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Abstract
Unlearnable examples (UEs) seek to maximize
testing error by making subtle modifications to
training examples that are correctly labeled. De-
fenses against these poisoning attacks can be
categorized based on whether specific interven-
tions are adopted during training. The first ap-
proach is training-time defense, such as adversar-
ial training, which can mitigate poisoning effects
but is computationally intensive. The other ap-
proach is pre-training purification, e.g., image
short squeezing, which consists of several simple
compressions but often encounters challenges in
dealing with various UEs. Our work provides a
novel disentanglement mechanism to build an ef-
ficient pre-training purification method. Firstly,
we uncover rate-constrained variational autoen-
coders (VAEs), demonstrating a clear tendency
to suppress the perturbations in UEs. We sub-
sequently conduct a theoretical analysis for this
phenomenon. Building upon these insights, we in-
troduce a disentangle variational autoencoder (D-
VAE), capable of disentangling the perturbations
with learnable class-wise embeddings. Based on
this network, a two-stage purification approach
is naturally developed. The first stage focuses
on roughly eliminating perturbations, while the
second stage produces refined, poison-free results,
ensuring effectiveness and robustness across var-
ious scenarios. Extensive experiments demon-
strate the remarkable performance of our method
across CIFAR-10, CIFAR-100, and a 100-class
ImageNet-subset. Code is available at https:
//github.com/yuyi-sd/D-VAE.
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1. Introduction
Although machine learning models often achieve impressive
performance on a range of challenging tasks, their effective-
ness can significantly deteriorate in the presence of the gaps
between the training and testing data distributions. One of
the most widely studied types of these gaps is related to
the vulnerability of standard models to adversarial exam-
ples (Goodfellow et al., 2014; Yu et al., 2022b; Xia et al.,
2024; Wang et al., 2024), posing a significant threat to the
inference phase. However, a destructive and often underes-
timated threat emerges from malicious perturbations at the
training phase, namely unlearnable examples, which seek
to maximize testing error by making subtle modifications of
correctly labeled training examples (Feng et al., 2019).

In the era of big data, vast amounts are freely collected from
the Internet, powering advances in DNNs (Schmidhuber,
2015). Nonetheless, it’s essential to note that online data
may contain proprietary or private information, raising con-
cerns about unauthorized use. UEs are considered a promis-
ing route for data protection (Huang et al., 2021). Recently,
many efforts have emerged to add invisible perturbations to
images as shortcuts to disrupt the training process (Yu et al.,
2022a; Lin et al., 2024). On the other hand, data exploiters
perceive these protection techniques as potential threats to
a company’s commercial interests, leading to extensive re-
search efforts in developing defenses. Previous research
has demonstrated that training-time defenses, such as adver-
sarial training and adversarial augmentations, can alleviate
poisoning effects. However, their practicality is limited by
the massive computational costs. Recently, preprocessing-
based defenses have gained attention with simple compres-
sions like JPEG and grayscale demonstrating the advantages
over adversarial training in computational efficiency (Liu
et al., 2023). However, these methods lack universality, as
different compression techniques might be best suited for
various attacks. Pre-training purification has demonstrated
great potential in addressing the issue of UEs in both ef-
fectiveness and efficiency (Liu et al., 2023). This kind of
method doesn’t intervene in the model’s training but instead
concentrates on refining the data, which well aligns with the
recent theme of data-centric AI (DCAI) (Zha et al., 2023).
Focusing on fundamental data-related issues rather than
relying on untrusted or compromised data leads to more
reliable and effective machine learning models.
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(a) Visual depiction of D-VAE (b) Overall two-stage purification framework
Figure 1. (a) Visual depiction of D-VAE containing two components. One component generates reconstructed images x̂, preserving the
primary content of unlearnable inputs x. The auxiliary decoder maps a trainable class-wise embedding uy and latents z to disentangled
perturbations p̂. Here, xc is clean data, and p is added perturbations. Perturbations are normalized for better views. (b) The purification
framework consisting of two stages. The overall purification can be formulated as x3 = g(x0), where x0 is the original unlearnable data.

In this paper, we focus on the pre-training purification
paradigm. Our overall approach is to utilize a disentan-
glement mechanism to separate the poison signal from the
intrinsic signal of the image with a rate-constrained VAE to
obtain clean data. Firstly, we discover that a rate-constrained
VAE can effectively remove the added perturbations by con-
straining the KL divergence in latents when compared to
JPEG (Guo et al., 2018) in Sec 3.2, with a derived detailed
theoretical explanation in Sec 3.3. Specifically, we formu-
late UEs as the transformation of less-predictive features
into highly predictive ones. This perspective reveals that
perturbations with a larger inter-class distance and smaller
intra-class variance can create stronger attacks by shifting
the optimal separating hyperplane of a Bayes classifier. Sub-
sequently, we show that VAEs are particularly effective at
suppressing perturbations possessing these characteristics.
Furthermore, we observe that most perturbations exhibit
lower class-conditional entropy. Thus, we propose a method
involving learnable class-wise embeddings to disentangle
these added perturbations.

Building upon these findings, we present a purification
framework that offers consistent and adaptable defense
against UEs in Sec 3.4 and Sec 3.5. In Figure 1 (a), we
present the D-VAE, comprising two components, capable of
generating a reconstructed image x̂ with minimal poisoning
perturbations and disentangling predicted perturbations p̂
with a trainable class-wise embedding uy. Subsequently,
leveraging D-VAE, we propose a two-stage purification
framework illustrated in Figure 1 (b). In each stage, we
train D-VAE on the unlearnable dataset and perform infer-
ence using the trained D-VAE on the same dataset. Our
two-stage purification framework primarily involves two
operations: 1) Estimating perturbations p̂ and subtracting
them from x; 2) Obtaining reconstructed data x̂ from Dθc

to serve as purified images. While the subtraction process

occurs at both stages, the acquisition of x̂ takes place at the
end of the second stage. With this method, models trained
on our purified datasets can achieve significant boosts com-
pared with previous SOTA methods: improved from 84% to
90% on CIFAR-10 (Krizhevsky et al., 2009) and from 64%
to 75% on the ImageNet-subset (Deng et al., 2009).

In summary, our contributions can be outlined as follows:

• We discover that rate-constrained VAEs exhibit a prefer-
ence for removing perturbations in UEs, and offer a com-
prehensive theoretical analysis to support this finding.

• We introduce D-VAE, a network that can disentangle
the added perturbations and generate purified data. Our
additional evaluations also show that D-VAE can purify
UEs from a mixed dataset, and is able to produce new UEs,
even if it only accesses to just a small fraction (1%) of UEs
of the entire dataset.

• On top of the D-VAE, we propose a unified purifica-
tion framework for countering various UEs. Extensive
experiments demonstrate the remarkable performance of
our method across CIFAR-10, CIFAR-100, and a 100-class
ImageNet-subset, encompassing multiple poison types and
different perturbation strengths, e.g., with only 4% drop on
ImageNet-subset compared to models trained on clean data.

2. Related Work
2.1. Data Poisoning

Data poisoning attacks (Barreno et al., 2010; Goldblum
et al., 2022; Yu et al., 2023), involving the manipulation
of training data to disrupt the performance of models dur-
ing inference, can be broadly categorized into two main
types: integrity attacks and availability attacks. Integrity
attacks aim to manipulate the model’s output during infer-
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ence (Barreno et al., 2006; Xiao et al., 2015; Zhao et al.,
2017), i.e., backdoor attacks (Gu et al., 2017; Schwarzschild
et al., 2021), where the model behaves maliciously only
when presented with data containing specific triggers. In
contrast, availability attacks aim to degrade the overall per-
formance on validation and test datasets (Biggio et al., 2012;
Xiao et al., 2015). Typically, such attacks inject poisoned
data into the clean training set. Poisoned samples are usually
generated by adding unbounded perturbations, and take only
a fraction of the entire dataset (Koh & Liang, 2017; Zhao
& Lao, 2022; Lu et al., 2023). These methods are primarily
designed for malicious purposes, and the poisoned samples
are relatively distinguishable.

Unlearnable Examples. Another recent emerging type
is unlearnable examples (UEs) (Feng et al., 2019; Huang
et al., 2021), where samples from the entire training dataset
undergo subtle modifications (e.g., bounded perturbations
∥p∥∞ ≤ 8

255 ), and are correctly labeled. This type of
attack, also known as perturbative availability poisoning
attacks (Liu et al., 2023), can be viewed as a promising ap-
proach for data protection. Models trained on such datasets
often approach random guessing performance on clean test
data. EM (Huang et al., 2021) employ error-minimizing
noise as perturbations. NTGA (Yuan & Wu, 2021) generate
protective noise using an ensemble of neural networks mod-
eled with neural tangent kernels. TAP (Fowl et al., 2021)
employ targeted adversarial examples as UEs. REM (Fu
et al., 2022) focuses on conducting robust attacks against
adversarial training. Subsequently, LSP (Yu et al., 2022a)
explore effecient and surrogate-free UEs, and extending the
perturbations to be ℓ2 bounded. Recently, OPS (Wu et al.,
2023) introduce one-pixel shortcuts, which enhances the
robustness to adversarial training and strong augmentations.

2.2. Existing Defenses

Defenses against UEs can be categorized into training-time
defenses and pre-training purification, depending on inter-
ventions applied during or before the training phase. Huang
et al. (2021) shown that UEs are robust to data augmenta-
tions, e.g., Mixup (Zhang et al., 2018). Tao et al. (2021)
find that adversarial training (AT) could mitigate poisoning
effects, but it is computationally expensive and cannot fully
restore performance. Building on the idea of AT, Qin et al.
(2023b) employ adversarial augmentations (AA), but it still
demands intensive training and does not generalize well
to ImageNet-subset. For pre-training defenses, Liu et al.
(2023) indicates that pre-filtering, e.g., gaussian smoothing,
median filtering, show substantial effects but not compara-
ble to AT. Instead, Liu et al. (2023) propose image shortcut
squeezing (ISS) including JPEG compression, grayscale,
and bit depth reduction (Wang et al., 2018) to defense, while
each technique does not fit all UEs approaches. Moreover, it
is noted that low-quality JPEG compression, while effective

for defense, significantly degrades image quality. AVATAR
(Dolatabadi et al., 2023) and LEs (Jiang et al., 2023) both
employ a diffusion model for purification, but those meth-
ods require a substantial amount of additional clean data
to train the diffusion model (Ho et al., 2020; Song et al.,
2021), making it impractical. LFU (Sandoval-Segura et al.,
2023) is a hybrid method that adopt orthogonal projection
to learn perturbations before training and employs strong
augmentations during training due to incomplete purifica-
tions. However, it is constrained to UEs methods that adopt
class-wise linear perturbations, limiting its applicability.

3. Methodology
3.1. Preliminaries

Formally, for UEs, all training data can be perturbed to
some extent, while the labels should remain correct (Feng
et al., 2019; Fowl et al., 2021). We introduce two parties:
the attacker (also called the poisoner), and the victim. The
attacker has the ability to perturb the victim’s training data,
i.e., from (xc

(i), y(i)) to (xc
(i) + p(i), y(i)). The victim

then trains a new model on the poisoned data, i.e., obtaining
θ∗(p). The attacker’s success is determined by the accuracy
of the victim model on clean data, i.e., maximizing the
loss on clean data L(F (xc; θ

∗(p)), y). The task to craft
poisoning perturbations can be formalized into the following
bi-level optimization problem:

max
p∈S

E(xc,y)∼D
[
L(F (xc; θ

∗(p)), y)
]
, s.t. θ∗(p) =

argmin
θ

∑
(xc

(i),y(i))∈T

L(F (xc
(i) + p(i); θ), y(i)),

(1)

where xc is the clean data, and S is the feasible region for
perturbations, e.g., ∥p∥∞ ≤ 8

255 . By adding perturbations
p(i) to samples xc

(i) from the clean training dataset T to
formulate the unlearnable training dataset P , the adversary
aims to induce poor generalization of the trained model F
to the clean test dataset D.

Conversely, data exploiters aim to obtain the learnable data
by employing a mapping g such that:

min
g

E(xc,y)∼D
[
L(F (xc; θ

∗(g)), y)
]
, s.t. θ∗(g) =

argmin
θ

∑
(xc

(i)+p(i),y(i))∈P

L(F (g(xc
(i) + p(i)); θ), y(i)).

(2)

In this paper, we focus on pre-training purification, where g
is applied for that purification, before training the classifier.

Notations. For better comprehension of the subsequent
sections, we present notations for all remaining variables. p̂
is the estimated perturbations by D-VAE. x̂/z is the recon-
structed data, and the latents encoded by the VAE/D-VAE,
respectively. For the trainable modules, D-VAE consists
of encoder Eϕ, decoder Dθc , auxiliary decoder Dθp , and
class-wise embeddings uy .
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(b) PSNR Vs. Test Acc.

Better reconstruction quality Recover more perturbationsLose more information

(a) PSNR / Test Acc. Vs. KLD Loss

Figure 2. (a): Results of VAEs: PSNR/Test Accuracy Vs. KLD Loss are assessed on the unlearnable CIFAR-10. (b): Comparison
between VAEs and JPEG compression: PSNR Vs. Test Accuracy. Note that we adopt JPEG with quality {2,5,10,30,50,70,90} to control
the corruption levels. We include EM, REM, and LSP as UEs methods.

3.2. VAEs Can Effectively Mitigate the Impact of
Poisoning Perturbations in UEs

The VAE maps the input to a lower-dimensional latent space,
generating parameters for a variational distribution. The
decoder reconstructs data from this latent space. The loss
function combines a reconstruction loss (“distortion”) with
a Kullback-Leibler (KL) divergence term (“rate”), acting as
a limit on mutual information and serving as a compression
regularizer (Bozkurt et al., 2021).

Since UEs have demonstrated vulnerability to compressions
like JPEG, we first investigate whether a rate-constrained
VAE can eliminate these perturbations and obtain the re-
stored learnable samples. In essence, we introduce an up-
dated loss function incorporating a rate constraint as follows
(P is the unlearnable dataset, and x is the UEs):

LVAE =
∑

x,y∈P

∥x− x̂∥22︸ ︷︷ ︸
distortion

+λmax(KLD(z,N (0, I)), kldtarget)︸ ︷︷ ︸
rate constraint

,

(3)

where the KLD Loss is formulated from Kingma & Welling
(2014) and provided in the Appendix B.1, and the kldtarget
serves as the target value for the KLD loss. We proceed to
train the VAE on the unlearnable CIFAR-10. Subsequently,
we report the accuracy on the clean test set achieved by a
ResNet-18 trained on the reconstructed images. In Fig-
ure 2(a), reducing the KLD loss decreases reconstruction
quality (measured by Peak Signal-to-Noise Ratio (PSNR)
between x̂ and x). This reduction can eliminate added per-
turbations and original valuable features. The right image
of Figure 2(a) shows that increased removal of perturba-
tions in x̂ correlates with improved test accuracy. However,
heavily corrupting x̂ by further reducing kldtarget removes
more valuable features, leading to a drop in test accuracy.
In Figure 2(b), the comparison with JPEG at various quality
settings shows that when processed through VAEs and JPEG
to achieve similar PSNR, test accuracy with VAEs is higher
than JPEG. This suggests that VAEs are significantly more
effective at eliminating perturbations than JPEG compres-

sion, when achieving similar levels of reconstruction quality.
Then, we delve into why VAEs can exhibit such preference.

3.3. Theoretical Analysis and Intrinsic Characteristics

Given that the feature extractor maps the input data to the
latent space is pivotal for the classification conducted by
DNNs, we conduct our analysis on the latent features v.

Hyperplane shift caused by attacks. Consider the fol-
lowing binary classification problem with regards to the
features extracted from the data v = (vc,v

t
s) consisting

of a predictive feature vc of a Gaussian mixture Gc and a
non-predictive feature vt

s which follows:

y
u·a·r∼ {0, 1}, vc ∼ N (µy

c ,Σc), v
t
s ∼ N (µt,Σt),

vc ⊥⊥ vt
s, Pr(y = 0) = Pr(y = 1).

(4)

Proposition 3.1. For the features v = (vc,v
t
s) following

the distribution (4), the optimal separating hyperplane using
a Bayes classifier is formulated by:

w⊤
c (v

∗
c − µ0

c + µ1
c

2
) = 0, s.t. wc = Σ−1

c (µ0
c − µ1

c). (5)

The proof is provided in Appendix A.1. Subsequently, we
assume that a malicious attacker modifies vt

s to vs of the
following distributions Gs to make it predictive for training
a Bayes classifier:

y
u·a·r∼ {0, 1}, vs ∼ N (µy

s ,Σs), vc ⊥⊥ vs. (6)

Theorem 3.2. Consider features from the training data for
the Bayes classifier is modified from v = (vc,v

t
s) in Eq. 4

to v = (vc,vs) in Eq. 6, the hyperplane is shifted with a
distance given by:

d = ∥w⊤
s (vs −

µ0
s + µ1

s

2
)∥

2

/
∥wc∥2,

s.t. wc = Σ−1
c (µ0

c − µ1
c), ws = Σ−1

s (µ0
s − µ1

s).

(7)

The proof is provided in Appendix A.2. When conducting
evaluations on the testing data that follows the same distri-
bution as the clean data v = (vc,v

t
s), with the term vs in
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Eq. 7 replaced by vt
s, it leads to a greater prediction error if

∥ws∥2 ≫ ∥wc∥2. Theorem 3.2 indicates that perturbations
which create strong attacks tend to have a larger inter-class
distance and a smaller intra-class variance.

Error when aligning with a normal distribution. Con-
sider a variable v = (v1, . . . , vd) following a mixture of
two Gaussian distributions G:

y
u·a·r∼ {0, 1}, v ∼ N (µy,Σ),

vi ∼ N (µy
i , σi), vi ⊥⊥ vj , Pr(y = 0) = Pr(y = 1),

pvi(v) = [N (v;µ0
i , σi) +N (v;µ1

i , σi)]/2.

(8)

Each dimensional feature vi is also modeled as a Gaussian
mixture. To start, we normalize each feature through a linear
operation to achieve a distribution with zero mean and unit
variance. The linear operation and the modified density
function can be expressed as follows:

zi =
vi − µ̂i√

(σi)
2 + (δi)

2
, pzi(v) =

p0(v) + p1(v)

2
,

p0(v) = N (v;−δ̂i, σ̂i), p1(v) = N (v; δ̂i, σ̂i),

where µ̂i =
µ0
i + µ1

i

2
, δi = |µ

0
i − µ1

i

2
|,

δ̂i = δi/

√
(σi)

2 + (δi)
2, σ̂i = σi/

√
(σi)

2 + (δi)
2.

(9)

Theorem 3.3. Denote ri =
δi
σi

> 0, the Kullback–Leibler
divergence between pzi(v) in (9) and a standard normal
distribution N (v; 0, 1) is bounded by:
ln(1 + (ri)

2)

2
−ln2≤KLD(pzi(v)∥N (v; 0, 1))≤ ln(1 + (ri)

2)

2
,

(10)
and observes the following property:

↑ ri =⇒ ↑ S(ri) = KLD(pzi(v)∥N (v; 0, 1)). (11)

The proof for Theroem 3.3 is provided in Appendix A.3.
Remark 3.4. The training of a VAE includes the process of
mapping the data x to latents. We can break this process into
two step2: 1) The encoder first map the x to lossless interme-
diate representations zi ∼ pzi(v); 2) The encoder estimate
(re-project/remap) the intermediate representations to a new
distribution P̂ subject to KLD(P̂∥N (0, 1)) < ϵ. According
to Theorem 3.3, for each lossless intermediate representa-
tion zi with r < S−1(ϵ), we can apply an identical mapping
P̂ = pzi(v) without requiring the step 2 mentioned above.
In this way, the final representation zi is still lossless. For
the intermediate representation zi with rvi > S−1(ϵ), we
can see that through step 2, the final representation with P̂
is forced to have a smaller r, and ideally to be almost equal
to S−1(ϵ). Basically, the error for the two distributions can
be denoted as

∫∞
−∞[P̂ (v) − pzi(v)]

2dv in the distribution
space. From this formulation, we can explicitly see that a
larger gap (rvi − S−1(ϵ)) can also lead to larger estimation
error. And the estimated P̂ is constrained to have a smaller
r, making it less predictive for classification.

Remark 3.4 indicates that perturbative patterns that make
strong attacks tend to suffer from larger errors when esti-
mating with distributions subject to the constraint on the
KLD. Thus, the training of a rate-constrained VAE includes
simulating the process of mapping the data to latent rep-
resentations and aligning them with a normal distribution
to a certain extent. The decoder learns to reconstruct the
input data from the resampled latents z. Consequently, the
highly predictive shortcuts are subdued or eliminated in the
reconstructed data x̂.

Proposition 3.5. The conditional entropy of a Gaussian
mixture vs of Gs in Eq. 6 is given by:

H(vs|yi) =
dim(vs)

2
(1 + ln(2π)) +

1

2
ln |Σs|, (12)

where dim(vs) is the dimensions of the features. If each
feature vds is independent, then:

H(vs|yi) =
dim(vs)

2
(1 + ln(2π)) +

dim(vs)∑
d=1

lnσd
s . (13)

As the inter-class distance ∆s = ∥µ0
s − µ1

s∥2 is constrained
to ensure the invisibility of the perturbations, perturbations
in most UEs exhibit a relatively low intra-class variance.
Proposition 3.5 suggests that the class-conditional entropy
of the perturbations is comparatively low. Adversarial poi-
soning (Fowl et al., 2021; Chen et al., 2023) could be an
exception since adversarial examples can maximize latent
space shifts with minimal perturbation in the RGB space.
However, the preference to be removed by VAE still holds.

3.4. D-VAE: VAE with Perturbations Disentanglement

Given that the defender lacks groundtruth values for the
perturbations p, it is not possible to optimize uy and Dθp to
learn to predict p̂ directly by minimizing ∥p− p̂∥22 during
model training. Expanding on the insights from Section 3.2
and Remark 3.4, when imposing a low target value on the
KLD loss, creating an information bottleneck on the latents
z, the reconstructed x̂ cannot achieve perfect reconstruc-
tion, making the added perturbations more challenging to
be recovered in x̂. As a result, a significant portion of
perturbations p persists in the residuals x− x̂.

Following Proposition 3.5, the majority of perturbations as-
sociated with each class data exhibit relatively low entropy,
suggesting that they can be largely reconstructed using rep-
resentations with limited capacity. Considering that most
perturbations are crafted to be sample-wise, we propose a
learning approach that maps the summation of a trainable
class-wise embedding uy and the latents z to p̂ through
an auxiliary decoder Dθp . To learn uy and train Dθp , we
propose minimizing ∥(x− x̂)− p̂∥22, as the residuals x−x̂
contain the majority of the groundtruth p when imposing a
low target value on the KLD loss.
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Algorithm 1 Two-stage purification framework of unlearnable examples with D-VAE
Input: Unlearnable dataset P0 , D-VAE (Eϕ, Dθc , Dθp , uy), kldtarget: kld1, kld2
# First stage: recover and remove heavy perturbations by training D-VAE with small kld1
Randomly initialize (ϕ, θc, θp, uy), and using Adam to minimize Eq. 14 on P0 with kld1
Inference with trained VAE on P0, and save a new dataset P1 with sample x1 = x0 − p̂0

# Second stage: generate purified data by training D-VAE with larger kld2
Randomly initialize (ϕ, θc, θp, uy), and using Adam to minimize Eq. 14 on P1 with kld2
Inference with trained VAE on P1, and save a new dataset P2 with sample x2 = x1 − p̂1

Inference with trained VAE on P2, and save a new dataset P3 with sample x3 = x̂2

Return purified dataset P3

The overall network is in Figure 1 (a), and the improved
loss to optimize the D-VAE (Eϕ, Dθc , Dθp , uy) is given:

LD-VAE =
∑

x,y∈P

∥x− x̂∥22︸ ︷︷ ︸
distortion

+ ∥(x− x̂)− p̂∥22︸ ︷︷ ︸
recover perturbations

+ λ · max(KLD(z,N (0, I)), kldtarget)︸ ︷︷ ︸
rate constraint

,
(14)

where µ,σ = Eϕ(x), z is sampled from N (µ,σ), x̂ =
Dθc(z), disentangled perturbations p̂ = Dθp(uy + z).

3.5. Purify UEs with D-VAE

Given the observations in Section 3.2 that a large KLD tar-
get fails to effectively surpress the perturbations, while a
small one might significantly deteriorate the quality of re-
constructed images, we introduce a two-stage purification
framework as shown in Algorithm 1. In the first stage, we
use a small kldtarget to train the VAE with the unlearnable
dataset P0. This approach allows us to reconstruct a sig-
nificant portion of the perturbations. During inference, we
subtract the input x0 from P0 by the predicted perturbations
p̂0 and obtain these modified images as P1.

In the second stage, we set a larger kldtarget for training.
After subtracting x1 by p̂1 and saving it as x2 in the first
inference. Since the perturbations are learned in an un-
supervised manner, it is challenging to achieve complete
reconstruction. Hence, we proceed with a second inference
and obtain the output x̂2 as the final result.

Selection of kld1, kld2. Due to potential variations in the
VAE’s encoder and dataset’s resolutions, we decide kldtarget
empirically based on PSNR between the input x and the out-
put x̂. Specifically, though various UEs methods may utilize
different norms to constrain the magnitude of perturbations,
the disparity between the clean data xc and poisoned data
x in terms of PSNR is usually slightly above 30. Therefore,
the selection of an appropriate kldtarget requires this prior in-
formation. Across multiple datasets, there is a basic strategy
for selecting the proper kld1 and kld2 as follows:

1) As the first stage aims to remove the majority of perturba-
tions, we need to adopt a small kld1 to ensure that PSNR

between x and x̂ is low. Thus, most perturbations are pre-
served in x − x̂, thereby leading to a better estimation of
p̂. We choose PSNR value to fall between 20 and 22, and
experiment with some selections of kld1 to achieve this.

2) For the second stage, where our goal is to obtain poison-
free data while maintaining high quality, it is ideal for the
PSNR between x and x̂ to range between 28 and 30. This
range is slightly below the typical PSNR value between
xc and x (usually around 30). Then we experiment with
various selections of kld2 to achieve this.

3) Essentially, the selection process outlined above is de-
pendent on both the dataset and the encoder structure of the
VAE. Consequently, for the same dataset but with different
UEs methods, we opt for the same kld1 and kld2.

4. Experiments
4.1. Experimental Setup

Datasets and models. We choose three commonly used
datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and a subset of ImageNet (Deng et al., 2009) with the first
100 classes. For CIFAR-10 and CIFAR-100, we maintain
the original size of 32×32. Regarding the ImageNet subset,
we follow prior research (Huang et al., 2021), and resize the
image to 224× 224. In our main experiments, we adopt the
ResNet-18 (He et al., 2016) model as both the surrogate and
target model. To evaluate transferability, we include various
classifiers, such as ResNet-50, DenseNet-121 (Huang et al.,
2017), MobileNet-V2 (Sandler et al., 2018).

Unlearnable examples. We examine several representa-
tive UEs methods with various perturbation bounds. The
majority of methods rely on a surrogate model, includ-
ing NTGA (Yuan & Wu, 2021), EM (Huang et al., 2021),
REM (Fu et al., 2022), TAP (Fowl et al., 2021), SEP (Chen
et al., 2023), and employ the ℓ∞ bound. On the other hand,
surrogate-free methods such as LSP (Yu et al., 2022a) and
AR (Sandoval-Segura et al., 2022) utilize the ℓ2 bound. Ad-
ditionally, OPS (Wu et al., 2023) utilizes the ℓ0 bound. The
diversity of these attacking methods can validate the gener-
alization capacity of our proposed purification framework.
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Competing defensive methods. We include two training-
time defenses: adversarial training (AT) with ϵ =
8/255 (Wen et al., 2023) and adversarial augmentations
(AA) (Qin et al., 2023b). Among the pre-training meth-
ods, we include ISS (Liu et al., 2023), consisting of bit
depth reduction (BDR), Grayscale, and JPEG, as well as
AVATAR (Dolatabadi et al., 2023) (denoted as AVA.), which
employs a diffusion model trained on the clean CIFAR-10
dataset to purify. We also include LFU (Sandoval-Segura
et al., 2023), a hybrid defense that utilizes orthogonal pro-
jection to learn perturbations. It also requires strong aug-
mentations during training due to incomplete purifications.
For a fair comparison, we choose to report the test accuracy
from the last epoch. More details are in the Appendix E.2.

Model Training. To ensure consistent training procedures
for the classifier, we have formalized the standard training
approach. For CIFAR-10, we use 60 epochs, while for
CIFAR-100 and the ImageNet, 100 epochs are allowed.
In all experiments, we use SGD optimizer with an initial
learning rate of 0.1 and the CosineAnnealingLR scheduler,
keeping a consistent batch size of 128. For D-VAE training
on unlearnable CIFAR-10, we use a KLD target of 1.0
in the first stage and 3.0 in the second stage, with only
a single ×0.5 downsampling to preserve image quality. For
the CIFAR-100, we maintain the same hyperparameters as
CIFAR-10, except for setting kld2 to 4.5. For ImageNet-
subset, which has higher-resolution images, we employ
more substantial downsampling (×0.125) in the first stage
and set a KLD target of 1.5, while the second stage remains
the same as with CIFAR. When comparing the unlearnable
input and the reconstructed output, these hyperparameters
yield PSNRs of around 28 for CIFAR and 30 for ImageNet.
In Appendix J, we showcase that our method is tolerant to
the selection of kld1 and kld2.

4.2. Validate the Effectiveness of the Disentanglement

UEs can be analyzed from the standpoint of shortcuts (Yu
et al., 2022a). It has been empirically shown that models
trained on the unlearnable training data have a tendency to
memorize the perturbations, and attain high accuracy when
testing on data that has same perturbations (Liu et al., 2023).

In this section, we aim to illustrate that the disentangled
perturbations remain effective as potent attacks and can be
regarded as equivalent to the original unlearnable dataset P .
Initially, we look into the amplitude of the perturbations in
terms of ℓ2-norm. From Table 10 in the Appendix C, the am-
plitude of groundtruth p is around 1.0 for LSP and AR, and
about 1.5 for others. The generated p̂ has an amplitude of
about 1.8 for OPS and around 0.7 to 1.0 for others. Notably,
the amplitude of p̂ is comparable to that of p, with p̂ being
slightly smaller than p except for OPS. The visual results of
the normalized perturbations can be seen in Figure 1, and

Table 1. Testing accuracy (%) of models trained on reconstructed
unlearnable dataset P̂ .

Datasets Test Set EM REM NTGA LSP AR OPS

CIFAR-10
T 9.7 19.8 29.2 15.1 13.09 18.5
D 9.6 19.5 28.6 15.3 12.9 18.7
P 91.3 99.9 99.9 99.9 100.0 99.7

CIFAR-100
T 1.4 6.4 - 4.2 1.6 11.2
D 1.3 7.6 - 4.0 1.6 10.7
P 98.8 96.4 - 99.1 100.0 99.5

we observe the visual similarity between p̂ and p, especially
for LSP and OPS. More details and visual results are in the
Appendix C and Appendix F, respectively.

Subsequently, we construct a new unlearnable dataset de-
noted as P̂ by incorporating the disentangled perturbations
p̂ into the clean training set T . We proceed to train a model
using P̂ , and subsequently evaluate its performance on three
distinct sets: the clean training set T , the clean testing set
D, and the original unlearnable dataset P . From the re-
sults in Table 1, it becomes apparent that the reconstructed
dataset continues to significantly degrade the accuracy on
clean data. In fact, compared to the attacking performance
of P in Table 2 and Table 3, P̂ even manages to achieve
an even superior attacking performance in most instances
with less amplitude. During testing on the original un-
learnable dataset, the accuracy levels are notably high, often
approaching 100%. This outcome serves as an indicator of
the effectiveness of the disentanglement process.

4.3. Experimental Results on UEs Purification

CIFAR-10 UEs purification. To evaluate the effectiveness
of our purification framework, we conducted initial exper-
iments on CIFAR-10. As shown in Table 2, our method
consistently provides comprehensive protection against UEs
with varying perturbation bounds and attack methods. In
contrast, ISS relies on multiple simple compression tech-
niques and requires adaptive selection of these methods,
resulting in subpar defense performance. Notably, when
compared to adversarial training, our method achieved an
approximately 6% improvement in performance. Even
compared with AVATAR, which utilizes a diffusion model
trained on the clean CIFAR-10 data, our methods achieve
superior performance across all attack methods. Our meth-
ods excel, especially on OPS attacks, which often perturb
a pixel to its maximum value, creating a robust shortcut
that evades most defenses. Our approach can effectively
disentangle the majority of these additive perturbations in
the first stage. The subsequent subtraction process can sig-
nificantly mitigate the attacks, resulting in the poison-free
data in the second stage. The performance of training differ-
ent classification models on our purified data is reported in
the rightmost column of Table 2. As can be observed, our
method indeed restores the learnability of data samples.
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Table 2. Clean test accuracy (%) of models trained on the unlearnable CIFAR-10 dataset and with our proposed method Vs. other defenses.
Our results on additional classifiers are at the rightmost. RN, DN, and MN denote ResNet, DenseNet, and MobileNet, respectively.

Norm UEs / Countermeasures w/o AT AA BDR Gray JPEG AVA. LFU Ours RN-50 DN-121 MN-v2

Clean (no poison) 94.57 85.17 92.27 88.95 92.74 85.47 89.61 86.78 93.29 93.08 93.73 83.61

ℓ∞ = 8
255

NTGA (Yuan & Wu, 2021) 11.10 83.63 77.92 57.80 65.26 78.97 80.72 82.21 89.21 88.96 89.28 78.72
EM (Huang et al., 2021) 12.26 84.43 67.11 81.91 19.50 85.61 89.54 65.17 91.42 91.62 91.64 81.10
TAP (Fowl et al., 2021) 25.44 83.89 55.84 80.18 21.50 84.99 89.13 53.46 90.48 90.50 90.51 81.28
REM (Fu et al., 2022) 22.43 86.01 64.99 32.36 62.35 84.40 86.06 33.81 86.38 85.91 86.74 79.27

SEP (Chen et al., 2023) 6.63 83.48 61.07 81.21 8.47 84.97 89.56 74.14 90.74 90.86 90.76 80.98

ℓ2 = 1.0
LSP (Yu et al., 2022a) 13.14 84.56 80.39 40.25 73.63 79.91 81.15 87.76 91.20 90.15 91.10 80.26

AR (Sandoval-Segura et al., 2022) 12.50 82.01 49.14 29.14 36.18 84.97 89.64 23.51 91.77 90.53 90.99 82.26

ℓ0 = 1 OPS (Wu et al., 2023) 22.03 9.48 64.02 19.58 19.43 77.33 71.62 86.46 88.95 88.10 88.78 81.40

Mean (except clean) 15.69 74.68 65.06 52.80 38.29 82.64 84.67 63.19 90.01 89.58 89.98 80.66

Table 3. Performance on CIFAR-100.
UEs w/o AT AA ISS AVA. LFU Ours

Clean 77.61 59.65 69.09 71.59 61.09 33.12 70.72

EM 12.30 59.07 42.89 61.91 61.09 29.54 68.79
TAP 13.44 57.91 35.10 57.33 60.47 29.90 65.54
REM 16.80 59.34 50.12 58.13 60.90 31.06 68.52
SEP 4.66 57.93 27.77 57.76 59.80 32.03 64.02
LSP 2.91 58.93 53.28 53.06 52.17 34.61 67.73
AR 2.71 58.77 26.77 56.60 60.33 30.09 63.73
OPS 12.56 7.28 36.78 54.45 44.24 30.40 65.10

Mean 9.34 51.32 38.96 57.03 57.00 31.09 66.20

Table 4. Performance on 100-class
ImageNet-subset.

UEs w/o AT AA ISS Ours

Clean 80.52 55.94 71.56 76.92 76.78

EM 1.08 56.74 3.82 72.44 74.80
TAP 12.56 55.36 71.38 73.24 76.56
REM 2.54 59.34 20.92 58.13 72.56
LSP 2.50 58.93 46.58 53.06 76.06

Mean 4.67 57.59 35.68 64.21 75.00

Table 5. Performance on unlearnable CIFAR-10
with larger bounds: ℓ∞ = 16

255
and ℓ2 = 4.0.

UEs w/o AT AA ISS AVA. LFU Ours

EM 10.09 84.02 49.23 83.62 85.61 78.78 91.06
TAP 18.45 83.46 52.92 84.98 89.43 22.23 90.55
REM 23.22 35.41 50.92 75.50 52.26 83.10 79.18
SEP 12.05 83.98 56.71 85.00 88.96 70.49 90.93
LSP 15.45 79.10 59.10 41.41 41.70 44.48 86.43

Mean 15.85 73.19 53.77 74.10 71.59 59.81 87.63

CIFAR-100/ImageNet-subset UEs purification. We then
expand our experiments to include CIFAR-100 and a 100-
class ImageNet subset. Due to the resource-intensive nature
of the experiments, we focused on four representative attack
methods for the ImageNet subset. Note that for ISS, we
report the best accuracy among three compressions. The
results, as presented in Table 3 and Table 4, re-confirm the
overall effectiveness of our purification framework.

Experiments on larger perturbations. In our additional
experiments, we introduced UEs with larger perturbation
bounds. The outcomes on CIFAR-10 are outlined in Table 5.
It is worth noting that our method exhibits a high degree
of consistency, with almost no performance degradation on
EM, TAP, and SEP, and only a slight decrease on REM and
LSP. However, it proves to be a challenging scenario for the
competing methods to effectively address.

Comparison of existing defenses. We offer a comparison
of existing defenses and our approach. As shown in Table 6,
our method belongs to the pre-training purification, and re-
quires no external clean data. It consistently outperforms
across all UEs and datasets. Furthermore, among all com-
peting defenses, LFU is the only one capable of learning
and disentangling class-wise linear perturbations, applicable
to LSP and OPS. However, due to incomplete purification,
LFU also adopts strong augmentations and CutMix during
training. In contrast, our method effectively disentangles
perturbations in almost all UEs, except for adversarial poi-
soning including TAP and SEP, detailed in Proposition 3.5
and Section 4.2. More comparison is in the Appendix G,H.

Table 6. Comparison of existing defenses and our method. Perfor-
mance drop is on CIFAR-10 dataset compared to clean one.

Characteristics AT AA ISS AVA. LFU Ours

Pre-training purification % % ! ! ! !

Training-phase interventions ! ! % % ! %

No external clean data ! ! ! % ! !

Consistence on various UEs % % % ! % !
UEs types that can be disentangled 0/8 0/8 0/8 0/8 2/8 6/8

Mean performance drop (%) ↓ 19.89 29.51 11.93 9.90 31.38 4.56

Table 7. Ablation study on the two-stage purification framework.
s1/s2 denote the 1st and 2nd stage. i1/i2/i3 denote the 1st, 2nd
and 3th inference. ⑤ is a method where, after s1, we execute an
operation same to i3, employing the D-VAE trained in s1.

Method NTGA EM TAP REM SEP LSP AR OPS Mean

①w/o s1 78.62 91.85 90.97 82.06 90.76 66.76 91.39 51.71 80.52
②w/o i2 in s2 87.44 91.18 90.70 85.21 90.79 90.63 91.31 84.92 89.02

③w/o s2 12.78 78.96 21.12 25.44 4.83 93.47 11.49 41.57 36.21
④w/o i3 13.87 80.77 23.02 23.84 5.29 93.58 14.23 66.39 40.12

⑤ 80.98 83.37 84.14 83.48 83.32 83.91 84.22 84.06 83.44
Ours 89.21 91.42 90.48 86.38 90.74 91.20 91.77 88.95 90.01

4.4. Ablation Study

In this section, we conduct an ablation study on our two-
stage purification framework. As shown in Table 7, ① shows
that the subtraction process in s1 plays a critical role in miti-
gating certain attacks, including NTGA, LSP, and OPS. ②
shows that the subtraction (i2) in s2 can further improve the
performance. This is particularly evident for LSP, which in-
troduces smooth colorized blocks, and OPS, which perturbs
a single pixel to a maximum value, making them challeng-
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Table 8. Performance of detecting UEs or increasing UEs with
various poisoning ratios on CIFAR-10 dataset.

UEs Detecting UEs Increasing UEs

Attacks Ratio Acc. Recall Precision F1-score Ratio Test Acc.

EM 0.2 0.918 1.0 0.709 0.830 0.01 0.1009
LSP 0.777 1.0 0.472 0.641 0.1558

EM 0.4 0.939 1.0 0.869 0.930 0.02 0.1011
LSP 0.905 1.0 0.807 0.893 0.1633

EM 0.6 0.961 1.0 0.938 0.968 0.04 0.1229
LSP 0.941 0.999 0.912 0.954 0.1405

EM 0.8 0.982 1.0 0.978 0.989 0.08 0.1001
LSP 0.973 1.0 0.968 0.984 0.1763

ing to remove when subjected to a moderate KLD target.
③ indicate that the reduction operation in s1 can partially
mitigate the effects of poisoning perturbations, particularly
demonstrating effectiveness against LSP. Since LSP and
OPS adopt class-wise perturbations, the estimation of p̂ is
more accurate and complete. However, for other UEs, de-
spite the reduction operation, residual perturbations in the
output can still pose a threat. ④ reveal that an additional
reduction operation in s2 leads to further elimination of per-
turbations and enhances performance compared to ③. In
contrast to ③, ⑤ indicate that the output of D-VAE contains
fewer poisoning perturbations. However, this reduction in
perturbations comes at a cost: the small kldtarget in s1 results
in outputs with lower reconstruction quality and a greater
loss of useful information. In contrast, the outcomes of
experiment ② are superior, as it adopts a larger kldtarget.

5. Discussion
5.1. Partial Poisoning and UEs Detection

In practical scenarios, it is often the case that only a fraction
of the training data can be contaminated. Therefore, in line
with previous research (Liu et al., 2023), we evaluate these
partial poisoning scenarios by introducing UEs to a specific
portion of the training data and subsequently combining it
with the remaining clean data for training the target model.
We conduct experiments on CIFAR-10 dataset.

When examining the first stage as outlined in Algorithm 1,
we observe that even the perturbations learned for the clean
samples can potentially serve as poisoning attacks. This
could be caused by the constrained representation capacity
of the class-wise embedding. In essence, building upon this
discovery, we have the capability to create a new unlearnable
dataset denoted as P̂0, where each sample is formed as x0+
p̂0. Models trained on P̂0 tend to achieve high prediction
accuracy on the unlearnable samples but perform notably
worse on the clean ones. Consequently, we can employ
this metric as a means to detect the presence of unlearnable
data, and the detection performance is outlined in Table 8.
Notably, our detection method attains high accuracy, with an

Table 9. Clean testing accuracy (%) of models trained on the un-
learnable CIFAR-10 dataset with different poisoning ratios.

Ratio Counter EM TAP REM SEP LSP AR OPS

0.2 JPEG 85.03 85.1 84.64 85.34 85.22 85.31 85.12
Ours 93.50 90.55 92.24 90.86 93.20 92.77 93.15

0.4 JPEG 85.31 85.60 84.90 85.22 85.34 85.29 84.89
Ours 93.03 90.78 92.51 90.63 92.85 91.83 93.29

0.6 JPEG 85.40 84.92 84.62 85.06 84.26 85.33 84.43
Ours 93.02 90.93 92.23 91.04 92.16 91.41 92.13

0.8 JPEG 85.31 85.34 84.97 85.06 83.02 84.87 83.01
Ours 92.26 91.10 90.86 91.79 92.16 91.70 92.16

almost 100% recall rate. Subsequently, to address the issue
of partial poisoning in datasets, we can adopt a detection-
purification approach. The performances of models trained
on the purified data are presented in Table 9.

5.2. Increasing the Amounts of UEs

In this section, we investigate whether our proposed dis-
entanglement approach can help increase the amount of
UEs once the attacker acquires additional clean data. We
conduct experiments on CIFAR-10 dataset by generating
UEs, denoted as P(0), using a small ratio of the dataset,
while leaving the remaining clean data T(1) untouched. Sub-
sequently, after training the D-VAE on P(0), we conduct
inference on the T(1). The addition of p̂(1) to the clean data
in T(1) results in a unlearnable dataset P(1). By combining
P(0) and P(1) to create P , we proceed to train a classifier.
The accuracy on the clean test set D are reported in Table 8.
It is evident that training D-VAE with just 1% UEs is ade-
quate for generating additional UEs. More results are in the
Appendix D.

6. Conclusion
In this paper, we initially demonstrate that rate-constrained
VAEs exihibit a natural preference for removing poison-
ing perturbations in unlearnable examples (UEs) by con-
straining the KL divergence in the latent space. We further
provide a theoretical explanation for this behavior. Addi-
tionally, our investigations reveal that perturbations in most
UEs have a lower class-conditional entropy, and can be
disentangled by learnable class-wise embeddings and an
auxiliary decoder. Building on these insights, we introduce
the D-VAE, capable of disentangling the perturbations, and
propose a two-stage purification framework that offers a con-
sistent defense against UEs. Extensive experiments show
the remarkable performance of our method across CIFAR-
10, CIFAR-100, and ImageNet-subset, with various UEs
and varying perturbation levels, i.e., only around 4% drop
on ImageNet-subset compared to models trained on clean
data. We plan to extend our work to purify UEs that target
unsupervised learning scenarios in our future work.
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A. Proofs
In this section, we provide the proofs of our theoretical results in Section 3.3.

A.1. Proof of Proposition 3.1

Consider the following binary classification problem with regards to the features extracted from the data v = (vc,v
t
s)

consisting of a predictive feature xc of a Gaussian mixture Gc and a non-predictive feature vt
s which follows:

y
u·a·r∼ {0, 1}, vc ∼ N (µy

c ,Σc), v
t
s ∼ N (µt,Σt), vc ⊥⊥ vt

s, Pr(y = 0) = Pr(y = 1). (15)

Proposition 3.1 (restated) For the data v = (vc,v
t
s) following the distribution (15), the optimal separating hyperplane

using a Bayes classifier is formulated by:

w⊤
c (v

∗
c −

µ0
c + µ1

c

2
) = 0, where wc = Σ−1

c (µ0
c − µ1

c). (16)

Proof. Given v = (vc,v
t
s) following the distribution (15), the optimal decision rule is the maximum a-posteriori probability

rule for a Bayes classifier:

i∗(v) = argmax
i

Pr(y = i|v)

= argmax
i

[
Pr(y = i) Pr(v|y = i)

]
= argmax

i

[
ln Pr(v|y = i)

]
= argmax

i

[
ln Pr(vc|y = i) + lnPr(vt

s|y = i)
]

= argmax
i

[
ln Pr(vc|y = i)

]
= argmax

i

[
ln
[
(2π)−

D
2 |Σc|−

1
2 exp(−1

2
(vc − µi

c)
⊤Σ−1

c (vc − µi
c))

]]
= argmin

i

[
(vc − µi

c)
⊤Σ−1

c (vc − µi
c))

]
= argmin

i

[
v⊤
c Σ

−1
c vc − 2µi

c
⊤Σ−1

c vc + µi
c
⊤Σ−1

c µi
c

]
= argmax

i

[
µi

c
⊤Σ−1

c vc −
1

2
µi

c
⊤Σ−1

c µi
c

]

, (17)

where D is the dimensions. Thus, the hyperplane is formulated by:

µ0
c
⊤Σ−1

c vc −
1

2
µ0

c
⊤Σ−1

c µ0
c = µ1

c
⊤Σ−1

c vc −
1

2
µ1

c
⊤Σ−1

c µ1
c

⇐⇒ w⊤
c (v

∗
c −

µ0
c + µ1

c

2
) = 0, where wc = Σ−1

c (µ0
c − µ1

c).

(18)

A.2. Proof of Theorem 3.2

We assume that a malicious attacker modifies vt
s to vs of the following distributions Gs to make it predictive for training a

Bayes classifier:
y

u·a·r∼ {0, 1}, vs ∼ N (µy
s ,Σs), vc ⊥⊥ vs. (19)

Theorem 3.2 (restated) Consider the training data for the Bayes classifier is modified from v = (vc,v
t
s) in Eq. 15 to

v = (vc,vs) in Eq. 19, the hyperplane is shifted with a distance given by

d =
∥w⊤

s (vs − µ0
s+µ1

s

2 )∥
2

∥wc∥2
, where wc = Σ−1

c (µ0
c − µ1

c), ws = Σ−1
s (µ0

s − µ1
s). (20)
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Proof. After modifying vt
s to vs, the learned separating hyperplane on the poisoned distributions Gp = (Gc, Gs) turns to

(following Proposition 3.1):

w⊤(

[
v∗
c −

µ0
c+µ1

c

2

vs − µ0
s+µ1

s

2

]
) = 0 ⇐⇒ w⊤

c (v
∗
c −

µ0
c + µ1

c

2
) = −w⊤

s (vs −
µ0

s + µ1
s

2
),

where w =

[
Σ−1

c 0

0 Σ−1
s

] [
µ0

c − µ1
c

µ0
s − µ1

s

]
=

[
wc

ws

]
, wc = Σ−1

c (µ0
c − µ1

c).

(21)

Thus, compared to the original hyperplane as stated in Eq. 16, the hyperplane on the poisoned distribution is shifted with a
distance d:

d =
∥w⊤

s (vs − µ0
s+µ1

s

2 )∥
2

∥wc∥2
(22)

When conducting evaluations on the testing data that follows the same distribution as the clean data v = (vc,v
t
s), with the

term vs in Eq. 22 replaced by vt
s, the shifted distance d is given by

d =
∥w⊤

s (v
t
s −

µ0
s+µ1

s

2 )∥
2

∥wc∥2
∝

∥ws∥2
∥wc∥2

. (23)

And it leads to a greater prediction error if ∥ws∥2 ≫ ∥wc∥2.

A.3. Proof of Theorem 3.3

Consider a variable v = (v1, . . . , vd) following a mixture of two Gaussian distributions G:

y
u·a·r∼ {0, 1}, v ∼ N (µy,Σ), xi ⊥⊥ xj , Pr(y = 0) = Pr(y = 1),

vi ∼ N (µy
i , σi), pvi(v) =

N (v;µ0
i , σi) +N (v;µ1

i , σi)

2
.

(24)

Each dimensional feature vi is also modeled as a Gaussian mixture. To start, we normalize each feature through a linear
operation to achieve a distribution with zero mean and unit variance. Firstly, we calculate the mean and standard deviation
of vi:

µ̂i = Evi

[
vi
]
=

µ0
i + µ1

i

2
, Var[vi] = Evi

[
(vi)

2
]
− Evi

[
vi
]2

= σ2
i + (

µ0
i − µ1

i

2
)2. (25)

Thus, the linear operation and the modified density function can be expressed as follows:

zi =
vi − µ̂i√

(σi)
2
+ (δi)

2
, pzi(v) =

p0(v) + p1(v)

2
, p0(v) = N (v;−δ̂i, σ̂i), p1(v) = N (v; δ̂i, σ̂i)

where µ̂i =
µ0
i + µ1

i

2
, δi = |µ

0
i − µ1

i

2
|, δ̂i = δi/

√
(σi)

2
+ (δi)

2
, σ̂i = σi/

√
(σi)

2
+ (δi)

2
.

(26)

Theorem 3.3 (restated) Denote r = δi
σi

> 0, the Kullback–Leibler divergence between pzi(v) and a standard normal
distribution N (v; 0, 1) is tightly bounded by

1

2
ln (1 + r2)− ln 2 ≤ DKL(pzi(v)∥N (v; 0, 1)) ≤ 1

2
ln (1 + r2). (27)

and observes the following property

↑ ri =⇒ ↑ S(ri) = DKL(pzi(v)∥N (v; 0, 1)). (28)

Proof. We estimate the Kullback–Leibler divergence between pzi(v) and N (v; 0, 1):

DKL(pzi(v)∥N (v; 0, 1)) =

∫ ∞

−∞
pzi(v) ln

pzi(v)

N (v; 0, 1)
dv

= −H(pzi(v)) +H((pzi(v),N (v; 0, 1)))

= −H(pzi(v)) +
1

2
(1 + ln 2π),

(29)
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As the funcion N (v; 0, 1))) is given by

N (v; 0, 1))) =
1√
2π

e−
v2

2 , (30)

then the term H((pzi(v),N (v; 0, 1))) can be formulated as

H((pzi(v),N (v; 0, 1))) =

∫ ∞

−∞
pzi(v) ln

1

N (v; 0, 1)
dv

=

∫ ∞

−∞
pzi(v)

[1
2
ln 2π +

1

2
v2
]
dv

=
1

2
ln 2π

∫ ∞

−∞
pzi(v)dv +

1

2

∫ ∞

−∞
v2pzi(v)dv

=
1

2
ln 2π +

1

2

∫ ∞

−∞
v2

p0(v) + p1(v)

2
dv

=
1

2
ln 2π +

1

4

[
Ev∼p0(v)[v

2] + Ev∼p1(v)[v
2]
]

=
1

2
ln 2π +

1

4

[
Ep0(v)[v]

2 + V arp0(v)[v] + Ep1(v)[v]
2 + V arp1(v)[v]

]
=

1

2
ln 2π +

1

2

(31)

As the entropy H(p) is concave in the probability mass function p, a lower bound of H(pzi) is given by:

H(pzi(v)) = H(
p0(v) + p1(v)

2
)

≥ 1

2
H(p0(v)) +

1

2
H(p1(v))

=
1

2
H(N (v;− r√

1 + r2
,

1√
1 + r2

) +
1

2
H(N (v;

r√
1 + r2

,
1√

1 + r2
)

=
1

2

[1
2
(1 + ln(2π(

1√
1 + r2

)2)) +
1

2
(1 + ln(2π(

1√
1 + r2

)2))
]

=
1

2
(1 + ln 2π)− 1

2
ln (1 + r2).

(32)

The upper bound of H(pzi) is given by:

H(pzi) = −
∫ ∞

−∞
pzi(v) ln pzi(v)dv

= −
∫ ∞

−∞

po(v) + p1(v)

2
ln

po(v) + p1(v)

2
dv

= −1

2

[ ∫ ∞

−∞
po(v)[ln

po(v)

2
+ ln(1 +

p1(v)

p0(v)
)]dv +

∫ ∞

−∞
p1(v)[ln

p1(v)

2
+ ln(1 +

p0(v)

p1(v)
)]dv

]
≤ −1

2

[ ∫ ∞

−∞
po(v) ln

po(v)

2
dv +

∫ ∞

−∞
p1(v) ln

p1(v)

2
dv

]
=

1

2

[
H(p0) +H(p1) + 2 ln 2

]
=

1

2
(1 + ln 2π)− 1

2
ln (1 + r2) + ln 2.

(33)

Thus, the Kullback–Leibler divergence is bounded by :
1

2
ln (1 + r2)− ln 2 ≤ DKL(pzi(v)∥N (v; 0, 1)) ≤ 1

2
ln (1 + r2). (34)

Since the lower and upper bounds differ by a constant term, and the lower bound increases significantly as r rises, the
Kullback–Leibler divergence is asymptotically tightly bounded by:

DKL(pzi(v)∥N (v; 0, 1)) = Θ(ln(1 + r2)) (35)
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A.4. Proof of Proposition 3.5

Proposition 3.5 (restated) The conditional entropy of a Gaussian mixture vs of Gs in Eq. 19 is given by

H(vs|yi) =
D

2
(1 + ln(2π)) +

1

2
ln |Σs|, (36)

where D is the dimensions of the features. If each feature vds is independent, then

H(vs|yi) =
D

2
(1 + ln(2π)) +

D∑
d=1

lnσd
s . (37)

Proof. For the variable follows a Gaussian distribution:

v ∼ ND(µ,Σ), (38)

The derivation of its entropy is given by

H(v) = −
∫

p(v) ln p(v)dv

= −E
[
lnND(µ,Σ)

]
= −E

[
ln
[
(2π)−

D
2 |Σ|− 1

2 exp(−1

2
(v − µ)⊤Σ−1(v − µ))

]]
=

D

2
ln(2π) +

1

2
ln |Σ|+ 1

2
E
[
(v − µ)⊤Σ−1(v − µ))

]
∗
=

D

2
(1 + ln(2π)) +

1

2
ln |Σ|

(39)

Step ∗ is a little trickier. It relies on several properties of the trace operator:

E
[
(v − µ)⊤Σ−1(v − µ))

]
= E

[
tr
[
(v − µ)⊤Σ−1(v − µ))

]]
= E

[
tr
[
Σ−1(v − µ)(v − µ)⊤

]]
= tr

[
Σ−1E

[
(v − µ)(v − µ)⊤

]]
= tr

[
Σ−1Σ

]
= tr(ID)

=
D

2

(40)
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Table 10. Evaluation on the amplitude of the disentangled p̂ and groundtruth p.

Datasets Test Set EM REM NTGA LSP AR OPS

CIFAR-10
∥p∥2 1.53 1.80 2.96 0.99 0.98 1.27
∥p̂∥2 1.24 0.92 0.71 0.73 0.68 1.77

MSE(p, p̂) / 10−4 4.4 6.6 12 3.5 5.2 2.3
PSNR(p, p̂) / dB 33.6 31.8 29.3 34.7 32.9 36.5

CIFAR-100
∥p∥2 1.34 1.73 - 0.99 0.98 1.34
∥p̂∥2 0.81 0.69 - 0.69 0.78 1.82

MSE(p, p̂) / 10−4 4.1 7.1 - 4.1 4.7 2.0
PSNR(p, p̂) / dB 33.9 31.5 - 34.0 33.1 37.3

B. Detailed implementation
B.1. KLD Loss

For the implementation of KLD loss in Eq. 3 and Eq. 14, we follows the widely-used version from Kingma & Welling
(2014). The detailed loss formulation is given

KLD(z,N (0, I)) = −1

2

J∑
j=1

(1 + log(σj)
2 − (µj)

2 − (σj)
2),

where z = µ+ σ ⊙ ϵ, and ϵ ∼ N (0, I).

(41)

B.2. D-VAE

In the implementation of D-VAE, the encoder comprises 7 convolutional layers with Batch Normalization, while the decoder
for both branches consists of 4 convolutional layers with Instance Normalization. To predict the mean µ and standard
deviation σ, we employ one convolutional layer with a kernel size of 1 for each variable.

During the training of D-VAE, we configure the number of training epochs to be 60 for CIFAR-10 and CIFAR-100.
However, for ImageNet, which involves significant computational demands, we limit the training epochs to 20. It’s important
to note that we do not use any transformations on the training data when training D-VAEs. For D-VAE training on
unlearnable CIFAR-10/100, we use a KLD target of 1.0 in the first stage and 3.0 in the second stage, with only a single ×0.5
downsampling to preserve image quality. For ImageNet, which has higher-resolution images, we employ more substantial
downsampling (×0.125) in the first stage and set a KLD target of 1.5, while the second stage remains the same as with
CIFAR. When comparing the unlearnable input and the reconstructed output, these hyperparameters yield PSNRs of around
28 for CIFAR and 30 for ImageNet.

C. Disentangled perturbations
Given that the defender lacks groundtruth values for the perturbations p, it is not possible to optimize uy and Dθp to learn
to predict p̂ directly by minimizing ∥p− p̂∥22 during model training. Instead, as the residuals x− x̂ contain the majority
of the groundtruth p when imposing a low target value on the KLD loss, we propose minimizing ∥(x− x̂)− p̂∥22. As p̂
is generated by uy + z, which has an information bottleneck, it is hard to achieve a perfect reconstruction of p, and p̂ is
most likely to be a part of p. In Table 10, we offer the ℓ2-norm of both p and p̂ , and we can see that the p̂ has a smaller
amplitude. In Section 4.2, the experiments show that the p̂ remains effective as poisoning patterns. Notably, the amplitude
of p̂ is comparable to that of p, with p̂ being slightly smaller than p except for OPS.

The visual results of the normalized perturbations can be seen in Figure 1, and we observe the visually similarity between
p̂ and p, especially for LSP and OPS. Additionally, since LSP and OPS use class-wise perturbations (i.e., perturbations
are identical for each class of images), they exhibit lower class-conditioned entropy compared to other attack methods that
employ sample-wise perturbations. This makes the reconstruction of LSP and OPS perturbations much easier.
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Table 11. Performance of detecting UEs or increasing UEs with various poison
ratios on CIFAR-10.

Task Detecting UEs Increasing UEs

UEs Ratio Acc. Recall Precision F1-score Ratio Test Acc.

EM

0.2

0.918 1.0 0.709 0.830

0.01

0.1009
REM 0.561 1.0 0.312 0.476 0.2900
LSP 0.777 1.0 0.472 0.641 0.1558
OPS 0.724 0.993 0.420 0.590 0.2059

EM

0.4

0.939 1.0 0.869 0.930

0.02

0.1011
REM 0.785 1.0 0.651 0.789 0.2777
LSP 0.905 1.0 0.807 0.893 0.1633
OPS 0.842 0.991 0.719 0.833 0.2015

EM

0.6

0.961 1.0 0.938 0.968

0.04

0.1229
REM 0.909 0.999 0.868 0.930 0.2319
LSP 0.941 0.999 0.912 0.954 0.1405
OPS 0.910 0.993 0.874 0.930 0.1632

EM

0.8

0.982 1.0 0.978 0.989

0.08

0.1001
REM 0.958 0.998 0.951 0.975 0.2433
LSP 0.973 1.0 0.968 0.984 0.1763
OPS 0.932 0.997 0.924 0.959 0.1701

Table 12. Clean testing accuracy (%) of models
trained on the unlearnable CIFAR-10 dataset with
different poisoning rate.

UEs Counter 0.2 0.4 0.6 0.8

EM JPEG 85.03 85.31 85.40 85.31
Ours 93.50 93.03 93.02 92.26

TAP JPEG 85.12 85.60 84.92 85.34
Ours 90.55 90.78 90.93 91.10

REM JPEG 84.64 84.90 84.62 84.97
Ours 92.24 92.51 92.23 90.86

SEP JPEG 85.34 85.22 85.06 85.06
Ours 90.86 90.63 91.04 91.79

LSP JPEG 85.22 85.34 84.26 83.02
Ours 93.20 92.85 92.16 92.16

AR JPEG 85.31 85.29 85.33 84.87
Ours 92.77 91.83 91.41 91.70

OPS JPEG 85.12 84.89 84.43 83.01
Ours 93.15 93.29 92.13 92.16

D. More results on partial poisoning
In Table 11 and Table 12, we provide additional results on detecting UEs, increasing amounts of UEs, and experimental
results on UEs purification in the partial poisoning settings.
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(a) EM (Huang et al., 2021)

(b) REM (Fu et al., 2022)

(c) LSP (Yu et al., 2022a)

Figure 3. Test accuracy (%) for each training epoch when using adversarial augmentation (Qin et al., 2023b)

E. Detailed implementation of the attack methods and competing defenses
As previous papers may have used varying code to generate perturbations and implemented defenses based on different
codebases, we have re-implemented the majority of the attack and defensive methods by referencing their original code
resources. In cases where the original paper did not provide code, we will specify the sources we used for implementation.

E.1. Attack methods for generating UEs

NTGA. For the implementation of NTGA UEs, we directly download the read-to-use unlearnable dataset from the official
source of NTGA (Yuan & Wu, 2021).

EM, TAP, and REM. For the implementation of EM (Huang et al., 2021), TAP (Fowl et al., 2021), and REM (Fu et al.,
2022) UEs, we follow the official code of REM (Fu et al., 2022).

SEP. For the implementation of SEP (Chen et al., 2023) UEs, we follow the official code of SEP (Chen et al., 2023).

LSP. For the implementation of LSP (Yu et al., 2022a) UEs, we follow the official code of LSP (Yu et al., 2022a). Particularly,
we set the patch size of the colorized blocks to 8 for both CIFAR-10, CIFAR-100, ImageNet-subset.

AR. For the implementation of AR UEs, we directly download the read-to-use unlearnable dataset from the official source
of AR (Sandoval-Segura et al., 2022).

OPS. For the implementation of OPS. (Wu et al., 2023) UEs, we follow the official code of OPS. (Wu et al., 2023).

E.2. Competing defenses

Image shortcut squeezing (ISS). For the implementation of ISS (Liu et al., 2023), which consists of bit depth reduction
(depth decreased to 2), grayscale (using the official implementation by torchvision.transforms), JPEG compression (quality
set to 10), we follow the official code of ISS (Liu et al., 2023). Although most of the reported results align closely with the
original paper’s findings, we observed that EM and REM UEs generated using the codebase of REM (Fu et al., 2022) display
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Table 13. Test acc. (%) of models trained on CIFAR-10
UEs.

Norm Attacks w/o AA Ours

Clean 94.57 92.66 93.29

ℓ∞ = 8

NTGA 11.10 86.35 89.21
EM 12.26 76.00 91.42
TAP 25.44 71.56 90.48
REM 22.43 78.77 86.38
SEP 6.63 71.95 90.74

ℓ2 = 1.0
LSP 13.14 89.97 91.20
AR 12.50 67.61 91.77

ℓ0 = 1 OPS 22.03 72.54 88.95

Table 14. Test acc. (%) of models trained on CIFAR-100 UEs.

Attacks w/o AA BDR Gray JPEG Ours

Clean 77.61 70.22 63.52 71.59 57.85 70.72

EM 12.30 66.84 61.91 48.83 58.08 68.79
TAP 13.44 49.36 55.09 9.69 57.33 65.54
REM 16.80 60.74 57.51 55.99 58.13 68.52
SEP 4.66 37.73 31.95 4.47 57.76 64.02

LSP 2.91 68.22 22.13 44.18 53.06 67.73
AR 2.71 44.32 29.68 23.09 56.60 63.73

OPS 12.56 40.20 11.56 19.33 54.45 65.10

Table 15. Test acc. (%) of models trained on ImageNet subset UEs.

Attacks w/o AA BDR Gray JPEG Ours

Clean 80.52 73.66 75.84 76.92 72.90 76.78

EM 1.08 46.30 2.78 14.02 72.44 74.80
TAP 12.56 72.10 45.74 33.66 73.24 76.56
REM 2.54 62.30 57.51 55.99 58.13 72.56

LSP 2.50 71.72 22.13 44.18 53.06 76.06

a notable robustness to Grayscale, which differs somewhat from the results reported in the original paper.The unreported
results for the performance of each compression on the CIFAR-100 and ImageNet datasets are presented in Table E.2.

Adversarial training (AT). For the implementation of adversarial training, we follow the official code of pgd-AT (Madry
et al., 2018) with the adversarial perturbation subject to ℓ∞ bound, and set ϵ = 8

255 , iterations T = 10, and step size
α = 1.6

255 .

AVATAR. In our implementation of AVATAR, which employs a diffusion model trained on the clean CIFAR-10 dataset to
purify unlearnable samples, we utilized the codebase from a benchmarking paper (Qin et al., 2023a). This choice was made
since AVATAR (Dolatabadi et al., 2023) does not offer official implementations.

Adversarial augmentations (AA). In our implementation of AA, we utilized the codebase from the original paper (Qin
et al., 2023b). AA comprises two stages. In the first stage, loss-maximizing augmentations are employed for training, with a
default number of repeated samples set to K = 5. In the second stage, a lighter augmentation process is applied, with K = 1.
In all experiments conducted on CIFAR-10, CIFAR-100, and the 100-class ImageNet subset, we strictly adhere to the same
hyperparameters as detailed in the original paper. Nevertheless, we observed that this training-time method can partially
restore the test accuracy if we report the highest accuracy achieved among all training epochs. However, it’s worth noting
that the model may still exhibit a tendency to overfit to the shortcut provided by the unlearnable samples. Consequently,
this can lead to a substantial drop in test accuracy during the second stage, which employs lighter augmentations. The
test accuracy for each training epoch is depicted in Figure 3. Additionally, we have included the best accuracy for AA in
Table E.2. It’s notable that our results from the last epoch surpass the performance of AA, showcasing the superiority.
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Figure 4. Visual results of images before/after purification. Results of stage 2 denote the final purified results. The image is from
ImageNet-subset, and the residuals to the clean images are normalized by two ways.

F. Visual Results
In this section, we present visual results of the purification process on the ImageNet-subset. As depicted in Figure 4, the
purification carried out during stage 1 is effective in removing a significant portion of perturbations, particularly for LSP
UEs. The remaining perturbations are subsequently eliminated in stage 2, resulting in completely poison-free data.
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Figure 5. Comparison between VAEs and AEs: PSNR Vs. Test Acc. Specifically, we include EM, REM, and LSP as attack methods
here.

G. Comparison with non-variational auto-encoders
In this section, we conduct experiments on purification using non-variational auto-encoders (AEs) with an information
bottleneck. To achieve non-variational auto-encoders with different bottleneck levels, we modify the width of the features
within the auto-encoder architecture. This results in models with varying parameter numbers. Then, we proceed to train the
AE on the unlearnable CIFAR-10 dataset, and test on the clean test dataset with classifiers trained on the purified dataset. As
depicted in Figure 5, when considering the similar level of reconstruction quality measured by PSNR, VAEs exhibit a greater
capacity to remove perturbations in both the REM and LSP UEs. However, for EM UEs, the outcomes are comparable.
These observations align with the theoretical analysis presented in Section 3.3.
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Table 16. Computation requirement of the proposed methods.

Component
Train D-VAE

for twice
Perform inference on the

unlearnable data three times
Train a

classifier Total Time

Our method 23 minutes less than 2 minutes 16 minutes 41 minutes
Adversarial Training N.A. N.A. 229 minutes 229 minutes

Table 17. Results using JPEG with various quality settings. The experiments are on CIFAR-10 dataset.

Defenses
/Attacks

JPEG (quality 10)
PSNR 22

JPEG (quality 30)
PSNR 25

JPEG (quality 50)
PSNR 27

JPEG (quality 70)
PSNR 28

Ours
PSNR 28

NTGA 78.97 66.83 64.28 60.19 89.21
EM 85.61 70.48 54.22 42.23 91.42
TAP 84.99 84.82 77.98 57.45 90.48
REM 84.40 77.73 71.19 63.39 86.38
SEP 84.97 87.57 82.25 59.09 90.74
LSP 79.91 42.11 33.99 29.19 91.20
AR 84.97 89.17 86.11 80.01 91.77
OPS 77.33 79.01 68.68 59.81 88.96

Mean 78.89 74.71 67.33 56.42 90.02

H. Computation and Comparison with JPEG compression
In this section, we present the computation requirement and the compassion with JPEG compression. The Table 16 below
presents the training time for D-VAE, the inference time for the unlearnable dataset, and the time to train a classifier using
the purified dataset. For comparison, we include the training-time defense Adversarial Training. It’s important to note that
the times are recorded using CIFAR-10 as the dataset, PyTorch as the platform, and a single Nvidia RTX 3090 as the GPU.
As can see from the results, the total purification time is approximately one and a half times longer than training a classifier,
which is acceptable. Compared to adversarial training, our methods are about 5 times faster. Additionally, our method
achieves an average performance around 90%, which is 15% higher than the performance achieved by adversarial training.

We also note a limitation in the JPEG compression approach used in ISS (Liu et al., 2023)—specifically, they set the JPEG
quality to 10 to purify unlearnable samples, resulting in significant image degradation. In the Table 17, we present results
using JPEG with various quality settings. Notably, our proposed methods consistently outperform JPEG compression
when applied at a similar level of image corruption. Therefore, in the presence of larger perturbation bounds, JPEG may
exhibit suboptimal performance. Moreover, our method excels in eliminating the majority of perturbations in the first stage,
rendering it more robust to larger perturbation bounds. Table 5 5 of the main paper illustrates that when confronted with
LSP attacks with larger bounds, our method demonstrates significantly smaller performance degradation compared to JPEG
(with quality 10), e.g., 86.13 Vs. 41.41 in terms of test accuracy.
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(a) ℓ∞ = 8
255 (b) ℓ2 = 1.0

(c) ℓ0 = 1 (d) ℓ∞ = 16
255 or ℓ2 = 2.0

Figure 6. Results using D-VAEs: Test Acc. Vs. KLD Loss is assessed on the unlearnable CIFAR-10.

I. More experiments on training D-VAE on attack methods with various target values on the
KLD Loss

Some concerns regarding whether a sizable component of the perturbation will end up being learned into x̂ may arise in
certain cases, such as when the target value on the KLD loss is not set low. Nevertheless, when the KLD loss is set to a low
value, the presence of perturbations in the reconstructed x̂ is shown to be minimal. This observation is supported by both
empirical experiments in Section 3.2 and theoretical explanations provided in Section 3.3. These outcomes are primarily
attributed to the fact that the reconstruction of x̂ depends on the information encoded in the latent representation z, i.e., x̂
is directly generated from z using a decoder. The theoretical insights discussed in Section 3.3 highlight that Theorem 1
indicates that perturbations which create strong attacks tend to have a larger inter-class distance and a smaller intra-class
variance. Additionally, Theorem 2 and Remark 1 indicate that perturbations possessing these characteristics are more
likely to be eliminated when aligning the features with a normal Gaussian distribution (as done by the VAE).

To further validate these observations, we now include additional experiments in Appendix G by training D-VAE on all
attack methods with various target values for the KLD loss. Additionally, we have performed experiments on attacks with
larger perturbations. Notably, we have added results on the clean dataset for comparison. As depicted in Figure 6, when the
target value on the KLD loss is set below 1.0, the curves of the results on the unlearnable dataset align closely with the
results on the clean dataset. Furthermore, as the target value decreases, the removal of perturbations in the reconstructed
x̂ increases. While it is evident that larger perturbations may be better retained in x̂, it is a cat-and-mouse game between
defense and attack. Additionally, larger perturbations tend to be more noticeable. These findings affirm that the observations
hold for all existing attack methods, and setting a low target value (e.g., 1.0, as in the main experiments) on the KLD loss
significantly ensures that x̂ contains few perturbations.
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Table 18. Comparison of Defenses

Defenses JPEG AVA. Ours (1.5/2.5) Ours (1.5/3.0) Ours (0.5/3.0) Ours (1.0/3.5) Ours (1.0/3.0) as reported

NTGA 78.97 80.72 87.18 87.64 89.18 88.65 89.21

EM 85.61 89.54 90.65 91.14 91.64 91.86 91.42

TAP 84.99 89.13 90.60 90.98 90.38 91.52 90.48

REM 84.40 86.06 86.60 85.77 85.47 84.58 86.38

SEP 84.97 89.56 90.02 90.76 90.23 91.31 90.74

LSP 79.91 81.15 89.61 90.50 91.40 91.72 91.20

AR 84.97 89.64 90.23 91.29 90.80 90.52 91.77

OPS 77.33 71.62 87.89 86.18 89.39 86.50 88.96

Mean 82.64 84.67 89.09 89.30 89.56 89.58 90.02

J. Selection of various kld1, kld2.
To showcase that our method is tolerant to the selection of kld1 and kld2, we conduct experiments on the CIFAR-10 dataset.
We present the defensive performance against eight UEs methods as shown the Table 18. We denote our method with
different hyperparameters as ”Ours (kld1/kld2)”. Our findings indicate that while varying hyperparameters may result in
only a slight decrease in the effectiveness of our proposed method (less than 1%). Furthermore, as depicted in Table 5 in our
paper, when confronted with UEs with larger perturbation bounds, our method with the exact same kld1 and kld2 values
exhibits slight performance degradation, yet still manages to achieve superior performance overall.
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