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Abstract

In this paper, we unveil that Language Models

(LMs) can acquire new capabilities by assimilat-

ing parameters from homologous models without

retraining or GPUs. We first introduce DARE to

set most delta parameters (i.e., the disparity be-

tween fine-tuned and pre-trained parameters) to

zeros without affecting the abilities of Supervised

Fine-Tuning (SFT) LMs, which randomly Drops

delta parameters with a ratio p And REscales the

remaining ones by 1/(1− p) to approximate the

original embeddings. Then, we use DARE as a

versatile plug-in to sparsify delta parameters of

multiple SFT homologous models for mitigating

parameter interference and merge them into a sin-

gle model by parameter fusing. We experiment

with encoder- and decoder-based LMs, showing

that: (1) SFT delta parameter value ranges are

typically small (within 0.002) with extreme redun-

dancy, and DARE can effortlessly eliminate 90%

or even 99% of them; (2) DARE can merge multi-

ple task-specific LMs into one LM with diverse

capabilities. Notably, this phenomenon is more

pronounced in large-scale LMs, where the merged

LM reveals the potential to surpass the perfor-

mance of any source LM, providing a new dis-

covery. We also utilize DARE to create a merged

LM that ranks first among models with 7 billion

parameters on the Open LLM Leaderboard.

1. Introduction

Human beings have harbored a longstanding desire to ac-

quire additional abilities through various ways, as expressed

in mediums like movies and games. For example, in X-

Men’s Apocalypse, the character can absorb the powers
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Figure 1: (Left) DARE can effectively eliminate 90% or

even 99% delta parameters of WizardMath on GSM8K.

(Right) DARE can merge multiple task-specific SFT lan-

guage models into a single model with all the abilities.

LM, MATH, and Code are abbreviations of WizardLM-

13B, WizardMath-13B, and llama-2-13b-code-alpaca.

of other mutants to strengthen himself. Likewise, the pro-

tagonist in the Super Mario games can gain superpowers

like throwing fireballs by absorbing in-game items. In this

paper, we astonishingly find that Language Models (LMs),

similar to Apocalypse and Super Mario, can enhance their

capabilities by absorbing other models without the need for

retraining or even GPUs.

Formally, Supervised Fine-Tuning (SFT) is the most widely

adopted strategy for unlocking task-specific abilities to LMs

by optimizing their parameters (Dodge et al., 2020; Zhao

et al., 2023). The effectiveness of SFT is fully evident in

the alteration of the model parameters before and after SFT,

referred to as delta parameters (Ding et al., 2023). We

first show that SFT LM (either encoder- or decoder-based)

always tends to acquire excessively redundant delta parame-

ters. To be specific, we present DARE (Drop And REscale),

which randomly sets certain delta parameters to zeros with a

drop rate p and subsequently rescales the remaining ones by

a factor of 1/(1−p). Although conceptually simple, DARE

can eliminate up to 99% delta parameters with minimal im-

pact on the performance when the LM’s parameters reach 70

billion (see Figure 1(a)). Moreover, the more parameters the

LM has, the larger p it can tolerate. We attribute the effec-

tiveness of DARE to its ability to approximate the original

embeddings, which is verified theoretically and empirically.

Furthermore, we can merge multiple homologous SFT LMs

(fine-tuned from the same backbone) based on DARE with-
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out compromising their capabilities. As long as a small

portion of the delta parameters remain unaffected during

merging, the abilities of LMs unlocked by SFT can still be

preserved. We first employ DARE to eliminate redundant

delta parameters in each model before merging, which can

potentially mitigate the interference of parameters among

multiple models (Yadav et al., 2023). Then, we apply estab-

lished model merging techniques (Wortsman et al., 2022;

Ilharco et al., 2023; Matena & Raffel, 2022; Jin et al., 2023;

Yadav et al., 2023) to fuse the parameters with reduced re-

dundancy for creating one model with diverse capabilities.

We conduct extensive experiments with encoder-based LMs

on GLUE benchmark, and decoder-based LMs with three

distinct abilities: instruction-following, mathematical rea-

soning, and code-generating. We observe that:

(1) SFT LMs exhibit a substantial number of redundant

delta parameters regardless of their backbones (e.g., BERT,

RoBERTa, LLaMA, Llama 2, or Code Llama). DARE can

remove 90% or even 99% delta parameters without signifi-

cantly affecting the model performance. DARE is able to

approximate the original embeddings well and provide very

similar embeddings for each layer of the LM. The rescale

operation is crucial to guarantee the success of DARE, and

dropping 30% or 40% delta parameters without rescaling

would noticeably lead to worse results.

(2) DARE often retains or enhances the performance of

various model merging methods on encoder-based LMs. For

decoder-based LMs, simply averaging the parameters can

already yield satisfactory results. As shown in Figure 1(b),

we merge various decoder-based LMs by DARE and Task

Arithmetic (Ilharco et al., 2023), leading to considerable

improvements. For example, 3.10% for LM & Math &

Code vs. LM on AlpacaEval, 3.18% for LM & Math vs.

Math on GSM8K, and 19.57% for LM & Code vs. Code on

MBPP. We also use DARE to create a merged LM with 7

billion parameters, attaining the top-ranking position on the

Open LLM Leaderboard. It is fascinating that all the benefits

are achieved by solely using CPUs without retraining.

(3) SFT delta parameters usually stay within 0.002, indi-

cating minimal modifications to the pre-trained LM, and

DARE works for delta parameters with relatively small

value ranges. However, once models undergo continuous

pre-training, the delta parameters can rapidly reach around

0.03, making DARE infeasible. Moreover, dropping only

10% fine-tuned parameters (i.e., the combination of pre-

trained and delta parameters) would lead to a catastrophic

decrease in performance, even approaching zero. This find-

ing further confirms that SFT primarily unlocks the abilities

of pre-trained LMs, rather than introducing new capabilities.

The used resources are publicly available at https://

github.com/yule-BUAA/MergeLM.

2. Related Work

Supervised Fine-tuning of Language Models. SFT of

LMs aims to impart pre-trained LMs with particular abilities

by optimizing them on task-specific data, which has become

the de facto standard paradigm in natural language process-

ing (Dodge et al., 2020; Zhao et al., 2023). Generally, SFT

can be divided into two categories: full fine-tuning (Radford

et al., 2018; Devlin et al., 2019) and parameter-efficient fine-

tuning (Houlsby et al., 2019; Liu et al., 2021; Li & Liang,

2021; Lester et al., 2021; Hu et al., 2022). Indeed, the effects

of SFT are reflected by the difference between parameters

of LMs before and after SFT, i.e., delta parameters. In this

paper, we reveal the extreme redundancy of various SFT

LMs’ delta parameters by proposing an innovative approach

DARE, achieving competitive performance with standard

SFT LMs by removing 90% or even 99% delta parameters.

Network Pruning Technique. With the rapidly increasing

size of neural networks, network pruning technique has been

widely applied to reduce the computational costs (Cheng

et al., 2017; Liang et al., 2021). The objective of network

pruning is to eliminate unnecessary parameters while main-

taining the model performance (Zhu & Gupta, 2018; Liu

et al., 2019b; Frankle & Carbin, 2019; Gale et al., 2019;

Xia et al., 2022). Magnitude-based pruning is one classi-

cal pruning method, which selects parameters according

to their magnitudes (i.e., absolute parameter values) (Han

et al., 2015; Li et al., 2018; Lee et al., 2021). To be specific,

parameters with magnitudes lower than a certain threshold

are removed, and others are preserved. In fact, DARE is

relevant to the concept of network pruning as it can also

drop parameters. But DARE differs from existing pruning

techniques in: (1) DARE focuses on delta parameters while

most pruning methods deal with fine-tuned parameters; (2)

DARE can work well without any retraining or extra data,

which are often inevitably required by pruning methods.

Model Merging. Model merging has become a trending

research direction in recent years, aiming to merge multi-

ple task-specific models into a single model with diverse

abilities (Wortsman et al., 2022; Matena & Raffel, 2022;

Ilharco et al., 2023; Jin et al., 2023; Yadav et al., 2023;

Zhang et al., 2023). The superiority of model merging over

multi-task learning (Crawshaw, 2020; Zhang & Yang, 2022)

(which also intends to obtain one model with several abili-

ties) is that model merging pays attention to the fusion of

model parameters without accessing the original training

data (Matena & Raffel, 2022; Jin et al., 2023). Average

Merging (Wortsman et al., 2022) is one common model

merging approach, which utilizes averaged parameters to

construct the merged model. Task Arithmetic (Ilharco et al.,

2023) employs a pre-defined scaling term to distinguish the

importance of various models. Fisher Merging (Matena

& Raffel, 2022) performs weighted fusions of parameters,
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where the weights are calculated by the Fisher information

matrix (Fisher, 1922). RegMean (Jin et al., 2023) masterly

solves model merging by optimizing a linear regression

problem with closed-form solutions. TIES-Merging (Ya-

dav et al., 2023) tackles the task conflicts in Ilharco et al.

(2023) by trimming low-magnitude parameters, resolving

sign disagreements, and disjointly merging parameters with

consistent signs. In this paper, we use DARE as a versa-

tile plug-in for existing model merging methods by first

sparsifying delta parameters of several SFT homologous

models and then merging them into a single model, which

is equipped with the capabilities of all the SFT models.

3. Methodology

SFT Delta Parameters. Let θPRE ∈ R
d denote the param-

eters of a pre-trained LM (d is the parameter dimension),

such as LLaMA (Touvron et al., 2023a) or Llama 2 (Touvron

et al., 2023b). For task t, SFT can provide a fine-tuned LM

with parameters θt
SFT ∈ R

d by optimizing the pre-trained

model on task-specific data. Give the parameters of both

pre-trained LM (θPRE) and SFT LM (θt
SFT), delta parameters

are defined as the difference between parameters of LMs

before and after SFT, i.e., δt = θt
SFT − θPRE ∈ R

d. Since

delta parameters reflect the changes in parameters during the

SFT process, analyzing the properties of delta parameters

can offer a better understanding of SFT.

Model Merging Problem. Given a set of K tasks

{t1, t2, · · · , tK} and K corresponding SFT models with

parameters
{
θ
t1
SFT,θ

t2
SFT, · · · ,θ

tK
SFT

}
, model merging aims to

fuse the parameters of K models into a single model with

parameters θM that can well handle K tasks simultaneously.

Following Matena & Raffel (2022); Jin et al. (2023); Yadav

et al. (2023), we focus on merging fine-tuned models that

are optimized from the same pre-trained backbone.

3.1. DARE: A Simple Approach for Reducing Delta

Parameter Redundancy

In this work, we reveal the extremely redundant properties

of the delta parameters of SFT LMs and propose DARE to

effectively reduce delta parameter redundancy (see Figure

2(a)). DARE is conceptually simple and consists of two

steps: drop and rescale. Given delta parameters δt = θt
SFT−

θPRE, DARE first performs random drop on δt based on a

drop rate p (setting their values to zeros) and then rescales

the remaining ones by a factor of 1/(1− p) as follows,

m
t ∼ Bernoulli(p),

δ̃
t =

(
1−m

t
)
» δ

t, (1)

δ̂
t = δ̃

t/(1− p).

Finally, we combine δ̂t and θPRE via addition to obtain the

parameters for inference, i.e., θt
DARE = δ̂t+θPRE. We prove

that even after removing most delta parameters, DARE can

well preserve the model performance by approximating the

original embeddings.

Theoretical Analysis. We discuss linear transformation

since most parameters of LMs play a role in this basic

operation (e.g., the computations in feed-forward networks,

the projections of queries, keys, values, and outputs in self-

attention modules). Let W /∆W ∈ R
m×n and b/∆b ∈

R
m be the pre-trained/delta parameters. The input is a vector

x ∈ R
n. Expectation of the i-th (1 f i f m) dimension of

the original embeddings h ∈ R
m is computed by

E[hi] = E[

n∑

j=1

(wij +∆wij)xj + (bi +∆bi)]

=

n∑

j=1

xjE[wij ] + E[bi] +

n∑

j=1

xjE[∆wij ] + E[∆bi]

=

n∑

j=1

wijxj + bi +

n∑

j=1

∆wijxj +∆bi = hPRE
i +∆hi,

where wij/∆wij is the entry located at the intersection of

the i-th row and j-th column within W /∆W . Similarly,

bi/∆bi denotes the element positioned at the i-th dimension

of b/∆b. Assuming DARE randomly drops delta parame-

ters with a ratio p and rescales others by a factor of γ. After

using DARE, the delta parameters change to ∆Ŵ ∈ R
m×n

and ∆b̂ ∈ R
m. Therefore, the expectation of the i-th dimen-

sion of embeddings becomes

E[ĥi] = E[
n∑

j=1

(wij +∆ŵij)xj + (bi +∆b̂i)]

=

n∑

j=1

xjE[wij ] + E[bi] +

n∑

j=1

xjE[∆ŵij ] + E[∆b̂i]

=

n∑

j=1

wijxj + bi +

n∑

j=1

xj((1− p) · γ ·∆wij + p · 0)

+((1− p) · γ ·∆bi + p · 0)

= hPRE
i + (1− p) · γ · (

n∑

j=1

∆wijxj +∆bi)

= hPRE
i + (1− p) · γ ·∆hi.

By setting γ = 1/(1− p), we have E[hi] = E[ĥi], conclud-

ing that DARE can approximate the original embeddings.

Remark. We have given a rough proof of why DARE works.

In practice, we find that DARE is applicable when the drop

rate p is properly set, and the tolerance of p grows with LMs’

parameter sizes. Moreover, removing fine-tuned rather than
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Figure 2: Illustrations of DARE and merging models with DARE. DARE can achieve comparable performance with standard

SFT with 90% or even 99% delta parameters removed. Moreover, DARE tackles the parameter interference issue when

merging models and yields consistent improvements. At the top, we mark each icon with one or two muscle logos, indicating

its ability for specific tasks. For example, the first or second icon has one muscle logo for math-related tasks, while the third

or fourth icon can perform better in math with two muscle logos. The rescale operation in DARE multiplies the remaining

parameters by 1/(1− p), which enhances the task-specific abilities and leads to changes in icons after rescaling.

delta parameters would cause a catastrophically decreased

performance. A promising future direction is to explore

DARE more deeply, such as inferring the upper bound of p
with respect to LM capacities and illustrating the intrinsic

difference between fine-tuned and delta parameters.

Last, we highlight the connections and differences between

DARE and Dropout (Srivastava et al., 2014). Both methods

involve random dropping and rescaling operations, but they

differ in two key aspects: (1) DARE handles delta parame-

ters while Dropout operates on model outputs; (2) DARE

aims to reduce delta parameter redundancy without training,

which permanently eliminates delta parameters and only re-

tains others for inference. Dropout is used to prevent models

from overfitting, which temporarily removes part of outputs

during training but preserves all the outputs for inference.

3.2. Merging Models with DARE

As DARE effectively reduces the redundancy of delta pa-

rameters by setting most of them to zeros, we hypothesize

that DARE can help address the interference of parameters

when merging multiple models (Yadav et al., 2023). Take

Figure 2(b) as an example, when merging math- and code-

related models, DARE can assist existing model merging

methods to better absorb the abilities of two models with

less or no parameter interference.

Formally, given K models that are fine-tuned on K corre-

sponding tasks with parameters
{
θ
t1
SFT,θ

t2
SFT, · · · ,θ

tK
SFT

}
, we

first apply DARE on each parameters θtk
SFT (1 f k f K),

and derive
{
θ
t1
DARE,θ

t2
DARE, · · · ,θ

tK
DARE

}
. Then, we adopt es-

tablished model merging methods to fuse the derived param-

eters and obtain the merged single model with parameters

θM. Let us take Task Arithmetic (Ilharco et al., 2023) as an

instance, whose official computation process is denoted by

θM = θPRE+λ·

K∑

k=1

δ
tk = θPRE+λ·

K∑

k=1

(θtk
SFT−θPRE), (2)

where λ is the scaling term to determine the importance of

the models to be merged. When equipped with DARE, the
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calculation process of Task Arithmetic is rewritten as

θ
tk
DARE = DARE

(
θ
tk
SFT,θPRE, p

)
, for 1 f k f K,

θM = θPRE + λ ·

K∑

k=1

δ̂
tk = θPRE + λ ·

K∑

k=1

(θtk
DARE − θPRE).

(3)

The expression DARE
(
θ
tk
SFT,θPRE, p

)
signifies the process

of deriving delta parameters from θ
tk
SFT and θPRE, eliminat-

ing delta parameters based on drop rate p following Equation

(3.1), and finally combining the sparsified delta parameters

with θPRE to obtain θ
tk
DARE. In Section 4.3, we find that

DARE can effectively improve the performance of Task

Arithmetic when merging multiple LMs. It is also worth

noticing that DARE is a versatile plug-and-play module

and can be applied to any model merging methods, such as

Average Merging (Wortsman et al., 2022), Fisher Merging

(Matena & Raffel, 2022), RegMean (Jin et al., 2023), and

TIES-Merging (Yadav et al., 2023).

4. Experiments

We conduct extensive experiments on encoder- and decoder-

based LMs to show the effectiveness of DARE in reducing

SFT delta parameter redundancy and merging models.

4.1. Experimental Setup

Datasets and Pre-Trained Backbones for Decoder-based

LMs. We choose AlpacaEval (Li et al., 2023) for evaluating

instruction-following models (WizardLM (Xu et al., 2023)).

We use GSM8K (Cobbe et al., 2021) and MATH (Hendrycks

et al., 2021b) for testing mathematical reasoning models

(WizardMath (Luo et al., 2023a)). HumanEval (Chen et al.,

2021) and MBPP (Austin et al., 2021) are adopted for esti-

mating code-generating models (WizardCoder-Python (Luo

et al., 2023b) and llama-2-13b-code-alpaca (Chaudhary,

2023)). These models are fine-tuned based on pre-trained

backbones including LLaMA (Touvron et al., 2023a), Llama

2 (Touvron et al., 2023b), and Code Llama (Rozière et al.,

2023). Please see Table 3 in Section A.1 for their versions

and correspondences with pre-trained backbones.

Datasets and Pre-Trained Backbones for Encoder-based

LMs. For encoder-based LMs, the GLUE benchmark (Wang

et al., 2019) is used, containing one sentence acceptabil-

ity dataset CoLA (Warstadt et al., 2019), one sentiment

detection dataset SST-2 (Socher et al., 2013), two para-

phrase datasets MRPC (Dolan & Brockett, 2005) and QQP

(Shankar et al., 2017), one sentence similarity dataset STS-

B (Cer et al., 2017), and three natural language inference

datasets MNLI (Bowman et al., 2015; Williams et al., 2018),

QNLI (Rajpurkar et al., 2016), and RTE (Dagan et al., 2005;

Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,

2009). As the test labels of GLUE are not publicly available,

we split the original training data into training and validation

sets with ratios of 90% and 10%. The original validation

data is used as the test set. We choose bert-base-uncased

(Devlin et al., 2019) and roberta-base (Liu et al., 2019a)

as pre-trained backbones, and further fine-tune them to get

SFT models on the eight datasets.

Evaluation Metrics. We calculate win rate for AlpacaEval,

zero-shot accuracy for GSM8K and MATH, pass@1 for

HumanEval and MBPP, Matthews correlation coefficient

for CoLA, accuracy for SST-2, QNLI, and RTE, matched

accuracy for MNLI, accuracy and F1 score for MRPC and

QQP, and Pearson and Spearman correlation for STS-B.

Implementation Details. Following Xu et al. (2023); Luo

et al. (2023a;b), the inference of decoder-based LMs is

implemented by vLLM (Kwon et al., 2023). Temperature

is set to 0.0 for greedy decoding. The maximal number of

generated tokens is 1,024 on GSM8K, and 2,048 on the

other four datasets. For encoder-based LMs, We fine-tune

bert-base-uncased and roberta-base for 10 epochs with a

warmup strategy. The weight decay is 0.01. We use 1e-5

and 5e-5 as learning rates and list the optimal setting of each

fine-tuned model in Table 4 in Section A.2. Experiments

are conducted on NVIDIA Tesla V100 and A100 GPUs.

4.2. Extreme Redundancy in SFT Delta Parameters

We show the extremely redundant property of SFT delta

parameters of both decoder- and encoder-based LMs. We

vary drop rate p in [0.0, 0.1, 0.2, · · · , 0.9, 0.99] and apply

DARE to get models after removing the corresponding ratio

of delta parameters. When p is equal to 0.0, we actually

obtain the standard SFT LMs. We report the performance

of decoder-based LMs on GSM8K and HumanEval as well

as encoder-based LMs on eight GLUE datasets in Figure 3

and Figure 4. Please see results of decoder-based LMs on

AlpacaEval, MATH, and MBPP in Figure 12 in Section B.1.

Figure 3: Performance of decoder-based LMs on GSM8K

and HumanEval with various drop rates.

We conclude that: (1) the SFT delta parameters of both

encoder- and decoder-based LMs are highly redundant.

DARE can effectively remove 90% delta parameters without

significantly decreasing the performance. In some cases,
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Table 1: Performance of merging decoder-based WizardLM-13B (LM), WizardMath-13B (Math), and llama-2-13b-code-

alpaca (Code) on all the datasets. The best and second-best results are marked in bold and underlined fonts.

Merging

Methods
Models

Use

DARE

Instruction-

following

Mathematical

Reasoning
Code-generating

AlpacaEval GSM8K MATH HumanEval MBPP

/

LM No 67.20 2.20 0.04 36.59 34.00

Math No / 64.22 14.02 / /

Code No / / / 23.78 27.60

Task

Arithmetic

LM No 67.04 66.34 13.40 28.66 30.60

& Math Yes 67.45 66.26 12.86 26.83 32.40

LM No 68.07 / / 31.70 32.40

& Code Yes 67.83 / / 35.98 33.00

Math No / 64.67 13.98 8.54 8.60

& Code Yes / 65.05 13.96 10.37 9.80

LM & Math No 69.03 58.45 9.88 18.29 29.80

& Code Yes 69.28 56.48 10.16 23.17 31.60

TIES-

Merging

LM No 68.63 15.77 2.04 37.80 35.60

& Math Yes 68.70 36.16 4.56 36.59 37.00

LM No 63.63 / / 0.0 0.0

& Code Yes 67.15 / / 18.29 26.40

Math No / 63.23 13.56 9.76 22.40

& Code Yes / 64.82 13.88 10.37 23.60

LM & Math No 65.91 62.55 9.54 21.95 30.40

& Code Yes 72.50 58.00 9.20 29.27 31.40

Figure 4: Performance of encoder-based LMs on GLUE

with different drop rates.

the drop rate p can even reach 99%; (2) the tolerance of

drop rate increases with the sizes of LMs, i.e., LMs with

more parameters can withstand higher drop rate. For exam-

ple, WizardMath-70B performs well when p = 0.99 while

WizardMath-7B and WizardMath-13B fail. This depicts

some connections with the scaling laws of LMs (Kaplan

et al., 2020; Hoffmann et al., 2022), indicating that there

may exist quantifiable correlations between model sizes and

drop rates they can afford.

4.3. Merging Models with DARE on SFT LMs

We combine DARE with five model merging methods, in-

cluding Average Merging (Wortsman et al., 2022), Task

Arithmetic (Ilharco et al., 2023), Fisher Merging (Matena

& Raffel, 2022), RegMean (Jin et al., 2023), and TIES-

Merging (Yadav et al., 2023). Please see Section A.3

for more descriptions of the methods. For feasible com-

putations, we merge decoder-based LMs based on Task

Arithmetic and TIES-Merging. The scaling term in both

methods is chosen from [0.5, 1.0], and the retain ratio

of largest-magnitude parameters in TIES-Merging is se-

lected from [0.5, 0.7, 0.9]. We merge WizardLM-13B,

WizardMath-13B, and llama-2-13b-code-alpaca since all

of them adopt Llama-2-13b as the pre-trained backbone.

WizardCoder-Python-13B is not selected as it is fine-tuned

from CodeLlama-13b-Python. We merge encoder-based

LMs with all five methods and perform grid search on some

hyperparameters (see Table 5 in Section A.4 for more de-

tails). Following Jin et al. (2023); Yadav et al. (2023), we

also fine-tune the models under the multi-task learning set-

ting and report the oracle results. We show the performance

of merging decoder-based LMs in Table 1 and present partial

results of merging encoder-based LMs in Figure 5. Please

refer to Figure 13 in Section B.2 for the complete results.

From Table 1, we find that: 1) DARE often facilitates Task

Arithmetic and TIES-Merging on merging decoder-based

LMs, which even yields better results than the source model

in many cases, offering a novel discovery unobserved in

previous works. For instance, the improvements brought

by Task Arithmetic with DARE are 3.10% for LM & Math

& Code vs. LM on AlpacaEval, 3.18% for LM & Math

vs. Math on GSM8K, and 19.57% for LM & Code vs.

Code on MBPP; 2) Compared with Task Arithmetic, TIES-

Merging tends to benefit more from DARE. This is because

TIES-Merging first eliminates delta parameters with lower
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Figure 5: Performance of merging encoder-based bert-base-

uncased and roberta-base on CoLA and MRPC.

magnitudes for each model, which potentially decreases

the performance. When using DARE, delta parameters can

be effectively removed by resetting them to zeros without

adversely affecting the performance. Thus, TIES-Merging

just drops delta parameters sparsified by DARE (with zero

as the smallest magnitude), avoiding performance reduction

in the first step; 3) It seems that llama-2-13b-code-alpaca is

not well fine-tuned for generating codes since it performs

worse than WizardLM-13B, which may affect the model

merging performance. We additionally evaluate the code-

generating ability of the merger of WizardLM-13B and

WizardMath-13B, which obtains better results than llama-

2-13b-code-alpaca, explaining the suboptimal performance

of the amalgamation of WizardMath-13B and llama-2-13b-

code-alpaca. Therefore, an essential prerequisite for effec-

tive model merging is that each source model to be merged

should be well fine-tuned.

From Figure 5, we observe that DARE often yields modestly

better results of various merging methods, achieving an av-

erage improvement of 0.58%, 0.36%, 0.37%, -0.03%, and

0.84% on Average Merging, Task Arithmetic, Fisher Merg-

ing, RegMean, and TIES-Merging. However, the merged

model still struggles to surpass the single model in some

cases, which is in line with the conclusions in Matena &

Raffel (2022); Jin et al. (2023); Yadav et al. (2023).

Last but not least, from both Table 1 and Figure 5, we further

conclude that the improvements caused by DARE are more

pronounced in decoder-based LMs compared to encoder-

based LMs. One possible reason is that decoder-based LMs

are able to accommodate more abilities than encoder-based

LMs due to their substantially larger sizes.

We further verify the effectiveness of DARE in merging

decoder-based LMs apart from the Llama 2 backbone (e.g.,

Mistral-7B (Jiang et al., 2023)). We provide two merged

decoder-based LMs with 7 billion parameters (namely, su-

permario v1 and supermario v2) and evaluate them on Open

LLM Leaderboard (Beeching et al., 2023). Please see Sec-

tion A.5 for more details of the source models and bench-

marks. From Table 2, we find that the merged LMs beat

Table 2: Results of 7B LMs on the Open LLM Leaderboard.

Models Average ARC Hella. MMLU TQA Wino. GSM8K

NeuralBeagle14-7B 74.74 72.95 88.34 64.55 69.93 82.40 70.28

Beagle14-7B 74.76 72.95 87.95 64.70 68.88 82.64 71.42

supermario v1 74.85 73.72 88.71 64.57 68.23 85.64 68.23

WildMarcoroni-7B 75.29 73.98 88.61 64.81 69.76 84.29 70.28

WestSeverus-7B 75.29 71.42 88.27 64.79 72.37 83.27 71.65

supermario v2 75.49 72.95 88.53 64.99 71.22 83.90 71.34

the source models they are built upon, achieving a certain

degree of improvement. Notably, until January 28th, 2024,

supermario v2 achieves the first rank on the Open LLM

Leaderboard. It is thrilling that these benefits can be cheaply

acquired by merely utilizing CPUs.

4.4. Importance of the Rescale Operation

As analyzed in Section 3.1, the rescale operation in DARE

is essential to approximate the original embeddings. To

verify this, we introduce DropOnly which randomly drops

delta parameters without rescaling. We calculate the similar-

ities of embeddings between the original LM and LM with

DARE or DropOnly. Specifically, we obtain the embeddings

of each input token layer-by-layer and report the average

cosine similarities. Results of WizardMath-7B on GSM8K

and bert-base-uncased on CoLA are shown in Figure 6.

Figure 6: Cosine similarities of each layer’s embeddings

between the original LM and LM with DARE or DropOnly.

Figure 7: Distributions of cosine similarities of the last

layer’s embeddings between the original LM and LM with

DARE or DropOnly.

7
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We observe that DARE can perfectly maintain the original

embeddings in each layer with similarities higher than 0.95

even when removing 90% delta parameters. However, Dro-

pOnly just preserves the original embeddings with p = 0.1
and the similarities sharply decline when p is higher. For

example, the similarities on WizardMath-7B decrease to

about 0.85/0.68 when p is 0.5/0.9). We further show the

distributions of embeddings’ cosine similarities in the last

layer in Figure 7, demonstrating the ability of DARE in ap-

proximating original embeddings. Note that similar findings

can be obtained on other LMs and datasets but they are not

presented due to page limits.

We also report the performance of LMs with DARE and

DropOnly in Figure 8. See Figure 14 and Figure 15 in Sec-

tion B.3 for additional results. We observe that discarding

the rescale operation usually leads to worse results, and the

performance gaps between DARE and DropOnly become

more significant with the increase of p. This validates the

effectiveness of the rescale operation in DARE once again.

Figure 8: Comparisons between DARE and DropOnly on

GSM8K and CoLA on various LMs.

4.5. Comparison with Magnitude-based Pruning

We compare DARE with the commonly used Magnitude-

based Pruning (MP) (Han et al., 2015; Li et al., 2018; Lee

et al., 2021), which chooses parameters based on their mag-

nitudes. For more fair and credible comparisons, we adapt

MP to operate on delta parameters and discard the retraining

process. We show partial results of LMs with DARE and

MP in Figure 9. Please refer to Figure 16 and Figure 17 in

Section B.4 for extra results.

We find that DARE outperforms MP in most cases and the

superiority of DARE is more obvious when the drop rate

becomes higher, verifying the superiority of DARE in aban-

doning delta parameters. The reason is that MP fails to

preserve the original embeddings since it neglects the contri-

butions of delta parameters with lower magnitudes. We have

also tried to combine MP with the rescale operation but got

worse results than using MP separately. For example, when

Figure 9: Comparisons between DARE and MP on GSM8K

and CoLA on various LMs.

the drop rate is 0.7, the performance of MP on 7B LMs

decreases from 43.85 to 10.61 on AlpacaEval, from 46.70

to 0.37 on GSM8K, and from 21.34 to 3.05 on HumanEval.

This is because MP removes parameters with smaller magni-

tudes and retains certain parameters with larger magnitudes.

Simply rescaling the remaining parameters would result in

unpredictable performance.

4.6. When Can DARE Be Used?

We investigate the prerequisites that DARE can work. We

choose Llama-2-13b instead of CodeLlama-13b-Python as

the pre-trained backbone for WizardCoder-Python-13B and

apply DARE to derive the model after dropping certain delta

parameters for evaluation. We find that the pass@1 metric

on HumanEval/MBPP drastically decreases from 63.41/55.4

to 0.0/0.0 when only 10% delta parameters are removed.

We deduce this is because Code Llama models are addition-

ally trained with 500B tokens of code-related data (Rozière

et al., 2023), resulting in more obvious changes in parameter

values with respect to Llama 2 models. Since WizardCoder-

Python-13B is fine-tuned based on CodeLlama-13b-Python,

when it uses Llama-2-13b as the pre-trained backbone, the

ranges of SFT delta parameters would become much larger,

making DARE infeasible. To verify this, we depict the ab-

solute values of SFT delta parameters of 13B decoder-based

LMs vs. various pre-trained backbones in Figure 10. Please

see Figure 18, Figure 19 and Figure 20 in Section B.5 for

the SFT delta parameter ranges on decoder- and encoder-

based LMs. Additionally, we present the statistics on the

percentiles of delta parameter ranges of both decoder- and

encoder-based LMs in Table 6 in Section B.5.

From the results, we observe the absolute values of delta

parameters of WizardCoder-Python-13B vs. Llama-2-13b

(often greater than 0.01) are several orders of magnitude big-

ger than those of WizardCoder-Python-13B vs. CodeLlama-

13b-Python (usually within 0.0002), causing the failure of

DARE. For other 13B decoder-based LMs fine-tuned from

Llama-2-13b, most of their absolute values of delta parame-
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Figure 10: Delta parameter absolute values of 13B decoder-

based LMs vs. the pre-trained backbones.

ters are less than 0.002, making DARE a proper choice. To

this end, we conclude that DARE can work well when the

absolute values of SFT delta parameters are relatively small

(e.g., within 0.002). Otherwise, DARE may fail.

4.7. Can DARE Drop Fine-tuned Parameters?

As previous network pruning methods mainly operate on

the fine-tuned instead of delta parameters, we also con-

duct experiments under this setting with both decoder- and

. For decoder-based LMs, we find they perform badly

when removing fine-tuned parameters even with 0.1 as

the drop rate. Quantitatively, the performance sharply

drops from 67.20 to 8.56 on AlpacaEval for WizardLM-

13B, from 64.22/14.02 to 0.38/0.16 on GSM8K/MATH

for WizardMath-13B, from 63.41/55.40 to 0.0/0.20 on Hu-

manEval/MBPP for WizardCoder-Python-13B. Similar ob-

servations can also be found on MP or decoder-based LMs

with 7B, 34B, or 70B sizes. Partial results on encoder-based

LMs are shown in Figure 11 and please see Figure 21 in

Section B.6 for additional results. We observe that directly

Figure 11: Results of DARE and MP by dropping fine-tuned

parameters on CoLA and MRPC on encoder-based LMs.

eliminating the fine-tuned parameters by either DARE or

MP would lead to worse performance on encoder-based

LMs. The above results confirm that the knowledge is inher-

ent in pre-trained LMs, and SFT is responsible for unlocking

instead of introducing new capabilities. Moreover, decoder-

based LMs are more susceptible than encoder-based LMs

when removing fine-tuned parameters. This could be at-

tributed to the fact that decoder-based LMs exhibit a higher

degree of capability and have a stronger correlation with the

fine-tuned parameters. Consequently, even the removal of

a relatively small proportion of fine-tuned parameters can

significantly degrade their performance.

5. Conclusion

In this work, we first discussed the extremely redundant

properties of SFT delta parameters in LMs and proposed a

simple approach DARE to effectively reduce the number of

delta parameters needed for SFT without any data, retrain-

ing, or even GPUs. DARE can impressively drop 90% or

even 99% SFT delta parameters without sacrificing much

performance compared with using all SFT delta parameters.

We further employed DARE as a versatile plug-and-play

approach for existing model merging methods to merge mul-

tiple task-specific fine-tuned models into a single model

with diverse abilities. Extensive experimental results on

both encoder- and decoder-based LMs demonstrated the

effectiveness of DARE in reducing SFT delta parameter

redundancy and facilitating the model merging performance.

We also provided a deeper analysis of why DARE works as

well as the prerequisites for using DARE. We hope that our

findings can advance the understanding of model alignment

from the perspective of analyzing model parameters.

Impact Statement

Recently, merging language models has become a promising

research direction. Our work allows researchers to obtain a

single model with diverse capabilities at a low cost. Thanks

to our method, hundreds of models with different functional-

ities have been created on the Hugging Face community1.

Several popular toolkits on the GitHub platform have also

integrated our work, including huggingface/peft 2 and arcee-

ai/mergekit3. Even though this work has no direct social

impacts, the potentially harmful information generated by

LLMs (e.g., gender bias, racial discrimination) may still ex-

ist when using our approach. It is necessary to advocate for

careful regulation by the communities as well as authorities

on this matter.
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A. Detailed Experimental Settings

A.1. Details of SFT and Pre-Trained Backbones of Decoder-based LMs

Table 3 shows the versions and correspondences with pre-trained backbones of SFT decoder-based LMs.

Table 3: Versions and correspondences with pre-trained backbones of SFT decoder-based LMs.

Tasks SFT Decoder-based LMs Pre-Trained Backbones

Instruction-following

WizardLM-7B4 llama-7b5

WizardLM-13B6 Llama-2-13b7

WizardLM-70B8 Llama-2-70b9

Mathematical Reasoning

WizardMath-7B10 Llama-2-7b11

WizardMath-13B12 Llama-2-13b7

WizardMath-70B13 Llama-2-70b9

Code-generating

WizardCoder-Python-7B14 CodeLlama-7b-Python15

WizardCoder-Python-13B16 CodeLlama-13b-Python17

WizardCoder-Python-34B18 CodeLlama-34b-Python19

llama-2-13b-code-alpaca20 Llama-2-13b7

A.2. Learning Rate Configurations of Encoder-based LMs on GLUE

The optimal settings of the learning rate of each fine-tuned encoder-based LM are presented in Table 4.

Table 4: Configurations of learning rates of bert-base-uncased and roberta-base on GLUE.

Models CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

bert-base-uncased21 5e-5 1e-5 5e-5 5e-5 1e-5 1e-5 1e-5 1e-5

roberta-base22 1e-5 1e-5 5e-5 1e-5 1e-5 1e-5 1e-5 1e-5

A.3. Descriptions of Existing Model Merging Methods

We experiment with five model merging methods:

• Average Merging simply averages the parameters of multiple models to get the merged model (Wortsman et al., 2022).

4https://huggingface.co/WizardLM/WizardLM-7B-V1.0
5https://huggingface.co/decapoda-research/llama-7b-hf
6https://huggingface.co/WizardLM/WizardLM-13B-V1.2
7https://huggingface.co/meta-llama/Llama-2-13b-hf
8https://huggingface.co/WizardLM/WizardLM-70B-V1.0
9https://huggingface.co/meta-llama/Llama-2-70b-hf

10https://huggingface.co/WizardLM/WizardMath-7B-V1.0
11https://huggingface.co/meta-llama/Llama-2-7b-hf
12https://huggingface.co/WizardLM/WizardMath-13B-V1.0
13https://huggingface.co/WizardLM/WizardMath-70B-V1.0
14https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0
15https://huggingface.co/codellama/CodeLlama-7b-Python-hf
16https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
17https://huggingface.co/codellama/CodeLlama-13b-Python-hf
18https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0
19https://huggingface.co/codellama/CodeLlama-34b-Python-hf
20https://huggingface.co/layoric/llama-2-13b-code-alpaca
21https://huggingface.co/bert-base-uncased
22https://huggingface.co/roberta-base
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• Task Arithmetic uses a scaling term to control the contributions between the pre-trained backbone and the models to

be merged (Ilharco et al., 2023).

• Fisher Merging first estimates the importance of parameters by calculating the Fisher information matrix, and then

fuses parameters based on their importance (Matena & Raffel, 2022).

• RegMean recasts the model merging task as a linear regression problem and derives closed-form solutions to solve the

problem (Jin et al., 2023).

• TIES-Merging aims to address parameter conflicts in model merging. It first trims parameters with lower magnitudes,

and then resolves sign disagreements. Parameters with consistent signs are finally merged (Yadav et al., 2023).

A.4. Details of Grid Search on Hyperparameters of Model Merging Methods for Encoder-based LMs

Table 5 shows the searched ranges of model merging methods’ hyperparameters for encoder-based LMs. For DARE, we

search the drop rate p in [0.1, 0.2, · · · , 0.9] and select the optimal setting with the best performance.

Table 5: Searched ranges of hyperparameters of model merging methods for encoder-based LMs.

Model Merging Methods Search Ranges of Hyperparameters

Task Arithmetic scaling term to merge model parameters: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]

Fisher Merging
scaling term to merge model parameters: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0],

number of examples to compute Fisher information matrix: [256, 512, 1024, 2048]

RegMean
scaling term to reduce non-diagonal items: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0],

number of examples to compute inner product matrices: [256, 512, 1024, 2048]

TIES-Merging
scaling term to merge model parameters: [0.1, 0.3, 0.5, 0.7, 0.9, 1.0],

ratio to retain parameters with largest-magnitude values: [0.1, 0.2, 0.3]

A.5. Details of Our Merged 7B LMs and the Open LLM Leaderboard

We offer two merged LMs with 7 billion parameters, namely supermario v1 and supermario v2. Specifically, we choose

NeuralBeagle14-7B23 and Turdus24 to build supermario v1, where both of them all derived from Beagle14-7B25. We set the

drop rate p in DARE to 0.3, and merge NeuralBeagle14-7B and Turdus by Task Arithmetic with 0.8 as the scaling term. We

select WildMarcoroni-Variant1-7B26 and WestSeverus-7B-DPO-v227 to obtain supermario v2, where both of them adopt

Mistral-7B-v0.128 (Jiang et al., 2023) as the backbone. The drop rate p in DARE is set to 0.5, and the scaling term in Task

Arithmetic is also 0.5.

The Open LLM Leaderboard29 is established to evaluate open-sourced LLMs based on Eleuther AI Language Model

Evaluation Harness (Gao et al., 2023), which contains six benchmarks including AI2 Reasoning Challenge (ARC) (Clark

et al., 2018), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), TruthfulQA (Lin et al., 2022), Winogrande

(Sakaguchi et al., 2020), and GSM8K (Cobbe et al., 2021). The average score on the six datasets is used for ranking models

on the leaderboard. We refer interested readers to the original papers for detailed information on the datasets.

Note that the results of Turdus on Open LLM Leaderboard are not available and we instead report the performance of

Beagle14-7B in Table 2. Moreover, due to space limits, we use Hella., TQA, and Wino. as the abbreviations for HellaSwag,

TruthfulQA, and Winogrande. WildMarcoroni-7B and WestSeverus-7B are the abbreviations for WildMarcoroni-Variant1-7B

and WestSeverus-7B-DPO-v2.

23https://huggingface.co/mlabonne/NeuralBeagle14-7B
24https://huggingface.co/udkai/Turdus
25https://huggingface.co/mlabonne/Beagle14-7B
26https://huggingface.co/BarryFutureman/WildMarcoroni-Variant1-7B
27https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2
28https://huggingface.co/mistralai/Mistral-7B-v0.1
29https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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B. Additional Experimental Results

B.1. Additional Results of Delta Parameter Redundancy of Decoder-based LMs

Figure 12 shows results of decoder-based LMs on AlpacaEval, MATH, and MBPP with different drop rates. We notice

that the performance of WizardLM-70B drastically declines on AlpacaEval when the drop rate is 0.9 (different from the

observations of WizardMath-70B and WizardCoder-Python-34B). One possible reason is that the instruction-following

task on AlpacaEval is harder and requires general abilities with more delta parameters via SFT, causing more obvious

dependencies among parameters (especially on LMs with larger sizes). Therefore, when the ratio of dropped delta parameters

reaches a relatively small value (e.g., 0.9 in this case), the dependent relationships among parameters are destroyed, leading

to unsatisfactory performance.

Figure 12: Performance of decoder-based LMs on AlpacaEval, MATH, and MBPP with various drop rates.

B.2. Additional Results of Merging Encoder-based LMs

Figure 13 shows the performance of merging encoder-based LMs on GLUE.

Figure 13: Performance of merging encoder-based LMs on GLUE.

B.3. Additional Results of Comparisons between DARE and DropOnly

The comparison results between DARE and DropOnly on AlpacaEval, MATH, HumanEval, and MBPP on decoder-based

LMs and all results on GLUE on encoder-based LMs are shown in Figure 14 and Figure 15, respectively.
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Figure 14: Comparing DARE and DropOnly on AlpacaEval, MATH, HumanEval, and MBPP on decoder-based LMs.

Figure 15: Comparisons between DARE and DropOnly on GLUE on encoder-based LMs.

Figure 16: Comparisons between DARE and MP on AlpacaEval, MATH, HumanEval, and MBPP on decoder-based LMs.
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B.4. Additional Results of Comparisons between DARE and MP

Comparisons between DARE and magnitude-based pruning on AlpacaEval, MATH, HumanEval, and MBPP on decoder-

based LMs and all results on GLUE on encoder-based LMs are shown in Figure 16 and Figure 17, respectively.

Figure 17: Comparisons between DARE and MP on GLUE on encoder-based LMs.

B.5. Ranges of SFT Delta Parameters of Decoder-based LMs and Encoder-based LMs

We show the SFT delta parameter ranges of decoder- and encoder-based LMs in Figure 18, Figure 19 and Figure 20. Note

that for decoder-based LMs, the results are obtained by randomly selecting 10% delta parameters, whereas for encoder-based

LMs, all delta parameters are included. We also provide the statistics on the percentiles of delta parameter ranges in Table 6,

which are derived by sorting the entire ranges and indexing at positions corresponding to 0, 10%, 20%, ..., 100%.

B.6. Additional Results of Dropping Fine-tuned Parameters on Encoder-based LMs

Figure 21 shows the results of removing fine-tuned parameters on GLUE on encoder-based LMs.
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Figure 18: Delta parameter ranges of 13B decoder-based LMs vs. the pre-trained backbones.

Figure 19: Delta parameter ranges of bert-base-uncased after SFT on GLUE.
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Figure 20: Delta parameter ranges of roberta-base after SFT on GLUE.

Figure 21: Performance of DARE and MP when dropping fine-tuned parameters on GLUE on encoder-based LMs.
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