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Abstract

We present Junk DNA Hypothesis by adopting
a novel task-centric angle for the pre-trained
weights of large language models (LLMs). It has
been believed that weights in LLMs contain sig-
nificant redundancy, leading to the conception that
a considerable chunk of the parameters can be re-
moved by pruning without compromising perfor-
mance. Contrary to this belief, this paper presents
a counter-argument: small-magnitude weights of
pre-trained model weights encode vital knowl-
edge essential for tackling difficult downstream
tasks - manifested as the monotonic relationship
between the performance drop of downstream
tasks across the difficulty spectrum, as we prune
more pre-trained weights by magnitude. More-
over, we reveal that these seemingly inconse-
quential weights can result in irreparable loss of
knowledge and performance degradation in dif-
ficult tasks, even when downstream continual
training is allowed. Interestingly, our evalua-
tions show that the other popular compression,
namely quantization fail to exhibit similar “mono-
tonic" effect and does not as convincingly disen-
tangle this task-difficulty information. To study
formally, we introduce several quantifiable met-
rics to gauge the downstream task difficulty: ❶
within the same task category, and ❷ across dif-
ferent task categories. Our extensive experiments
substantiate the Junk DNA Hypothesis across
a diverse range of model sizes, tasks, datasets,
and even pruning methods. Codes are available
at https://github.com/VITA-Group/
Junk_DNA_Hypothesis.git.
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1. Introduction
A prevailing belief suggests that neural networks contain
significant and non-significant components across their
parameters that record necessary or unnecessary expertise
respectively to handle a task, which forms the inherent basis
of numerous model compression techniques (Han et al.,
2016). Moreover, as model sizes continue to expand, the
volume of redundant parameters is poised to escalate (Liu
et al., 2022; Kim et al., 2021). This principle extends its
effectiveness even to billion-level Large Language Models
(LLMs) (Jaiswal et al., 2023b; Frantar & Alistarh, 2023;
Hu et al., 2021; Lin et al., 2023b). With the negligible
loss in performance stemming from the absence of non-
significant components, a widely held belief has taken root:
these non-significant components are essentially superfluous
components that make a scant contribution to the model’s
functionality. Yet we pause and pose a question: Could
there be crucial facets overlooked in the context of whether
these non-significant components are truly inconsequential
artifacts for large-scale models?

This paper addresses the aforementioned query by employ-
ing two popular weight compression methods namely, prun-
ing, and quantization, to concretely discern “what non-
significant components are in pre-trained LLM weights,
what they do, and what is the best way to disentangle them".
At this point, it is important to clarify that this paper neither
aims to be an LLM compression exposition nor to re-justify
the commonsense that large pre-trained models are com-
pressible - but rather, to use existing popular compression
techniques as quantitative and easily controllable tool to
probe and comprehend the existence and the functional role
of non-significant weight components. The crux of our
research lies in adopting a novel task-centric viewpoint to-
wards pre-trained weights. In other words, we investigate
how the non-significant weights fraction and their embodied
information correlate with model’s ability to successfully
perform downstream tasks of different complexity levels.

Our extensive experiment-based study disrupts conventional
assumptions by providing three key observations: ❶ the
assumed non-significant weight components play a pivotal
role in handling challenging tasks, ❷ element-wise pruning
simply by pre-trained weight magnitudes, despite being a
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Title Suppressed Due to Excessive Size

naive criterion, is a reliable indicator to capture the demar-
cation of task difficulty encoded within significant and non-
significant components - experimentally shown as “mono-
tonically impairing" downstream task performance from dif-
ficult to simple, as more are pruned by magnitude. ❸ Mean-
while, quantization fail to display such monotonic effect
and do not as convincingly disentangle this task-difficulty
information. Drawing a parallel with biological insights1,
we nickname our discoveries as the Junk DNA Hypothesis:

• Contrary to common beliefs, small-magnitude weights
of a pre-trained model encode vital knowledge essen-
tial for tackling difficult downstream tasks - manifested
as monotonic relationships between the amount of
pruned weights and the difficulty level of tasks that
start to be impaired (Section 3.1 & 3.2). Interestingly
though, the same monotonicity observation fail to hold
for quantization, another popular compression method.

• Removing these ostensibly inconsequential weights
can cause irreparable loss of knowledge and thus
performance degradation on difficult tasks. This can
be observed even if downstream continual training is
allowed (Section 5).

The primary challenge in formalizing and experimentally
validating this conjecture lies in providing a precise and
“continuously controllable" definition of “task difficulty",
for which we explore an extensive range of options:

• Within the Same Task Category: To define task diffi-
culty within the same task, we formulate the following
four settings: ❶ vary the adequacy of target domain
data (Liu et al., 2019) (e.g., from few-shot to full-shot);
❷ availability of option counts in multiple-choice ques-
tion answering (QA) setting; ❸ influence of external
information availability with varying context length for
retrieval-augmented QA (Ram et al., 2023); ❹ vary-
ing k-shot in-context demonstration examples to assist
multiple-choice QA (Mosbach et al., 2023).

• Across Diverse Task Categories: To define task diffi-
culty across different tasks, we formulate the following
two settings: ❶ we utilize the gap between the best
human performance, and the target LLM model’s per-

1Approximately 2% of human genome encodes proteins, leav-
ing the remaining portion seemingly superfluous (Carey, 2015).
This non-coding section of the genome has earned the moniker
“Junk DNA” (Ohno, 1972), positing that large genomes would
inevitably harbor non-coding sequences, passively accumulated
over millennia, devoid of any protein-coding capacity. Yet over
the past decade, it has become evident that at least some of these
seemingly extraneous DNAs play essential roles in cellular func-
tion. For example, these regions of DNA contain vital sequences
that act as regulatory elements (Zheng et al., 2010). In this paper,
we borrow the “Junk DNA" nickname to refer to those “unsung
heroes" in LLM pre-trained weights - whose functionalities have
been under-recognized in previous LLM compression literature.

formance on a specific task (normalized by human per-
formance), as an indicator of complexity “sensed" by
LLM for that specific task; ❷ we dive in comparing be-
tween two QA tasks: factoid-based QA which involve
generating precise facts about entities, versus multiple-
choice QA setting where models have to choose from
a set of provided answer options.

Our extensive experiments substantiate the Junk DNA Hy-
pothesis across a diverse range of model sizes, tasks, and
datasets. While the overarching notion that··more challeng-
ing downstream tasks permit less room for pruning" may not
come as a surprise, our study unveils several more subtle,
often unexpected findings:

• Moving beyond the nebulous distinction between sim-
ple and complex tasks, the various conceptions of task
difficulty uniquely defined above by us, both within
and across tasks, appear to align closely with the be-
havior of pruning fragility. This suggests a practical
desire to estimate the task-dependent achievable de-
gree of LLM sparsity. In certain tasks, even a modest
reduction in low-magnitude pre-trained weights (e.g.,
10-20%) results in a significant drop in accuracy, un-
derscoring their pivotal role in handling intricate tasks.

• Unlike pruning, we found that quantization fail to ef-
fectively capture the same “monotonically" impairing
effect of gradual compression when task complexity
varied from difficult to simple.

• Moreover, we confirm that for difficult tasks, the essen-
tial knowledge resides within the pre-trained weight
values and uninformed pruning can do “irreversible"
damage for challenging tasks, i.e., the “damage"
caused by overly pruning pre-trained weights cannot
be un-done by continual downstream fine-tuning.

• Junk DNA Hypothesis holds true when transitioning
from unstructured to structured N:M pruning, and even
extends to other weight importance-based LLMs prun-
ing techniques (SparseGPT, Wanda). Interestingly, we
found the aforementioned methods tend to benefit sim-
ple tasks more compared to challenging tasks.

2. Experimental Settings
In this section, we provide a summary of our experimental
settings used to validate Junk DNA hypothesis. Table 1
provides details on dataset, model configuration, learning
setting, pruning techniques, and difficulty spectrum for vari-
ous task settings used to quantitatively control task difficulty
with and across tasks. We first experiment with popular
pruning methods (allow multiple data points to validate our
argument): One-shot Magnitude, SparseGPT, and Wanda
to comprehensively validate the monotonic impairment
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Title Suppressed Due to Excessive Size

Task Setting Dataset Model Learning Pruning Difficulty Variation Across Task

Setting 1: Data Adequacy GLUE benchmark RoBERTa-Base Fine-tuning Magnitude, N:M 6 No
Setting 2: MCQ Option Count MMLU Vicuna-7B None Magnitude, SparseGPT, Wanda, N:M 3 No
Setting 3: Context Length TriviaQA Vicuna-7B None Magnitude, SparseGPT, Wanda, N:M 5 No
Setting 4: k-shot examples MMLU Vicuna-7B Few-shot Magnitude, SparseGPT, Wanda, N:M 4 No
Setting 5: Human-Centric PIQA, HellaSwag, OpenBookQA Vicuna-13B None Magnitude, SparseGPT, Wanda, N:M 3 Yes
Setting 6: Factoid v.s. MCQ FreebaseQA, MMLU Vicuna-7B None Magnitude, SparseGPT, Wanda 2 Yes

Table 1. Our experimental task settings to quantitatively control task difficulty within tasks and across tasks.

claim on our curated difficulty spectrum across various task
settings. Next, in Section 4, we will draw parallel between
pruning and quantization to illustrate how the later fails
to capture this monotonic trend, thus unable to facilitate
demarcation across task difficulty.

Sparsity: We consider two types of sparsities: (1) Unstruc-
tured Sparsity: individual weights in the model are zeroed
out independently, leading to irregular zero patterns (LeCun
et al., 1990; Han et al., 2016); (2) Structured N:M Sparsity:
a fine-grained sparsity pattern in which only N weights are
non-zero for every continuous M weights (Nvidia, 2020;
Zhou et al., 2021). We report the results of M=8 (N ranges
from 7 to 1). Note that we intentionally focus on one-shot
magnitude pruning, to isolate the effect of small-magnitude
weights as the sole “delta" between the two models, and due
to its recently observed promise to retain LLM performance
(Jaiswal et al., 2023b). We additionally include two more
SoTA LLM pruning methods: SparseGPT (Frantar & Alis-
tarh, 2023), and Wanda (Sun et al., 2023) to confirm whether
the validity of our hypothesis can generalize to other weight
importance criteria as well.

Dataset: We explore a wide variety of datasets while defin-
ing task difficulty to convincingly establish the validity of
Junk DNA Hypothesis. For our experiments, we use GLUE
benchmark (Wang et al., 2018), MMLU benchmark cover-
ing 50+ subjects (Hendrycks et al., 2020), TriviaQA (Joshi
et al., 2017), PIQA (Bisk et al., 2020), HellaSwag (Zellers
et al., 2019), OpenBookQA (Mihaylov et al., 2018), and
FreebaseQA (Jiang et al., 2019). More information about
the aforementioned datasets is available in Appendix D.

Normalized Performance Drop: Model performance de-
pends on task category and difficulty level. To fairly illus-
trate the impact of compression across task category, task
difficulty, and pruning techniques, our experiments present
normalized performance drop to facilitate ease in perceiving
conclusion. Let f t

d and f t
p be dense and pruned model perfor-

mance on task t, normalized performance drop is calculated
as (f t

p − f t
d)/f

t
d.

To quantitatively capture the monotonic impairment and
trend across the task difficulty spectrum, we make use of
two popular statistical measures:

1. Spearman’s rank correlation: It assesses how well
the ranking relationship between two variables (X & Y)
can be described using a monotonic function. A Spearman

correlation of zero indicates that there is no tendency for Y
to either increase or decrease when X increases.

2. Theil–Sen estimator: It is a robust estimation of linear
slopes (treated as a surrogate of “how fast Y changes with
X") from many (potentially noisy) sample points (X & Y). It
works by choosing the median of the slopes of all possible
lines that go through any pair of points. Higher slopes by
Theil–Sen estimator indicate faster changes of Y w.r.t. X.

3. How Pruning Illicit Monotonic Impairment
Across Difficulty Spectrum?

3.1. Case study of difficulty spectrum within same task

3.1.1. TASK DIFFICULTY SETTING 1: Varying the
Adequacy of Target Domain Data

Rationale: The difficulty of learning a task is commonly
thought to be influenced by the number of available training
examples: fewer data points typically imply more challenges
to learn well. To quantitatively control task difficulty within
a single task, we manually manipulate the volume of data
used for fine-tuning by randomly sampling certain ratios
of data from the target domain dataset. This allows us to
disentangle task difficulty from the task type.

Method: To examine the influence of small-magnitude
weights, we conduct a comparative analysis between two
models: one starting from the pre-trained model with small-
magnitude weights, and the other without. The former is
commonly referred to as task-specific fine-tuning on down-
stream tasks, denoted as Dense Transfer in this paper. The
latter model, named Sparse Transfer, differs from dense
transfer in the way that we first perform magnitude pruning
on the pre-trained model, creating a sparse model. We then
fine-tune on downstream tasks while keeping the sparse
mask fixed. Figure 1 summarizes our results for this setting
across unstructured and structured sparsity patterns.

3.1.2. TASK DIFFICULTY SETTING 2: Varying the Option
Count in Multiple-choice QA Setting

Rationale: This setting proposed in our work, extends the
idea that given a task of multiple-choice question answering
with a fixed dataset, the difficulty of the task is proportional
to the number of available options to select the correct an-
swer. To quantitatively control task difficulty, we manually
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Figure 1. Task Difficulty Setting 1: Varying target domain data
adequacy: Dense Transfer vs. Sparse Transfer using RoBERTa-
Base on various downstream tasks. Task difficulty is measured by
the training data volume.

manipulate the option count for each question from [2− 4]
which provide a random guess success rate from 50% (2
options) to 25% (4 options). This setting uniquely allows us
to control the task difficult for a given task.

Method: To understand the influence of small-magnitude
weights, in this setting, we exploit in-context learning setting
with a natural prompting approach to present the question
and answer options to the LLMs jointly, and have it output
the symbol (e.g., “A") associated with its chosen answer op-
tion. We fixed 5 in-context question-answer example pairs
while . Here, we attempt to understand how the pruned
model can effectively reason and successfully associate the
correct answer among the given answer options with sym-
bols that represent them, using knowledge remaining within
them with increasing difficulty by varying option counts.
Figure 2 summarizes our results for this setting across un-
structured and structured sparsity patterns.

3.1.3. TASK DIFFICULTY SETTING 3: Varying context
length for Retrieval-Augmented QA

Rationale: In this task setting, we exploit a highly industry-
relevant task of Retrieval-Augmented QA in which given a
context, LLMs are prompted to answer questions based on
the context. To define a quantitative measure of difficulty
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Figure 2. Task Difficulty Setting 2: Varying option count in
multiple-choice QA. Dense v.s. Sparse subnetwork performance
of Vicuna-7B using MMLU. Task difficulty is measured by the
number of available choices in a multiple-choice QA setting.
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Figure 3. Task Difficulty Setting 3:Varying context length in
Retrival-Augmented QA. Dense v.s. Sparse subnetwork perfor-
mance of Vicuna-7B pruned using TrivaQA Benchmark. Task
difficulty is measured by the number of tokens provided in context.

for this task, we propose to vary the context length ensur-
ing that the correct answer still resides within the provided
context. Retrieval-augmented QA requires LLMs to possess
sufficient ability to synthesize long in-context knowledge
provided within input prompts, and locate and retrieve cor-
rect answers within it. Our novel strategy to control token
counts within context helps us to define a smooth relation
with the task difficulty.

Method: Our evaluation system using TriviaQA includes
two high-level components: ❶ document selection, select-
ing the set of documents upon which to condition; and ❷
document reading, determining how to incorporate the se-
lected documents into the LLM answer generation process,
which requires extracting correct answer phrases from con-
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Figure 4. Task Difficulty Setting 4:Few-shot In-context Learn-
ing. Dense v.s. Sparse subnetwork performance of Vicuna-7B
pruned using MMLU Benchmark. Task difficulty is measured by
the number of K shot in-context demonstration examples provided
to assist multiple-choice QA.

ditioned documents. Given the ground truth, we select x%
of tokens around it in the context document from the docu-
ment selection step, to ensure that the context is complete
(e.g., no split sentences). We evaluate the performance of
pruned LLMs to investigate their ability to generate answers
using the provided x% tokens. We additionally added a
closed-book (Ram et al., 2023) setting at the end of the dif-
ficult spectrum (highest) because in this setting, LLMs are
not provided with any external information and need to rely
on their own internal knowledge ingested during pretraining
(Jaiswal et al., 2023a).

3.1.4. TASK DIFFICULTY SETTING 4: Varying number of
k-shot examples for in-context learning

Rationale: Modern-day LLMs have shown a unique ability
for out-of-domain generalization using in-context learning
(ICL). ICL adapts a model to a task by conditioning it with
few-shot demonstrations specified purely via text interaction
with the model and it has been observed to significantly im-
prove performance on the downstream application (Brown
et al., 2020; Mosbach et al., 2023). In this task setting, we
propose to control the amount of example demonstrations
to quantitatively measure the difficulty of the task. Based
on our experimental finding that providing more demonstra-
tions leads to better performance of the dense model, this
setting defines the difficulty spectrum directly on the number
of example demonstrations provided to the pruned model
during the conversation using natural language prompts.

Method: Similar to task setting 2, we use in-context learn-
ing to present k example demonstration to the compressed
model. For our evaluation, we use MMLU benchmark, and
use k ∈ {0, 1, 3, 5} examples from the validation set to con-
trol the task difficulty where 0 indicates no example was
shown to the model (hardest) while 5 indicate the model
generated answer observing 5 examples (easiest). Figure 4
summarizes our results for this setting.

3.1.5. MAIN RESULTS: VALIDATING THE JUNK DNA

❶ Removal of small-magnitude weights is viable to some
extent for easier tasks in comparison to difficult tasks:
In all four task setting’s results (Figure 1, 2, 3, and 4), we
find that it is feasible to discard around 10-15% of small-

magnitude at once without significantly compromising the
performance in unstructured sparsity. This indicates that
for simple tasks, the knowledge encoded in high-magnitude
weights is sufficient to handle the task. For instance, in task
setting 4 (Figure 4a), we found that for the easiest task (with
5 ICL demonstration), we can remove small weights up to
14% without any drop in performance in comparison with
dense counterpart, which is not true for the hardest task
(with 0 ICL demonstration).

❷ Eliminating small weight presents a monotonic im-
pairment relationship with increasing task difficulty:
Across all our experiments, we found a smooth monotonic
impairment relationship between removing small weights
and the difficulty of the task. As we gradually move to
the hard end of the difficulty spectrum, the impact of prun-
ing small weights keeps increasing which shows that the
“useless” small weights are imperative to encode crucial
knowledge necessary to solve more challenging downstream
tasks. The monotonically increasing theil–sen estimator
slope w.r.t. task difficulty provides a quantitative estimate
to measure “monotonically impairing" caused by pruning
low-magnitude weights.

❸ Junk DNA persists in both N:M sparsity and unstruc-
tured sparsity, and beyond the magnitude criteria Both
N:M sparsity and unstructured sparsity yield similar observa-
tions, indicating the presence of Junk DNA in both settings.
We further experiment with two other popular LLM-pruning
methods: SparseGPT and Wanda which consider weight im-
portance as a criterion for pruning. Our observations can
be summarized as: (1) both these methods (including their
N:M setting) corroborate with JunkDNA Hypothesis, (2)
JunkDNA can be viewed as a benchmark to develop better
pruning algorithms which can minimize the performance
gap between easy and hard task, (3) interesting, we observe
that these new sophisticated weight importance based prun-
ing methods tend to benefit simple task more in comparison
to challenging tasks, indicating a need to carefully evaluate
true merits of modern compression methods.

3.2. Case study of difficulty spectrum across tasks

3.2.1. TASK DIFFICULTY SETTING 5: Estimating
LLM-facing Task Difficulty by Normalized
Human-LLM Performance Gap

Rationale and Method: We propose a method to gauge
complexity by juxtaposing the performance of deep learning
models with that of human counterparts. Specifically, we de-
fine task difficulty as the disparity in performance between
humans and models, normalized by human performance. A
more pronounced positive performance gap (for instance,
where humans outperform the machine to a greater extent)
would signify a higher level of difficulty for the model in
handling the given task. Conversely, in cases where the ma-
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chine outperforms humans, a larger gap indicates an easier
task. The resulting assessment of across-task difficulty is
outlined in Table 3. Specifically, we choose a range of down-
stream tasks, including PIQA, HellaSwag, OpenBookQA
and our experiments are conducted using Vicuna-13B.
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Figure 5. Across-Task Difficulty via Normalized Human-LLM
Performance Gap: Dense v.s. Sparse subnetwork performance of
Vicuna-13B. Task difficulty is measured by Human-LLM Perfor-
mance gap normalized by the dense performance.

3.2.2. TASK DIFFICULTY SETTING 6: Factoid-based v.s.
Multiple-choice QA

Rationale and Method: In this setting, we compare two
popular QA settings: Factoid-based QA and Multiple-
Choice QA. A typical Factoid-QA task aims to answer natu-
ral language questions using facts, i.e., entities or attributes
of knowledge ingested within them during pre-training. On
the other hand, multiple-choice QA setting present the ques-
tion and answer options to the LLMs jointly, and have it
output the symbol (e.g., “A") associated with its chosen an-
swer option. Unlike multiple-choice QA, factoid-based QA
requires LLMs’ ability to answer natural language questions
using facts using its own knowledge and possess the abil-
ity to generate full answers unlike output a symbol, which
makes it inherently a more challenging task.

3.2.3. MAIN RESULTS: VALIDATING THE JUNK DNA
HYPOTHESIS

The findings depicted in Figure 5, 6 echo the conclusions
drawn in Section 3.1, once more providing robust support
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Figure 6. Across-Task Difficulty for Factoid-based QA and
Multiple-Choice QA:: Dense v.s. Sparse subnetwork perfor-
mance of Vicuna-7B. Task difficulty is measured by Human-LLM
Performance gap normalized by the dense performance.

for the validity of the Junk DNA hypothesis across a broad
spectrum of task categories. While it may be feasible to
remove small-magnitude weights without significant reper-
cussions in simpler tasks, these pre-trained small weights
contain vital downstream knowledge essential for tackling
challenging tasks and thus are no longer dispensable suggest-
ing their importance -manifested as monotonic relationships
between the amount of pruned weights and the difficult level
of tasks that start to be impaired.

4. Does Quantization Also Yield Monotonic
Impairment Across Difficulty Spectrum?

Pruning and quantization are two popularly used remedies
to reduce the overheads of billions of parameters in current
LLMs. Pruning techniques primarily shrink network sizes
by removing specific weights from the model – essentially
setting them to zero. Quantization methods aim to quantize
parameters into low bit-precision to reduce compute and
memory budget. Across recently developed quantization
methods for LLMs (Lin et al., 2023a; Frantar et al., 2022a;
Dettmers et al., 2023), we adopted GPTQ for the quanti-
zation of all linear layers (exactly similar to our pruning
settings) to study the monotonic impairment induced across
the task difficulty spectrum. In this section, we firstly ask:
How does the ratio of compression using quantization reflect
on the performance of the downstream tasks? Does quanti-
zation strength dictate any performance pattern across the
difficulty spectrum of the underlying task?

To this end, Figure 7 presents our head-to-head comparison
for one-shot low-magnitude pruning and GPTQ quantization
(Frantar et al., 2022b) various compression strengths. We
adopted retrieval-augmented QA (task setting 3) in which
task difficulty is controlled by varying the context length (to-
ken counts) accommodating the correct answer phrase, and
variable option count in multiple-choice QA (task setting 2)
for our experiments.

Based on our experimental results, we summarize: ❶ while
pruning shows a monotonic performance degradation with
increasing compression ratio, quantization does not exhibit
the smooth impairing impact of compression; ❷ removal of
low magnitude weights using pruning tends to have a mono-
tonically increasing impairing impact if we move along the

6



Title Suppressed Due to Excessive Size

Task Setting 3: Varying Context Length

Task Setting 2: Varying Option Count

Figure 7. How is pruning special? Performance comparison of
pruning and quantization with varying compression ratios on our
task difficulty spectrum. We can observe the monotonic impair-
ment of pruning across task difficulty and pruning ratio. On
the contrary, quantization fail to capture this monotonic behavior
across task difficulty and compression ratio.

extreme end of our task difficulty spectrum, which is again
not convincingly demarcated either by quantization. It is
interesting to observe that quantization to a certain degree
tends to benefit the overall performance but again without
any clear pattern across the difficulty spectrum.

How Is Pruning Special? It is interesting to see the unique
ability of pruning to identify a critical subset of weights
that can independently complete specific set of tasks the
same way as the dense model - but not quantization. This
naturally reminds us the Lottery Ticket Hypothesis (LTH)
(Frankle et al., 2019; Chen et al., 2020), stating that there ex-
ists a pruned subnetwork that can match the performance of
its dense counterpart; meanwhile no similar conclusion has
been drawn for quantized networks at scale. Such discrep-
ancy seems to echo the two methods’ different impairment
behaviors (monotonic or not across task difficulty levels).
We additionally experimented with low-rank compression
(Yu et al., 2017) (not the low-rank weight updates used in
parameter-efficient tuning (Hu et al., 2021)) and found its
behavior closer to pruning than quantization (Appendix E).

The classical LTH (with iterative pruning and re-training)
has not yet been studied for modern-scale LLMs due to its
prohibitive computational costs. Previous work in smaller
models did find reusable sparse substructures that contain
sufficient information to handle a few similar tasks alto-
gether (Chen et al., 2020; Yu et al., 2020). Recent attempt
(Jaiswal et al., 2023b) demonstrated a similar property on
LLMs for a range of tasks, using cheap one-shot prun-
ing without re-training; but the authors also recognized
the “sweetpoint sparsity" was correlated to the difficulty of

Task Setting Difficulty (↓) Pruning Quantization

Task Setting 3 Closed Book 0.996 0.799
Context_len = 100% 0.996 0.794
Context_len = 60% 0.975 0.399
Context_len = 20% 0.987 0.316

Task Setting 2 Option Count 4 0.979 0.872
Option Count 3 1.0 0.799
Option Count 2 1.0 0.666

Table 2. Spearman’s rank correlation of pruning and quantization
for task with varying difficulty levels. Unlike quantization high
Spearman correlation for pruning uniquely captures monotonic
impairment induced by pruning.

downstream tasks involved (although they did not provide
a concrete way to quantify such). As a modern LLM can
perform an infinite range of downstream tasks in zero- or
few-shot, Junk DNA Hypothesis can be viewed as a scaled
extension of LTH, which suggests that: if the task difficulty
spectrum (much broader than before) is taken into consid-
eration, then there might not exist a single “lottery" subset
of weight, that can be removed without causing irrepara-
ble damage for the performance of all tasks - although one
might still be able to find a “lottery" for some (easy) tasks.

5. Are Pre-trained Magnitude Values Indeed
the True Gem?

Having recognized the pivotal role of small weights in down-
stream adaptation, particularly in relation to task difficulty,
our next objective is to delve into the foundational factors
contributing to the crucial function of small weights and
whether they can be recovered with fine-tuning. More specif-
ically, we intend to validate if pruning leads to irreparable
loss of knowledge. Our primary research inquiries are:

• Which one holds greater significance: the knowledge
(weight-values) stored in pre-trained small-magnitude
weights, or the potential to adjust these weights through
fine-tuning?

• Is it possible to recover the knowledge embedded in pre-
trained small-magnitude weights if we prune them and allow
them to grow freely during fine-tuning?

Method: We explore four comparison methods: (1) Dense
Transfer: as described in Section 3.1.1; (2) Dense Trans-
fer with (Partial) Freezing: a dense model where small-
magnitude weights remain fixed during fine-tuning; (3)
Sparse Transfer: as in Section 3.1.1; (4) Sparse to Dense
Transfer: small-magnitude weights are initially pruned af-
ter pre-training, and subsequently during fine-tuning, those
pruned weights are allowed to gradually regain non-zero
values. This approach also aids in determining whether the
knowledge within small-magnitude pre-trained weights is
essential for performance or if their adaptability during fine-
tuning takes precedence. We pick Task Setting 1 (within
the same task) and Task Setting 5 (across different task), to
report their performance using RoBERTa-Large, on MNLI,
QNLI, SST-2, as well as CSQA and WinoGrande. The diffi-
culty spectrum normalized by human performance for the
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Figure 8. Varying target domain data adequacy: Four different fine-tuning settings with RoBERTa-Base on various downstream tasks.
All performance is normalized by the one of Dense Transfer.
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Figure 9. Across-Task Difficulty via Normalized Human-LLM Performance Gap: Four different fine-tuning settings with RoBERTa-
Large on various downstream tasks. All performance is normalized by the one of Dense Transfer.

aforementioned tasks is presented in Appendix B.

Table 3. Measuring the Across-Task Difficulty by the Performance
Difference between humans and models (normalized by human
performance): the larger (positive) margin, the more difficult for
the model.

PIQA HellaSwag OpenBookQA

Human 95.0 95.6 92.0

Vucuna13B 78.35 59.68 36.40

“Task Difficulty" (%) [Easy] 17.53 [Medium] 37.57 [Hard] 60.43

Results: The outcomes for both within-task difficulty and
across-task difficulty are illustrated in Figure 8 and Figure 9,
respectively. Below, we outline our key observations:

❶ Pre-trained small weights harbor vital downstream
knowledge, beyond mere free parameters. Across both
task-difficulty metrics, it becomes evident that settings pre-
serving the pre-trained values of small weights—namely,
Dense Transfer and Dense Transfer with Freezing—achieve
superior performance when compared to the other two set-
tings. The removal of small-magnitude weights from pre-
trained models results in significant performance degrada-
tion, even when we permit the pruned weights to regener-
ate during fine-tuning. This observation strongly bolsters
the Junk DNA Hypothesis, indicating that small-magnitude
weights are far from redundant; rather, they house so-
phisticated knowledge crucial for downstream adaptation.
This knowledge proves challenging to re-gain through fine-
tuning, if these initial pre-trained weights are eliminated.

❷ Freezing without updating yields commendable re-
sults. Remarkably, on simpler tasks like SST-2, MNLI,
and QNLI, maintaining an overwhelmingly large portion
(90%) of small-magnitude weights in a frozen state leads

to equally impressive performance without any loss. Even
on more intricate tasks such as COLA, CSQA, and Wino-
Grande, freezing up to 70% of small-magnitude weights
results in no discernible performance dip. This suggests
that for easier tasks, the knowledge embedded in pre-trained
small-magnitude weights is already more than sufficient.
However, for more challenging tasks, allowing for moderate
updates to all pre-trained weights remains essential.

6. Conclusion and Future Work
In this study, we embark on an exploration to validate the
prevailing belief that deep network weights are excessively
redundant, allowing for a substantial pruning of parameters
without compromising performance. Our research presents
a compelling counter-argument by unearthing the previously
overlooked yet intricate role of small-magnitude weights,
closely tied to the difficulty level of downstream tasks. We
found small-magnitude pre-trained weights encode vital
knowledge essential for tackling difficult downstream tasks
- manifested as monotonic relationship between increasing
task difficulty and impairment induced by removing small
weights. Moreover, we argue that these seemingly inconse-
quential weights can result in irreparable loss of knowledge
and performance degradation in difficult tasks, even if down-
stream continual training is allowed. Meanwhile, quantiza-
tion fails to exhibit similar effects and hence does not as
convincingly disentangle this task- difficulty information
as pruning. As the number of parameters in deep networks
continues to grow exponentially, our findings prompt the
exploration of directions such as task-complexity-dependent
dynamic inference and network self-slimmable properties.
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Impact Statement
This study presents the "Junk DNA Hypothesis," a nuanced
perspective on the role of small-magnitude weights in large
language models (LLMs), challenging the traditional view
of their redundancy. Our findings highlight the importance
of these weights in complex tasks and suggest the need
for further exploration into dynamic inference and network
slimming techniques based on task complexity. This could
lead to improved methods for more efficient inference, and
contribute to the “GreenAI" goal.
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A. Related Work
A.1. Classical Pruning and Sparse Neural Networks
Pruning removes specific parts of a deep neural network, such as weights, neurons, or filters. The initial purpose of pruning
is retrospectively to accelerate the model at inference time (a.k.a., post-training sparsification (Mozer & Smolensky, 1989;
LeCun et al., 1990). Post-training sparsification has been well studied and results in various mature criteria that can be
generally categorized into zero-order methods (Han et al., 2016; Gale et al., 2019), first-order methods (Molchanov et al.,
2016; Sanh et al., 2020; Jiang et al., 2021), and second-order methods (LeCun et al., 1990; Hassibi & Stork, 1992; Dong
et al., 2017) - the last usually achieve higher performance but also are more expensive due to the Hessian calculation, leading
to the development of many Hessian approximation approaches (Zeng & Urtasun, 2018; Wang et al., 2019; Singh & Alistarh,
2020; Kurtic et al., 2022). The Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019) utilizes iterative magnitude
pruning (IMP) to identify a subnetwork at initialization that can be re-trained independently to the original dense network’s
performance. Sparse training (Mocanu et al., 2018; Jaiswal et al., 2022; Mostafa & Wang, 2019; Evci et al., 2020; Liu et al.,
2021; Yuan et al., 2021; Yin et al., 2023; Kundu et al., 2021), on the other hand, starts with a (random) sparse network and
updates network connectivity during training to search for good sparse neural network without any pre-training and dense
training steps.

A.2. Sparsity in Large-Scale Models

The advent of large-scale pre-trained models has led to the development of advanced post-training pruning methods, aiming
to enhance the cost-effectiveness of these expansive models (Sanh et al., 2020; Chen et al., 2020; Jaiswal et al., 2023c; Zafrir
et al., 2021; Kurtic et al., 2022; Xu et al., 2021; Lagunas et al., 2021; Zhang et al., 2022; Frantar et al., 2021; Jaiswal et al.,
2023b; Ma et al., 2023). Among them, Frantar et al. (2021) extend second-order pruning to the BERT-level scale, enabling
the pruning of blocks of weights and achieving state-of-the-art results for sparse BERT. Frantar & Alistarh (2023) introduce
SparseGPT for pruning large language models (LLMs) in a single shot without requiring re-training or fine-tuning. They
leverage column-wise second-order pruning, and successfully remove 100B weights from OPT-175B without a significant
increase in perplexity. More recently, Sun et al. (2023) propose a straightforward pruning method that takes both weights and
activations into account, demonstrating comparable performance to Frantar & Alistarh (2023). Li et al. (2022) reveal that
activation sparsity is a prevalent phenomenon in Transformers (90% of intermediate output), yielding another opportunity
for acceleration. Liu et al. (2023) introduce a large-scale SMC-Bench, indicating that state-of-the-art magnitude- and/or
gradient-based sparse algorithms fall short when applied out-of-the-box to larger-scale models and a selected of complex
downstream tasks. Our study is inspired by Liu et al. (2023), but with significantly expanded experiment scales, versatile
task choices, concrete task difficulty definitions, and richer insights.

B. Across-Task Difficulty by the Performance Difference between humans and models.

Table 4. Measuring the Across-Task Difficulty by the Performance Difference between humans and models (normalized by human
performance): the larger (positive) margin, the more difficult for the machine. Human performance is obtained from Nangia & Bowman
(2019). The more challenging task is marked in bold.

Single Sentence Sentence Similarity Natural Language Inference Commonsense Reasoning
SST-2 COLA QQP STS-B QNLI RTE WinoGrande CSQA

Human 97.8 66.4 80.4 92.7 91.2 93.6 94.0 89.0

RoBERTa-Large 96.2 64.9 91.8 92.2 94.4 84.3 78.1 72.1

“Task Difficulty" (%) 1.64 2.26 -14.18 0.54 -3.51 9.94 16.91 18.99

We acknowledge the limitations in our approach, such as when both humans and LLMs perform poorly on a task, potentially
indicating high difficulty not reflected in our ’relative’ gap metric. We hope our exploration can inspire more efforts in a
more general and rigorous assessment of cross-task difficulty.

C. Small-Magnitude Weights Contribute to Loss Basin Preservation
We also investigate the potential reasons behind the substantial performance drop resulting from the removal of small-
magnitude weights on harder tasks. Our analysis revolves around the loss landscape, and we conjecture that small-magnitude
weights play a significantly more crucial role in preserving the loss basin of the dense model on harder tasks compared to
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Figure 10. Linear interpolation from the Dense Transfer (Left) model to its corresponding Sparse Transfer models (Right) on easy and
harder tasks (in terms of across-task difficulty).

easier ones. Consequently, the absence of these small weights disrupts the optimal basin, leading to a considerable loss of
performance.

To test our conjecture, we utilize the linear mode connectivity (LMC) metric proposed by (Frankle et al., 2020) between the
solution produced by Sparse Transfer and that of Dense Transfer. Specifically, we perform linear interpolation between the
fine-tuned model of Dense Transfer (θd) and the fine-tuned model of Sparse Transfer (θs), denoted as θ̃ = αθs +(1−α)θd.
We conduct two sets of comparisons, namely QQP vs. STS-B and QNLI vs. RTE, and report the performance and loss in
Figure 5. Our findings reveal that both sparse and dense models remain linearly connected, with minimal or no increase in
loss barrier for easy tasks (i.e., QQP and RTE) when a certain portion of small-magnitude weights is removed. However,
a significant increase in the loss barrier is observed when the same number of weights is removed for harder tasks. This
observation strongly supports the concept of “Junk DNA”, emphasizing the vital role of small-magnitude weights in ensuring
that the fine-tuned model resides in the optimal basin. In contrast, the removal of these weights would lead to the destruction
of this optimal basin, which is challenging to fix through fine-tuning, causing a notable decline in performance.

D. Dataset Details
D.1. Massive Multitask Language Understanding (MMLU)

MMLU (Hendrycks et al., 2020) is a new benchmark designed to measure knowledge acquired during pretraining by
evaluating models exclusively in zero-shot and few-shot settings. This makes the benchmark more challenging and more
similar to how we evaluate humans. The benchmark covers 57 subjects across STEM, the humanities, the social sciences, and
more. It ranges in difficulty from an elementary level to an advanced professional level, and it tests both world knowledge
and problem solving ability. Subjects range from traditional areas, such as mathematics and history, to more specialized
areas like law and ethics. The granularity and breadth of the subjects makes the benchmark ideal for identifying a model’s
blind spots.

D.2. Freebase Factoid Question Answering

FreebaseQA (Jiang et al., 2019) is a data set for open-domain QA over the Freebase knowledge graph. The question-answer
pairs in this data set are collected from various sources, including the TriviaQA data set and other trivia websites (QuizBalls,
QuizZone, KnowQuiz), and are matched against Freebase to generate relevant subject-predicate-object triples that were
further verified by human annotators. As all questions in FreebaseQA are composed independently for human contestants in
various trivia-like competitions, this data set shows richer linguistic variation and complexity than existing QA data sets,
making it a good test-bed for emerging KB-QA systems.

D.3. TrviaQA Dataset

TriviaQA (Joshi et al., 2017) is a popular reading comprehension dataset which includes 95K question-answer pairs
authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide
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high-quality distant supervision for answering the questions. TriviaQA consists of fairly complex compositional questions
with considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, making
it a challenging testbed for our evaluation.

D.4. Glue Benchmark

General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018) is a collection of nine natural language
understanding tasks, including single-sentence tasks CoLA and SST-2, similarity and paraphrasing tasks MRPC, STS-B
and QQP, and natural language inference tasks MNLI, QNLI, RTE and WNLI. GLUE is designed to favor and encourage
models that share general linguistic knowledge across tasks.

D.5. OpenbookQA Benchmark

OpenBookQA (Mihaylov et al., 2018) is a new kind of question-answering dataset modeled after open book exams for
assessing human understanding of a subject. It consists of 5,957 multiple-choice elementary-level science questions (4,957
train, 500 dev, 500 test), which probe the understanding of a small “book” of 1,326 core science facts and the application of
these facts to novel situations. For training, the dataset includes a mapping from each question to the core science fact it was
designed to probe. Answering OpenBookQA questions requires additional broad common knowledge, not contained in the
book. The questions, by design, are answered incorrectly by both a retrieval-based algorithm and a word co-occurrence
algorithm. Additionally, the dataset includes a collection of 5,167 crowd-sourced common knowledge facts, and an expanded
version of the train/dev/test questions where each question is associated with its originating core fact, a human accuracy
score, and a clarity score.

D.6. HellaSwag

HellaSWAG (Zellers et al., 2019) is a dataset for studying grounded commonsense inference. It consists of 70k multiple
choice questions about grounded situations: each question comes from one of two domains - activitynet or wikihow - with
four answer choices about what might happen next in the scene. The correct answer is the (real) sentence for the next event;
the three incorrect answers are adversarially generated and human verified, so as to fool machines but not humans.

E. Low-Rank Compression
An alternative way of compressing the model is reducing the rank of weight matrices by retaining the top k components
identified through Singular Value Decomposition (SVD) (Lv et al., 2023; Hajimolahoseini et al., 2021; Sharma et al., 2023).
In our study, we specifically modify the rank of k using SVD decomposition across all linear layers in the transformer block
of the Vicuna-7B model, ranging from 4000 to 100 ranks.. We then evaluate the compressed model’s performance in two
task difficulty settings: ❶ Setings 2: Varying the Option Count in Multiple-choice QA Setting and Setings 3:❷ Varying
Context Length for Retrieval-Augmented QA.

Ful
l ra

nk
40

00
35

00
 30

00
 25

00
 20

00
 15

00
 10

00  50
0

 10
0

80

60

40

20

0

Pe
rfo

rm
an

ce
 D

ro
p

Low-rank SVD: Task Setting 2
[Easy] Option Count 2
[Medium] Option Count 3
[Hard] Option Count 4

Ful
l ra

nk
40

00
35

00
 30

00
 25

00
 20

00
 15

00
 10

00  50
0

 10
0

100

80

60

40

20

0

Low-rank SVD: Task Setting 3
[Hard] Closed Book
[Medium] context_len = 100%
[Easy] context_len = 60%
[Easiest] context_len = 20%

Figure 11. Low-Rank Compression using SVD.

We noticed the concurrent work (Sharma et al., 2023) suggesting layer-selective low-rank compression of weights often
improves LLM reasoning and generalization, without needing no re-training needed. We however note that requires careful
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Table 5. Low-Rank Compression using SVD.
Context Length Option Count

Closed Book 100% 60% 20% 2 3 4

Spearman’s Rank 0.899 0.942 0.905 0.912 0.933 0.956 0.956

selection of layer & rank. In comparison, we apply “uniform" SVD to all linear weight layers (except embedding), to make
fair comparisons to pruning/quantization. We leave the examination of more sophisticated methods such as (Sharma et al.,
2023) as future work.
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