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Abstract
Vision Transformers (ViTs) excel in computer vi-
sion tasks due to their ability to capture global
context among tokens. However, their quadratic
complexity O(N2D) in terms of token number
N and feature dimension D limits practical use
on mobile devices, necessitating more mobile-
friendly ViTs with reduced latency. Multi-head
linear-attention is emerging as a promising alter-
native with linear complexity O(NDd), where d
is the per-head dimension. Still, more compute is
needed as d gets large for model accuracy. Reduc-
ing d improves mobile friendliness at the expense
of excessive small heads weak at learning valuable
subspaces, ultimately impeding model capability.
To overcome this efficiency-capability dilemma,
we propose a novel Mobile-Attention design with
a head-competition mechanism empowered by
information flow, which prevents overemphasis
on less important subspaces upon trivial heads
while preserving essential subspaces to ensure
Transformer’s capability. It enables linear-time
complexity on mobile devices by supporting a
small per-head dimension d for mobile efficiency.
By replacing the standard attention of ViTs with
Mobile-Attention, our optimized ViTs achieved
enhanced model capacity and competitive perfor-
mance in a range of computer vision tasks. Specif-
ically, we have achieved remarkable reductions
in latency on the iPhone 12. Code is available at
https://github.com/thuml/MobileAttention.

1. Introduction
Vision Transformers (ViTs) have achieved notable success
in various computer vision applications, such as image clas-
sification and object detection, due to their powerful self-
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attention modules that effectively capture global context
(Touvron et al., 2021). However, as shown in Figure 1 (a),
the quadratic complexity O(N2D) of the attention mod-
ule (N is the number of tokens and D is the dimension of
features), which increases with the number of input tokens,
restricts the runtime efficiency of ViTs (Liu et al., 2021). To
overcome this limitation, researchers have proposed linear
attention designs that can reduce the quadratic complexity
of standard ViT attention. These linear attention designs
can be classified into two categories: (i) ViTs with local
attention, where the size of the attention window is limited
(Liu et al., 2021), and attention queries are shared (Arar
et al., 2022; Wang et al., 2022); (ii) ViTs with kernel-based
linear attention, which approximates the nonlinear softmax
function by decomposing it into separate kernel embeddings,
allowing for a change in matrix computation order to reduce
computational complexity (Wu et al., 2022).

The popularity of kernel-based linear attention, as shown
in Figure 1, is due to its linear computational complexity
of O(NDd), where d represents the per-head dimension.
This makes it an ideal choice for mobile devices. Unlike
local attention, linear attention can capture global context
across features over tokens. However, it can be computa-
tionally expensive, especially with a large head dimension
(d), while mobile devices have limited memory resources.
The large matrix multiplication between the key and value
in the head dimension requires significant processing and
storage, leading to out-of-memory errors or slow speeds.

As depicted in Figure 1, reducing head dimensions d will
result in lower latency and improved efficiency in linear
attention. Therefore, reducing d is an effective approach to
make linear attention more mobile-friendly, supported both
theoretically and in practical deployment. However, a small
per-head dimension may cause some heads to struggle in
learning valuable subspaces due to limited feature capac-
ity, potentially resulting in trivial representations. These
trivial subspaces can dominate over useful subspaces, im-
pacting the expressiveness of linear attention and the overall
performance of linear ViTs.

To tackle these challenges, we introduce the Mobile-
Attention mechanism, the first kernel-based linear-attention
specifically tailored for mobile devices. Going beyond the
kernel-based linear attention, it leverages a small number
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Figure 1. Standard attention in Transformers has a quadratic complexity with respect to the number of tokens N . Using a decomposable
kernel allows rearranging operations so that linear attention scales with the square of features D, which is still not scalable in high
dimensions. By reducing the head dimension d to approach 1, our Mobile-Attention achieves O(ND) complexity, resulting in lower
latency and increased efficiency. The key challenge is to ensure model capability when using many small heads.

of head dimensions d and incorporates a head-competition
mechanism to strengthen the model’s capacity. This strategy
effectively prevents overemphasis on less crucial subspaces
upon trivial heads while retaining vital ones, ensuring an
expressive and robust representation. By substituting the at-
tention mechanism in ViTs by Mobile Attention, we present
the ViTs-MobileAtt family, which is highly mobile-friendly
and yields competitive performance across various vision
tasks. In summary, we make the following contributions.

• We find that reducing the head dimensions d is vital
for enhancing the mobile-friendliness of linear atten-
tion. However, this may lead to less effective heads,
impacting their ability to learn valuable subspaces and
potentially harming performance.

• We propose the Mobile-Attention mechanism, a new
kernel-based linear attention for mobile devices to ad-
dress the efficiency-capability dilemma. It supports
lower head dimensions d for mobile-friendliness that
were previously impossible, and a head-competition
mechanism to guarantee the model capacity.

• Our optimized ViTs-MobileAtt, as new members to the
ViTs family, offer improved mobility and competitive
performance across various computer vision tasks. We
have achieved remarkable reductions in latency. Specif-
ically, under the prerequisite of retaining comparable
or higher accuracy, we achieved a 25% reduction in
latency on DeiT, a 35% reduction on PVTv2, and an
18% reduction on EfficientformerV2.

2. Related Work
Vision Transformers. Vision Transformers (ViTs) (Doso-
vitskiy et al., 2020; Liu et al., 2021; Wu et al., 2021; Chu
et al., 2021; Dong et al., 2021; Liu et al., 2022b; Zhai et al.,
2022; Yao et al., 2023; Tu et al., 2022) have gained popu-
larity in image classification due to its encoder-only trans-

former architecture that uses non-overlapping image patches
as sequential inputs. However, this approach can be ex-
pensive as it requires pretraining on large datasets such as
JFT300M (Sun et al., 2017). Fortunately, there are alter-
native approaches that can achieve comparable accuracy
without costly pretraining. Strategies like DeiT (Touvron
et al., 2021) and T2T-ViT (Yuan et al., 2021) employ im-
proved training techniques and enhanced tokenization mech-
anisms, enabling them to attain ViT-like accuracy without
pretraining on large datasets. In addition, recent works such
as CrossViT (Chen et al., 2021), PVT (Wang et al., 2021),
PVTv2 (Wang et al., 2022), and Swin-Transformer (Liu
et al., 2021) propose pyramid-like architectures to improve
the accuracy-efficiency tradeoffs of ViTs. While this archi-
tectural design is commonly used in CNNs (Howard et al.,
2019), one of their main disadvantages is that they may
require a large memory footprint, making it challenging to
deploy on low-resource devices.

To enable better accuracy-efficiency tradeoffs, several effi-
cient ViT architectures have been proposed to address the
limitations of ViTs for resource-constrained devices, in-
cluding LeViT (Graham et al., 2021), MobileViT (Mehta
& Rastegari, 2021), and EfficientFormer (Li et al., 2022b).
These architectures often reduce the number of attention
layers, utilize channel-wise attention, or apply depth-wise
convolutions to increase efficiency while maintaining accu-
racy. However, these models may sacrifice some accuracy
for efficiency, and their performance may still fall behind
state-of-the-art ViTs on large-scale datasets.

Kernel-based Linear-Attention Mechanisms. The con-
cept of linear attention (Qin et al., 2022; Wu et al., 2022) is
based on kernel functions that can approximate the softmax-
attention mapping. Notably, Performers (Choromanski et al.,
2020) use positive random features for softmax approxima-
tion, but this approach suffers from a significant perfor-
mance drop due to limited modeling capacity. Other meth-
ods involve low-rank approximations such as SOFT (Lu
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Figure 2. Network architectures for the ViTs-MobiAtt family. (a) We integrate our Mobile-Attention into the last two stages of Efficient-
formerV2 (Li et al., 2022a), creating EfficientformerV2-MobiAtt. The remaining modules are unchanged. (b) We substitute the standard
attention in all transformer blocks of DeiT (Touvron et al., 2021) with our Mobile-Attention, resulting in DeiT-MobiAtt.

et al., 2021), the Nyström method (Xiong et al., 2021), and
YOSO (Zeng et al., 2021), which approximate the softmax
function using the Nyström technique. However, these ap-
proaches involve complex iterations in the calculations and
are not compatible with the causal attention necessary for
autoregressive tasks. Several studies (Hua et al., 2022; Zeng
et al., 2022) have focused on improving both sparse and low-
rank methods to attain fast attention matrix approximation.
However, these methods may not be easily implemented on
mobile devices like Apple CoreML. More recently, LARA
(Zheng et al., 2022) recasts random-feature-based attention
as self-normalized importance samplers. Nonetheless, its
efficiency may not surpass other methods due to extra oper-
ations needed for importance sampling.

3. Preliminaries
Self-Attention Mechanism. The self-attention module
serves as a crucial component in the Transformer (Vaswani
et al., 2017) architecture, usually consisting of multiple
heads. Each head collectively attends to information across
various representation subspaces at distinct tokens, where
N represents the number of tokens. Mathematically, self-
attention can be expressed using the following equation:

Ah
t =

N∑
i=1

exp
(
Qh

t K
h
i
T
/
√
d
)∑N

j=1 exp
(
Qh

t K
h
j
T
/
√
d
)Vh

i , (1)

where t ∈ {1, · · · , N}, h ∈ {1, · · · ,M} with N and M be-
ing the number of tokens and heads respectively. Ah

t refers
to the t-th row of output from the h-th head’s attention.
The query, key, value vectors Qh

t ,K
h
t ,V

h
t ∈ Rd are ob-

tained by multiplying the input Xt ∈ RD with three individ-
ual learnable weight matrices WQ,WK ,WV ∈ RD×D,
where D is the feature dimension and d is the per-head di-
mension. To calculate attention scores, each head in the
self-attention module calculates the inner product between
query-key pairs, then scales the products to stabilize training
and normalize them using Softmax. This leads to a weighted
sum of all value vectors. Once this is done for all attention
heads, the resulting outputs are concatenated and a final
linear projection using learnable weights is applied. It is

important to note that the computation of Equation 1 has a
quadratic complexity of O

(
N2D

)
, making it difficult to use

them on mobile devices without optimization techniques.

Kernel-based Linear Attention. The linear attention mech-
anism (Choromanski et al., 2020; Qin et al., 2022; Wu et al.,
2022) is based on the concept of decomposing the similar-
ity measure function into distinct kernel embeddings, such
as exp

(
QtK

T
i /

√
d
)
≈ Φ(Qt)Φ(Ki)

T, so that Equation 1
will be reformulated as follows:
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Φ
(
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(
Kh
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(2)

where the multiplication of QKT is avoided by calculating
the multiplication of keys and values firstly based on the
associative law, specifically Φ(K)TV. Based on this, we
can infer that the computational complexity is linear with
respect to the sequence length, demonstrating a complex-
ity of O

(
ND2/M

)
= O (NDd). Nevertheless, this may

still require substantial computational expenses, especially
in the final Transformer stages where the number of head
dimensions d is moderately large.

4. Methods
The proposed ViT-MobiAtt framework is based on Mobile-
Attention, a novel linear attention method tailored for mobile
devices. By supporting a substantially reduced number
of head dimensions d and integrating a head-competition
mechanism, Mobile-Attention significantly improves ViT’s
mobile-friendliness and enhances its model capacity.

Architecture for ViTs-MobiAtt. The Mobile-Attention
is highly adaptable, allowing for seamless integration with
various ViTs. By simply substituting the attention module
with our Mobile-Attention, we can generate a variety of
ViTs-MobiAtt without altering the underlying architecture.
For instance, as illustrated in Figure 2, we apply the ViT-
MobiAtt framework to two representative state-of-the-art
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ViT architectures: the conventional vision transformer DeiT
(Touvron et al., 2021), and the highly efficient transformer
EfficientformerV2. This results in the architecture of DeiT-
MobiAtt and EfficientformerV2-MobiAtt, respectively.

4.1. Motivation of Mobile-Attention

Our Mobile-Attention effectively captures the global context
among tokens by incorporating a head-competition mech-
anism to further enhance the model capacity of each head,
which is able to be more mobile-friendly and maintain the
model capacity simultaneously.

Why to Reduce Head Dimensions? Our Mobile-Attention
mechanism is based on the kernel-based linear attention
approach described in Section 3. We utilize the non-linear
function Φ(x) = σ (x/∥x∥2), which combines the cosine
similarity kernel with the sigmoid function σ. As discussed
in Section 3, we discover that reducing the head dimen-
sions d significantly lowers the computational complexity.
Moreover, when d is decreased to a small constant (e.g.,
d = 2), the Mobile-Attention performs computationally-
lightweight matrix multiplications. This reduction in matrix
size is highly advantageous for mobile devices with limited
memory resources, as it frees up space for other tasks and
enhances overall device performance. In summary, lowering
d effectively empowers linear attention to be more mobile-
friendly, as demonstrated by both theoretical complexity
and practical deployment. Thus, our Mobile-Attention uti-
lizes extremely small head dimensions d = 4, resulting in
nearly an O(ND) computational complexity, which is lin-
ear with respect to both token number length N and feature
dimension D.

Head Competition is Necessary. Nevertheless, each head
may encounter difficulties in learning meaningful subspaces
due to limited feature capacity, potentially resulting in the
acquisition of trivial information. These degenerated sub-
spaces might dominate and overshadow the valuable ones,
consequently affecting the overall performance of linear
attention. To tackle this challenge, our Mobile-Attention
attempts to incorporate a competition mechanism among
heads. With competition, the trivial heads will be inhib-
ited and the valuable information will be significantly high-
lighted, thereby ensuring that the valuable learned subspaces
are not overwhelmed. This head-competition will promote
effective learning and representation of crucial information,
ultimately enhancing the performance and capacity of linear-
attention based Transformer models. However, each head
may function independently in the canonical multi-head
attention (Vaswani et al., 2017), posing a challenge in con-
structing an effective head-competition mechanism.

Attention among Heads is Inefficient. A straightforward
way to address the uninformative heads issue is to compute

self-attention between Q, K, and V with respect to heads:

Rh
t =

M∑
i=1

exp
(
Qh

t K
i
t
T
/
√
d
)

∑M
j=1 exp

(
Qh

t K
j
t

T
/
√
d
)Vi

t, (3)

where t ∈ {1, · · · , N}, h ∈ {1, · · · ,M}. This approach
can communicate multiple heads and highlight valuable
information with the softmax function. Still, similar to the
self-attention among tokens, the head attention also suffers
from high computational complexity O(NMD), especially
when the head number is large, which contradicts the mobile-
friendly goal.

Linear attention among heads can reduce the computation
complexity with respect to the head number by decompos-
ing the similarity measure function into distinct kernel em-
beddings, such as exp

(
Qh

t K
i
t
T
/
√
d
)
≈ Φ(Qh

t )Φ(K
i
t)

T.
Consequently, Equation 1 can be reformulated as follows:
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(4)

We modify linear attention to communicate M different
heads in linear time O(NDd). It is crucial to note that the
kernel-based linear-attention is free from softmax function,
leading to trivial attention weights that lose the advantage
in highlighting important information.

4.2. Mobile-Attention Mechanism

Incoming Flow and Outgoing Flow. To accomplish the
competition among heads efficiently, we adopt the concept
of information flow from Flowformer (Wu et al., 2022),
which reformulates the calculation of attention based on
the incoming and outgoing flows between value vectors and
final results. Orthogonal to Flowformer that tackles the long-
sequence burden, in ViTs-MobiAtt, we focus on the head
dimension. As depicted in Figure 3 (b), the incoming flow
represents the global interaction between one result head
and all value heads, whereas the outgoing flow captures the
global interaction from one value head to all result heads.
Under these concepts, we can calculate:

Ih = Φ
(
Qh

) M∑
j=1

Φ
(
Kj

)T
,

Oh = Φ
(
Kh

) M∑
i=1

Φ
(
Qi

)T
,

(5)

which represent the capacity of incoming flow and outgoing
flow, respectively, and Ih ∈ RN×1,Oh ∈ RN×1. The incor-
poration of the above flow capacities enable communication
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across different heads, fostering competition and enhancing
the model’s expressiveness.

Head-Competition Mechanism. Our Mobile-Attention
effectively develops a competition mechanism among heads
by contrasting the capacity of incoming flow for final result
tokens as 1, making the outgoing flow of value tokens com-
pete with each other under this fixed sum situation. Also by
contrasting the capacity of outgoing flow of values as 1, it
can obtain the competed incoming flow of final results. In
summary, based on Equation 2, we can compute the com-
peted incoming flow and outgoing flow for each head based
on the above calculated flow capacities as follows:

I
h
= Φ

(
Qh

) M∑
h′=1

Φ
(
Kh′)T
Oh′ ,

O = Φ
(
Kh

) M∑
h′=1

Φ
(
Qh′)T
Ih′ ,

(6)

where I
h ∈ RN×1, O

h ∈ RN×1, and h ∈ {1, · · · ,M}
denotes the capacity of competed incoming flow and out-
going flow of the h-th head respectively. These competed
information flows are able to provide reliable evidence to
present the importance of multiple heads.

Procedure of Mobile-Attention. As shown in Figure 3,
we present the Mobile-Attention mechanism based on the
above head-competed information flows, where competed
outgoing flow of O and competed incoming flow I respec-
tively indicate the importance of value heads and final result
heads. By introducing O and I into the linear attention
among tokens in Equation 2, the Mobile-Attention mecha-
nism can naturally incorporate the competitive information

among heads, which can be formalized as follows:

V = Softmax
(
O
)
⊙V,

Uh
t = σ

(
I
h

t

)Φ (
Qh

t

)∑N
i=1 Φ

(
Kh

i

)T
(V

h

i )

Φ
(
Qh

t

)∑N
j=1 Φ

(
Kh

j

)T ,
(7)

where ⊙ denotes element-wise multiplication, σ represents
the sigmoid function. V ∈ RM×N×d is the value vector
weighted by competed outgoing flow, where weights are
assigned to each head, corresponding to Heads Competing
in Figure 3. To compute the final result for each head and
each token Uh

t , we utilize the competed incoming flow I
to regulate each head’s information, namely Heads Gating
in Figure 3. Eventually, the final result U ∈ RM×N×d is
obtained. Note that the calculations of competed informa-
tion flow I,O among heads and the linear attention among
tokens are in the complexity of O(2ND) and O(NDd)
respectively.

Following the canonical attention in Transformers (Vaswani
et al., 2017), the find output of Mobile-Attention is obtained
by applying a channel-dimension linear projection to U.
The above-mentioned designs, including competitive infor-
mation flow among heads and linear attention among tokens,
allow Mobile-Attention to foster competition among heads,
preventing undesirable focus on less important details upon
individual heads and preserving essential information across
all heads. This competition design substantially enhances
the model capacity and efficiency.

5. Experiments
To implement the ViT-MobiAtt framework, we utilized Py-
Torch 1.11, following common practices in recent research
such as Swin Transformer (Liu et al., 2021) and T2t-ViT
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Table 1. Classification results on ImageNet1k dataset compared with state-of-the-art model architectures, where EfficientformerV2-
MobiAtt means that the idea of Mobile-Attention is applied on EfficientformerV2. The latency results are obtained by running models on
iPhone 12 compiled with CoreMLTools, Pixel 6 (CPU) compiled with XNNPACK, and Nvidia A100 (GPU) compiled with TensorRT.

Model Params(M) GMACs CoreML(ms) A100 (ms) Pixel 6 (ms) Top-1 Acc(%)

MobileNetV2 (Sandler et al., 2018) 3.5 0.30 0.9 5.0 25.3 71.8
MobileViT-XS (Mehta & Rastegari, 2021) 2.3 0.70 7.3 11.7 64.4 74.8
EdgeViT-XXS (Chen et al., 2022) 4.1 0.60 2.4 11.3 30.9 74.4
EfficientNet-B0 (Tan & Le, 2019) 5.3 0.40 1.4 10.0 29.4 77.1
ConvNeXt-T (Liu et al., 2022a) 29.0 4.50 83.7 28.8 340.5 82.1
Swin-T (Liu et al., 2021) 29.0 4.50 97.3 22.0 - 81.3

DeiT-T (Touvron et al., 2021) 5.7 1.25 4.5 7.1 66.6 72.2
DeiT-T-MobiAtt 5.7 1.22 3.8 5.9 53.9 73.3

DeiT-S (Touvron et al., 2021) 22.0 4.60 9.0 15.5 218.2 79.8
DeiT-S-MobiAtt 22.0 4.20 7.2 13.3 175.7 80.0

DeiT-B (Touvron et al., 2021) 86.3 17.56 18.2 - - 83.4
DeiT-B-MobiAtt 86.3 17.03 13.3 - - 84.2

PVT-v2-b0 (Wang et al., 2022) 3.7 0.60 78.4 17.6 - 70.5
PVT-v2-b0-MobiAtt 3.5 0.56 57.3 15.0 - 71.5

PVT-v2-b2 (Wang et al., 2022) 25.4 4.00 101.0 36.2 - 82.1
PVT-v2-b2-MobiAtt 21.1 3.80 65.6 33.7 - 82.6

PVT-v2-b3 (Wang et al., 2022) 45.2 - 114.5 230.9 - 83.3
PVT-v2-b3-MobiAtt 39.0 - 89.1 210.1 - 84.0

EfficientFormerV2-S0 (Li et al., 2022a) 3.5 0.40 0.9 6.6 20.8 75.7
EfficientformerV2-S0-MobiAtt 3.5 0.37 0.7 5.5 16.2 76.0

EfficientFormerV2-S2 (Li et al., 2022a) 12.6 1.25 1.6 14.5 57.2 81.6
EfficientformerV2-S2-MobiAtt 12.6 1.22 1.2 13.1 48.9 82.1

EfficientFormerV2-L (Li et al., 2022a) 26.1 2.56 2.7 22.5 117.7 83.3
EfficientformerV2-L-MobiAtt 26.1 2.50 2.2 20.3 97.4 83.7

(Yuan et al., 2021). Our models were trained on a cluster
of NVIDIA A100 GPUs to ensure optimal performance.
Additionally, we measured the inference speed on mobile
devices, specifically an iPhone 12 with an A14 Bionic chip
running iOS version 15. These measurements were obtained
by averaging over 1,000 runs and testing with both the neu-
ral processing unit (NPU) and the CPU. For deploying the
runtime model with a batch size of 1, we used CoreML-
Tools. We also tested model latency on a Pixel 6 (Android)
CPU. The models (batch size of 1) were compiled with XN-
NPACK to obtain latency metrics for most methods under
comparison.

5.1. ImageNet-1K Classification

Settings. The image classification using the ImageNet
dataset (Deng et al., 2009) with 1.2 million training and
50K validation images. In order to showcase the generaliza-
tion capability of Mobile-Attention, we apply our Mobile-
Attention mechanism to three popular vision transformers:
DeiT (Touvron et al., 2021), PVT-v2 (Wang et al., 2022),
and EfficientformerV2 (Li et al., 2022a), which is a state-
of-the-art lightweight transformer model. Specifically, we
replace only the attention blocks with our Mobile-Attention
for these ViTs, while leaving other modules unchanged.

For the classification task, we employ the AdamW opti-
mizer (Loshchilov & Hutter, 2017) and train the model for
300 epochs. We set the batch size to 2048 and the learning
rate to 0.001, using a cosine learning rate decay schedule.
The resolution of the input image is resized to 224 × 224.
All comparison models utilize the default number of heads
according to their respective literature in previous work.

Generalizability of Mobile-Attention. As shown in Table
1, DeiT-MobiAtt and PVT-v2-MobiAtt consistently achieve
higher performance and reduced latency on CoreML. For
example, PVT-v2-b2-MobiAtt achieves a 0.5 point boost
and a significant 36% reduction in latency compared to
PVT-v2-b2. Similarly, DeiT-S-MobiAtt achieves a 0.2 point
increase and a notable 20% reduction in latency compared
to DeiT-B, while utilizing fewer GMACs. By leveraging
Mobile-Attention, EfficientformerV2-MobiAtt consistently
outperforms the original EfficientformerV2 in mobile friend-
liness and performance. For instance, EfficientformerV2-S2-
MobiAtt achieves an impressive 82.1% top-1 accuracy, sur-
passing Efficientformer-S2, and reduces latency on CoreML
by 25%. It is worth noting that Mobile-Attention not only
achieves lower latency on the CoreML framework but also
on GPUs like the A100. This showcases the efficiency of the
Mobile-Attention across different platforms and highlights
its excellent performance.
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Table 2. Classification results of various linear-attention methods within a DeiT-S (Touvron et al., 2021) framework on the ImageNet1k
dataset. We replace the standard attention in all blocks of DeiT-S with Mobile-Attention to form the DeiT-S-MobiAtt. DeiT-S-MobiAtt*
denotes a version of the model that does not employ the head-competition mechanism.

Model Complexity GMACs CoreML(ms) Top-1 Acc (%)

Hydra-DeiT-S (Bolya et al., 2022) O(ND) 4.10 7.0 73.5
Castling-DeiT-S (You et al., 2023) O(ND2) 4.52 9.4 79.8
DeiT-S (Touvron et al., 2021) O(N2D) 4.60 9.0 79.8

DeiT-S-MobiAtt w/ vanilla design O(ND2) - 8.1 79.0
DeiT-S-MobiAtt* w/ SE (Hu et al., 2018) O(ND2) - 7.3 78.3
DeiT-S-MobiAtt* w/ GLU (Shazeer, 2020) O(ND2) - 7.3 77.5
DeiT-S-MobiAtt w/o Head-competing O(ND) 4.18 7.2 76.4
DeiT-S-MobiAtt O(ND) 4.20 7.2 80.0

Performance Comparison. Compared to the state-of-the-
art CNN-based method ConvNeXt-T (Liu et al., 2022a),
EfficientformerV2-MobiAtt achieves a higher 83.7% top-1
accuracy and is significantly faster on CoreML. When in-
tegrated with other cutting-edge efficient transformers, our
ViT-MobiAtt exhibits competitive performance. For exam-
ple, EfficientformerV2-S0-MobiAtt outperforms EdgeViT-
XXS (Chen et al., 2022) by a substantial margin of 1.6
points and is 3× faster on CoreML. These results clearly
demonstrate that our Mobile-Attention is highly mobile-
friendly compared to other state-of-the-art methods, while
maintaining high performance. In conclusion, these findings
highlight the effectiveness of Mobile-Attention in enhancing
the performance and efficiency of various vision transform-
ers, showcasing its strong generalization capabilities. It is
also noteworthy that our Mobile-Attention mechanism not
only achieves lower latency on the CoreML framework but
also demonstrates comparable efficiency on other mobile
devices and GPUs, such as the Pixel 6 and A100. This indi-
cates that Mobile-Attention is effective and efficient across
various mobile platforms and GPU architectures, highlight-
ing its versatility and competitive performance. The reduced
latency observed in EfficientformerV2-L-MobiAtt across
different mobile devices further underscores its practical
applicability and efficiency in real-world scenarios.

Applying to Models with More Parameters. We have inte-
grated our Mobile-Attention mechanism into larger models,
specifically DeiT-B and PVT-v2-b3, which feature a higher
parameter count. As demonstrated in Table 1, the modi-
fied versions, DeiT-B-MobiAtt and PVT-v2-b3-MobiAtt,
show improved performance and efficiency compared to
their original counterparts. This underscores the successful
incorporation of our Mobile-Attention technique into var-
ious model architectures, highlighting its effectiveness in
enhancing models with increased parameter counts.

Comparison with State-of-the-Art Linear Attention. Ta-
ble 2 compares novel kernel-based linear-attention methods
applied to the DeiT-S model. It is worth mentioning that

our Mobile-Attention outperforms the latest state-of-the-art,
Castling-DeiT-S model (You et al., 2023), with an accuracy
of 80.0 compared to their 79.8. Furthermore, our DeiT-S-
MobiAtt achieves lower latency with a value of 7.2, while
the Castling-DeiT-S model has a latency of 9.4. Moreover,
when comparing our Mobile-Attention to hydra-attention
(Bolya et al., 2023), we not only achieve better mobile ef-
ficiency but also superior performance. This is due to the
competition mechanism present in our Mobile-Attention,
which is lacking in hydra-attention and results in inferior
performance. In conclusion, our Mobile-Attention is more
mobile-friendly and suited for mobile devices than alterna-
tive linear-attention models. In addition, we also include the
“vanilla design” in Equation 3 for comparison. We present
the results of the “vanilla design” for DeiT, which utilizes
the same number of heads as DeiT-S-MobiAtt. From the
results, it is evident that DeiT employing the vanilla design
with a higher number of heads achieves inferior performance
compared to the original DeiT. This suggests that without
the head-competition mechanism, the use of the vanilla
design in DeiT cannot maintain model capacity.

Comparison with Channel Attention Mechanisms. We
performed an additional ablation study on channel attention
mechanisms. To ensure a fair comparison, we integrated the
SENet (Hu et al., 2018) and GLU (Shazeer, 2020) into DeiT-
S-MobiAtt while excluding the head-competition mecha-
nism, resulting in DeiT-S-MobiAtt*. It is crucial to note that
DeiT-S-MobiAtt* does not employ the head-competition
mechanism. As shown, it is evident that the utilization of
the head-competition mechanism is crucial for achieving im-
proved performance and efficiency with Mobile-Attention.
Both the SE and GLU mechanisms alone cannot guarantee
the model capacity of DeiT-S. While DeiT-S-MobiAtt* may
achieve better efficiency compared to the original DeiT-S,
it experiences a performance decrease without the head-
competition mechanism. This highlights the importance of
our head-competition in maintaining optimal performance.
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Table 3. Object detection & instance segmentation on MS COCO 2017 with the Mask RCNN pipeline. Semantic segmentation on the
ADE20K dataset by using models as the feature encoder in Semantic FPN.

Backbone CoreML (ms) Params (M)
Detection & Instance Segmentation Semantic

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 mIoU

PoolFormer-S12 (Yu et al., 2021) 18.2 12.0 37.3 59.0 40.1 34.6 55.8 36.9 37.2
EfficientFormer-L1 (Li et al., 2022b) 6.1 12.3 37.9 60.3 41.0 35.4 57.3 37.3 38.9
EfficientFormerV2-S2 (Li et al., 2022a) 6.5 12.6 43.4 65.4 47.5 39.5 62.4 42.2 42.4
EfficientformerV2-S2-MobiAtt 4.7 12.0 43.7 65.6 47.7 39.8 62.6 42.5 43.1

ResNet101 (He et al., 2016) 13.2 48.0 40.4 61.1 44.2 36.4 57.7 38.8 38.8
PoolFormer-S24 (Yu et al., 2021) 23.0 21.0 40.1 62.2 43.4 37.0 59.1 39.6 40.3
Swin-T (Liu et al., 2021) 486.5 29.0 42.2 64.4 46.2 39.1 64.6 42.0 41.5
EfficientFormer-L3 (Li et al., 2022b) 10.6 31.3 41.4 63.9 44.7 38.1 61.0 40.4 43.5
EfficientFormerV2-L (Li et al., 2022a) 10.3 26.1 44.7 66.3 48.8 40.4 63.5 43.2 45.2
EfficientformerV2-L-MobiAtt 7.7 25.3 44.9 67.0 48.8 40.8 63.8 44.0 46.0

5.2. Downstream Tasks

To demonstrate the superiority of our proposed Mobile-
Attention mechanism, we evaluate its performance on two
representative downstream vision tasks: Object Detection
and Semantic Segmentation. Since some modules in Mask
R-CNN (He et al., 2017) and Semantic FPN (Kirillov et al.,
2019) are not easily deployable on CoreML, we assess only
the backbone latency for a fair comparison, using the same
test environments as in the classification task. For simplic-
ity, we adopt a uniform input size of 512×512 for latency
measurement, as shown in Table 3. To increase mobile
device compatibility, we apply the Mobile-Attention mecha-
nism to EfficientformerV2 (Li et al., 2022a) for downstream
tasks, a state-of-the-art lightweight transformer. We re-
place only the attention blocks in the last two stages with
our Mobile-Attention, keeping other modules unchanged,
thereby creating the EfficientformerV2-MobiAtt.

Object Detection and Instance Segmentation. We adopt
the Mask-RCNN implementation (He et al., 2017) to in-
tegrate EfficientformerV2-MobiAtt as the backbone and
evaluate its performance. Our experiments are conducted
on the COCO2017 dataset (Lin et al., 2014), which com-
prises 118K training images and 5K validation images. We
initialize the EfficientformerV2-MobiAtt backbone with
ImageNet-1K pretrained weights. Following previous
work (Yu et al., 2021), we employ the AdamW optimizer
(Loshchilov & Hutter, 2017) with an initial learning rate of
0.0002 and train the model for 12 epochs. The input size
is set to 1333 × 800. The results for detection and instance
segmentation are presented in Table 3. EfficientformerV2-
MobiAtt consistently outperforms both CNN (ResNet) and
transformer (PoolFormer) backbones. Under a similar com-
putational budget, our EfficientformerV2-L-MobiAtt sur-
passes the ResNet101 backbone by 4.5 box AP and 4.4
mask AP, and outperforms the PoolFormer-S24 backbone
by 4.8 box AP and 3.8 mask AP. These results demonstrate

that EfficientformerV2-MobiAtt generalizes well as a robust
backbone for various vision tasks.

Semantic Segmentation. To evaluate the performance
of EfficientformerV2-MobiAtt in the semantic segmenta-
tion task, we conducted experiments using the challenging
ADE20K dataset (Zhou et al., 2017). We built a semantic
segmentation model by combining the EfficientformerV2-
MobiAtt backbone with the Semantic FPN (Kirillov et al.,
2019) segmentation decoder to ensure a fair comparison.
The backbone was initialized with pretrained weights on
ImageNet-1K, and the model was trained for 80K iterations
using a total batch size of 32 across 8 GPUs. We adopted the
AdamW optimizer (Loshchilov & Hutter, 2017) and imple-
mented a polynomial learning rate schedule with a power of
0.9, starting from an initial learning rate of 0.0002. During
training, we resized and cropped the input images to 512 ×
512, and for testing on the validation set, we set the shorter
side to 512, following common practices in segmentation.

As shown in Table 3, EfficientformerV2-MobiAtt consis-
tently outperforms both CNN- and transformer-based back-
bones by a significant margin, while maintaining a similar
computational budget. Notably, EfficientformerV2-MobiAtt
achieves a mIoU improvement of 5.9 over PoolFormer-S12
(Yu et al., 2021). This result demonstrates that the Mobile-
Attention mechanism in EfficientformerV2-MobiAtt en-
ables better learning of long-term dependencies, which is
advantageous in high-resolution dense prediction tasks.

Mobile Device Efficiency. As illustrated in Table 3, our
EfficientformerV2-MobiAtt achieves the lowest latency
time on CoreML among all baselines while maintaining
competitive performance on object detection and semantic
segmentation tasks. This result underscores that our Mobile-
Attention is not only mobile-friendly but also exhibits strong
performance in various downstream tasks, making it an
ideal choice for deployment on mobile devices. Specifi-
cally, EfficientformerV2-L-MobiAtt is 3× faster on CoreML
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(a) Latency for different head dimensions of Mobi-DeiT-S (b) Accuracy for different head dimensions of Mobi-DeiT-S(b) Accuracy for different head dimensions of  DeiT-S-MobiAtt(a) Latency for different head dimensions of  DeiT-S-MobiAtt

Figure 4. A parameter analysis on ImageNet-1k is conducted for Mobile-Attention to evaluate the impact of per-head dimension d.

compared to PoolFormer (Yu et al., 2021) while outperform-
ing it by a significant margin of 4.8 box AP, 2.2 mask AP,
and 5.7 mIoU in detection, instance segmentation, and se-
mantic segmentation tasks, respectively. In summary, our
Mobile-Attention demonstrates a remarkable balance be-
tween efficiency and effectiveness, which sets it apart as a
powerful solution for mobile vision applications.

5.3. Ablation Study

Effectiveness of Head-Competition Mechanism. The
head-competition mechanism is essential to Mobile-
Attention’s performance. Table 2 demonstrates that without
this mechanism, the model’s effectiveness would be sub-
stantially diminished (80.0% → 76.4%). These findings
underscore the importance of the competition mechanism
among heads in balancing the number of heads and their
influence on the model’s performance.

Attention Visualiztion. Furthermore, we provide visual-
izations of the learned attention in Figure 5. Specifically,
for DeiT-MobAtt, we visualize the competition weights
Softmax(O) ∈ RN×1, which are used for non-trivial ag-
gregation of information from different sources. From the
visualizations, we can observe that the Mobile-Attention
mechanism is able to accurately capture the essential parts
of the input. In contrast, without the head-competition mech-
anism, the hydra-attention (Bolya et al., 2023) fails to attend
to the correct areas and produces a degenerated attention
map. These visualizations further demonstrate the effec-
tiveness of our proposed Mobile-Attention mechanism in
improving attention capture and overall performance.

Reduced Per-Head Dimension is More Mobile-Friendly.
As depicted in Figure 4 (a), the latency on CoreML de-
creases as the head dimensions d are reduced. This observa-
tion suggests that lowering the head dimensions effectively
reduces latency, making our Mobile-Attention more mobile-
friendly and suitable for deployment on devices with limited
resources. On the other hand, as displayed in Figure 4 (b),

Input Frame (Bird)  DeiT-S-MobiAtt  Hydra-Attention

Input Frame (Birdhouse)   DeiT-S-MobiAtt  Hydra-Attention

Figure 5. Visualization of learned attention. We present the sum of
attention weights to each frame patch in the last layer.

the performance of DeiT-S-MobiAtt deteriorates when d di-
minishes, implying that an overly small d negatively impacts
the model’s capacity. To strike a balance between efficiency
and performance, we ultimately select d = 4 as the opti-
mal value. This choice ensures that our Mobile-Attention
remains both effective and efficient for mobile devices.

6. Conclusion
Vision Transformers are prevalent for their self-attention
modules, but quadratic complexity hinders efficiency. To
address this efficiency-capability dilemma, we introduce
Mobile-Attention, a mobile-friendly module that optimally
balances attention heads while maintaining linear complex-
ity. It employs a competition mechanism to enhance effec-
tiveness of linear-attention, promoting competition among
heads, thus preventing overemphasis on insignificant de-
tails and preserving essential information. Experiments
show that ViTs-MobiAtt outperform state-of-the-art ViTs in
classification, detection, and segmentation tasks on mobile
devices, demonstrating superior efficiency and accuracy.
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A. Experiment on Head Pruning
We carried out a pruning experiment to demonstrate the ef-
fectiveness of our head-competition mechanism in ensuring
that essential subspaces learned by specific heads are not
overshadowed by trivial subspaces acquired by other heads.
The competition performance achieved by the model after
pruning a large number of trivial heads serves as evidence
that the remaining valuable subspaces have a significant
impact and are not overwhelmed by the trivial subspaces.

Setting. Specifically, we conducted a pruning experiment,
following the approach established in previous literature on
UVC (Yu et al., 2022). Initially, as described in Equation 5
of the main text, we computed the average score for each
token associated to O: O = 1

N

∑N
i=1 Oi ∈ RM×1, where

N is the number of tokens, and M is the number of
heads. Oh ∈ R represents the score after pruning the h-th
head. Our technical approach concentrates on incorporating
neuron-level and attention-head-level pruning in conjunc-
tion with knowledge distillation. We accomplish this by
ranking the pruning scores {O1,O2, · · · ,OM} and elimi-
nating the smallest 50% of attention heads based on their
respective pruning scores. We integrate this pruning strat-
egy into DeiT-MobiAtt, keeping the other pruning policies
unchanged as in UVC (Yu et al., 2022).

Effectiveness of Head-Competition Mechanism. As
demonstrated in Table 4, our method outperforms the ad-
vanced pruning approach UVC (Yu et al., 2022) (79.0 vs.
78.5) in terms of performance. Additionally, our pruned
DeiT-MobiAtt considerably exceeds the results obtained
from random head pruning. These observations strongly
suggest that our O functions as an effective measure of
each head’s importance, ultimately contributing to more
efficient pruning. We also observed that our Mobi-DeiT-S
exhibits inferior performance without the head-competition
mechanism, even when employing the cutting-edge pruning
method UVC (Yu et al., 2022) (78.5 vs. 75.8). This obser-
vation highlights the critical role of the head-competition
mechanism in preventing effective subspaces from being
overshadowed by trivial ones. In the absence of such a

competition incentive, the model fails to strike a balance
between valuable and trivial subspaces, ultimately leading
to inadequate learning of the remaining subspaces and re-
sulting in worse performance.

Table 5. Semantic segmentation on the ADE20K dataset by using
models as the feature encoder in Semantic FPN.

Model CoreML (ms) mIoU

EfficientFormerV2-S2 w/ EVA 6.8 41.0
EfficientFormerV2-S2 w/ Flow-Attention 6.6 38.4
EfficientFormerV2-S2 6.5 42.4
EfficientFormerV2-S2-MobiAtt 4.7 43.1

B. Linear-Attention for Downstream Tasks
Since linear-attention mechanisms have not been widely
adopted for downstream tasks in computer vision, we con-
ducted additional ablation studies to assess the effective-
ness of existing state-of-the-art linear-attention mechanisms.
Specifically, we performed experiments on semantic seg-
mentation using the ADE20K dataset (Zhou et al., 2017).
The experimental setup is consistent with the one described
in Section 5.2 of the main text. We replaced the attention
block of EfficientformerV2-S2 with the respective linear-
attention mechanisms under comparison to establish a fair
baseline. As shown in Table 5, our DeiT-S-MobiAtt, based
on our Mobile-Attention, outperforms other linear-attention
methods. For example, DeiT-S-MobiAtt achieves a 2.1-
point improvement compared to the state-of-the-art linear-
attention method EVA (Zheng et al., 2023). Regarding
mobile efficiency, we also calculated the latency on Apple
CoreML. Our ViT-MobiAtt not only achieves lower latency
compared to other linear-attention methods but also demon-
strates a more mobile-friendly design, making it a preferred
choice for applications on mobile devices. The superior
performance of our Mobile-Attention demonstrates its suit-
ability for computer vision downstream tasks.

Table 4. Classification results for the pruning experiment within a DeiT-S (Touvron et al., 2021) framework on the ImageNet1k dataset.
We replace the standard attention in all blocks of DeiT-S with Mobile-Attention to form the DeiT-S-MobiAtt. DeiT-S-MobiAtt w/ pruning
score means using the O to prune the heads. DeiT-S-MobiAtt* means the DeiT-S-MobiAtt trained without head-competition mechanism.

Model GMACs GMACs remained (%) Top-1 Acc (%)

MobileNetV2 (Sandler et al., 2018) 0.30 100 71.8
DeiT-S-MobiAtt 4.20 100 80.0

DeiT-S-MobiAtt* w/ UVC (Yu et al., 2022) 2.13 50.6 75.8
DeiT-S-MobiAtt w/ UVC (Yu et al., 2022) 2.13 50.6 78.5
DeiT-S-MobiAtt w/ random pruning 2.13 50.6 76.9
DeiT-S-MobiAtt w/ pruning score 2.13 50.8 79.0
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