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Abstract
In network games, individuals interact strate-
gically within network environments to maxi-
mize their utilities. However, obtaining network
structures is challenging. In this work, we pro-
pose an unsupervised learning model, called data-
dependent gated-prior graph variational autoen-
coder (GPGVAE), that infers the underlying latent
interaction type (strategic complement vs. sub-
stitute) among individuals and the latent network
structure based on their observed actions. Spe-
cially, we propose a spectral graph neural network
(GNN) based encoder to predict the interaction
type and a data-dependent gated prior that models
network structures conditioned on the interaction
type. We further propose a Transformer based
mixture of Bernoulli encoder of network struc-
tures and a GNN based decoder of game actions.
We systematically study the Monte Carlo gradi-
ent estimation methods and effectively train our
model in a stage-wise fashion. Extensive experi-
ments across various synthetic and real-world net-
work games demonstrate that our model achieves
state-of-the-art performances in inferring network
structures and well captures interaction types.

1. Introduction
Social influence and strategic dependencies are prevalent
in systems like social networks (Aral et al., 2009; Banerjee
et al., 2013; Leng et al., 2023b). These social dynamics
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can be encapsulated in what are known as network games.
In these games, an individual’s utility is shaped not only
by their actions but also by the actions of others in their
social circles. Two types of strategic relationships, known
as strategic complement and strategic substitute, encompass
a wide range of behaviors. In scenarios involving strategic
complements, an individual’s actions positively influence
others’ utility, hence typically leading to higher action levels.
This interdependence often results in individuals mimick-
ing the actions of their neighbors. Conversely, in strategic
substitute relationships, neighbors’ action levels reduce in-
dividuals’ utility and hence reduce their action levels. In
both strategies, the network structure plays a fundamental
role in determining individuals’ utility and subsequently
their decisions. However, it is increasingly common that
despite having abundant data on individual decisions, the
intricate relationships (e.g., represented by an interaction
network) among them often remain concealed due to the
high costs of observation or privacy considerations (Leng
et al., 2020; Rossi et al., 2022; Leng et al., 2023a). As such,
revealing latent network structures and identifying the types
of interactions are crucial in network games.

Many studies rely on utility functions to analyze individuals’
Nash equilibrium behaviors and estimate the latent network
structures (Honorio & Ortiz, 2015; Barik & Honorio, 2019;
Leng et al., 2020). These works often assume specific forms
of utility functions. Meanwhile, supervised (Belilovsky
et al., 2016; Zhao et al., 2023) and semi-supervised ap-
proaches (Elinas et al., 2020; Liu et al., 2023; Wang et al.,
2023) have been proposed to predict network structures
given users’ actions and partial network connections (re-
quired in semi-supervised learning). In real-world appli-
cations, determining the exact form of utility functions or
acquiring graph structures is often challenging, which mo-
tivates us to explore unsupervised methods that can infer
network structures without knowing the utility function.

In this paper, we propose an unsupervised learning model,
dubbed data-dependent Gated-Prior Graph Variational Au-
toencoder (GPGVAE), which directly infers latent network
structures from game actions. Specifically, in our efforts to
capture interaction types such as strategic complements and
substitutes, we initially investigate data-dependent priors,
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including correlations and anticorrelations, derived from
game actions within the framework of Graph Variational
Autoencoders (Graph VAEs). We observe that correlation
priors help infer latent network structures in complementary
interactions, while anticorrelation priors are beneficial for
substitute interactions. Given that no single prior consis-
tently dominates across all game settings, we are motivated
to introduce a latent interaction type and design a gated
(mixture) prior, which alternates between these two priors
conditioned on the interaction type. Furthermore, our anal-
ysis of the covariance matrix of game actions reveals that
games with strategic complement and substitute interac-
tions have distinctive spectral patterns. This finding has led
us to design a spectral GNN-based encoder to effectively
infer the latent interaction type. We have also developed
a Transformer-based graph encoder to predict the latent
network structure, an MLP-based encoder to predict user
embeddings, and a GNN-based decoder for reconstructing
game actions. Lastly, given that our model incorporates
both continuous and discrete latent variables, we employ
a stage-wise training strategy, i.e., 1) pretraining of the in-
teraction type encoder on synthetic network games and 2)
training the rest of the model. Owing to the model design,
our training objectives are invariant to permutations of users.
We also systematically investigate the Monte Carlo gradient
estimation methods for training our model. Extensive ex-
periments on synthetic and real-world datasets demonstrate
that our approach achieves state-of-the-art performances.

2. Related Work
The challenge of inferring network structures has attracted
extensive attention across different domains. In statistics,
the inference of network structures can be framed as an
estimation problem for sparse undirected graph models,
where the most renowned method is the graphical lasso
(Meinshausen & Bühlmann, 2006). However, as highlighted
by Pu et al. (2021), selecting regularization parameters in the
graphical lasso is challenging. To address this, they propose
to replace the regularization term with learnable VAEs and
improve its effectiveness and robustness. Shrivastava et al.
(2020) introduce a neural network that dynamically adjusts
the regularization parameters and other hyperparameters.
An unsupervised version is provided in their follow-up work
(Shrivastava et al., 2022).

In game theory, research often relies on established forms of
utility functions or predefined network structures (Honorio
& Ortiz, 2015; Ghoshal & Honorio, 2016). Bramoullé et al.
(2014) study Nash equilibrium states and the impact of indi-
vidual decisions on others’ payoffs using two linear utility
functions. Barik & Honorio (2019) introduce a block-norm
regularization method that can reconstruct Nash equilibrium
states and underlying network structures of graphical games.

Leng et al. (2020; 2023a) focus on quadratic utility func-
tions and propose an optimization algorithm for inferring
network structures and individual marginal benefits based
on continuous equilibrium behaviors. Relying on a subset
of network structures for supervised learning, Rossi et al.
(2022) introduce a Transformer-based method to infer net-
work structures from individual actions.

In machine learning, Belilovsky et al. (2016) propose con-
volutional neural networks (CNNs) to learn a mapping from
sample covariance matrices to graphs in a supervised fash-
ion. However, models learned through this approach lack
permutation equivariance. Yu et al. (2019) employ VAEs
for inferring Directed Acyclic Graphs (DAGs), which limits
its applicability to networks with cycles. Some supervised
and semi-supervised methods combine graph learning with
downstream tasks and need node labels or partial network
connections to learn structures (Franceschi et al., 2019; Eli-
nas et al., 2020; Wu et al., 2022; Zhang et al., 2023; Zou
et al., 2023). Kipf et al. (2018) propose an unsupervised
method that uses VAEs to infer interactions between indi-
viduals and predict the motion trajectories of nodes in a
dynamic system. Xu et al. (2023) construct a differentiable
k-nearest-neighbor (k-NN) graph on selected features by
minimizing the Dirichlet energy, where the parameter k
needs to be predefined.

3. Strategic Interactions and Network Games
We now discuss and analyze two primary types of strategic
interactions, i.e., strategic complement and strategic substi-
tute, which cover a broad spectrum of real-world behaviors,
ranging from consumer consumption behaviors, and invest-
ment decisions (Ballester et al., 2006; Bramoullé et al., 2014;
Galeotti et al., 2020). We then introduce several popular
network games, which provide a mathematical framework
to analyze multi-agent behaviors. Within this framework, ra-
tional agents make their decisions to maximize their utility,
which is affected by their network connections.

Notations. Consider an undirected graph G(V, E), where
V represents the set of N individuals and E denotes the
relationship set. This network can be represented by a real
and symmetric adjacency matrix A ∈ RN×N . For any pair
of individuals (i, j), Aij = Aji = 1 if (i, j) ∈ E , and
otherwise 0. The normalized adjacency matrix is defined
as Ã = D− 1

2AD− 1
2 , where D is a degree matrix with

Dii =
∑

j Aij . The normalized graph Laplacian matrix is
defined by L = I−Ã. ui is the utility function of individual
i and Ni is the set of its neighbors. xi denotes the action
taken by individual i in a game. In the real world, an action
can be continuous (e.g., the amount of time to spend on a
social platform) or discrete (e.g., adopting a product). In
this paper, we consider continuous actions. For any games,
we assume that the action of individual i is drawn from
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the same model in an i.i.d fashion. x∗ = [x∗1, ..., x
∗
N ]⊤

denotes the equilibrium action of all individuals when the
Nash equilibrium condition is satisfied.

3.1. Strategic Complement

In strategic complementary games, if individuals i and j
are connected, their actions are expected to be positively
correlated. We now introduce three widely-used network
games that exhibit strategic complements.

BH graphical games. Barik & Honorio (2019) develop a
graphical game in which individuals’ utilities are affected
by the average actions of their neighbors. They consider a
utility function in the following form:

ui = −∥xi −
∑

j∈V
Ãijxj∥2. (1)

To maximize their utility, individuals are incentivized to
conform to the actions of their neighbors, because any devi-
ations from their neighbors’ actions can reduce their utility
ui. In this type of game, the interactions are purely strategic
complements and the equilibrium action x∗ is the largest
eigenvector corresponding to the largest eigenvalue of Ã.

Linear Influence Games. Based on the linear influence
games with discrete actions (Irfan & Ortiz, 2011), Rossi
et al. (2022) consider the variant with continuous behaviors.
Linear influence games can represent complex contagion be-
haviors (Centola & Macy, 2007). In this game, individuals’
adoption decisions are affected by their actions and those of
their neighbors, as well as an idiosyncratic “threshold” bi.
If the aggregated impact from i’s neighbors is lower than
bi, then the behavior of i does not change. The continuous
version of the utility function can be represented as

ui =
∑

j∈Ni

Ãijxixj − bixi. (2)

Considering the homophily effect in the marginal benefit
b, Rossi et al. (2022) investigate its covariance, determined
by the network structure, affects the distribution of actions.
Here, b follows a Gaussian distribution:
b ∼ N (0, L†

α), Lα = (1− α)I + αL = I − αÃ. (3)
where b = [b1, ..., bN ]⊤ ∈ RN , I ∈ RN×N is the iden-
tity matrix, † represents the pseudo-inverse and α ∈ [0, 1].
When α = 1, individuals tend to connect with others who
have similar inherent characteristics; When α = 0, each
individual’s idiosyncratic bi is independent of its neighbors.
Given the distribution (3), the equilibrium action x∗ obeys a
Gaussian distribution, i.e., x∗ ∼ N (0, Ã−1(I−αÃ)†Ã−1),
where Ã is assumed to be invertible. Interactions in this
game are usually strategic complements.

Linear Quadratic Games. Ballester et al. (2006);
Bramoullé et al. (2014) propose linear quadratic games
where an individual i chooses its action xi by maximising

the following quadratic payoff ui:

ui = bixi −
1

2
x2
i + β

∑
j∈Ni

Ãijxixj . (4)

The third term β
∑

j∈Ni
Ãijxixj represents the impact of

the actions of other neighbors on individual i, where β con-
trols the strength of influence from its neighbors. To ensure
the uniqueness and stability of the equilibrium behavior, it
is commonly assumed that the spectral radius ρ(βÃ) < 1
(i.e., |β| < 1). Additionally, when β > 0, the action of one
individual j ∈ Ni positively affects the payoff of individual
i when taking the same actions, and individual i tends to
take an action consistent with that of its neighbors. This is a
strategic complement. For this game, the equilibrium action
x∗ follows

x∗ ∼ N (0, (I − βÃ)−1(I − αÃ)†(I − βÃ)−1). (5)

3.2. Strategic Substitute

In addition to strategic complement, individuals’ decisions
can be strategic substitutive of each other (Bulow et al.,
1985; Goyal & Moraga-González, 2001). In strategic substi-
tute games, a heightened action level by individual i reduces
the payoff for individual j. Hence, actions are expected
to be negatively correlated in these games when i and j
are connected. A canonical example of strategic substitute
games is a linear quadratic game with β < 0. Specifically,
in Eq. (4), if β < 0, a higher level of action by individual
j ∈ Ni negatively affects the payoff of individual i when
taking a higher level of actions, hence individuals have the
incentive to reduce their action level. We provide more
details about the three types of games in Appendix A.1.

4. Data-Dependent Gated-Prior Graph VAE
In the aforementioned network games, the network structure
directly influences the distribution of individuals’ equilib-
rium actions. This suggests that one could infer the un-
derlying unobservable network structure from individuals’
equilibrium actions. To accomplish this goal, we propose
a generative model with network structures and the interac-
tion type being latent variables, dubbed GPGVAE. In the
following, we will first introduce the overall framework.
Then we will describe the designs of data-dependent gated
prior, the encoder, and the decoder respectively.

4.1. Graph VAE Framework

Given a set of N individuals/users, we sample their actions
X ∈ RN×M from M games with the same latent network
structure, i.e., the binary adjacency matrix A. We assume
that the observed actions X satisfy the Nash equilibrium
condition. Although this assumption may be violated in
some practical cases, we will see that our framework still
performs empirically well. To achieve the goal of inferring
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Figure 1. The overview of our data-dependent Gated Prior Graph VAE. We employ a 2-stage training strategy: 1) pretrain our spectral
GNN-based interaction type encoder qϕ(C|X); 2) train the model with qϕ(C|X) being fixed.

the latent network structure from user actions, we develop
a latent graph VAE framework which consists of three en-
coders, a decoder, and a prior. Furthermore, to account
for the two types of interactions (complement vs. substi-
tute), we introduce a binary latent variable C ∈ {0, 1}. We
additionally introduce a latent vector per user for captur-
ing other potential factors, denoted as Z ∈ RN×D where
D is the hidden dimension. To ensure the tractability of
the encoder qϕ(A,Z,C|X), we assume the conditional in-
dependence qϕ(A,Z,C|X) = qϕ(A|X)qϕ(Z|X)qϕ(C|X),
where the learnable parameters are absorbed in ϕ. The
decoder is denoted as pθ(X|A,Z,C) with learnable pa-
rameters θ. We propose the data-dependent gated prior as
p(A,Z,C) := p(A|C,X ′)p(C)p(Z). The prior of the net-
work structure A is data-dependent since it is conditioned
on a subset of observed data X ′. Moreover, the binary in-
teraction type C serves as a gating variable that alternates
between two mixture distributions of the network structure.
Similar to other VAEs, the learning is to minimize the nega-
tive evidence lower bound (ELBO):
L(ϕ, θ) = Eqϕ(A,Z,C|X) [− log pθ(X|A,Z,C)]

+ KL(qϕ(Z|X)∥p(Z)) + KL(qϕ(C|X)∥p(C))
+ Eqϕ(C|X) [KL(qϕ(A|X)∥p(A|C,X ′))] , (6)

where KL(·∥·) is the Kullback-Leibler divergence. The first
term of the right-hand side is the so-called reconstruction
loss. We will introduce the motivation and the design of
these components in the subsequent sections.

4.2. Data-Dependent Gated Prior of Network Structures

We now introduce our data-dependent gated prior. Let us
first consider a simpler prior design p(A,Z) = p(A)p(Z),
which will motivate the necessity of a data-dependent prior
and the introduction of the latent interaction type C. p(Z)
could be simply set as standard Normal. The encoder
and decoder in this case are simplified as qϕ(A,Z|X) =
qϕ(A|X)qϕ(Z|X) and pθ(X|A,Z) respectively. We then
compare different choices of p(A) via synthetic experiments
with 50 Erdős-Rényi (ER) graphs (each with 20 nodes and

Figure 2. Dominant priors (i.e., a prior leads to the highest AUC)
on linear quadratic games. Left: AUCs of different priors under
varying β and α = 0. Right: Dominant priors (red: correlation;
blue: anticorrelation) under varying α and β.

100 games) and actions X drawn from linear quadratic
games. In particular, we assume edge-independent prior
p(A) =

∏
i,j p(Aij) where p(Aij) takes the following

forms: 1) uniform: p(Aij = 1) = 1/2; 2) correlation:
p(Aij = 1) = ψcorr(Xi, Xj) := (ρij+1)/2; 3) anticorrela-
tion: p(Aij = 1) = 1−ψcorr(Xi, Xj) = (1− ρij)/2. Here
we use Pearson’s correlation coefficient between users i and
j based on their sampled actions,

ρij =

∑M
k=1(Xik − X̄i)(Xjk − X̄j)√∑M

k=1(Xik − X̄i)2
√∑M

k=1(Xjk − X̄j)2
,

where X̄i = (
∑M

k=1Xik)/M . We vary the prior choice
with the rest of the model unchanged and then train these
models. More details are provided in Appendix D.1.

The left subplot of Figure 2 presents the averaged area under
the curve (AUC) values and the standard deviation (std) for
inferred latent network structures compared to the ground
truth. We fix the marginal benefit parameter α = 0 and vary
the strength of dependencies between individuals β from
−0.8 to 0.8. It is clear that the model based on a uniform
prior yields an AUC value around 0.5, whereas correlation
and anticorrelation priors dominate in certain regions of
β. Here, a “dominant prior” means the one that leads to a
higher AUC. More details can be found in Appendix A.2.
The right subplot of Figure 2 shows the dominant priors on
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linear quadratic games with varying α and β. The corre-
lation prior (red) consistently dominates under the strate-
gic complement (β > 0) cases, whereas the anticorrela-
tion (blue) dominates in the majority of strategic substitute
(β < 0) cases. In other words, a correlation prior effectively
recovers the underlying network structure in games with
strategic complement, and an anticorrelation prior does so
in cases of strategic substitute. Notably, the red inverted tri-
angle area shows that there exist games that the correlation
prior still dominates under strategic substitute interactions.
For linear influence and BH graphical games, which are
of strategic complements, the dominant prior is mainly the
correlation prior.

The above experiments highlight a few key insights. 1) Data-
dependent priors (e.g., correlation and anticorrelation) are
preferable to commonly used uninformative priors (e.g., uni-
form); 2) The correlation and anticorrelation priors are good
surrogates for indicating strategic complement and substi-
tute interactions respectively; 3) Knowing the interaction
type helps us identify the dominant prior.

Therefore, it is natural to design a more flexible prior, e.g.,
a mixture prior, that consistently dominates under different
game settings. We estimate the correlation and anticorrela-
tion from a subset of data X ′ and introduce a binary latent
variable C to switch between them. Specifically, we have.

p(Aij |C = 1, X ′) = Ber(Aij |ψcorr(X
′
i, X

′
j)), (7)

where Ber(·|a) is a Bernoulli distribution with parameter a.
The correlation prior naturally captures the effect of positive
interactions, i.e., the more similar the actions among two
users, the more likely they are connected. Conversely, we
can define an anticorrelation prior:
p(Aij |C = 0, X ′) = Ber(Aij |1− ψcorr(X

′
i, X

′
j)). (8)

The probability of an edge existing between two individuals
increases when they exhibit distinct behaviors.

However, it is non-trivial to set p(C) since a uniform prior
tends to achieve the average AUC between correlation and
anticorrelation. We bypass this issue via pretraining an
encoder qϕ(C|X) to predict the interaction type C. By
doing so, we then fix this encoder during the training of the
model. In other words, the term KL(qϕ(C|X)∥p(C)) in Eq.
(6) is constant, thus avoiding choosing the right p(C). We
will discuss more details in Section 5.

4.3. Spectral GNN based Encoder

We now introduce our encoder. As aforementioned, it is fac-
torized as qϕ(A,Z,C|X) = qϕ(A|X)qϕ(Z|X)qϕ(C|X),
where latent variables Z, A, and C are the user embedding,
the network structure, and the interaction type respectively.

User Embedding Encoder. For the user embedding Z,
we design its posterior as conditionally independent Normal,

qϕ(Z|X) =

N∏
i=1

qϕ(Zi|Xi) =

N∏
i=1

N (Zi;µi, diag(σ2
i )) (9)

where µ and log σ2 are output by MLPs that takeX as input.
Due to the conditional independence and the permutation
equivariance of MLPs, qϕ(Z|X) is invariant to permutations
of users. The details are included in Appendix B.

Network Structure Encoder. For the network structure
A, we use a mixture of Bernoulli distributions:

qϕ(A|X) =

K∑
k=1

αk

∏
i≤j

θ
Aij

k,ij(1− θk,ij)
(1−Aij), (10)

where K is the number of mixture components. θk,ij is
the parameter of edge (i, j) of the k-th component. αk

represents the probability of selecting the k-th component.
When K = 1, the distribution simplifies to a Bernoulli
distribution where edges are independent given the actions.
When K > 1, the dependence of edges can be effectively
modeled. We build a Transformer (Vaswani et al., 2017)
based encoder that predicts αk and θk,ij using the input
X . Since we do not use positional encoding and the rest
of Transformer is permutation-equivariant, this encoder is
invariant to permutations of users. We leave the detailed
architecture design in Appendix B.

Spectral Interaction Encoder. As seen before, choosing
the correct interaction typeC is essential to achieve the dom-
inant prior. However, as we will see later that straightfor-
ward designs (e.g., MLPs) of the encoder qϕ(C|X) perform
poorly under certain game settings. To motivate our solution,
let us consider linear quadratic games. Define the covariance
matrix of actions X as cov(X) ∈ RN×N , and cov(X)ij =∑M

k=1(Xik − X̄i)(Xjk − X̄j). The eigendecomposition of
cov(X) = UΛU⊤, where Λ = diag(λ1, ..., λN ). We then
plot log(λmax/

∑N
i=1 λi) under different parameter settings

in the left subplot of Figure 3. As the positive interactions
among individuals become stronger, i.e., β → 1, α→ 1, the
largest eigenvalue dominates other eigenvalues more signifi-
cantly. This would result in an individual’s action and those
of its neighbors becoming closer, converging to the leading
eigenvector associated with the largest eigenvalue. We can
also view this from the perspective of graph signal process-
ing (Dong et al., 2020). Based on the eigendecomposition
Ã = Ũ Λ̃Ũ⊤, we can rewrite the covariance as,
cov(X) = (I−βÃ)−1(I−αÃ)†(I−βÃ)−1 = Ũf(Λ̃)Ũ⊤,

where f(Λ̃) = diag(f(λ̃1), ..., f(λ̃N )) and the spectral fil-
ter is f(λ̃i) = 1/(1− βλ̃i)

2(1− αλ̃i). Since λ̃i ∈ [−1, 1],
when β → 1 and α → 1, f(·) assigns higher weights to
larger eigenvalues, i.e., λ̃i → 1. This is essentially perform-
ing low-pass filtering since large eigenvalues correspond to
low frequency. Taking the limit, this implies the same result
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Figure 3. Left: Contribution of the largest eigenvalue λmax of
cov(X) under different settings. The colour bar represents the
logarithmic value log(λmax/

∑N
i=1 λi). Right: The AUC results

on linear quadratic games obtained with two encoders.

as before, i.e., individuals’ actions converge to the leading
eigenvector. When β → −1 and α → 0, it performs high-
pass filtering and the actions of individuals are far away
from their neighbors.

The two annotated areas in the left subplot of Figure 3 in-
dicate regions dominated by correlation and anticorrelation
priors. Notably, there is a similarity between the patterns of
dominant priors in Figure 2 and those of the largest eigen-
value contributions in Figure 3. This inspires us to design
an interaction encoder qϕ(C|X) based on the spectral pat-
tern of the covariance cov(X). Specifically, following the
state-of-the-art spectral GNNs in (Bo et al., 2023; Lim et al.,
2023), we employ the range encoding for eigenvalues and
set-to-set spectral filters. We compare the two encoder de-
signs, i.e., MLPs vs. Spectral GNNs, in the right subplot of
Figure 3. Moreover, we show that the encoder is invariant to
permutations of users as the spectral GNNs are equivariant
to permutations. More details are provided in Appendix
B. One can see that these two encoders perform similarly
well in settings where strategic complement and substitute
patterns are easy to be identified, i.e., β ≤ 0 or β ≥ 0.4.
For the region where the two patterns are hard to distin-
guish, i.e., 0 < β < 0.4, our spectral GNNs based encoder
significantly outperforms the MLP based one.

4.4. Decoder

To reconstruct actions, we need a decoder pθ(X|A,Z,C).
Since the network structure A already depends on the
interaction type C in our data-dependent gated prior,
we assume pθ(X|A,Z,C) = pθ(X|A,Z) for simplic-
ity. We also assume conditional independence among dif-
ferent users, i.e., pθ(X|A,Z) =

∏N
i=1 pθ(Xi|A,Zi) =∏N

i=1 N (Xi;µi, diag(σ2
i )). Here we use a two-layer graph

convolutional network (GCN) (Kipf & Welling, 2017) to
predict the parameters of the Normal distribution. It is clear
that the decoder is invariant to permutations of users.

5. Learning with Monte Carlo Gradients
We have a hybrid latent space since the user embedding is
continuous and the network structure A and the interaction
typeC are discrete. Learning such VAEs typically requires a
careful design of Monte Carlo gradient estimation methods
(Mohamed et al., 2020), thus being challenging. AlthoughC
is only binary, we know from Section 4.2 that it has a strong
impact on the AUC of the inferred network structure. It is
thus important to accurately infer C to achieve the dominant
prior. However, we found the end-to-end training of our
model, i.e., minimizing the negative ELBO in Eq. (6), often
leads to poor prediction ofC. To overcome the difficulty, we
exploit a stage-wise training strategy, i.e., 1) pretraining of
spectral interaction encoder qϕ(C|X); 2) training the model
with qϕ(C|X) being fixed. A comparison of end-to-end
training and stage-wise training can be found in Appendix
D.5.

Pretraining of Spectral Interaction Encoder. In the first
stage, we generate a set of networks A from random graph
models like Barabási-Albert (BA), ER, and Watts-Strogatz
(WS). Relying on these networks, we then simulate equi-
librium actions X from the three aforementioned network
games. We also collect the ground truth C by checking
if the adjacency matrix is more similar to the correlation
matrix ψcorr or the anticorrelation matrix 1− ψcorr. We can
only pretrain this encoder on synthetic datasets since we
do not have ground truth annotation of interaction type in
real-world data. The objective function of this stage is,

min
ϕ

Epsyn(X) [KL(psyn(C|X)∥qϕ(C|X))] , (11)

where psyn(X) is the distribution of equilibrium actions sim-
ulated from the previous network games and psyn(C|X) is
a delta distribution centered on the ground truth C corre-
sponding to a given X . We can compare Eq. (11) with the
term Ep(X) [KL(qϕ(C|X)∥p(C))] in Eq. (6) where we ex-
plicitly add the expectation w.r.t. p(X) in ELBO to highlight
the difference. The former, i.e., Eq. (11), aims at matching
the conditional distribution (i.e., the classifier) and the delta
distribution psyn(C|X). The latter aims at matching the
aggregated posterior Ep(X) [qϕ(C|X)] with the prior p(C),
thus acting as a regularizer in learning the encoder. There-
fore, Eq. (11) encourages the encoder to be a good classifier,
which is crucial towards our goal (i.e., inferring the latent
network structure A) as shown in Section 4.2 and 4.3. We
provide more training details in Appendix B.

Training with fixed Spectral Interaction Encoder. In
the second stage, we fix the pretrained spectral interaction
encoder and train the model by minimizing the negative
ELBO in Eq. (6). In particular, we need to compute the gra-
dient of the reconstruction loss w.r.t. the encoder parameters
ϕ, i.e., ∇ϕEqϕ(A,Z|X)[log pθ(X|A,Z)]. For the ease of no-
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Figure 4. The AUC (y-axis) results on synthetic network games. (a) linear quadratic games with α = 0.0; (b) linear quadratic games with
α = 0.8; (c) linear influence games with BA graphs; (d) linear influence games with ER graphs.

tation, let us denote R(ϕ) := Eqϕ(A,Z|X) [log pθ(X|A,Z)].
To compute the gradient corresponding to the continuous
latent variable Z, the pathwise estimator, a.k.a., reparame-
terization trick (Kingma & Welling, 2014), is often adopted
since it is unbiased and low-variance. Specifically, we have
Z = g(ϵ;ϕz) and ϵ ∼ p(ϵ), where g(ϵ;ϕz) is a sampling
path and p(ϵ) is a base distribution. For discrete latent vari-
able A, we have several choices. 1) The pathwise estimator
applied to its continuous relaxation, e.g., binary Gumbel-
Softmax (Jang et al., 2017; Maddison et al., 2017):

Aij = Sigmoid ((logα+ logU − log(1− U))/τ) ,

where logα is the logit, U ∼ Uniform(0, 1) and tempera-
ture τ ∈ (0,∞). 2) Score function estimator, a.k.a., REIN-
FORCE (Williams, 1992). We have,

∇ϕR(ϕ) ≈
1

S

S∑
s=1

log pθ(X|A(s), Z(s))∇ϕ log qϕ(A
(s)|X),

where A(s) ∼ qϕ(A|X), Z(s) = g(ϵ(s);ϕz), and ϵ(s) ∼
p(ϵ). 3) Measure-valued estimator (Heidergott & Vázquez-
Abad, 2000; Mohamed et al., 2020). For the mixture of
Bernoulli distribution in Eq. (10), recall ϕ = {θk,ij , αk|k ∈
[K], i, j ∈ V}. The measure-valued gradient w.r.t. θk,ij is,

∇θk,ij
R(ϕ) ≈ αk

S

S∑
s=1

log pθ(X|{A(s)
mn}, A(s)

ij = 1, Z(s))

− αk

S′

S′∑
s′=1

log pθ(X|{A(s′)
mn}, A(s′)

ij = 0, Z(s′)),

where {A(s)
mn} means the set of all A(s)

mn such that (m,n) ̸=
(i, j) and A(s)

mn, A
(s′)
mn ∼ Ber(Amn|θk,mn). The measure-

valued gradient w.r.t. αk as,

∇αk
R(ϕ) ≈ 1

S

S∑
s=1

log pθ(X|A(s), Z(s))

where A(s) ∼ ∏
ij Ber(Aij |θk,ij).

The pathwise estimator in the discrete case is biased but
often has a low variance. The score function estimator is
unbiased but typically has high variance, thus often being
used together with variance-reduction techniques like the
control variate. The measure-valued estimator is mostly

unbiased and low-variance, but its high computational costs
limit its use in high-dimension problems. We show the
derivation of gradients under all these methods in Appendix
C. We systematically investigate them in the context of our
model and show the experimental results in Section 6.1.

6. Experiments
In this section, we first examine GPGVAE’s performance
on synthetic network games. Since the observed actions
may not satisfy the Nash equilibrium condition, we also
evaluate our model on real-world datasets. More details
about the experimental setting are provided in Appendix
D.2. Code and data are available at https://github.
com/xueyu-ubc/GPGVAE.

Baselines. We compare GPGVAE with several competi-
tive methods, including optimization based ones like Graph-
ical Lasso (Friedman et al., 2008), Regularized Lasso (Lake
& Tenenbaum, 2010), LinQuadOpt (Leng et al., 2020) and
BlockRegression (Barik & Honorio, 2019), and learning
based ones like VGAE (Kipf & Welling, 2016), DAG-
GNN (Yu et al., 2019), VGCN (Elinas et al., 2020), LDS
(Franceschi et al., 2019), uGLAD (Shrivastava et al., 2022)
and NodeFormer (Wu et al., 2022). Here LinQuadOpt is
designed for linear quadratic games, and BlockRegression is
proposed under BH graphical games. Although DAG-GNN
is proposed to learn DAGs, we still conduct a comparison
with it on real-world datasets. Note that most supervised
and semi-supervised methods (e.g., NodeFormer) combine
graph learning with downstream tasks, e.g., node classifica-
tion, requiring node labels or partial network connections
for training. Such methods cannot be directly applied to our
setting and thus we integrate the graph learning part of them
with VAEs. Specifically, without node label information, we
can use a decoder to reconstruct user actions and compute
the reconstruction loss instead of cross-entropy loss.

6.1. Synthetic Data

Data Generation. We first construct three random net-
works: BA, ER, and WS graphs. Based on these networks,
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Table 1. Results on real-world datasets. The average AUC and std for Indian villages are obtained from 48 graphs, and the results for
Foursquare and Yelp datasets are based on 3 repetitions.

Indian Villages Foursquare Yelp

Villages New York São Paulo PA ratings PA reviews LA ratings LA reviews

Correlation 56.67 ±2.43 52.61 50.77 60.14 60.21 59.24 59.28
Anticorrelation 43.33 ±2.43 47.39 49.23 39.86 39.79 40.76 40.72
Graphical Lasso 56.91 ±2.19 56.13 56.56 71.49 69.79 66.68 72.57

Regularized Lasso 56.65 ±2.44 55.30 52.48 62.04 56.29 62.45 62.77
BlockRegression 54.67 ±1.66 55.80 52.79 54.22 55.21 56.96 55.90

LinQuadOpt 56.50 ±2.41 54.05 52.58 73.62 75.97 70.47 73.26

uGLAD 52.38 ±2.99 52.07 ±1.53 54.47 ±5.17 69.24 ±3.79 70.84 ±1.55 56.62 ±5.35 70.30 ±4.16

DAG-GNN 52.94 ±1.96 52.24 ±0.80 51.57 ±0.13 69.56 ±0.24 69.67 ±0.64 70.02 ±0.52 69.31 ±0.42

VGAE 50.59 ±3.76 50.54 ±0.90 50.81 ±0.85 53.21 ±2.01 54.18 ±4.12 54.20 ±0.87 53.30 ±0.54

VGCN 53.89 ±1.98 53.39 ±0.11 54.46 ±0.67 62.50 ±0.59 59.63 ±0.97 56.17 ±0.88 57.43 ±1.62

LDS 51.60 ±0.86 54.70 ±0.01 53.38 ±0.01 50.04 ±0.02 50.03 ±0.03 50.09 ±0.02 50.08 ±0.01

NodeFormer 50.56 ±0.37 54.78 ±0.01 53.63 ±0.02 50.08 ±0.00 50.09 ±0.00 50.13 ±0.01 50.14 ±0.00

GPGVAE 56.77 ±3.07 57.57 ±0.29 56.88 ±0.47 75.35 ±0.67 76.70 ±1.29 75.25 ±0.74 75.08 ±0.22

we generate marginal benefits b from the Gaussian distribu-
tion (3) with different parameters α. Then, we simulate equi-
librium actions from their distribution. For BH graphical
games, the equilibrium actions x∗ is the leading eigenvector
of Ã, and we consider noisy pure-strategy Nash equilibrium
actions, i.e., x = x∗ + e, where e are independently gener-
ated from a sub-Gaussian distribution. The number of nodes
in graphs is N = 20, and the number of games is M = 50.

Table 2. Results for BH graphical games on three random graphs.

BA graphs WS graphs ER graphs

Graphical Lasso 67.57 ±4.60 74.12 ±3.49 58.57 ±3.67

Regularized Lasso 67.59 ±3.93 72.83 ±4.35 58.35 ±3.64

BlockRegression 65.58 ±3.67 72.37 ±3.37 56.35 ±3.27

VGCN 49.77 ±4.97 52.32 ±3.12 50.58 ±4.31

VGAE 55.43 ±4.89 51.18 ±3.00 49.07 ±3.28

GPGVAE 68.02 ±5.13 74.45 ±3.45 58.80 ±3.45

Results. Figure 4 shows the results on linear quadratic
games with BA graphs and linear influence games with
both BA and ER graphs under different settings. For linear
quadratic games, β varies from −0.8 to 0.8, indicating the
interactions between individuals shift from strategic substi-
tute to strategic complement. The y-axis denotes the aver-
age AUC value across 10 random networks. Specifically,
learning-based methods such as VGAE and VGCN exhibit
consistently weak performances across various settings, in-
dicating that a non-informative prior over network structure
may impede effective learning. Except for LinQuadOpt,
optimization-based baselines perform well only in scenarios
of strategic complements and they struggle to accurately
infer network structure in situations of strategic substitutes.
While LinQuadOpt is designed for linear quadratic games

and outperforms other baseline methods when β < 0, it
is still inferior to our GPGVAE. Notably, as β → −0.8 in
Figure 4 (a) and (b), our method’s lead over competing ap-
proaches becomes more significant. In short, our GPGVAE
performs well under both strategic complement and strate-
gic substitute scenarios on these two games, thus verifying
the effectiveness of our proposed framework. The averaged
AUC and std results on BH graphical games are reported
in Table 2. Our GPGVAE consistently outperforms other
competitors on BH games across all random networks.

6.2. Ablation Study

We show the ablation study of different gradient estima-
tors on various games with BA graphs in Table 3, where
comp. and sub. stand for strategic complement and substi-
tute respectively. We use the exponential moving average
(EMA) based control variate technique to reduce the vari-
ance of the score function, denoted as score function*. The
measure-valued gradient estimator usually has a low vari-
ance. However, since it requires sampling in computing the
derivative of individual parameters, it does not scale up to
large graphs. Therefore, considering both the performance
and the computational time, we choose the score function
estimator in our experiments. We also study the effect of the
number of Bernoulli mixtures and analyze the complexity
of our algorithm in Appendix D.5.

6.3. Real-World Data

We choose three real-world datasets. First, the Indian Vil-
lages dataset consists of rural villages in the southern In-
dian state of Karnataka. Following the work of Leng et al.
(2020; 2023c), we consider 48 villages with ground truth
networks. Each node represents a household and the actions
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Table 3. Comparison (AUCs) of gradient estimators on linear
quadratic games with parameters α = 0.5, β = −0.8, and 0.8,
linear influence games with α = 0.5 and BH graphical games.

Quadratic
(sub.)

Quadratic
(comp.)

Influence
(comp.)

BH
(comp.)

Pathwise 87.89 ±6.13 93.40 ±3.55 60.64 ±8.44 82.53 ±6.38

Score function* 88.12 ±5.37 93.32 ±3.28 62.72 ±5.79 82.66 ±7.57

Measure-valued 88.22 ±6.40 93.75 ±3.60 62.40 ±5.42 82.45 ±5.87

include the number of rooms, the presence of electricity, and
other properties. When villagers make decisions related to
households, they are often influenced by neighbors. Hence,
their actions provide essential information for analyzing
the underlying relationships among households. Second,
Foursquare is a social platform that can help users share lo-
cations and find recommendations for various places. When
people decide which place to visit or post a review, they
are often influenced by others. Therefore, we can infer the
social relationships among users based on their actions. We
consider two cities, New York and São Paulo for this dataset.
For each city, we calculate the number of check-ins as ac-
tions. At last, we consider data in Pennsylvania (PA) and
Louisiana (LA) states from the social platform Yelp, where
users can write reviews and recommendations for various
businesses. When users make decisions, they are influenced
not only by the ratings but also by the content of other users’
reviews. Therefore, we use such information as actions
to infer their relationships. More details can be found in
Appendix D.3.

Results. Table 1 reports the mean and standard devia-
tion of AUC on different datasets. For optimization-based
methods like Graphical Lasso, the results are deterministic
for different repetitions and we didn’t report their std on
Foursquare and Yelp datasets. GPGVAE demonstrates supe-
rior performance on six out of seven datasets. On the Indian
villages dataset, GPGVAE is the second best and slightly
worse than the Graphical Lasso. This might be caused by
the fact that this dataset only contains 10 games per graph,
thus providing little data for learning. Besides, GPGVAE
achieves a significant improvement of 2.57% on the New
York dataset and 6.78% on the LA (ratings) dataset. The
interactions between individuals is predicted as strategic
complements, which is consistent with reality. For example,
on social platforms, users tend to follow social norms and
make choices similar to those around them. This is also
supported by the results of correlation and anticorrelation
methods in Table 1.

7. Conclusion
In this paper, we introduce GAGVAE, an unsupervised learn-
ing framework that infers individuals’ interaction types and

the underlying network structure based on observed actions
from network games. Unlike previous work, our method
does not require prior knowledge about specific utility func-
tion forms or partial network connections. Our model con-
sists of a data-dependent gated prior, a spectral GNN based
interaction type encoder, a Transformer based network struc-
ture encoder, and a GNN based action decoder. Extensive
experiments on synthetic and real-world datasets verify the
effectiveness of our approach. Future works include inte-
grating more expressive deep learning models and extending
the approach to large and dynamic networks.

Acknowledgements
We thank Prof. Yifan Sun and Donglin Yang for their valu-
able feedback and suggestions. We thank the anonymous
reviewers for their helpful comments. This work was funded,
in part, by the National Nature Science Foundation of China
(12171479), the MOE Project of Key Research Institute
of Humanities and Social Sciences (NO. 22JJD110001),
NSERC DG Grants (No. RGPIN-2022-04636), the Vec-
tor Institute for AI, and Canada CIFAR AI Chair. Y.L.
acknowledges the support provided by the National Sci-
ence Foundation [Grant IIS-2153468]. Resources used
in preparing this research were provided, in part, by the
Province of Ontario, the Government of Canada through
the Digital Research Alliance of Canada alliance.can.
ca, and companies sponsoring the Vector Institute www.
vectorinstitute.ai/#partners, and Advanced
Research Computing at the University of British Columbia.
Additional hardware support was provided by John R. Evans
Leaders Fund CFI grant.

Impact Statement
This paper presents a valuable technique to capture major
interaction relationships among users, such as strategic com-
plement and strategic substitute. The proposed unsupervised
learning framework can effectively infer network structures
from observed user actions, which is particularly useful
when connections between users are difficult to access or
private. The insights derived from the inferred network
structures are also beneficial for resource optimization and
information dissemination. Our work will be instrumental
to researchers working on network games and graph-related
research.

References
Aral, S., Muchnik, L., and Sundararajan, A. Distinguishing

influence-based contagion from homophily-driven diffu-
sion in dynamic networks. Proceedings of the National
Academy of Sciences, 106(51):21544–21549, 2009.

9

alliance.can.ca
alliance.can.ca
www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners


Learning Latent Structures in Network Games via Data-Dependent Gated-Prior Graph Variational Autoencoders
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A. Network Games and Dominant Priors
A.1. Common Network Games

Table 4 provides detailed information on the three network games introduced in the paper, where u represents the eigenvector
associated with the eigenvalue 1 of Ã. We use linear quadratic games as an example to derive the explicit solution for

Table 4. Three common network games.

Utility function ui Nash equilibrium x∗ Distribution of x∗

BH graphical games
∑

j∈Ni
Ãijxixj − bixi u –

Linear influence
∑

j∈Ni
Ãijxixj − bixi Ã−1b N (0, Ã−1(I − αÃ)†Ã−1)

Linear quadratic bixi − 1
2x

2
i + β

∑
j∈Ni

Ãijxixj (I − βÃ)−1b N (0, (I − βÃ)−1(I − αÃ)†(I − βÃ)−1)

equilibrium action x∗ = [x∗1, ..., x
∗
N ]⊤ and its distribution. Remember the utility function of linear quadratic games is

ui = bixi −
1

2
x2i + β

∑
j∈Ni

Ãijxixj .

Computing the first-order derivative of the payoff ui with respect to action xi, we have
∂ui
∂xi

= bi − xi + β
∑
j∈Ni

Ãijxj , i ∈ V.

Considering all individuals i ∈ V simultaneously, we can obtain the Nash equilibrium action as follows

x∗ = (I − βÃ)−1b,

Combined with the distribution of marginal benefit b (3), the Nash equilibrium action x∗ obeys a multivariate Gaussian
distribution

x∗ ∼ N (0, (I − βÃ)−1(I − αÃ)†(I − βÃ)−1).

A.2. Dominant Priors in Different Games

In this paper, we consider two types of priors: Correlation and Anticorrelation. The term “dominant prior” refers to the prior
that is more similar to the ground truth, i.e., has a higher AUC value. To confirm the type of dominant prior in different
network games, we first generate 50 random graphs and then derive equilibrium behaviors based on their distribution under
different games. We calculate the AUC values of both correlation and anticorrelation priors on each graph. If the AUC
value of correlation surpasses that of anticorrelation, we consider correlation prior dominants that network; conversely,
anticorrelation is considered dominant. As a result, we can obtain the proportion of each prior across the 50 random
networks.

The distribution of dominant priors under linear quadratic games on ER graphs is provided in Figure 2. Table 5 reports the
proportion under linear influence games and BH graphical games on BA, ER, and WS graphs. For linear influence games,
we consider three cases, α = 0, 0.5, and 0.8. When α > 0, the marginal benefit vector b is “smooth” on networks, meaning
that individuals bi and bj’s “thresholds” are closer if i and j are connected, relative to when i and j are independent. As we
can see, when α = 0, there are a few cases where the dominant priors are anticorrelation. However, as α increases, all of the
networks are dominant by correlation prior. For BH graphical games, the dominant priors are always correlation prior.

Table 5. Proportion of dominant priors under linear influence games and BH graphical games (correlation/anticorrelation).

Linear influence
(α = 0)

Linear influence
(α = 0.5)

Linear influence
(α = 0.8) BH

BA graphs 46/4 47/3 50/0 50/0
ER graphs 49/1 50/0 50/0 50/0
WS graphs 48/2 49/1 50/0 50/0
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B. Model Architecture
Pretraining of Spectral Interaction Encoder. In the first stage, we generate 2, 000 random networks on BA, ER, and
WS graphs. The number of nodes is uniformly sampled from the range [10, 50]. For each network, we randomly choose one
type of game from linear quadratic games, linear influence games, and BH graphical games. After this, we generate 100
equilibrium actions in an i.i.d. manner based on their distribution. For both linear quadratic games and linear influence
games, the parameter α ∈ [0, 1], and β ∈ [−0.9, 0.9] for linear quadratic games. For BH graphical games, we consider noisy
pure-strategy equilibrium actions with parameter ϵ = 0.2. For each graph, the ground truth C is determined by comparing
the AUC value of the correlation matrix and anticorrelation matrix with the adjacency matrix of random networks. Then, we
use a spectral GNN, i.e., Specformer (Bo et al., 2023), to model encoder pθ(C|X). Below, we outline the detailed steps.

(1) Conduct eigendecomposition of covariance cov(X) = UΛU⊤, where Λ = diag(λ1, ..., λN ).

(2) Eigenvalue Encoding: map each eigenvalue λi, i = 1, , , .N to a high-dimensional vector as follows:

ρ(λ, 2j) = sin(ϵλ/100002j/d),

ρ(λ, 2j + 1) = cos(ϵλ/100002j/d),

where d is a hyperparameter that determines the dimension of the representation space, j represents the position of an
element, and ϵ is a hyperparameter used to control the influence of eigenvalues. We set d = 64 and ϵ = 100 as suggested
by the original paper. The initial representation of the eigenvalues is obtained by concatenating the eigenvalues and
the corresponding encodings, i.e., Z = [λ1||ρ(λ1), ..., λN ||ρ(λN )]⊤, and then apply multiple Transformer blocks to
obtain new representations.

(3) Eigenvalue Decoding: Zl is the representation obtained by the l-th attention head. By performing spectral filtering
λ̄l = ϕ(ZlW ), where ϕ is the activation and W is the weight parameter, we get new eigenvalues λ̄1, ..., λ̄L (λ̄l ∈
RN×1) and new bases Sl = Udiag(λ̄l)U⊤ ∈ RN×N , where U is the eigenvector of cov(X). These bases are
connected S = [IN ||S1|| · · · ||SL] and fed to a feed-forward network to obtain learnable bases Ŝ. After multiple graph
convolutional layers, the final sigmoid layer outputs the probability for each type.

Details of User Embedding Encoder. For latent user embedding Z, the posterior is

qϕ(Z|X) =

N∏
i=1

qϕ(Zi|Xi) =

N∏
i=1

N (Zi;µi, diag(σ2
i )).

We use a fully connected feed-forward network to learn the mean matrix µ ∈ RN×D, i.e., µ = FFN(X), where FFN(x) =
max(0, xW1 + b1)W2 + b2. The dimension D = 256, and the variance is fixed as σ2 = 1.

Details of Network Structure Encoder. Based on the underlying network structure, the behavior of different individuals
can be influenced by their neighbors. We utilize a Transformer-like (Vaswani et al., 2017) architecture to model encoder
qϕ(A|X) and the encoder performs the following message-passing operations:

h = Transformer(X),

sij =
1

2
[FFN(LN(hi − hj)) + FFN(LN(hj − hi))],

θ1,ij , ..., θK,ij = ψ(Sigmoid(FFN(sij))),

α1, ..., αK = Softmax(□FFN(sij)),

where LN denotes layer normalization. Function ψ(x) := 1
2 (x + x⊤) is used to ensure symmetry. □ denotes the mean

operation. We first get h = [h⊤1 , ..., h
⊤
N ]⊤ based on a Transformer model, and hi is a vector of F features. By performing

a pairwise operation on h, we can get a hidden vector sij ∈ RF for each pair of nodes (i, j), and finally compute the
probability αk of each component and the corresponding parameter θk,ij . The number of attention heads in Transformer is 4
and the dimensionality of inner layers is F = 256. Similar to β-VAE (Higgins et al., 2016), we use a constant δ to control
the distance between the posterior qϕ(A|X) and the gated-prior p(A|C,X ′) while balancing the KL divergence of the graph
encoder and the reconstruction quality.

Details of Decoder. For decoder pθ(X|A,Z), we assume conditional independence among different users, i.e.,
pθ(X|A,Z) =

∏N
i=1 pθ(Xi|A,Zi) =

∏N
i=1 N (Xi;µi, diag(σ2

i )). We use a two-layer GCN to predict the mean ma-

13



Learning Latent Structures in Network Games via Data-Dependent Gated-Prior Graph Variational Autoencoders

trix µ = GCN(A,Z) and the variance is σ2 = 1. The two-layer GCN is defined as GCN(A,Z) = ÃReLU(ÃZW0)W1,
with a nonlinear function ReLU(·) = max(0, ·) and Ã = D− 1

2AD− 1
2 . W0 and W1 are weight parameters.

Permutation Invariant. For the user embedding encoder, we consider a conditionally independence posterior distribution,
and use MLP to model it, thus this encoder is permutation invariant to users. For the network structure encoder, we consider
the Transformer without the positional encoding layer, which can guarantee the permutation equivariant to users, and this
encoder is also invariant to users. For the spectral GNN, we use the covariance matrix cov(X), and its eigendecomposition
is permutation invariant. The ground truth C is determined by the AUC values of correlation and anticorrelation priors,
which is permutation invariant to users. The Specformer model we used is also permutation equivariant. Besides, we use
GCN to model the decoder and it’s also invariant to permutations of users.

C. Gradient Estimators
Consider the following form of the negative reconstruction function for Monte Carlo estimation:

Eqϕ(A,Z|X)[log pθ(X|A,Z)] ≈ 1

S

S∑
s=1

[log pθ(X|A(s), Z(s))],

where A(s) ∼ qϕ(A|X) and Z(s) ∼ qϕ(Z|X). The gradient of the expectation Eqϕ(A,Z|X)[log pθ(X|A,Z)] with respect to
ϕ is intractable. In this section, we provide details of three Monte Carlo gradient estimators: pathwise, score function, and
measure-valued gradient estimators.

C.1. Pathwise Estimator

For continuous latent variable Z, we can use the reparameterization trick. Specifically, we can first sample a random variable
ϵ from a standard Gaussian distribution p(ϵ) = N (ϵ; 0, I), and then reparameterize zi as a deterministic function of ϵ:
zi = g(ϵ;ϕz) = µi + σiϵ with learned parameters ϕz = {µi, σi}.

For the discrete graph A, we can consider the binary Gumbel-softmax trick. Each edge Aij is estimated by:

Sigmoid(
logα+ logU − log(1− U)

τ
),

where logα is the logit output, U ∼ Uniform(0, 1), and logU − log(1−U) is a Logistic random variable. The temperature
hyperparameter τ ∈ (0,∞) controls the smoothness of the sampling process and the variance of the gradients. The
Gumbel-softmax is a continuous relaxation of discrete distributions, thus it is a biased gradient estimator. In this paper, we
use the reparameterization trick to sample latent representation Z from posterior pϕz

(Z|X) and choose the temperature
τ = 0.5 when using the binary Gumbel-softmax.

C.2. Score Function Estimator

The score function is the derivative of the log probability of the distribution log qϕ(x) to its parameter ϕ:

∇ϕ log qϕ(x) =
∇ϕqϕ(x)

qϕ(x)
.

For convenience, we use the reparameterization trick for continuous variable Z = g(ϵ;ϕz). Then the derivative of the
expectation with respect to the parameter ϕA of the graph encoder is

∇ϕA
Eqϕ(A,Z|X) log pθ(X|A,Z) = ∇ϕA

∫
qϕA

(A|X)q(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

=

∫
∇ϕA

qϕA
(A|X)q(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

=

∫
qϕA

(A|X)∇ϕA
log qϕA

(A|X)q(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

= EqϕA
(A|X)q(ϵ)[log pθ(X|A,Z = g(ϵ;ϕz))∇ϕA

log qϕA
(A|X)]

≈ 1

S

S∑
s=1

log pθ(X|A(s), Z(s))∇ϕA
log qϕA

(A(s)|X)
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where A(s) ∼ qϕA
(A|X), Z(s) = g(ϵ(s);ϕz) and ϵ(s) ∼ p(ϵ). Finally, we can get a Monte Carlo estimator of the gradient

∇ϕA
Eqϕ(A,Z|X) log pθ(X|A,Z).

Although the score function is an unbiased estimator of the gradient, it has many variance sources, such as the number of
nodes. Usually, it needs some variance reduction techniques such as control variables to reduce the variance. In this paper,
we use the exponential moving average (EMA) to control its variance.

C.3. Measure-Valued Gradient Estimator

Consider the derivative of q(x; θ) with respect to a single parameter θi, the measure-valued gradient estimator decomposes
the derivative ∇θiq(x; θ) into the following form:

∇θiq(x; θ) = cθi(q
+
i (x; θi)− q−i (x; θi)),

where q+i and q−i are two densities, cθi is a constant. For a univariate Bernoulli distribution, q+i = δ1 and q−i = δ0 are two
Dirac densities at 1 and 0, respectively. The constant cθi = 1.

For a single Bernoulli distribution qϕA
(A|X) =

∏
i≤j Ber(Aij |θij) =

∏
i≤j θ

Aij

ij (1− θij)
1−Aij and ϕA = {θij , i, j ∈ V},

the derivative of the expectation Eqϕ(A,Z|X) log pθ(X|A,Z) with respect to θij is

∇θijEqϕ(A,Z|X) log pθ(X|A,Z)

= ∇θij

∫ ∏
i≤j

θ
Aij

ij (1− θij)
1−Aijq(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

=

∫
∇θij [θ

Aij

ij (1− θij)
1−Aij ]

∏
m≤n

[θAmn
mn (1− θmn)

1−Amn ]q(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

=

∫
(δ1(Aij)− δ0(Aij))

∏
m≤n

[θAmn
mn (1− θmn)

1−Amn ]q(ϵ) log pθ(X|A,Z = g(ϵ;ϕz))dAdϵ

= Eδ1(Aij)
∏

m≤n Ber(Amn|θmn)q(ϵ)[log pθ(X|A,Z = g(ϵ;ϕz))]

− Eδ0(Aij)
∏

m≤n Ber(Amn|θmn)q(ϵ)[log pθ(X|A,Z = g(ϵ;ϕz))]

≈ 1

S

S∑
s=1

log pθ(X|{A(s)
mn}, A(s)

ij = 1, Z(s))− 1

S′

S′∑
s′=1

log pθ(X|{A(s′)
mn}, A(s′)

ij = 0, Z(s′)),

where {A(s)
mn} means the set of all A(s)

mn such that (m,n) ̸= (i, j) and A(s)
mn, A

(s′)
mn ∼ Ber(Amn|θmn)(m ≤ n). Z(s) =

g(ϵ(s);ϕz), Z(s′) = g(ϵ(s
′);ϕz) and ϵ(s), ϵ(s

′) ∼ p(ϵ).

Similarly, for a mixture of Bernoulli distribution qϕA
(A|X) =

∑
k αk

∏
i≤j θ

Aij

k,ij(1 − θk,ij)
1−Aij , ϕA = {θk,ij , αk|k ∈

[K], i, j ∈ V}. We have the derivative w.r.t. αk as,

∇αk
Eqϕ(A,Z|X) log pθ(X|A,Z) ≈ 1

S

S∑
s=1

log pθ(X|A(s), Z(s))

where A(s) ∼ ∏
i≤j Ber(Aij |θk,ij). The derivative w.r.t. θk,ij is,

∇θk,ij
Eqϕ(A,Z|X) log pθ(X|A,Z) ≈ αk

S

S∑
s=1

log pθ(X|{A(s)
mn}, A(s)

ij = 1, Z(s))

− αk

S′

S′∑
s′=1

log pθ(X|{A(s′)
mn}, A(s′)

ij = 0, Z(s′)),

where A(s)
mn, A

(s′)
mn ∼ Ber(Amn|θk,mn)(m ≤ n).

The measure-valued estimator is unbiased in most cases and its variance depends on the choice of the decomposition
of the derivative. To evaluate the gradient for each parameter, we need to perform sampling twice. One strategy to
reduce the variance is to employ the same sampling distributions for each parameter. However, it’s important to note that
measure-valued gradient estimators have higher computational costs compared to score-function and pathwise estimators.
This increased computational expense arises from the need to compute gradients individually for each parameter, making it

15



Learning Latent Structures in Network Games via Data-Dependent Gated-Prior Graph Variational Autoencoders

a more resource-intensive process.

D. Simulation Details and Additional Numerical Experiments
D.1. Details of data-dependent priors comparison

To compare the performance of graph VAE based on different priors p(A), we consider linear quadratic games, which contain
both strategic complements and strategic substitute interactions. The smoothness parameter α = 0 and β ∈ [−0.8, 0.8]. We
randomly generate 50 ER graphs (20 nodes and 100 games) for each setting, and then generate user actions X based on the
distribution of equilibrium actions. For each prior, we train the same VAE model with different priors and compute the AUC
value between the learned structure and ground truth. Specifically,

1) Uniform. The prior p(A) =
∏

i,j p(Aij) and p(Aij = 1) = 1/2. In the second stage, we train a VAE model, using this
prior, to infer the network structure.

2) Correlation and Anticorrelation. The prior p(A) =
∏

i,j p(Aij), p(Aij = 1) = ψcorr(Xi, Xj) := (ρij + 1)/2 for
correlation and p(Aij = 1) = 1 − ψcorr(Xi, Xj) = (1 − ρij)/2 for anticorrelation. ρij is the Pearson’s correlation
coefficient between users i and j based on their sampled actions and the definition is provided in Section 4.2. In the
second stage, we independently employ two separate VAE models to infer the network structure.

3) MLP Enc. We introduce latent variable C to determine whether to use correlation prior (C = 1) or anticorrelation prior
(C = 0). In the first stage, we trained a two-layer MLP model on 2000 different types of random graphs and various
network games to learn the encoder qϕ(C|X). The dimension of the input layer depends on the number of nodes, and
the inputs consist of the eigenvalues of the covariance cov(X). The final layer utilizes a sigmoid activation function to
output the probabilities associated with each type. The ground truth C is determined by comparing the AUC value of
the correlation matrix and anticorrelation matrix with the adjacency matrix of random networks. In the second stage,
we estimated the prior types C on ER graphs based on this pre-trained model. These ER graphs are the same as those
used for Uniform, Correlation, and Anticorrelation priors. According to different types C, we adopt different priors
p(A|C,X ′) when training the VAE model. X ′ is a subset of data X , for example, a subset of games within X .

4) Spectral Enc. The pre-training process for the spectral GNN is the same as the MLP encoder except that the model
used to learn the encoder qϕ(C|X) is replaced with Specformer. More details can be found in Appendix B.

For a fair comparison, we use the same VAE model except for the priors. As previously described, the user embedding
encoder qϕ(Z|X) is modeled by a two-layer MLP, and the graph encoder qϕ(A|X) is modeled by a transformer-like
architecture. qϕ(A|X) is simplified to a single Bernoulli distribution. The decoder pθ(X|A,Z) is parameterized by a
two-layer GCN. Additionally, we use the pathwise gradient estimator and AdamW optimizer (Loshchilov & Hutter, 2017).

D.2. Experimental setup

Baselines. We provide a brief introduction to the baselines in our work.

• Correlation: It uses the normalized Pearson’s correlation coefficient between users i and j based on their sampled
actions as the estimated networks, i.e., (ρXi,Xj

+ 1)/2 ∈ [0, 1]

• Anticorrelation: It uses the negative correlation coefficient as the estimated networks, i.e., (1− ρXi,Xj )/2 ∈ [0, 1].

• Graphical Lasso: The presence of zero entries in the inverse covariance matrix of a multivariate normal distribution
indicates conditional independence relationships among variables. Thus, this method estimates a sparse graphical
model by incorporating a lasso penalty to the inverse covariance matrix.

• Regularized Lasso: Similar to the Graphical Lasso, this method assumes that node features obey a Gaussian distribution
and it maximizes a posteriori (MAP) estimate of the graph. The sparsity in the graph structure is achieved by assuming
that each edge is independently drawn from an exponential distribution.

• LinQuadOpt: This method is introduced to infer the interaction network from observations within the specific linear
quadratic games. They formulate an optimization problem grounded in the established relationship between equilibrium
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actions and the network structure. In this paper, we use the algorithm that considers homophilous marginal benefits and
it demonstrated superior performance compared to another proposed algorithm in the original paper.

• BlockRegression: This method is proposed to recover the underlying structure of a graphical game using a block
regularized method. For the graphical game, they consider noisy pure-strategy Nash equilibrium actions (ε-PSNE),
where noise is independently added to the equilibrium actions of each individual.

• uGLAD: This method is an extension of GLAD (Shrivastava et al., 2020), which solves the Graphical Lasso problem
through an unsupervised learning approach.

• VGAE: The authors introduce a VAE model aimed at learning interpretable latent representations for graphs. The
graph structure is derived through an inner product decoder. In the setting of this paper, where prior knowledge of the
graph structure is unknown, we employ a fully connected graph as the input for the VGAE encoder.

• VGCN: This approach employs a joint probabilistic model with a GCN-based likelihood for semi-supervised classifi-
cation tasks. Similar to our work, it considers the prior distribution and develops a stochastic variational inference
algorithm to estimate the posterior distribution of the graph through the concrete distributions. Following their paper,
we use k-NN to construct the prior distribution of the graph.

• DAG-GNN: This method is designed to learn the weighted adjacency matrix of a directed acyclic graph. Utilizing a
linear structural equation model, it incorporates a VAE model parameterized with graph neural network architectures.
While the algorithm is specifically tailored for DAGs, we also assess its performance on real-world datasets.

• LDS: This semi-supervised learning method integrates node classification to simultaneously learn both the graph
structure and the parameters of GCNs. It does this by approximately solving a bilevel optimization problem that
determines a discrete probability distribution for the graph edges. We integrate the graph learning part with VAEs and
use a decoder to reconstruct user actions.

• NodeFormer: This semi-supervised learning method introduces a new class of scalable Transformers for efficient node
classification by propagating messages between arbitrary node pairs in flexible layer-specific latent graphs. Without
node label information, we integrate the graph learning part with VAEs. Specifically, we use a decoder to reconstruct
user actions and compute the reconstruction loss instead of cross-entropy loss.

Probelm Solving. Graphical Lasso can be solved by coordinate descent and Lars algorithm. We use the Scikit-learn
GraphicalLasso1 to solve it. Regularized Lasso, LinQuadOpt, and BlockRegression are solved based on CVXPY (Diamond
& Boyd, 2016), a package for solving convex programs, which is not able to compute datasets with a large number of nodes.
To conduct experiments on large graphs, i.e., Yelp, we implement the algorithm using a gradient-based method to solve the
associated convex problems. For uGLAD, LDS, NodeFormer, DAG-GNN, VGAE, and VGCN, we adopt the algorithms
provided by the authors and implement them using PyTorch (Paszke et al., 2019). We also implement our method in Pytorch
and optimize the AdamW optimizer with a learning rate 1e− 4 and the parameters ϵ = 1e− 8 and (β1, β2) = (0.9, 0.999).

Hyperparameter tuning. For optimization algorithms like Graphical Lasso, regularization parameters play a crucial role
in determining the sparsity structure of graphs. For learning-based methods such as VGCN, the choice of parameter k is
also important in constructing the prior distribution of the graph via k-NN. A common approach for hyperparameter tuning
is to select the appropriate parameters with the help of validation sets, but under the unsupervised learning requirements of
this paper, we cannot obtain any prior network structure information in advance. Therefore, inspired by GCNs, we design a
reconstruction objective function

α̃ = argmin
α

{min
W

∥AαXW −X∥22, α ∈ S}

where α ∈ S is the hyperparameter, Aα is the network structure obtained under the corresponding hyperparameter α. W
is weight parameter and W = ((AX)⊤AX)†(AX)⊤X , where † denotes pseudo-inverse. For each method, we select a
feasible parameter range S based on the guidelines provided in their papers. Then, we conduct a grid search over S to
select the hyperparameter that minimizes the reconstruction loss ∥AαXW − X∥22 as the final parameter α̃. Here, the
objective function used for tuning hyperparameters is designed to satisfy the following conditions: 1) a convex function that
guarantees a unique solution; 2) it can be solved efficiently.

1https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLasso.
html
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D.3. Data Generation

Synthetic. We consider three random graphs: ER, WS, and BA graphs. Based on these network structures, we generate
Nash equilibrium actions for different network games. For linear quadratic games and linear influence games, we first
generate marginal benefits b from the Gaussian distribution (3) with different smoothness parameters α ∈ [0, 1], and then we
simulate equilibrium actions following specific distributions: x∗ ∼ N (0, Ã−1(I − αÃ)†Ã−1) for linear influence games,
and x∗ ∼ N (0, (I − βÃ)−1(I − αÃ)†(I − βÃ)−1) for linear quadratic games. To guarantee that (I − βÃ) is invertible,
parameter |β| < 1. For BH graphical games, the Nash equilibrium actions x∗ correspond to the eigenvector of Ã associated
with its largest eigenvalue 1. Following the setting in (Barik & Honorio, 2019), we consider noisy pure-strategy Nash
equilibrium actions (ε-PSNE), i.e., x = x∗ + e, where e are independently generated from a sub-Gaussian distribution. In
this paper, we set ε = 0.2.

Indian Villages. The Indian village datasets consist of 75 rural villages in Karnataka, a state in southern India2 (Banerjee
et al., 2008). These villages are spaced far enough apart from each other that they can be considered independent graphs. We
consider 48 villages with ground truth networks, which are also used in Leng et al. (2020). The number of nodes in different
network graphs ranges from 77 to 356, and there are a total of 10 actions including the number of rooms, number of beds,
the presence of electricity, and other properties. For actions that are categorical categories, we use one-hot encoding, and
numerical actions are handled as continuous features.

Foursquare. On Foursquare3, users can follow their friends’ check-in information, including locations and frequency.
They may also follow each other’s activities and discover new places based on their friends’ check-ins and recommendations.
We consider two cities: New York and São Paulo. For each city, we first select the category with the most venues and keep
all users who have checked in at venues within that category. Then, we calculate the number of their check-ins as actions.
Additionally, we remove venues that have never been checked in. To evaluate the algorithm’s performance, we use the
largest connected component of the social network as the ground truth.

Yelp. We consider two different states: Pennsylvania (PA) and Louisiana (LA) states 4. For each state, we first select
businesses that are located within that state and belong to the food/restaurants category. We then remove users who have not
provided reviews or ratings for any businesses from the original dataset. We reconstruct a new graph using the original
user-user graph. The largest connected component in this reconstructed graph is then considered as the ground truth. We
compute users’ ratings and the number of words in reviews as different features in our analysis.

D.4. Datasets

Table 6. Statistics of real-world datasets. For Indian villages, we report the user range across all graphs and other average results.

#Graph #User #Action #Edges #Community Edge density

Indian Villages 48 77 - 356 10 2208.25 ± 750.06 19.15 ± 6.43 0.0504 ± 0.0174
New York 1 449 177 1980 14 0.0098
São Paulo 1 678 430 3874 19 0.0084
Louisiana 1 2065 6094 28514 12 0.0067

Pennsylvania 1 2234 15965 40664 8 0.0081

D.5. Additional experiments and results

End-to-end training vs. Two-stage training. The latent variable C is used to determine the dominant prior under
different network games. During end-to-end training, an incorrect estimation of C will result in selecting the opposite prior
distribution, which in turn leads to learning an inaccurate network structure. Therefore, we exploit a stage-wise training
strategy to estimate the interaction type before learning the network structure. To better illustrate the necessity of the

2The village dataset can be downloaded from https://doi.org/10.7910/DVN/U3BIHX
3The Foursquare dataset can be downloaded from https://sites.google.com/site/yangdingqi/home/

foursquare-dataset?pli=1
4The Yelp dataset can be downloaded from https://www.yelp.com/dataset
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Figure 5. Comparison of end-to-end training and two-stage training on linear quadratic games with different β and α on WS graphs. From
left to right: α = 0.0, 0.5, 0.8.
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Figure 6. Performance for linear quadratic games with different β and α on ER graphs. From left to right: α = 0.0, 0.5, 0.8.

two-stage training strategy, we evaluate the performance of these two learning methods on 10 random graphs with linear
quadratic games. Figure 5 shows that the results obtained by the end-to-end training method are not stable under different
settings, while the two-stage training framework performs well.

Synthetic. Figures 6 and 7 present the AUC results of all algorithms on linear quadratic games with ER graphs and WS
graphs, respectively. GPGVAE outperforms all baselines, especially when there are strategic substitute interactions among
individuals, i.e., β < 0.

Effect of mixture distributions and gradient estimators. Table 7 reports the AUC values obtained on the New York
dataset using different gradient estimators and different numbers of mixture distributions. While using a single distribution
(i.e. K = 1) can yield satisfactory results, employing a mixture model can effectively capture dependencies between edges,
thereby improving overall results. The two gradient estimators have similar performance when K > 1 and the score function
with variance reduction technique performs better than the pathwise estimator when using a single distribution.

Table 7. Results with various gradient estimators and different numbers of distributions.

K = 1 K = 5 K = 10

Pathwise 56.41 ±0.93 57.64 ±0.52 57.59 ±0.37

Score function* 57.15 ±0.46 57.53 ±0.35 57.14 ±0.24

Computation complexity. Like most graph learning methods, we need to estimate the probability of each edge, and since
we use a mixture of Bernoulli distributions, the computational complexity of GPGVAE method is O(N2K), where N is the
number of nodes, and K is the number of mixture components. Figure 8 shows the impact of different factors on GPGVAE’s
training time. Among these factors, the number of nodes has the most significant impact on training time. We also compare
the training (second) and inference times (millisecond) of GPGVAE with NodeFormer, where the inference time denotes the
time used to infer the network from the node feature based on the trained network structure encoder qϕ(A|X). The results
are reported in Table 8. Although GPGVAE may have longer training times for large datasets, its inference time is shorter.
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Figure 7. Performance for linear quadratic games with different β and α on WS graphs. From left to right: α = 0.0, 0.5, 0.8.

Figure 8. Effect of different factors on the training time of GPGVAE under linear quadratic games.

However, NodeFormer needs to compute the probability for each edge at each layer, leading to longer inference times.

Table 8. Training (second) and inference times (millisecond) for GPGVAE and NodeFormer.

Method Linear influence BH graphical New York LA ratings

Training time NodeFormer 41.27 ± 6.83e-02 41.47 ± 8.15e-02 49.44 ± 2.74e-01 85.55 ± 7.75e-01
GPGVAE 38.26 ± 2.80e-00 35.58 ± 8.34e-01 273.55 ± 2.05e-01 1092.24 ± 7.89e-01

Inference time NodeFormer 16.91 ± 1.25e-01 16.93 ± 2.60e-01 18.10 ± 4.71e-02 16.42 ± 4.71e-01
GPGVAE 3.30 ± 1.63e-02 3.43 ± 4.11e-02 3.92 ± 2.32e-02 4.50 ± 9.63e-02
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