehard, 2023; Sivill & Flach, 2022; Tonek-
aboni et al., 2020). To account for the effects of time steps
on later observations, (Leung et al., 2023) proposes an ap-
proach that aggregates the impact of a time step across a
subsequent time window. In an effort to neutralize the con-
founding effects of prior time steps, (Suresh et al., 2017;
Tonekaboni et al., 2020) quantify the significance of a time
step by calculating the change in the predictive power of the
model before and after the observation of that specific time
step. While these recent advances have led to explanatory
techniques that consider temporal dependencies, there still
remains a gap in adequately addressing the intricate inter-
actions between observational points. To the best of our
knowledge, there is no algorithm which can deal with three
aforementioned challenges together.

Next we present a simplified toy example to illustrate the
significance of interactions when explaining the predictions
of temporal models. Fig. 1 showcases a comparison between
two anomaly detection methods based on how they account
for interactions across time steps. The input time series x
exhibits two distinct spikes at time steps t1 and t2. The
function f

(1)
t (x) signals an anomaly (value changes to 1)

if and only if a spike is present at the current time step
t. Conversely, f (2)

t (x) reports an anomaly (value changes
to 1) if a spike occurred in the past, up to and including
the current time step. It is evident that f (1)

t (x) neglects
the potential interplay between time steps within the series
x. In contrast, f (2)

t (x) incorporates the influence of all
preceding time steps, reflecting their cumulative interactions.
To simplify the discussion and further delve into analyzing
the interaction effect between spikes at t1 and t2, we assume
t1 < t2 ≤ t and there is no other spikes. We define E1 as
the occurrence of a spike at t1, and E2 as the occurrence of
a spike at t2. Formally, we reformulate f

(2)
t (x) as

f
(2)
t (x) = E1 or E2 = I(E1) + I(E2)− I(E1)I(E2),

where I(E) denotes an indicator function that equals 1 if
event E occurs and 0 otherwise. This decomposition clar-
ifies how both spikes at t1 and t2 influence the value of
f
(2)
t (x). Notably, the interaction between spikes at t1 and
t2 (described as I(E1)I(E2)) exerts a diminishing effect on
the value of f (2)

t (x). When we consider the update at time

Figure 1: Example of two anomaly detection functions with
the same input. (a) and (b) show the response of f (1)

t (x) and
f
(2)
t (x) given input x, respectively. While both functions

process the same input, interaction between the two spikes
exists in f

(2)
t (x), while absents in f

(1)
t (x).

step t2, it becomes apparent that the effect of t2 is not iso-
lated; rather, its interrelation with t1 also contributes to the
outcome of f (2)

t (x). If we fail to correctly disentangle this
interaction and merely compare the value of f (2)

t (x) before
and after the spike at t2, we might erroneously conclude
that t2 has no impact. This oversight occurs because the
interactive effect between t1 and t2 neutralizes the primary
influence of the spike at t2.

To accurately quantify the interactions, we introduce a
method that decomposes black-box models into a sum of
individual time step effects and all potential interactions
between them. Recognizing the temporal dependencies in-
herent in time series data, we posit that interactions occur
exclusively between consecutive time steps. Furthermore,
to mitigate the bias introduced by preceding sequences, we
introduce the notion of “pure” interaction. Specifically, an
interaction is considered pure if it is unaffected by prior
time steps. Intuitively, if a time step’s value can be exclu-
sively predicted by preceding data, then its interactions with
this preceding sequence are zero. We then demonstrate
that, given a decomposition where all interactions are pure,
these interactions can be determined analytically through
closed-form solutions. Once the interactions are established,
we introduce a model-agnostic explainer FDTempExplainer
for black-box time series models. This technique equitably
distributes the effect of interactions across involved time
steps, ensuring each time step is assigned its due influence.
As the temporal interaction is fully considered, FDTemp-
Explainer takes account of past events and subsequence in
explanation. It enjoys the solid mathematical foundation,
and can be applied to major time series tasks, including
time series anomaly detection, classification, and forecast-
ing. Our empirical studies demonstrate that our method not
only accurately calculates the interactions but also provides
more valid significance scores to individual time steps when
compared to current state-of-the-art methods.
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2. Preliminaries
Let f(X,C) be a temporal black-box model, which takes
multi-variate time series X and C as input, and outputs an
L-dimensional vector y ∈ RL. Here X ∈ RD×T is a multi-
variate time series with D features and T time steps, and
C denotes external context variables which are not focused
in this paper. Here we do not assume the sequential output
of the model. We denote X = [x1,x2, · · · ,xT ], where
xt ∈ Rd is the t-th column of X . We define Xt1:t2 =
[xt1 , . . . ,xt2 ] as a segmentation of X within time interval
t1 ≤ t ≤ t2, i.e., the submatrix of X corresponds to the
time range [t1, t2]. In our framework, we treat X and C as
random variables, and denote their specific realization as X̄
and C̄, respectively.

3. Proposed Method
In this section, we present our functional decomposition-
based method designed to explain temporal models. For-
mally, with a given input X̄ and a context variable C̄, our
goal is to determine the impact of features within each time
step on the model’s output. Specifically, we aim to mea-
sure the contribution of x̄t, denoted as ϕt, for each time
step where 1 ≤ t ≤ T . The contributions of x̄t stem from
multiple factors. The inherent value of x̄t independently
influences the output. Moreover, the features at time step
t, x̄t, interact with features at neighboring time steps, such
as those at t− 1 and t+ 1, creating temporal patterns that
jointly impact the output. To accurately assess these various
types of impact, we reframe the function f(X̄, C̄) into an
additive formulation as follows:

f(X, C̄)

=C0 +

T∑
t=1

m(xt) +

T−1∑
t=1

I2(Xt:t+1) +

T−2∑
t=1

I3(Xt:t+2)

+ · · ·+
2∑

t=1

IT−1(Xt:t+T−2) + IT (X), (1)

where C0 is a constant, m(·) and {Ik(·)}Tk=2 are functions.
Eq. (1) decomposes the function f(X, C̄) into multiple
terms. Specifically, the function m(xt) models the effect
on the output caused by xt itself. Thus, it is only related
to the features at time step t and irrelevant to other time
steps. Similarly, function Ik+1(Xt:t+k) is only related to
the features from the time step t to t+ k, and irrelevant to
the rest time steps. Thus, function Ik+1(Xt:t+k) computes
the effect of features in segment Xt:t+k on the output due to
incorporation of these features. Here we call Ik+1(Xt:t+k)
as the k + 1th order interaction of Xt:t+k.

Remark. The decomposition presented in Eq. (1) can be
regarded as an augmentation of generalized additive models
(GAMs) that incorporates higher-order interactions among

consecutive time steps. It is important to note that Eq. (1)
deliberately excludes interactions between non-consecutive
time steps. The rationale behind this assumption is rooted
in the observed smoothness of time series transitions, which
implies a stronger correlation among adjacent time steps.
This proximity-based correlation is often integral to the for-
mation of patterns that significantly influence the model’s
outputs. Even for time series characterized by distinct cy-
cles, there is no inherent necessity for direct interactions
between non-adjacent time steps. More commonly, the
cyclic behavior emerges from the aggregated influence of
all time steps within the period, rather than from discrete
interactions among non-consecutive steps. It is critical to
clarify that “interaction” pertains to a model’s behavior, not
to an intrinsic property of the time series itself. As illus-
trated in Fig. 1, with the same input time series, observable
interactions occur between time steps in f

(2)
t but not in f

(1)
t .

Consequently, scenarios wherein features widely separated
in time affect the current target, or previous features influ-
ence current ones, are consistent with our assumption. We
assert that this assumption is defensible in most cases. More-
over, where exceptions arise, we propose specific remedies.
Should interactions between non-consecutive time steps
occur, Eq. (1) would subsume them under their broader
consecutive context. For instance, the influence of the in-
teraction between xt−2 and xt would be incorporated into
the term I3(Xt−2:t), potentially causing an inflated estima-
tion of xt−1’s impact. Nonetheless, these areas of potential
inattention notwithstanding, Eq. (1) effectively isolates the
interaction between xt and xt−2 from f(X, C̄). As a result,
it accurately captures low-order interactions and primary
effects of time steps, which predominantly determine their
effects to the model’s output. By limiting the interaction to
contiguous time steps, we streamline the model, focusing
on the proximal relationships that are most salient for time
series analysis.

As previously discussed, occurrences at a given time step
have the potential to influence subsequent time steps in a
time series. To neutralize such effects, it is necessary to
consider that, for time steps whose values are completely
determined by preceding steps, their interactions with those
preceding steps should be nullified. Furthermore, if the
value at a particular time step is unobserved, then we would
anticipate that the expected value of its interaction with
other time steps should be zero since it does not contribute
any new information. Formally, we introduce the “pure
interaction” to describe this property.

Definition 3.1 (pure interaction). Given an interaction func-
tion Ik+1(Xt:t+k), we say it is pure if and only if it satisfies∫

Ik+1(Z(t1, t2))p(XP |X̄t1:t2 , C̄)dXP = 0 (2)

for all t ≤ t1 < t2 ≤ t + k, where Z(t1, t2) =

3



Explain Temporal Black-Box Models via Functional Decomposition

Figure 2: Illustration of Definition 3.1 (pure interaction)

[Xt:t1−1, X̄t1:t2 ,Xt2+1:t+k], XP denotes features in
Xt:t+k but not in Xt1:t2 .

An illustration of Definition 3.1 is shown at Fig. 2.
Obviously, if XP is fully determined by X̄t1:t2 , then
p(XP |X̄t1:t2 , C̄) will reduce to a Dirac delta function, and
eventually leads to Ik+1(X̄t:t+k) = 0. Note that the left
term of Eq.(2) may be a function if XP does not cover all
the features in Xt:t+k but not in Xt1:t2 .

Remark. The concept of pureness is also defined in
PureGAM (Sun et al., 2022) for GAMs. In PureGAM,
an interaction between features is considered to be pure if
integrating it with respect to the marginal distribution of the
involved features results in zero. This definition is grounded
in a global perspective of feature distributions across the
entire dataset. In contrast, the pureness described in Eq.(2)
is designed for a sample-specific scenario. It is the pre-
diction on the distribution conditioned upon a segmented
sample X̄ . This distinction is crucial because when we
aim to interpret the model locally for the sample X̄ , it is
reasonable to focus on interactions that exhibit local prop-
erties in the vicinity of the given sample. Furthermore, as
we will discuss later, another appealing feature of the pure
interaction is its prevention of generating OOD samples due
to its sample-centric definition.

Lemma 3.2. For any function f(X, C̄), there exists a de-
composition presented in Eq.(1) with all the interactions be
pure.

Lemma 3.2 shows that there is always a decomposition satis-
fying pure interactions, which enable us to define attribution
method based on the pure interactions. In the following,
we will show that with the pureness constraints, one can
estimate all the interactions efficiently.

3.1. Estimation of Interactions

Directly estimating the interactions is difficult, as we can
only get the summation of all the T (T −1) interaction terms
and N main effect terms, i.e., f(X̄, C̄). One approach to es-
timate the interaction terms in Eq. (1) is to train a surrogate
function which admits decomposition structure intrinsically.
Nevertheless, we can only make sure the outputs of the sur-
rogate function approximating the original one, but cannot

guarantee that the interactions in the surrogate function con-
vey the precise information of the interactions in original
function. In this section, we propose a method to estimate
the pure interactions without retain surrogate functions.

The difficulty of the interaction estimation arises from the
fact that the output of the function naturally mixes the ef-
fects of different order interactions. Fortunately, if we re-
strict the interaction to be pure, we can delete some spe-
cific interactions by using the pure interaction assump-
tion. For example, if we want to remove the effect of
the interaction IT (X1:T ) from f(X, C̄), we can compute
the expectation of f([X1:T−1,XT ], C̄) with respect to
XT over the distribution p(XT |X̄T−1). Following the
pure interaction definition, the expectation of interactions
{IT−k+1([Xk:T−1, X̄T−1,XT ])}T−1

k=1 will be zero, while
the rest interactions keep unchanged.

The above observation motivates us to estimate the inter-
actions using the their pureness. Intuitively, if we are
able to compute two terms, where one term is the ex-
pectation of f(X, C̄)) with the effects of the interac-
tions {IT−k+1(X̄k:T )}T−1

k=1 removed, and the other term re-
moves the effects of the interactions {IT−k+1(X̄k:T )}T−1

k=2 .
Then the difference of two terms should be the effect of
interaction of IT (X̄1:T ).

In the following, we introduce our efficient method to esti-
mate interactions. Before proceeding, we first define opera-
tor Et1:t2|t3:t4(·) as

Et1:t2|t3:t4(f(·)) =
∫

f(·)p(Xt1:t2 |X̄t3:t4 , C̄)dXt1:t2 ,

which measures the mean output of the model given the
features between t3 and t4 are observed. Then we have
following lemma.

Lemma 3.3. Given a temporal model f(X,C) and specific
inputs X̄ and C̄. Let f(X, C̄) admit decomposition as
shown in Eq. (1), if It2−t1+1 is pure and t1 ≤ t2 − 2, then
we have

It2−t1+1(X̄t1:t2) = (a)− (b)− (c) + (d), (3)

where (a), (b), (c) and (d) are defined as follows:

(a) =E1:t1−1|t1:t2−1

[
Et2+1:T |t1+1:t2(f(Z(t1, t2)))

]
,

(b) =E1:t1|t1+1:t2−1

[
Et2+1:T |t1+1:t2(f(Z(t1 + 1, t2)))

]
,

(c) =E1:t1−1|t1:t2−1

[
Et2:T |t1+1:t2−1(f(Z(t1, t2 − 1)))

]
,

(d) =E1:t1|t1+1:t2−1

[
Et2:T |t1+1:t2−1(f(Z(t1 + 1, t2 − 1)))

]
,

and Z(a, b) = [X1:a−1, X̄a:b,Xb+1:T ].

Lemma 3.3 shows that the interactions can be efficiently
computed by computing the expectations with some specific
distributions. Fig. 3 illustrates the underlying rational be-
hind the Lemma 3.3. From Fig. 3 we can see that each term
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Figure 3: Illustration of our proposed interaction estimation method.

removes the effects of some interactions, and after linear
combination of four terms, only the effect of desired interac-
tions leaves. Details about which interactions are cancelled
are provided in the Appendix.

Lemma 3.3 provides a method to compute the interactions
when t1 ≥ t2 − 2, i.e., the interactions that order large
than 3. Nevertheless, for the second order interaction, i.e.
t1 = t2 − 1, the terms (c) and (d) become invalid as they
involve the term X̄t1+1:t2−1. To address this issue, we
approximate the second order interaction using following
lemma.

Lemma 3.4. Given a temporal model f(X,C) and specific
inputs X̄ and C̄. Let f(X, C̄) admit decomposition as
shown in Eq. (1), if all interactions are pure, then we have

I2(X̄t:t+1) ≈E1:t−1|t
[
Et+2:T |t+1(f(Z(t, t+ 1), C̄))

]
− E1:t−1|t

[
Et+1:T |t(f(Zt, C̄))

]
− E1:t|t+1

[
Et+2:T |t+1(f(Zt+1, C̄))

]
+ E1:t|t+1

[
Et+1:T |t(f(X, C̄))

]
, (4)

where Z(a, b) = [X1:a−1, X̄a:b,Xb+1:T ] and Z(a) =
[X1:a−1, X̄a,Xa+1:T ].

3.2. Estimation of Main Effect

Given the features in time step x̄t, estimating its main effect
is difficult, as x̄t is highly correlated with its neighbor-
hood, such as x̄t−1 and x̄t+1. Instead of directly estimating
m(x̄t), we estimate the marginal main effects of x̄t, i.e.,
ν(x̄t) = m(x̄t) −

∫
m(xt)p(xt|x̄t−1)dxt. The marginal

main effect of x̄t measures the conditional gain of x̄t given
x̄t−1, which is more suitable to quantify the amount of new
information introduced by x̄t.

Lemma 3.5. Given a temporal model f(X,C) and specific
inputs X̄ and C̄. Let f(X, C̄) admit decomposition as
shown in Eq. (1) and all the interactions are pure, then we

have

m(x̄t)−
∫

m(xt)p(xt|x̄t−1)dxt

=Et+1:T |t−1(f(Z1:t, C̄))− Et:T |t−1(f(Z1:t−1, C̄))

−
t−1∑
k=1

Ik+1(X̄t−k:t). (5)

Lemma 3.5 provides an estimator of marginal main effect
of x̄t, where the interactions

∑t−1
k=1 I

k+1(X̄t−k:t) can be
estimated using the method introduced in Section 3.1.

3.3. Attribution Calculation

Based on the estimated interactions and main effect, we can
evaluate the contribution of each time step to the function
f . Specifically, to quantify the contribution of each time
step, we need to define an attribution method to assign
an importance score to time steps according to their main
effects and interactions. We propose to assign the effect
of interactions equally to the time steps involved. Each
time step contributes equally to the interactions, and the
importance score of xt is the summation of its main effect
and its contribution to all interactions. Formally, the feature
importance in each time step is given in Eq. (6):

ϕt = ν(x̄t) +

T−1∑
k=1

min(t+k,T )∑
i=t

1

k + 1
Ik+1(X̄i−k:i). (6)

So far, we have introduced a functionally decomposed tem-
poral model explainer, abbreviated as FDTempExplainer,
which assigns importance score to each time step. Our
method does not rely on the structure of the model, making
it model-agnostic. Moreover, all distributions used are based
on the observation X̄ , which helps to avoid the inclusion of
out-of-distribution (OOD) samples.
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3.4. Estimation of the Conditional Distribution using
Generative Model

In the estimation of interactions and main effects, we need
to evaluate the value of Et1:t2|t3:t4(f(·)), which can be ap-
proximated as

Et1:t2|t3:t4(f(·)) =
∫

f(·)p(Xt1:t2 |X̄t3:t4 , C̄)dXt1:t2

=

N∑
n=1

f([X1:t1−1, X̃
n

t1:t2 ,Xt2+1:T ], C̄),

where {X̃
n

t1:t2}
N
n=1 are samples generated according to the

distribution p(Xt1:t2 |X̄t3:t4 , C̄). In our model, we train a
conditional variational autoencoder (CVAE) (Sohn et al.,
2015) to generate samples according to X̄t3:t4 , C̄. Specif-
ically, we treat the features in time step less than t3 or
larger than t4 as missing values, and then reconstruct the
overall X̄ . To streamline the generative process, we in-
troduce a masking technique to indicate which part of the
time series is conditional on. Specifically, we first define
a mask matrix M , assigning Mt3:t4 = 1 and setting the
remaining elements to zero. We then feed M ∗X together
with M into the CVAE and train the reconstruction model
for X , where ∗ denotes the element-wise multiplication.
Once an reconstruction is generated by CVAE, we choose
the segment from t1 to t2 as the samples sampling from
p(Xt1:t2 |X̄t3:t4 , C̄). We train the CVAE on the overall
dataset. For the underlying Variational Autoencoder (VAE),
where the latent representation is presumed to conform to
a Gaussian distribution, we further impose a regularization
constraint on the variance of the distribution to encourage
the generation of varied samples.

3.5. Computational Complexity Analysis

Note that the computational complexity of our method is
dominated by the computation of the interactions between
time steps. As there are T 2−T interaction terms, the overall
complexity of our method is O(T 2LN), where T denotes
the number of time steps to explain, L denotes the output
length of the black-box model, and N denotes the number
of samples used to estimate the expectations. For tasks
where both input time series and predictions are long, such
as anomaly detection, the proposed method may lead to a
heavy computational burden. We note that in some tasks, the
interaction between time steps tend to reduce as the distance
between these time steps increases. In order to reduce the
computational complexity, a straightforward method is to
set a threshold η, and only the interactions whose order
smaller than η are computed, and the interactions with order
larger than η are ignored.

Another more practical method to reduce the computational
complexity is to divide the time series into patches, and

Figure 4: Explanation results of our method on f (1)(x) and
f (2)(x) with the same input signals, as well as the absolute
values of interactions between different time steps detected
by our method for f (2)(x). For the left and middle images,
the ith row and jth column of the image correspond to
contribution of x1,i to f (1)(x)j and f (2)(x)j , respectively.
For the right image, the ij-th entry of the image corresponds
to the strength of the interaction Ii−j+1(x1,i:j). For all
images, the darker pixels denote the smaller values.

Table 1: Top-3 accuracy and AUPRC of all methods on
explaining the two anomaly detectors.

y
(1)
t y

(2)
t

Acc AUPRC Acc AUPRC
FIT 1.0 1.0 0.183 0.209

WinIT 1.0 1.0 0.313 0.361
FO 1.0 1.0 0.257 0.276

AFO 1.0 1.0 0.313 0.361
DynamicMask 1.0 1.0 0.535 0.464

IG 1.0 1.0 0.872 0.936
GRADSHAP 1.0 1.0 0.665 0.771

DeepLIFT 1.0 1.0 0.782 0.893
FDTempExplainer 1.0 1.0 0.9967 0.9968

then compute importance score for each patch instead of
each time step. As the features in specific time step usually
contribute to the prediction along with its context, thus
assigning importance score to a patch is actually meaningful.
Assuming the time series are divided into K patch, the
computational complexity of our method will reduce to
O(K2LN). Note that our method does not require the
patches with equal length. Thus, sophisticated change point
detection algorithms (Guédon, 2013; Killick et al., 2012) can
be applied to generate more meaningful patches. This patch
based strategy not only reduce complexity but also provide
more options for explanations, allowing explanations for
a single time point as well as for arbitrary lengths of time
segments.

4. Experiments
To measure the performance of our method quantitatively,
we conduct experiments in three major types of time series
tasks, including time series anomaly detection, time series
classification, and time series forecasting. As there is no
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ground truth explanation on real-world datasets, some syn-
thetic datasets are used in our experiments. Throughout the
experiments, we set the number of samples generated by the
generator as 50.

Baselines. We compare our method with multiple state-of-
the-art model-agnostic explanation methods. Specifically,
our baselines include: i) three general explanation meth-
ods, integrated gradient (IG) (Sundararajan et al., 2017),
GradSHAP (Lundberg et al., 2018), and DeepLIFT (Shriku-
mar et al., 2017); ii) two feature occlusion based meth-
ods, feature occlusion (FO) (Suresh et al., 2017) and aug-
mented feature occlusion (AFO) (Tonekaboni et al., 2020);
iii) one mask based method dynamicMask (Crabbé & Van
Der Schaar, 2021); and iv) two distribution-awared methods
Feature Importance in Time (FIT) (Tonekaboni et al., 2020)
and Windowed Feature Importance in Time (WinIT) (Le-
ung et al., 2023). Throughout the experiments, we set the
window size of WinIT to 10. Note that both FIT and WinIT
involve computing the distribution shift introduced by the
observation of some time steps, so it is more suitable for the
model with discrete outputs, which is not applicable for the
time series forecasting tasks.

Metrics. For a given test sample x and a model f(·), ex-
planation methods can assign importance scores to each
feature-time step pair. We assess whether pairs with higher
scores are indeed more influential to the model’s output.
When ground truth explanations are available, we compare
the explanations generated by the methods with the ground
truth, reporting their top-k accuracy and the area under the
precision-recall curve (AUPRC). Let S = (i, t) represent
the set of true feature-time step pairs that contribute to the
output. We define top-k accuracy as |S∩T |

|S| , where T is the
set of top-k feature-time step pairs identified by the explana-
tion method.

In the absence of ground truth, we evaluate explanations by
observing the deterioration in the black-box model’s per-
formance. Specifically, we select the k feature-time step
pairs with the highest importance scores and replace these
features at their respective time steps with non-informative
values to create a set of counterfactual samples. If these
pairs are genuinely important, removing them should sig-
nificantly degrade the model’s performance. Therefore, we
assess explanation quality based on the reduction in AUPRC
and accuracy after important features are replaced with non-
informative values. For multi-class classification tasks, con-
sistency is also used to gauge each method’s performance.
Consistency is defined as 1

N

∑
i I(yi = ŷi), where N is

the number of samples, yi is the black-box model’s pre-
diction for the i-th sample, and ŷi is the prediction for the
i-th sample when the feature-time step pairs with top-k im-
portance score are masked. In our experiments, we use
the average value of a given feature over time as the non-

informative value for the i-th feature of a sample, denoted
by 1

T

∑T
t=1 xi,t.

4.1. Explaining Time Series Anomaly Detection

Datasets. Our experiments begin with two simulated
datasets, which share the same features but with different
labels. Specially, we generate 1000 time series of length
32 with 3 variables, where the values of the time series are
assumed to be independent and following a Gaussian dis-
tribution with zero mean and 0.01 variance. We randomly
select 3 time step for each time series and set the values
of the first feature to 1 and treat them as anomalies. Given
a time series x, we generate two different labels y(1)t and
y
(2)
t at the time step t according to x1:t, i.e., y(1)t equals to

one if x1,t ≥ 0.9 and zero otherwise, while y
(2)
t turns to

one if x1,t′ ≥ 0.9 for some t′ ≤ t and keep zero otherwise.
Obviously, y(1)t indicates whether there is an anomaly oc-
curs in first feature of input at time step t, and thus only
related to xt. In contrast, y(2)t reports whether there are
anomalies in history, which takes account of the effect of
all the time steps no large than t. Two datasets are formed
using the 1000 time series as features, and y

(1)
t and y

(2)
t as

labels, respectively.

Experiment. We randomly split each dataset into train-
ing, validation, and test sets, with the ratio of 0.6, 0.2, and
0.2, respectively. For each dataset, we train a black-box
LSTM. The testing accuracy of both two LSTMs are 1.0.
Let f (1)(x) and f (2)(x) denote the LSTMs trained with
y
(1)
t and y

(2)
t . We explain f (1)(x) and f (2)(x) using our

proposed functional decomposition based method and other
baselines. Given an output at specific time step t, we can
get importance scores of all 32 input time steps using the
respective methods to measure their contribution to f

(1)
t (x)

and f
(2)
t (x). The left and middle image in Fig. 4 show

the explanation results on the first feature of the data using
two anomaly detectors with the input occurs spike at time
step 10, 18, and 22. The left and middle images denote
explanation of f (1)

t (x) and f
(2)
t (x), respectively. The pixel

at ith row and jth column denotes importance of the first
feature at ith time step to jth output. From Fig. 4, we can
see that the explanation results clearly reveals the facts that
y
(1)
t is only related to xt, while y(2)t considers all the inputs

before time t. We plot the interactions between time steps
detected by our method in the right image of Fig. 4, from
which we can observe that our method correctly identifies
the interactions between different spikes.

To further compare our method with baselines, we compute
explanations for all samples in test datasets, and compute
the average accuracy and AUPRC of each method. For
f (1)(x), due to the independent of each time steps, we only
consider the time steps when y

(1)
t = 1, and compute the top-
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Figure 5: Consistency and ACC drop vs. number of time
steps masked for different methods on Large Kitchen Appli-
ances dataset.

1 accuracy and AUPRC for each of them. For f (1)(x), we
compute the Top-3 accuracy and AUPRC for the attribution
of the last output of the LSTM. We report the results in
Table 1, from which we can observe

• All methods successfully explain f (1)(x). However,
only FDTemExplainer achieves high accuracy in ex-
plaining f (2)(x).

• FDTemExplainer provides almost perfect explanations
for f (2)(x) because it can accurately separate interac-
tion effects from main effects.

• Methods that rely on marginal gains, such as FO, AFO,
and FIT, struggle in explaining f (2)(x) since they do
not effectively separate interactions from main effects.
As outlined in Section 1, interactions between time
steps have a detrimental effect on predictions, and con-
flating these with main effects can cause the methods
to overlook critical time steps.

4.2. Explaining Time Series Classification

Datasets. We consider two real-world datasets, namely
MIMIC-III and Large Kitchen Appliances datasets. MIMIC-
III (Medical Information Mart for Intensive Care III) is
a large, freely accessible dataset comprising de-identified
health-related data associated with over 40000 patients who
stayed in critical care units of the Beth Israel Deaconess
Medical Center in Boston, Massachusetts. It was developed
by the MIT Lab for Computational Physiology and contains
data from stays occurring between 2001 and 2012. Follow-
ing the preprocessing done in (Tonekaboni et al., 2020) , we
obtain a dataset with 22988 samples. Each sample in the
dataset contains 31 features and each feature is a time series
of length 48. The label of each sample is binary, which
indicates whether the patient dead in the next 48 hours. We
randomly split the dataset into three parts, i.e., training set
with 14942 samples, validation set with 3448 samples, and
test set with 4598 samples.

Large Kitchen Appliances dataset is a public benchmark
dataset from UCR 1, which contains 375 training samples
and 375 testing samples. Each sample in the dataset is
an univariate time series of length 720. The label is an
integer number denoting the class label, including Washing
Machine (1), Tumble Dryer (2), and Dishwasher (3).

Experiment. We train an LSTM for each dataset and ex-
plain the model using various explanation methods. To
expedite the explanation process for the Large Kitchen Ap-
pliances dataset, we segment the time series into 72 patches,
each encompassing 10 time steps. For a fair comparison,
we also aggregate the importance scores for every 10 time
steps produced by the baseline methods. In Table 2, we
present the top-50 AUPRC drop and 95% AUPRC drop for
each method on the MIMIC-III dataset, as well as the con-
sistency and ACC drop with k = 40 on the Large Kitchen
Appliances dataset.

The results indicate that FDTempExplainer outperforms all
other methods, highlighting its proficiency in processing
real-world datasets. To offer a comprehensive compari-
son, we also report the consistency and ACC drop with
various values of k for each method on the Large Kitchen
Appliances dataset in Fig. 5. The figure demonstrates that
FDTempExplainer consistently outperforms other methods
by a considerable margin. An additional insight from Fig. 5
is that the consistency of FDTempExplainer continuously
decreases as the number of masked time steps increases.
This suggests that FDTempExplainer not only excels at
identifying the most crucial time steps, but also creates a
more logical ordering for each time step.

4.3. Explaining Time Series Forecasting

Datasets. We conduct the experiments on a synthetic
dataset, which contains a set of univariate time series {xt}
of length 80. Each time series can be decomposed into trend
and seasonal components, denoted by τt and st, respectively.
Specifically, we generate τt, st and xt according to

st =


β1st−1 +

√
1− β2

1ϵ1,t if t < 5

β1st−1 −
√
1− β2

1ϵ2,t if 5 ≤ t < 10

β2st−10 +
√
1− β2

2ϵ3,t if t ≥ 10

τt =β3τt−1 +
√
1− β2

3ϵ4,t

xt =s̃t + τ̃t, (7)

where ϵ1,t and ϵ2,t follow the uniform distribution, while
ϵ3,t and ϵ4,t follows normal distribution. The parameters
β1, β2 and β3 are set to 0.9, 0.99 and 0.99, respectively. s̃t
and τ̃t denote the normalized st and τt to ensure the unit
variance. The final dataset contains 1000 samples generated
by repeating the above process 1000 times.

1https://www.cs.ucr.edu/∼eamonn/time series data/
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Table 2: Performance comparison on MIMIC-III and Large Kitch Appicants datasets.
MIMIC-III Large Kitch Applicants

AUPRC-drop
(95-pc) ↑ AUPRC-drop

(k=50) ↑ Consistency
(k=40) ↓ ACC drop

(k=40) ↑

IG 0.017 0.030 0.3333 0.576
GRADSHAP 0.016 0.028 0.376 0.552

DeepLIFT 0.016 0.022 0.336 0.5733
FO 0.010 0.011 0.7493 0.2

AFO 0.015 0.019 0.608 0.3067
FIT 0.016 0.027 0.5387 0.36

WinIT 0.029 0.038 0.344 0.5573
DynamicMask 0.026 0.039 0.464 0.456

FDTempExplainer 0.030 0.043 0.2293 0.6453

Table 3: Top-2 accuracy and AUPRC of different methods
on explaining the time series forecaster.

FO AFO Dynamic
Mask IG GRAD

SHAP
DEEP
LIFT

FDTemp
Explainer

ACC 0.02 0.02 0.5 0.5375 0.6125 0.5 0.6438
AUPRC 0.060 0.0595 0.1375 0.6443 0.7194 0.6194 0.7306

Table 4: Running time, consistency and ACC drop of
FDTempEXplainer on Large Kitch Appicants dataset with
varying Q.

Q Time (s) Consistency (k=40) ACC Drop (k=40)
5 15 0.2773 0.5973

10 32 0.216 0.6533
None 71 0.2293 0.6427

Experiment. We randomly split 1000 samples into training
and test sets of size 800 and 200, respectively. We train an
LSTM on the training set to predict the value of the next
time step. Specifically, we input the LSTM with x1:t to
predict xt+1. The mean square error of LSTM on the test
dataset is 0.27. Obviously, the ground truth of important
time steps on predicting xt+1 is xt and xt−10, thus we report
the top-2 accuracy of each method in Table 3. From the
table we can see that the FDTempExplainer outperforms the
rest methods.

4.4. Evaluations of Two Strategies to Reduce the
Computational Complexity

We evaluate the two strategies proposed in Section 3.5 for
fast computation, including 1) setting a threshold to circum-
vent calculating all the interactions; and 2) computing the
importance of patch by segmenting time series into patches.
We conduct experiments on the Large Kitchen Appliance
dataset, showing that cutting high-order interactions and
increasing patch size significantly reduce the running time,
while the performances remain approximately similar.

In the first experiment, we investigate the strategy of ignor-
ing higher-order interactions. We evaluate the performance
of our method while disregarding interactions above the

Table 5: Running time, consistency and ACC drop of
FDTempExplainer on Large Kitch Appicants dataset with
varying patch size.

Patch size Runtime
(s)

Consistency ACC drop
k=10 k=20 k=40 k=10 k=20 k=40

5 285 0.6347 0.4533 0.2587 0.288 0.4453 0.6
10 71 0.664 0.4507 0.2293 0.264 0.448 0.6427
20 17 - 0.4987 0.2213 - 0.4027 0.6453

Q-order. Consistent with the experiments in Section 4.2,
we divide the time series into 72 segments, and test the the
running time of our method with Q = 5 and Q = 10. The
results are summarized in Table 4. The accuracy drop and
consistency when masking 40 time steps with the highest
importance scores are also reported. The results indicate that
by disregarding high-order interactions, the running time
decreases significantly. However, we also observed that too
small threshold, such as only considering interactions up to
the fifth order, can result in overlooking important interac-
tions and thus deteriorates the method’s performance.

In the second experiment, we test our method with vary-
ing segment sizes, specifically 5, 10, and 20 time steps
per segment, while considering all interactions. The re-
sults of this experiments are presented in Table 5. From
Table 5, we can observe that increasing the segment size
substantially reduces computational complexity. Contrary
to setting a threshold, segmenting the time series allows the
FDTempExplainer to maintain performance without signifi-
cant degradation.

5. Conclusion
In this paper, we propose a model-agnostic explanation
method FDTempExplainer based on our rigorous frame-
work. It is applicable for all major types of time series
tasks, including time series anomaly detection, classifica-
tion, and forecasting. In the future, we plan to apply it in
more real-world time series applications, such as electric
load forecasting and its explanation. In particular, we notice
that the temporal interactions learned by our framework also
reveal important information about the sequence data, and
we plan to explore it in sequence related tasks.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs.
A.1. Proof of Lemma 3.2

We prove Lemma 3.2 using the induction method. In our
proof, we omit the context variable C. We first demonstrate
that any function with an input time series of length 2, that
is, f(X1:2), can be decomposed into the form presented in
(1) with all interactions being pure.

For f(X1:2), we define

I2(X1:2) = f(X1:2)−
∫

f(x1,x2)p(x1|x̄2)dx1

−
∫

f(x1,x2)p(x2|x̄1)dx2

+

∫ ∫
f(x1,x2)p(x2|x̄1)p(x1|x̄2)dx1dx2, (8)

m(x1) =

∫
f(x1,x2)p(x2|x̄1)dx2, (9)

m(x2) =

∫
f(x1,x2)p(x1|x̄2)dx1, (10)

C0 = −
∫ ∫

f(x1,x2)p(x2|x̄1)p(x1|x̄2)dx1dx2. (11)

Clearly, we have f(X1:2) = I2(X1:2) + m(x1) +
m(x2) + C0. Next, we will demonstrate that I2(X1:2)
is pure. This implies that both

∫
I2(x̄1,x2)p(x2|x̄1)dx2

and
∫
I2(x1, x̄2)p(x1|x̄2)dx1 are equal to zero. We will

show it for
∫
I2(x̄1,x2)p(x2|x̄1)dx2, the other term can

be evaluated in a similar manner. Specifically, we have∫
I2(x̄1,x2)p(x2|x̄1)dx2

=

∫
f(x̄1,x2)p(x2|x̄1)dx2

−
∫ (∫

f(x1,x2)p(x1|x̄2)dx1

)
p(x2|x̄1)dx2

−
∫ (∫

f(x̄1,x2)p(x2|x̄1)dx2

)
p(x2|x̄1)dx2

+

∫ ∫
f(x1,x2)p(x2|x̄1)p(x1|x̄2)dx1dx2

=

∫
f(x̄1,x2)p(x2|x̄1)dx1

−
∫ ∫

f(x1,x2)p(x1|x̄2)p(x2|x̄1)dx1dx2

−
∫

f(x̄1,x2)p(x2|x̄1)dx2

+

∫ ∫
f(x1,x2)p(x2|x̄1)p(x1|x̄2)dx1dx2

=0. (12)

Thus, we can conclude that any function with an input time
series of length 2 admits a decomposition with pure interac-
tion. We then prove that for a function with an input time

series of length k + 1, a decomposition with all interactions
being pure is possible, assuming that any function with the
length of the input time series no greater than k can be simi-
larly decomposed. Suppose f(X1:k+1) can be decomposed
as

f(X1:k+1) = Ik+1(X1:k+1) +Q1(X1:k) +Q2(X2:k+1),

where Ik+1(X1:k+1) denotes the (k + 1)-th order inter-
action, and Q1(X1:k) and Q2(X2:k+1) include the mean
effects of each time step and interactions of order lower
than k + 1. As the inputs of Q1(X1:k) and Q2(X2:k+1)
are of length k, they can be further decomposed, with all
interactions being pure. Hence, our discussion focuses
on purifying the (k + 1)-th order interaction. Specifi-
cally, if there exists a subset P and time indices t1 and
t2 such that

∫
Ik+1(Zt1:t2)p(XP |X̄t1:t2 , C̄)dXP ̸= 0,

where Zt1:t2 = [X1:t1−1, X̄t1:t2 ,Xt2+1:k+1]. Then we
can construct a new interaction, Ĩk+1(X1:k+1), as follows:

Ĩk+1(X1:k+1)

=Ik+1(X1:k+1)

−
∫

Ik+1(X1:k+1)p(XP |X̄t1:t2 , C̄)dXP .

It can be easily verified that Ĩk+1(X1 : k + 1) satisfies the
condition that∫

Ĩk+1(Zt1:t2)p(XP |X̄t1:t2 , C̄)dXP = 0. (13)

As
∫
Ik+1(X1:k+1)p(XP |X̄t1:t2 , C̄)dXP is a function

with an input length less than k+1, which can then be further
decomposed. We can examine all constraints required for
the purity of the interaction and repeat the above process
if any unsatisfied constraint is found. Since the number of
constraints is finite, we can ultimately obtain a pure (k+1)-
th order interaction. Our proof is thus complete.

A.2. Proof of Lemma 3.3

We evaluate the value of (a) − (b) − (c) + (d). As
f(Z(t1, t2), C̄) can be decomposed as

f(Z(t1, t2), C̄) =

T−1∑
k=1

T−k+1∑
t=1

Ik+1 (Z(t1, t2)|t:t+k)

+

T∑
t=1

m (Z(t1, t2)|t) + C0, (14)

where Z(t1, t2)|t denotes the tth column of Z(t1, t2), and
Z(t1, t2)|t:t+k is the submatrix of Z(t1, t2) containing the
values from the tth column to t+ kth column of Z(t1, t2).
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Then we can rewrite (a)− (b)− (c) + (d) as follows:

(a)− (b)− (c) + (d)

=

T−1∑
k=1

T−k+1∑
t=1

h1

(
Ik+1(Z(t1, t2)|t:t+k)

)
+

T∑
t=1

h1(m(Z)(t1, t2)|t)

−
T−1∑
k=1

T−k+1∑
t=1

h2

(
Ik+1(Z(t1 + 1, t2)|t:t+k)

)
−

T∑
t=1

h2(m(Z(t1 + 1, t2)|t))

−
T−1∑
k=1

T−k+1∑
t=1

h3

(
Ik+1(Z(t1, t2 − 1)|t:t+k)

)
−

T∑
t=1

h3(m(Z(t1, t2 − 1)|t))

+

T−1∑
k=1

T−k+1∑
t=1

h4

(
Ik+1(Z(t1 + 1, t2 − 1)|t:t+k)

)
+

T∑
t=1

h4(m(Z(t1 + 1, t2 − 1)|t))

=

T−1∑
k=1

T−k+1∑
t=1

Q1(t, t+ k) +

T∑
t=1

Q2(t), (15)

where

h1(·) =E1:t1−1|t1:t2−1

[
Et2+1:T |t1+1:t2(·)

]
,

h2(·) =E1:t1|t1+1:t2−1

[
Et2+1:T |t1+1:t2(·)

]
,

h3(·) =E1:t1−1|t1:t2−1

[
Et2:T |t1+1:t2−1(·)

]
,

h4(·) =E1:t1|t1+1:t2−1

[
Et2:T |t1+1:t2−1(·)

]
,

and

Q1(t, t+ k) = h1

(
Ik+1(Z(t1, t2)|t:t+k)

)
− h2

(
Ik+1(Z(t1 + 1, t2)|t:t+k)

)
− h3

(
Ik+1(Z(t1, t2 − 1)|t:t+k)

)
+ h4

(
Ik+1(Z(t1 + 1, t2 − 1)|t:t+k)

)
Q2(t) = h1(m(Z)(t1, t2)|t)− h2(m(Z(t1 + 1, t2)|t))

− h3(m(Z(t1, t2 − 1)|t)) + h4(m(Z(t1 + 1, t2 − 1)|t)).
(16)

We now explore Q1(n1, n2) and Q1(n1) by enumerating
all possible scenarios regarding n1 and n2. Specifically,
we analyze the value of Q1(n1, n2) for the following cases:
n2 < t2, n1 < t1 < t2 ≤ n2, n1 = t1 < t2 = n2,
t1 = n1 < t2 < n2, and n1 > t1, respectively.

We first discuss the scenarios n2 < t2. In this case,
In1−n2+1(Z(t1, t2)|n1:n2

), In1−n2+1(Z(t1+1, t2)|n1:n2
),

In1−n2+1(Z(t1, t2 − 1)|n1:n2), and In1−n2+1(Z(t1 +
1, t2 − 1)|n1:n2

) are independent of Xt2:T . Thus the in-
ner expectations in h1, h2, h3, and h4 can be omitted, i.e.,

h1

(
In1−n2+1(Z(t1, t2)|n1:n2)

)
= E1:t1−1|t1:t2−1

[
In1−n2+1(Z(t1, t2)|n1:n2

]
h2(I

n1−n2+1(Z(t1 + 1, t2)|n1:n2
))

= E1:t1|t1+1:t2−1

[
In1−n2+1(Z(t1 + 1, t2)|n1:n2

)
]
,

h3(I
n1−n2+1(Z(t1, t2 − 1)|n1:n2

)

= E1:t1−1|t1:t2−1

[
In1−n2+1(Z(t1, t2 − 1)|n1:n2)

]
,

h4(I
n1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2

))

= E1:t1|t1+1:t2−1

[
In1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2)

]
.

Recalling the definition of Z(t1, t2 − 1)|n1:n2
, we observe

that Z(t1, t2)|n1:n2
= Z(t1, t2 − 1)|n1:n2

when n2 < t2.
Consequently, we can derive

h1

(
In1−n2+1(Z(t1, t2)|n1:n2

)
)

=h3(I
n1−n2+1(Z(t1, t2 − 1)|n1:n2

).

And by a similar argument, we obtain

h2(I
n1−n2+1(Z(t1 + 1, t2)|n1:n2))

= h4(I
n1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2

)).

These results lead us to conclude that Q1(n1, n2) = 0 for
n2 < t2.

We next consider the scenarios n1 < t1 < t2 ≤ n2

and t1 = n1 < t2 < n2. Since the interactions
In1−n2+1(Z(t1, t2)|n1:n2

), In1−n2+1(Z(t1+1, t2)|n1:n2
),

In1−n2+1(Z(t1, t2 − 1)|n1:n2
), and In1−n2+1(Z(t1 +

1, t2 − 1)|n1:n2
) are pure, their expectations conditioned on

p(Xt2+1:T |X̄t1+1:t2) and p(Xt2:T |X̄t1+1:t2−1) are zero.
This results in Q1(n1, n2) = 0 for these scenarios.

In the following, we discuss the scenario where n1 = t1 <
t2 = n2. In this scenario, In1−n2+1(Z(t1, t2)|n1:n2

) is
independent of both X1:t1−1 and Xt2:T . Thus, we can
omit all expectations in h1 and obtain

h1

(
In1−n2+1(Z(t1, t2)|n1:n2

)
)
= In1−n2+1(X̄t1:t2).

On the other hand, since the interactions In1−n2+1(Z(t1 +
1, t2)|n1:n2

), In1−n2+1(Z(t1, t2 − 1)|n1:n2
), and

In1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2
) are pure, their

expectations conditional on the relevant segments are zero,
i.e.,

E1:t1|t1+1:t2−1

[
In1−n2+1(Z(t1 + 1, t2)|n1:n2

)
]
= 0,

Et2:T |t1+1:t2−1

[
In1−n2+1(Z(t1, t2 − 1)|n1:n2)

]
= 0,

E1:t1|t1+1:t2−1

[
In1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2

)
]
= 0.

13
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Consequently, we determine that Q1 = In1−n2+1(X̄t1:t2)
for the case where n1 = t1 < t2 = n2.

Finally, we consider the scenarios where n1 > t1, which
are similar to those where n2 < t2. Since the interactions
In1−n2+1(Z(t1, t2)|n1:n2), I

n1−n2+1(Z(t1+1, t2)|n1:n2),
In1−n2+1(Z(t1, t2 − 1)|n1:n2), and In1−n2+1(Z(t1 +
1, t2 − 1)|n1:n2

) are independent of X1:t1 , thus we can
remove the outer expectation in h1, h2, h3 and h2. We can
then derive the following relations:

h1

(
In1−n2+1(Z(t1, t2)|n1:n2

)
)

=h2(I
n1−n2+1(Z(t1 + 1, t2)|n1:n2).

Similarly, we have

h3(I
n1−n2+1(Z(t1, t2 − 1)|n1:n2

))

= h4(I
n1−n2+1(Z(t1 + 1, t2 − 1)|n1:n2

)).

This leads to the conclusion that Q1(n1, n2) = 0 for n1 >
t1.

Summing the values of Q1 across all scenarios, we can
conclude that Q1 is equal to In1−n2+1(X̄t1:t2) if n1 = t1
and n2 = t2, and it is zero otherwise. We then need to prove
that Q2(t) = 0.

In the following, we discuss the value of Q2(t).
Clearly, if t /∈ t1 − 1, t1, t1 + 1, t2 − 1, t2, t2 + 1, then
h1(m(Z)(t1, t2)|t) = h2(m(Z(t1 + 1, t2)|t)) =
h3(m(Z(t1, t2 − 1)|t)) = h4(m(Z(t1 + 1, t2 − 1)|t)),
and consequently, Q2(t) = 0. If t ∈ t1 − 1, t1, t1 + 1,
then h1(m(Z)(t1, t2)|t) = h3(m(Z(t1, t2 − 1)|t)) and
h2(m(Z(t1+1, t2)|t)) = h4(m(Z(t1+1, t2−1)|t)), which
implies Q2(t) = 0. Similarly, if t ∈ t2 − 1, t2, t2 + 1,
then h1(m(Z)(t1, t2)|t) = h2(m(Z(t1 + 1, t2)|t)) and
h3(m(Z(t1, t2−1)|t)) = h4(m(Z(t1+1, t2−1)|t)), lead-
ing to Q2(t) = 0. Therefore, we conclude that Q2(t) = 0
for any 1 ≤ t ≤ T . Our proof is complete.

A.3. Proof of Lemma 3.4

The proof is similar to that of Lemma 3.3. We evaluate
the following expression by discussing the values of the
interactions between time steps n1 and n2:

E1:t−1|t[Et+2:T |t+1(f(Z(t, t+ 1)), C̄))]

− E1:t−1|t[Et+1:T |t(f(Z(t)), C̄))]

− E1:t|t+1[Et+2:T |t+1(f(Z(t+ 1)), C̄))]

+ E1:t|t+1[Et+1:T |t(f(X, C̄))].

The derivation regarding the main effects is the same
as in Lemma 3.3, so we omit it here. For n2 ≤ t,
In1−n2+1(Z(t, t+1)|n1:n2) is independent of Xt+1:T . We
then have

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2))]

=E1:t−1|t[Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2

))], (17)

and

E1:t|t+1[Et+2:T |t+1(I
n1−n2+1(Z(t+ 1)|n1:n2

)))]

=E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2

)))]. (18)

Thus, it leads to

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2

))]

−E1:t−1|t[Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2))]

−E1:t|t+1[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2

)))]

+E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2)))]

=0.

Next, we consider the scenarios where n1 < t < t+1 ≤ n2

or n1 ≤ t < t + 1 ≤ n2. Since the interactions
In1−n2+1(Z(t, t + 1)|n1:n2

), In1−n2+1(Z(t)|n1:n2
), and

In1−n2+1(Z(t+ 1)|n1:n2
) are pure, we obtain

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2))]

− E1:t−1|t[Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2

))]

− E1:t|t+1[Et+2:T |t+1(I
n1−n2+1(Z(t+ 1)|n1:n2

))]

+ E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2))]

=E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2

))]

≈0. (19)

The approximation in Eq. (19) holds due to
the fact that time series data is highly cor-
related and Et+1:T |t(I

n1−n2+1(Xn1:n2
)) ≈

Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2

).

We then address the scenarios where n1 = t < t+ 1 = n2.
Similarly, since In1−n2+1(Z(t, t+1)|n1:n2

) is independent
of X1:t−1 and Xt+1:T , we have

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2))]

=I2(Xt:t+1).

Furthermore, due to the purity of In1−n2+1(Z(t)|n1:n2) and
In1−n2+1(Z(t+ 1)|n1:n2), we have

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2

))]

− E1:t−1|t[Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2))]

− E1:t|t+1[Et+2:T |t+1(f(Z(t+ 1)), C̄))]

+ E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2

)]

=I2(Xt:t+1) + E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2

))]

≈I2(Xt:t+1). (20)

Finally, we discuss the scenarios where n1 > t. Note that
In1−n2+1(Z(t, t+1)|n1:n2

) and In1−n2+1(Z(t+1)|n1:n2
)

are independent of X1:t. This leads to

E1:t−1|t[Et+2:T |t+1(I
n1−n2+1(Z(t, t+ 1)|n1:n2))]

=E1:t|t+1[Et+2:T |t+1(I
n1−n2+1(Z(t+ 1)|n1:n2

)))],

14
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and

E1:t−1|t[Et+1:T |t(I
n1−n2+1(Z(t)|n1:n2

))]

=E1:t|t+1[Et+1:T |t(I
n1−n2+1(Xn1:n2

)))].

Considering all the above discussions, we can conclude

I2(X̄t:t+1) ≈E1:t−1|t
[
Et+2:T |t+1(f(Z(t, t+ 1), C̄))

]
− E1:t−1|t

[
Et+1:T |t(f(Zt, C̄))

]
− E1:t|t+1

[
Et+2:T |t+1(f(Zt+1, C̄))

]
+ E1:t|t+1

[
Et+1:T |t(f(X, C̄))

]
. (21)

Our proof is now complete.

A.4. Proof of Lemma 3.5

We evaluate the value of

Et+1:T |t−1(f(Z1:t, C̄))− Et:T |t−1(f(Z1:t−1, C̄)),

by utilizing the decomposition structure of f(Z1:t, C̄), then
we have

Et+1:T |t−1(f(Z1:t, C̄))− Et:T |t−1(f(Z1:t−1, C̄))

=Et+1:T |t−1(

T−1∑
k=1

T−k+1∑
i=1

Ik+1 (Z(1, t)|i:i+k))

+ Et+1:T |t−1(

T∑
i=1

m (Z(1, t)|i)) + C0

− Et:T |t−1(

T−1∑
k=1

T−k+1∑
i=1

Ik+1 (Z(1, t− 1)|i:i+k))

− Et:T |t−1(

T∑
i=1

m (Z(1, t− 1)|i))− C0

=Et+1:T |t−1(

T−1∑
k=1

T−k+1∑
i=1

Ik+1 (Z(1, t)|i:i+k))

− Et:T |t−1(

T−1∑
k=1

T−k+1∑
i=1

Ik+1 (Z(1, t− 1)|i:i+k))

+m (Z(1, t)|t))− Et|t−1m (Z(1, t− 1)|t)

=

t−1∑
k=1

Ik+1 (Z(1, t)|t−k:t)

+m (Z(1, t)|t))− Et|t−1m (Z(1, t− 1)|t)

=

t−1∑
k=1

Ik+1
(
X̄t−k:t

)
+m (x̄t))−

∫
m(xt)p(xt|x̄t−1)dxt.

Our proof is now complete.

B. Related Work
A wide range of explanation methods for temporal models
have been proposed in the literature. Due to the space limit,
in this section we focus on model-agnostic methods only.

Local Approximation-based Methods. A common class
of explanation methods involves locally approximating the
black-box model with an interpretable model. Notable ex-
amples include LIME (Ribeiro et al., 2016), SHAP (Lund-
berg & Lee, 2017), and Integrated Gradient (Sundararajan
et al., 2017), which all fall into this category (Yeh et al.,
2019). These methods generally start by generating a set of
counterfactual samples based on a predefined policy. The
significance of each sample is then measured, and an im-
portance score is obtained by training a simple interpretable
model with these samples. However, since these methods of-
ten overlook the temporal correlations in the data, applying
them directly to time series can result in out-of-distribution
(OOD) samples, leading to inaccurate explanations. To ad-
dress this issue, (Sivill & Flach, 2022) proposes generating
counterfactual samples using harmonic analysis to find real-
istic background patterns for perturbations. Another strand
of research attempts to incorporate temporal correlations by
employing auto-regressive models as interpretable white-
box models (Villani et al., 2022).

Methods based on Masking and Perturbation. A dif-
ferent method involves obscuring parts of the time series
to assess the impact on the model’s predictions. The as-
sumption is that some parts of the data that can be obscured
without changing the predictions are deemed less impor-
tant. The challenge is in deciding which parts to obscure
and how to do so without creating data that is uncharac-
teristic of the model’s training data. One early solution
Dynamask (Crabbé & Van Der Schaar, 2021), minimizes
the alteration to the model’s predictions by applying selec-
tive changes to the data and evaluating the outcomes. It
employs blurring methods to ensure these changes are in
line with the data distribution. Nevertheless, this method
may not capture long-term dependencies in the data. Ad-
dressing this, recent advancements (Enguehard, 2023) have
introduced neural networks which learn to make changes
consistent with the data distribution.

Distribution-Aware Methods. Another approach to gener-
ating explanations evaluates the distribution of input features
and the effect that variations within this distribution have
on model outputs. The Feature Importance in Time (FIT)
method (Tonekaboni et al., 2020) is a typical example, in-
vestigating the impact of plausible input variations on the
predictions made by the model. This method employs a
metric based on KL-divergence to assess the significance
of each input. Recognizing the importance of temporal
dependencies between time steps, (Leung et al., 2023) intro-
duces the Windowed Feature Importance in Time (WinIT).
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This method highlights the fluctuating relevance of a feature
across time by evaluating its importance within a specified
window of preceding time steps, thus capturing the dynamic
nature of feature influence in temporal data.

C. Implementation Details
Handling Multivariate Time Series. We outline the de-
tailed process of determining feature importance for multi-
variate time series data using our method. Let X̃ ∈ RD×T

represent the multivariate input time series, which consists
of D features across T time steps. To gauge the importance
of feature d, we isolate the dth row of X̃ as X ∈ R1×T , and
treat the remaining features as the matrix C ∈ R(D−1)×T .
We then apply our FDTempExplainer to derive the impor-
tance score for each time step within X . This procedure is
iterated by sequentially treating each row of X̃ as X , with
the remaining rows as C. The process is repeated for all
features, ultimately yielding the importance score for each
feature at every time step.

Configure of LSTMs. The configuration of LSTMs as
black-box models in each task is summarized in Table 6.

Table 6: Configuration of LSTMs in respective tasks.

Parameters Anomaly
detection MIMIC-III Large Kitch

Applicants Forecasting

Latent size 20 200 120 120
# layers 3 4 3 4
Drop out 0.4 0.6 0.4 0.4

Optimizer

Adam
lr=0.01,

β1 = 0.8,
β2 = 0.9

Adam
lr=0.002,
β1 = 0.8,
β2 = 0.9

Adam
lr=0.001,
β1 = 0.8,
β2 = 0.9

Adam
lr=0.01,

β1 = 0.8,
β2 = 0.9

epoch 100 100 200 300

D. Effect of Conditional Generative Model
The generator in our algorithm is only used to capture the
interdependencies among various time steps, ensuring that
the samples used to compute the conditional expectation
are not out-of-distribution. In fact, the requirement for a
good generator is mild. Specifically, we consider two objec-
tives in the generator. Firstly, the generated samples should
be diverse enough to ensure that our algorithm does not
mistakenly interpret partial input as complete information.
Secondly, the generated samples should stay within the dis-
tribution and do not cause erratic behavior in the model. We
emphasize that CVAE is not the sole choice for sample gen-
eration; other state-of-the-art generative models could also
be applied to estimate the conditional expectation described
in our study.

Note that many methods for time series explanation rely on
training such a generator, such as FIT and WinIT. Although
generating accurate samples can be difficult, it is still feasi-
ble to produce time series samples that have similar trends

and means. Moreover, some models, especially those de-
signed for time series classification and anomaly detection,
are quite robust to the generated samples. These models typ-
ically output a ‘1’ only when a particular pattern is present
in the sequence, and generating such specific patterns is
challenging. This observation makes the final explanation
method relatively robust to the dependency on the generator.

To demonstrate the impact of the generator on the explana-
tion outcomes, we conduct tests using varying numbers of
samples generated by the generator. We have repeated our
method 10 times on the Large Kitchen Appliance dataset
and reported the standard derivation in our explanations in
Table 7.

From the table, it is evident that the proposed method can
generate stable explanations on the Large Kitchen Appli-
ance dataset. Furthermore, as the number of samples used
increases, the variance of the explanations decreases, indi-
cating enhanced explanation consistency.

E. Results of Directly Explaining White-box
Models in Section 4.1 by FDTempExplainer

In Section 4.1, we generate y(1) and y(2) according to

y
(1)
t =

{
1 if x1,t ≥ 0.9

0 otherwise
, (22)

and

y
(2)
t =

{
1 if x1,t′ ≥ 0.9 ∀t′ ≤ t

0 otherwise
. (23)

We then explain the LSTM trained using the generated
datasets. In the following, we report the results of FDTemp-
Explainer on directly explaining the above white-box mod-
els in Table 8. From the table we can see that the proposed
method provides almost perfect explanations on both y1 and
y2.

F. Examples of Explanations Generated by
FDTempExplainer
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Table 7: Standard derivation of our methods on Large Kitch Appicants dataset with varying number of samples generated by
the generator.

N = 1 N = 2 N = 5 N = 10 N = 20 N = 30 N = 40 N = 50

STD 0.0685 0.0662 0.0656 0.0649 0.0647 0.0644 0.0644 0.0642

Figure 6: The explanation generated by FDTempExplainer. The plot at ith row and jth columns explains why the ith sample
is classified or not classified as the jth class. The blue lines is the original signal, and the red and yellow stems represent the
positive and negative contributions, respectively.

Table 8: Performance of FDTempExplainer on explaining
y1 and y2.

y1 y1 y2 y2

ACC AUPRC ACC AUPRC
1 1 0.9967 0.9968

Figure 7: Detailed View of Fig. 6

Figure 8: Absolute value of importance score generated by
FDTempExplainer. Each pixel at the intersection of the ith
row and jth column represents the importance of the ith
time step in predicting the jth output. The lighter the pixel,
the greater the value.
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