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Abstract

Adaptive Testing System (ATS) is a promising
testing mode, extensively utilized in standardized
tests like the GRE. It offers a personalized ability
assessment by dynamically adjusting questions
based on individual ability levels. Compared to
traditional exams, ATS can improve the accuracy
of ability estimates while simultaneously reduc-
ing the number of questions required. Despite
the diverse ATS testing formats, tailored to dif-
ferent adaptability requirements in various testing
scenarios, there is a notable absence of a unified
framework to model them. In this paper, we in-
troduce a unified data-driven ATS framework that
conceptualizes the various testing formats as a
hierarchical test structure search problem. It can
learn directly from data to solve optimal questions
for each student, eliminating the need for man-
ual test design. The proposed solution algorithm
comes with theoretical guarantees for the esti-
mation error and convergence. Empirical results
show that our framework maintains assessment
accuracy while reducing question count by 20%
on average and improving training stability.

1. Introduction
Adaptive Testing System (ATS) is a pioneering application
of intelligent education, providing a personalized and effi-
cient assessment experience (Chen et al., 2015; Vie et al.,
2017). Moving beyond the traditional paper-and-pencil
tests, which uniformly present the same questions to all
examinees, ATS dynamically adapts the questions to the
individual’s ability level. This approach not only enhances

1State Key Laboratory of Cognitive Intelligence, University of
Science and Technology of China 2Institute of Artificial Intelli-
gence, Hefei Comprehensive National Science Center 3School of
Computer Science and Technology, Xidian University. Correspon-
dence to: Enhong Chen <cheneh@ustc.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Selection 

Algorithm

𝜽𝒕

𝑸𝒕+𝟏

T steps of  

question  selection
×/√

Item Response  

Theory

Figure 1. A traditional process of ATS: At step t, IRT estimates the
current ability θt based on the previous t steps of records. Then the
selection algorithm selects the next set of questions Qt+1 based
on the current estimated ability θt.

the precision of the assessment but also reduces the num-
ber of questions required, thereby enhancing testing effi-
ciency. The adoption of ATS in high-stakes exams such as
the Duolingo Test, GRE, TOEFL, and GMAT.

ATS is an interactive process between students and the sys-
tem. As illustrated in Figure 1, at each test step, cognitive
diagnosis models(Wang et al., 2023a) like Item Response
Theory (IRT) (Embretson & Reise, 2013), a user model
based on psychometrics, first estimates the student’s ability
by analyzing previous responses. Then, the Selection Al-
gorithm selects the next questions from the pool based on
Reinforcement Learning (Zhuang et al., 2022) or specific
informativeness metrics (Chang & Ying, 1996; Bi et al.,
2020), which typically aim to match question difficulty with
the student’s estimated ability (Lord, 2012). This iterative
cycle continues until a stopping rule is satisfied. ATS’s core
is to optimize accuracy in estimating student ability with
the fewest questions necessary.

Current ATS can be categorized into two research domains
based on the test format: Computerized Adaptive Testing
(CAT) and Multistage Testing (MST). A recent comprehen-
sive survey (Liu et al., 2024) thoroughly discussed these two
approaches: CAT selects one question at each step, requir-
ing students to complete one question before progressing to
the next (Van der Linden & Pashley, 2009), whereas MST
selects a set of questions (a testlet) at each step. These
testlets are predefined by experts and typically contain ques-
tions of similar difficulty and a diverse range of content
(Sari et al., 2016). CAT is known for its precise estimation
due to its granular approach, whereas MST can incorporate

1



A Unified Adaptive Testing System Enabled by Hierarchical Structure Search

expert insights to offer a more comprehensive testing expe-
rience (Magis et al., 2017). Despite both serving the core
objective of adaptive assessment, they currently function in-
dependently due to their different granularities in adaptivity.
CAT at question level and MST at testlet level.

There is a clear need for a unified framework that can flexi-
bly model both CAT and MST to harmonize these method-
ologies within a single ATS approach. Such a unified frame-
work would benefit from the high adaptability of CAT while
also embracing the combinatorial effects present within
MST’s testlets. Crucially, it could avoid the time-consuming
and labor-intensive process of expert testlet design. How-
ever, developing such a unified framework is not trivial. For
instance: What mechanisms can be employed to determine
the quantity of questions to select at each step, without
manual intervention? How to automatically optimize the de-
sired test forms/structures directly from the available data?
How should we account for the similarity and combinatorial
effects among the questions within these auto-generated
testlets? These challenges underscore the complexity of the
decision-making problem at hand.

This paper introduces a data-driven framework that treats
ATS as a structure search problem. We envision each po-
tential question as a node within a network graph, with our
objective being to search the most effective pathways—or
edges—in the graph for individual students. It enables a
systematic and automated approach to question selection or
testlet construction. Our contributions are as follows:

• We redefine various forms of ATS as a unified problem
of test structure search for the first time. It is data-
driven and dynamically navigates question selection,
eliminating the need for manual expert design.

• A differentiable and hierarchical optimization algo-
rithm is designed to select appropriate questions. This
approach enables efficient and accurate optimization
with theoretical guarantees of convergence and gradi-
ent estimation error.

• This framework exhibits superior performance on vari-
ous real-world datasets, surpassing other ATS methods
in accuracy and efficiency. Notably, it exhibits more
stable convergence during training compared to other
data-driven approaches.

2. Background and Related Works
Adaptive Testing System (ATS) is an iterative process, it
mainly consists of two components: Item Response Theory
and question selection algorithm. Below, we will introduce
these two components separately:

(1) Item Response Theory (IRT). IRT is grounded in psycho-
metrics and cognitive science (Ackerman et al., 2003; Huang

et al., 2020), adopting question’s and student’s features to
predict the response (correct or wrong). The simplest form
is the one-parameter logistic (1PL) model:

Pr(student answers question j correctly) = σ(θ − βj),

where σ(·) is the logistic function, β ∈ R represents each
question’s pre-calibrated parameter called difficulty, and
θ ∈ R is student’s latent ability to be estimated. Recently,
there have been many studies incorporating neural networks
to model student-question interactions .(Cheng et al., 2019;
Gao et al., 2022; Wang et al., 2023a; Shen et al., 2024)

(2) Selection Algorithms. The purpose of ATS is to estimate
student ability with the fewest questions while maintaining
accuracy. Therefore, the selection algorithm is a crucial step.
Traditional ATS have approached this issue from two per-
spectives, adaptability and flexibility. CAT focuses more on
adaptability, aiming to get an optimal test (Meijer & Nering,
1999). It selects only one question at one step. Various algo-
rithms on information-based selection (Lord, 2012; Chang &
Ying, 1996; Rudner, 2002; van der Linden, 1998; Veerkamp
& Berger, 1997; Kang et al., 2017; Ma et al., 2023), data-
driven approaches (Nurakhmetov, 2019; Zhuang et al., 2022;
Ghosh & Lan, 2021; Wang et al., 2023b; Li et al., 2023; Yu
et al., 2023) and other approaches(Veldkamp & Verschoor,
2019; Gilavert & Freire, 2022; Feng et al., 2023; Mujtaba
& Mahapatra, 2021) have been proposed. However, such
algorithms impose limitations on students, as selecting one
question at one time restricts their question-solving habits
(Mead, 2006). In this regard, MST can address this problem
by recommending a set of question at once, greatly enhanc-
ing the flexibility (Sari et al., 2016). Students can freely
choose questions at one step. Nevertheless, this approach
has drawbacks as it requires more questions to be com-
pleted and demands expert design of question sets (Magis
et al., 2017). Currently, there is a lack of a comprehensive
approach that can uniformly address the adaptability and
flexibility issue.

In this paper, we propose a unified framework for ATS called
UATS that addresses the respective challenges encountered
in CAT and MST. The framework encompasses both CAT
and MST, facilitating automatic composition of question
packages during the testing process. Our findings reveal
that the UATS framework exhibits exceptional performance
in both theoretical analysis and experimental evaluations,
surpassing the capabilities of CAT and MST approaches.

3. Task Formalization
The objective of an Adaptive Testing System (ATS) is to
sequentially present a student with an optimally tailored
sequence of questions or testlets. In essence, at each step of
the process, the most appropriate set of questions for the stu-
dent, Qt = {q1t , q2t , ..., qmt }, is selected for administration.
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For CAT, the set size m is 1, indicating a single question
q is selected at a time, while for MST, a set of questions
or a testlet of size m is chosen. The ultimate goal of ATS
are twofold: (1) select valuable and best-fitting questions
for each student, minimizing the length of the test; (2) uti-
lize the student’s responses to accurately estimate their true
ability when the test is over1.

To achieve these goals, an ATS comprises two key compo-
nents: the Item Response Theory (IRT) and the selection
algorithm. As depicted in Figure 1, at each test step , the
ATS first employs IRT to estimate the student’s current abil-
ity θt based on responses to the previous t question sets .
The binary cross-entropy loss is frequently utilized: given re-
sponses to previous t sets: Dt = {(Q1, Y1), . . . , (Qt, Yt)},
the empirical loss is

L(θ,Dt) =
t∑

i=1

− log pθ(Qi, Yi), (1)

where Yi = {y1i , y2i , ..., ymi } represents student’s response
labels to Qi and ym = 1 indicates a correct response to
question qm, and 0 otherwise; pθ(Q,Y ) represents the prob-
ability of the response (Q,Y ) towards a student with θ, and
its specific form is determined by IRT. Thus the current
estimate of ability, θt, is obtained by minimizing the loss
function L(θ,Dt): θt = argminθ L(θ,Dt).

Then, the selection algorithm picks the next question set
Qt+1 from the question bank, using the student’s current
ability estimate θt as a guide: Qt+1 ∼ π(θt), where π can
be various criteria that measure how much information the
question set will provide about the student’s ability (Lord,
2012; Chang & Ying, 1996), or could be the output of a
policy trained by data-driven methods (e.g., Reinforcement
Learning) (Zhuang et al., 2022; Ghosh & Lan, 2021).

Evaluation Methods: The ground truth of a student’s true
ability is unavailable in datasets, presenting a challenge to
evaluate the ability estimate. To address this, a common
practice is to randomly divide the data of each student into
a query set Du and a support set Dt (Ghosh & Lan, 2021).
The support set Dt is used to simulate question selection
process and estimate the final ability value θT , while the
query set Du is employed to assess the accuracy of this es-
timates. Cross-entropy L(θT , Du) or various classification
metrics such as prediction accuracy can be employed for
evaluation. The details can be found in Section 5.

4. Test Structure Search
In traditional ATS introduced above, the question selection
algorithm determines the most appropriate set of questions,

1An important assumption (Chang, 2015) of ATS is that stu-
dent’s true ability level θ∗ is constant throughout the test.
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Figure 2. The left structure demonstrates our UATS framework.
Each layer selects questions from the M question pools, and each
edge corresponds to questions from a question node. The selection
of questions is transformed into a structural search problem. The
right illustration illustrates the implementation of CAT and MST in
our scenario.CAT selects only one question at a time, while MST
selects a group of questions at a time.

denoted as Qt, for the student to answer at each step t, based
on the student’s current ability estimate θt. However, due
to the diverse nature of testing scenarios, the number of
questions selected at each step may vary. This variability
poses a challenge as it requires considering various factors
that influence the test, such as question similarity and com-
bination effects. This significantly increases the complexity
of the selection algorithm and cannot be easily achieved
through expert intervention, which involves predefining sets
of candidate question sets (testlets). This manual approach
is time-consuming, labor-intensive and cannot adapt to more
complex testing scenarios.

To address this, this paper proposes a data-driven approach
that models different testing forms as a unified structure
search problem. Specifically, from a global perspective,
adaptive testing can be viewed as a test structure search
problem from the initial node to the terminal node. The
left part of Figure 2 illustrates this concept. The number
of question nodes M determines the maximum number of
questions selected at each step, and different edge colors
between nodes represent different questions. In the case of
CAT shown in the Figure 2 on the right, only one question
is selected at each step, resulting in a single edge between
test steps. The other one is the case of MST. M questions is
selected, leading to M edges between test nodes.

4.1. Problem Definition

Each directed edge from test node t to question node m is
represented by {x(t,m)

q }q∈V and x
(t,m)
q ∈ {0, 1}, where 1

indicates that the edge is selected in the final test structure,
and 0 otherwise. For each pair of nodes (t,m), there are
a total of |V |+ 1 edges , including all the questions in the
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question bank V and an additional zero edge (representing
no selection). Only one edge is chosen for the final structure.
To optimize the test structure directly from large-scale stu-
dent response data, each student’s response data are further
randomly divided into a query set Du and a support set Dt.
The ability estimation loss function is used to optimize the
test structure based on the query set Du, while the support
set Dt is utilized to optimize the optimal ability estimate
given the structure parameters:

min
x

L(θ∗t (x), Du) (2)

s.t. θ∗t (x) = argmin
θ

L(θ,Dt(x)). (3)

where θt(x) represents student’s final ability estimate at
based on their response on the questions corresponding to
the structural parameter x. Therefore, at each step t, the
selected question qmt is determined as follows:

qmt = argmax
q∈V

x(t,m)
q (4)

Ultimately, the questions that correspond to the structural
parameter x being equal to 1 are chosen to form the final set
of selected questions, denoted as Qt = {q1t , q2t , ..., qMt }.

Obviously, structural parameter x is discrete and non-
differentiable. We further make a relaxation of the discrete
structural parameters: a set of weight parameters, denoted as
{α(t,m)

q }q∈V , is defined between node t and node m. This
leads to the unified definition of ATS, referred to as the Test
Structure Search problem:

Definition 4.1 (Unified Definition of ATS). Different forms
of Adaptive Testing System can be unified as a Test
Structure Search problem. A set of weight parameters
{α(t,m)

q }q∈V , related to the structure is defined to achieve
the differentiable optimization:

min
α

L(θ∗t (α), Du) (5)

s.t. θ∗t (α) = argmin
θ

L(θ,Dt(α)). (6)

The final goal is to find the optimal weight parameters
α∗, and the specific selection of the optimal question
can be determined using the Softmax function: qmt =∑

q∈V

exp(α(t,m)
q )∑

q′∈V exp(α
(t,m)

q′ )
q. Here, q refers to the parameters

of the question, such as difficulty and discrimination.

Thus, by directly optimizing this scalable and flexible ATS
framework from large-scale data, it avoids the need for man-
ual design and enables the adaptability to complex testing
scenarios. When we use IRT as a cognitive diagnosis model,
we can leverage the strongly convex properties of IRT (Lord,
2012) to obtain some desirable properties of this optimiza-
tion problem, as shown below:

Lemma 4.2. When using IRT as the student response func-
tion, the inner function (Eq.6) and the outer function (Eq.5)
have the following properties:

1. The inner function is strongly convex with respect to
θ, and its derivatives with respect to both θ and α
are L-Lipschitz continuous. Its second derivatives
are also Lipschitz. Specifically ∇α∇θL(θ,Dt(α))
is τ -Lipschitz continuous and ∇2

θL(θ,Dt(α)) is ρ-
Lipschitz continuous.

2. The outer function is M -Lipschitz continuous, with its
derivative with respect to θ being L-Lipschitz contin-
uous, and its derivative with respect to α being W -
Lipschitz continuous.

All proofs of the lemma can be found in Appendix. Lemma
4.2.1 describes the properties of the inner function, which
represents the modeling of the student’s abilities in the as-
sessment process. The property of strong convexity ensures
the monotonicity and convergence of the function within
a local range, which is crucial for the convergence speed
of the optimization algorithm. Additionally, the Lipschitz
continuity with respect to parameters guarantees the smooth-
ness and stability of the function, enabling the optimization
algorithm to efficiently search for the optimal solution in
parameter space. Lemma 4.2.2 describes the properties of
the outer function, which represents the overall optimiza-
tion goal in the evaluation process. Its Lipschitz continuity
ensures the stability and feasibility of the optimization pro-
cess, while the continuity of the derivative with respect to
parameters ensures the effectiveness of the gradient descent
algorithm in parameter space.These excellent properties pro-
vide guarantees for our optimization theory.

4.2. Approximation and Optimization

The search process of Defination 4.1 considers both the
global problem of parameter selection and the abilities of
students. It aims to optimize the final outcome, which is es-
tablished under the condition of known global information.
However, directly solving the above problem is infeasible
because ATS is sequential, meaning that the response to
question t + 1 depends on the response to question t. In
practical applications, future response data cannot be ob-
tained, which means it is impossible to directly solve the
entire structure.

To address this issue, we approximate global structure
search problem with greedy hierarchical structure search.
Global search involves obtaining the optimal solution for
each step of the test simultaneously, while Greedy hierarchi-
cal structure search aim to find the most suitable problem at
the current moment. Specifically, at the t-th step of the test,
with t ∈ [1, 2, . . . , T ], the student’s ability estimate is θt,
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and the question selection parameters are αt.First, update
the current student’s ability based on the student’s previous
steps of response until convergence.

θkt = θk−1
t − γ∇θL(θ,Dt(αt)) (7)

Here k is the iteration identifier. Given the learning rate
γ, Eq.(7) will performed until convergence to θ∗t . This
is the optimal solution to obtain student ability estimates
at step t. Based on the converged optimal result θ∗t , the
current topic selection parameters are updated. It is worth
noting that training the inner function until convergence
can incur a significant cost. Therefore, instead of training
until convergence to the optimal solution, we use K times
of gradient updates a an approximation. Using θKt instead
of θ∗t , expenses will be greatly reduced.

The question selection parameters also follow the gradient
descent form, as shown in Eq.(8):

αt+1 = αt − β∇αL(θ
K
t (αt), Du) (8)

Here β is the learning rate of α. After the update of the
gradient descent, we obtain the new parameter αt. The
next question will be selected based on αt and added to Dt,
enabling the greedy hierarchical search process. Repeating
these steps for training is a feasible optimization solution.

However, replacing θ∗t with θKt will introduces some error
(Ji et al., 2021). We provide an upper bound on the error of
this approximation algorithm in the following discussion.

Theorem 4.3 (Gradient Estimation Error Bound). Assume
that the student response function is µ-strongly convex
(e.g.,IRT). At t step of the test, let B be the upper bound
of ∥θ0t (αt) − θ∗t (αt)∥. Choose the learning rate γ ≤ 1

L .
Then we have

∥∇αL(θ
K
t (αt), Du)−∇αL(θ

∗
t (αt), Du)∥ ≤

B

µ

(
L2(1− γµ)K − M(τµ+ Lρ)

µ
(1− γµ)

K+1
2

)
+

ML(1− γµ)K

µ
+

BM (τµ+ Lρ)

µ2
(1− γµ) (9)

Theorem 4.3 reveals that the estimation error of the gradient
decays exponentially with the number of inner loop itera-
tions, denoted as K. The proof of Theorem 4.3 provides
a direct description of the convergence rate of the gradient
sequence to ∇αL(θ

∗
t (αt), Du) along the gradient descent

path for all corresponding points.And it also demonstrates
that as K increases, the error tends to decrease.

Algorithm 1 describes the complete training process of the
UATS framework. It combines the dynamic question selec-
tion algorithm and the greedy hierarchical structure search
mentioned. The goal is to optimize the definition 4.1 At
the t step of the test, there is already a sequence Dt. First,

Algorithm 1 UATS Framework Training Process
Require: Learning rate γ, β, Initialize parameters θ0, α0

1: while not converged do
2: Randomly sample a mini-batch of students with

query set Du and initialize support set Dt = {}
3: for t = 1, 2, . . . , T do
4: Choose question Qt based on αt : Qt ∼ π(αt)
5: The student’s response to Qt is Yt

6: Dt = Dt ∪ {Qt, Yt}
7: Set θ0t = θKt−1

8: for k = 1, 2, . . . ,K do
9: θkt ← θk−1

t − γ∇θL(θ
k−1
t , Dt(αt))

10: end for
11: αt+1 ← αt − β∇αL(θ

K
t (αt), Du)

12: end for
13: end while

select question Q based on the current αt and obtain the
corresponding feedback Yt. After adding to Dt, update the
current student’s estimated ability θt based on Dt. Then,
θt is used to update the selection parameters αt+1, and the
next question will be selected based on αt+1. This is the
entire training process.

In order to further guarantee the properties of the greedy
layer-wise search algorithm, we propose the following the-
ory, which ensures that the gradients of the algorithm during
the training process converge.
Theorem 4.4 (Convergence Analyze). Choose γ ≤ 1

L , β =
1

4W . Then the average value of the outer function gradient
satisfies the following theorem.

1

T

T−1∑
t=0

∥∇L(θ∗t (αt), Du)∥2 ≤

16W

T
(L(θ∗0(α0), Du)− L(θ∗T (αT ), Du)) + C (10)

Based on the theorem 4.4, we prove that the average of T
gradients of the outer function has an upper bound, which
guarantees the property of convergence.

5. Experiments
In this section, we conduct qualitative and quantitative anal-
yses on our UATS framework . This evaluation was car-
ried out on three real-world datasets to assess the effective-
ness of our approach.The specific code can be found at:
https://github.com/bigdata-ustc/UATS. We
will provide continuous maintenance.

5.1. Experimental Settings

Datasets. We worked with three distinct sets of educa-
tional data: the ASSIST dataset (Pardos et al., 2013), which

5
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Table 1. Statistics of the datasets
Dataset ASSISTments NIPS-EDU EXAM

Students 2.3k 22.0k 9.2K
Questions 26.7k 27.6k 1.6k
Interactions 325k 15M 133K

comprises student practice logs related to mathematics and
knowledge concepts problems from the ASSISTments on-
line tutoring system. The NIPS-EDU dataset (Wang et al.,
2021) originated from the NeurIPS 2020 Education Chal-
lenge and consists of student responses to questions on the
NIPS-EDU educational platform. The EXAM dataset was
supplied by iFLYTEK Co.,Ltd. which collected the records
of junior high school students on mathematical exams. The
specific details of these three datasets are given in table 1.

Data Partition and Evaluation Methods. We conducted
5-fold cross-validation on all datasets. For each fold, we
allocated 60% of the students for training, 20% for valida-
tion, and 20% for testing. In each fold, we employ an early
stopping strategy using the validation set to fine-tune the
parameters for each method. To mitigate overfitting, we
randomly shuffled these partitions at the beginning of each
training epoch. The performance metrics for the evaluation
included Accuracy (Gao et al., 2021) and the Area Under the
Receiver Operating Characteristic Curve (AUC) (Bradley,
1997). All experiments were run on an NVIDIA V100 GPU.

Compared Approaches. When evaluating question selec-
tion algorithms in CAT, it is crucial to align them with
appropriate cognitive diagnostic models. In our study, we
compare the effectiveness of two models: Item Response
Theory (IRT) and the Neural Cognitive Diagnostic Model
(NeuralCDM) (Wang et al., 2023a). NeuralCDM can cover
many cognitive diagnosis models,such as MIRT (Reckase,
2009) and MF (Toscher & Jahrer, 2010; Desmarais, 2012).
The following selection algorithms are used for comparison

• Random: This method randomly selects questions and
serves as a reference for improvement compared to
several baselines.

• FSI (Lord, 2012): It utilizes maximum Fisher infor-
mation to select questions. It is effective only when
cognitive diagnostic models is IRT

• KLI (Chang & Ying, 1996): It utilize Kullback-Leibler
information to select questions.It also depends on IRT

• MAAT (Bi et al., 2020): It employs an active learning
(Krishnakumar, 2007) approach to measure question
informativeness to select questions

• BECAT (Zhuang et al., 2023): It transforms question
selection into the selection of optimal subset.
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Figure 3. (a) and (b) analyze the AUC and ACC curves during the
testing stage for 2, 3, and 5, with a maximum number of 2, 3, and
5 questions per stage. For example, MST-5 means selecting five
questions at each stage.

• NCAT (Zhuang et al., 2022): It employs a reinforce-
ment learning method to train a DQN architecture for
question selection.

• BOBCAT (Ghosh & Lan, 2021): It adopts meta learn-
ing to learn questions selection algorithms.

5.2. Results and Discussion

In this section, we compare the performance of the two
classic adaptive testing tasks to evaluate the effectiveness
and efficiency of our proposed UATS framework.

5.2.1. STUDENT SCORE PREDICTION

(1) Compare with CAT Baseline. Table 2 presents a compar-
ison of our UATS algorithm with other model designs in the
context of adaptive testing. We provide the accuracy (ACC)
and area under the curve (AUC) metrics for test lengths of
T = 5, 10, and 20 as evaluation measures. Our UATS frame-
work achieves the best overall performance on these three
datasets. When using the IRT model, the EXAM dataset per-
forms the best. Compared to the original SOTA algorithm,
the relative improvement in AUC@20 is on average 1.31%,
and for ACC@20, it is 0.71%. This result demonstrates
that our UATS framework can provide an accurate ability
estimate at the end of the examination.

(2) Compare with MST Baseline. The MST dataset is strictly
confidential, and we have no way of accessing it. Therefore
we refer to the automatic question generation method of Au-
tomated Test Assmbly (ATA) (Breithaupt & Hare, 2007)to
create the test modules for MST. Based on the NIPS-EDU
dataset, we provide test results for the total number of stages
being 2, 3, and 5. The number of modules for each stage
is 2, and the number of questions for each module is 2,
3, 5. Figure 3 presents a comparison of UATS with MST
using accuracy (ACC) and area under the curve (AUC) as
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Table 2. Prediction performance of different methods on ACC and AUC metrics for student achievement prediction. ”-” indicates that
information-based selection algorithms cannot be applied to NeuralCDM model. The bold text indicates statistically significant superiority
(p-value ≤ 0.01) over the best baseline.

(a) Performances on ASSIST
IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 65.54/66.37 65.72/66.51 66.13/66.80 64.99/66.20 65.18/66.37 65.60/66.66
FSI 65.76/66.51 66.16/66.78 66.74/67.23 – – –
KLI 65.76/66.48 66.13/66.76 66.75/67.21 – – –
MAAT 65.65/66.46 65.90/66.77 66.18/67.07 65.15/66.12 65.34/66.41 65.64/66.59
BECAT 65.69/66.44 66.12/66.67 66.67/67.19 65.08/66.35 65.54/66.53 65.89/66.85
BOBCAT 65.99/67.45 66.12/67.83 66.63/67.87 66.76/67.03 67.52/67.87 68.20/68.05
NCAT 66.07/67.33 66.23/67.63 66.42/67.88 66.54/66.98 67.21/67.75 68.18/67.32

UATS 66.13/67.62 66.47/67.91 67.07/68.00 67.16/67.95 67.61/68.58 68.32/68.92

(b) Performances on NIPS-EDU
IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 63.17/68.49 64.24/69.88 65.66/72.19 63.57/68.12 64.46/69.83 66.28/72.16
FSI 63.70/69.26 64.74/71.08 66.19/73.48 – – –
KLI 63.67/69.22 64.72/71.06 66.26/73.57 – – –
MAAT 62.86/68.15 63.01/69.33 63.11/71.39 62.79/67.92 62.97/69.33 64.04/71.02
BECAT 63.40/68.52 64.66/69.90 65.85/72.73 62.81/67.98 64.13/69.56 66.52/73.23
BOBCAT 64.71/70.04 66.07/71.61 67.51/73.36 63.97/68.80 69.02/75.47 69.46/76.02
NCAT 64.37/69.36 65.55/71.33 66.20/72.88 63.27/67.81 66.87/72.76 68.95/76.34

UATS 63.37/71.79 65.98/73.46 68.17/74.85 64.43/69.79 68.94/75.65 70.15/76.86

(c) Performances on EXAM
IRT NeuralCDM

Metric@Step ACC/AUC@5 ACC/AUC@10 ACC/AUC@20 ACC/AUC@5 ACC/AUC@10 ACC/AUC@20

Random 67.72/74.31 68.42/74.92 69.01/75.47 69.53/74.04 70.12/74.92 70.39/75.38
FSI 68.69/75.08 69.52/75.71 70.40/76.75 – – –
KLI 68.75/75.07 69.55/75.73 70.63/76.81 – – –
MAAT 68.35/74.72 69.79/75.32 69.98/76.24 70.17/74.84 70.51/75.24 71.37/76.26
BECAT 68.49/74.94 69.22/75.59 70.37/76.66 70.15/74.91 70.82/75.52 71.76/76.54
BOBCAT 72.28/76.03 72.57/76.55 73.80/77.32 72.39/76.19 73.62/76.55 74.08/77.58
NCAT 71.89/76.13 72.41/76.67 73.18/77.19 72.18/76.28 73.69/76.73 74.21/77.20

UATS 72.74/77.81 72.96/78.15 74.51/78.63 73.51/76.78 74.12/77.16 74.53/77.98

evaluation metrics. The results show that our UATS frame-
work achieves the best overall performance on these three
datasets. It outperforms all other MST methods with an av-
erage improvement of 2.7% in ACC and 3.1% in AUC. This
result suggests that our UATS framework can perfectly in-
corporate MST and provide more accurate ability estimation
while offering flexibility.

5.2.2. SIMULATION OF ABILITY ESTIMATION

The simulation of ability estimation is a foundational eval-
uation technique in ATS (Vie et al., 2017). The goal of
adaptive testing is to accurately estimate the abilities of
students. We conducted a simulation experiment on the
NIPS-EDU dataset to estimate abilities. Specifically, we

used the mean squared error E[∥θt− θ0∥2] between the true
ability of a student θ0 and the ability at step t, θt. Since the
true ability θ0 is unknown, we approximated it using the
feedback from a student answering all the questions in the
question bank.

Figure 4(a) shows the metrics of different methods based
on the IRT model on the NIPS-EDU dataset for steps 1 to
20. As the number of selected questions increases, we find
that the UATS method consistently achieves a lower esti-
mation error. Some implicit methods that do not prioritize
estimation accuracy (e.g., NCAT) perform better in the ini-
tial stages, but still lag behind the UATS framework after 4
step. Compared to the SOTA algorithm, UATS can achieve
the same estimation error with fewer questions. On aver-
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Figure 4. (a) demonstrates the comparison between different baselines and our method UATS on the NIPS dataset. (b) shows the impact
of different numbers of question pools in one layer on student ability estimation.(c) illustrates the comparison between UATS framework
and other data-driven methods for the first 500 epochs.

age, it can achieve the same estimation accuracy with 20%
fewer questions, demonstrating its efficiency in estimating
abilities, that is, reducing the length of the test.

We also found that the number of question packs in the
UATS framework affects the estimation of ability. It can be
seen from the Figure 4(b) that as the number of question
packs increases, the same step mean squared error becomes
higher. This is because more question packs imply a closer
approach to MST, which requires more questions to be
answered. When the number of question packs is small,
it becomes closer to CAT, which means fewer questions
are answered in one stage and the adaptability is stronger.
Therefore, effective control of the number of question packs
can achieve a balance between MST and CAT.

5.2.3. CONVERGENCE PROPERTY ANALYSIS

In order to evaluate the convergence of the proposed method,
we compared the training curves with several popular data-
driven methods. Figure 4(c) shows the training curves for
the first 500 epochs the ASSISTment dataset. It can be
observed that our method not only achieves the best results
but also steadily improves during training. Compared to
other methods, it reduces fluctuations and achieves a more
stable convergence. The results indicate that our method
demonstrates smoother convergence and higher stability
while also exhibiting relatively controllable variations in
performance metrics during training.

6. Conclusions
In this paper, we proposed a UATS framework, which pro-
vided a unified method for learning selection algorithms
from real-world data in online education. This frame-

work covered existing adaptive testing frameworks, includ-
ing computerized adaptive testing and multistage testing.
Specifically, in order to overcome the limitations of CAT on
students’ test-taking and MST on expert preset requirements,
we modeled them as a structure search problem and solved
the limitations in an effective deep learning environment. In
addition, we proposed a dynamic and differentiable selec-
tion algorithm. We transformed global search into a greedy
search problem and provided a proof of convergence. Ex-
tensive experiments showed that the UATS framework was
compatible with adaptability and flexibility. It accurately
measured students’ proficiency and reduced the length of
the test. Moreover, our method exhibited greater stability
during training compared to other data-driven frameworks.

Impact Statement
In adaptive testing systems, different students may be recom-
mended different questions, raising concerns about fairness.
Our paper focuses on proposing a novel adaptive testing
method, while fairness is another independent research area
(Lord, 2012; Zhang et al., 2024), so it is beyond the scope
of our discussion.
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A. Proofs of Lemma 4.2
Lemma 4.2 When using IRT as the student response function, the inner function (Eq.6) and the outer function (Eq.5) have
the following properties:

1. The inner function is strongly convex with respect to θ, and its derivatives with respect to both θ and α are L-Lipschitz
continuous. Its second derivatives are also Lipschitz. Specifically∇α∇θL(θ,Dt(α)) is τ -Lipschitz and∇2

θL(θ,Dt(α))
is ρ-Lipschitz continuous.

2. The outer function is M -Lipschitz continuous, with its derivative with respect to θ being L-Lipschitz continuous, and
its derivative with respect to α being W -Lipschitz continuous.

Proofs of Lemma 4.2.1

Proof. First,we prove inner function the strongly convex w.r.t θ. We expand the inner function and substitute the loss
function with Definition 4.1, yielding

L(θ,Dt(α)) = −
t∑

i=1

(yilog(σ(θ − bi) + (1− yi)log(1− σ(θ − bi)) (11)

Since we use IRT as the response function, which can be defined as: σ(θ − bi). It is easy to know that IRT is a strongly
convex function. Since the cross-entropy loss is strongly convex ,when we calculate the loss using the IRT model and sum
them up, the inner function w.r.t θ is also guaranteed to be strongly convex.

Secondly,we prove the inner function’s derivatives with respect to both θ and α are L-Lipschitz continuous.

∇θL(θ,Dt(α)) = −
t∑

i=1

∇θ(yi log(σ(θ − bi)) + (1− yi) log(1− σ(θ − bi))

= −
S∑

i=1

yi − σ(θ(α)− bi) (12)

∇αL(θ,Dt(α)) = −

(
t−1∑
i=1

∂θ(α)

∂α
(yi − σ(θ(α)− bi)) + (

∂θ(α)

∂α
− ∂bt

∂α
)(yt − σ(θ(α)− bt))

)
(13)

The derivative of θ can be easily seen as bounded, therefore it is L-Lipschitz continuous. The derivative of α exists as a
variable. ∂θ(α)

∂α and ∂bt
∂α . ∂θ(α)

∂α is the gradient for updating the inner function and always has a clear upper bound. ∂bt
∂α is the

gradient for the selected topic by the dynamic topic selection algorithm with respect to the topic selection parameter, and it
is also guaranteed to be bounded. Therefore it is L-Lipschitz

Finally ,we prove the inner function’s second derivatives are also Lipschitz. Eq.(12) represents the first-order derivative of
the inner function with respect to θ. Based on this, we have the following proof:

∇α∇θL(θ,Dt(α)) = −
t−1∑
i=1

(∇α(yi − σ(θ(α)− bi)) +∇α(yt − σ(θ(α)− bt)))

=

t−1∑
i=1

(
∂θ(α)

∂α
(σ(θ(α)− bi))(1− σ(θ(α)− bi)) + (

∂θ(α)

∂α
− ∂bt

∂α
)(σ(θ(α)− bt))(1− σ(θ(α)− bt))

)
(14)

∂θ
∂α and ∂bt

∂α is guaranteed to be bounded. Therefore, it can be proven that the overall function is bounded, satisfying
τ -Lipschitz
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Next, we will prove∇2
θL(θ,Dt(α)) is ρ-Lipschitz continuous:

∇2
θL(θ,Dt(α)) = −

t∑
i=1

∇θ(yi − σ(θ(α)− bi)) (15)

=

t∑
i=1

(1− σ(θ(α)− bi))(σ(θ(α)− bi)) (16)

It is obvious that this is bounded. We complete the proof.

Proofs of Lemma 4.2.2

Proof. First, we prove the outer function is M -Lipschitz. Combined with Definition 4.1, represents the loss sum of a
student’s answers to questions in the query set, denoted as L(θ(α), Du).

L(θ(α), Du) = −
U∑
i=1

(yilog(σ(θ − bi) + (1− yi)log(1− σ(θ − bi)) (17)

It is evident that this is bounded, which indicates that we can always find an M that satisfies Lipschitz.

Next, we prove the derivative of the outer function L(θ(α), Du) with respect to θ is L-Lipschitz:

∇θL(θ(α), Du) = −
U∑
i=1

∇θ(yi log(σ(θ(α)− bi)) + (1− yi) log(1− σ(θ(α)− bi))

= −
U∑
i=1

yi(1− σ(θ(α)− bi))− (1− yi)(σ(θ(α)− bi))

= −
U∑
i=1

yi − σ(θ(α)− bi) (18)

And the Eq.(18) is definitely bounded, so L-Lipschitz is certainly satisfied.

Finaly we prove the derivative of the outer function L(θ(α), Du) with respect to θ is W -Lipschitz: The expansion of the
derivative of the loss function is as follows:

∇αL(θ
∗(α), Du) =

U∑
i=1

∇α(yi log(σ(θ
∗(α)− bi)) + (1− yi) log(1− σ(θ∗(α)− bi))

=
∂θ∗(α)

∂α

U∑
i=1

yi(1− σ(θ∗(α)− bi))− (1− yi)(σ(θ
∗(α)− bi)

=
∂θ∗(α)

∂α

U∑
i=1

yi − σ(θ∗(α)− bi) (19)

Eq.(19) is bounded. It can be proven that the derivative with respect to αt is bounded. Thus, the proof is complete.

B. Proofs of Theorem 4.3
Theorem 4.3 (Gradient Estimation Error Bound). Assume that the student response function is µ-strongly convex (e.g.IRT).
At t step of the test, let D be the upper bound of ∥θ0t (αt)− θ∗t (αt)∥ .Choose the learning rate γ ≤ 1

L .we have

∥∇αL(θ
K
t (αt), Du)−∇αL(θ

∗
t (αt), Du)∥ ≤

B

µ

(
L2(1− γµ)K − M(τµ+ Lρ)

µ
(1− γµ)

K+1
2

)
+

ML(1− γµ)K

µ
+

BM (τµ+ Lρ)

µ2
(1− γµ) (20)
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Proof. Using

∇αL(θ
∗
t (α), Du) =

∂θ∗t (αt)

∂αt
∇θL(θ

∗
t (αt), Du) (21)

∇αL(θ
K
t (αt), Du) =

∂θKt (αt)

∂αt
∇θL(θ

K
t (αt), Du) (22)

Their difference dis

∥∇αL(θ
K
t (αt), Du)−∇αL(θ

∗
t (αt), Du)∥

= ∥∂θ
K
t (αt)

∂αt
∇θL(θ

K
t (αt), Du)−

∂θ∗t (αt)

∂αt
∇θL(θ

K
t (αt), Du)

+
∂θ∗t (αt)

∂αt
∇θL(θ

K
t (αt), Du)−

∂θ∗t (αt)

∂αt
∇θL(θ

∗
t (αt), Du)∥ (23)

Using the triangle inequality

∥∇αL(θ
K
t (αt), Du)−∇αL(θ

∗
t (αt), Du)∥

≤ ∥∂θ
K
t (αt)

∂αt
− ∂θ∗t (αt)

∂αt
∥∥∇θL(θ

K
t (αt), Du)∥+ ∥

∂θ∗t (αt)

∂αt
∥∥∇θL(θ

K
t (αt), Du)−∇θL(θ

∗
t (αt), Du)∥ (24)

According to lemma 4.2.2 we have

≤M

∥∥∥∥∂θKt (αt)

∂αt
− ∂θ∗t (αt)

∂αt

∥∥∥∥+ L
∥∥∥∂θ∗t (αt)

∂αt

∥∥∥∥θKt (αt)− θ∗t (αt)∥, (25)

Next we will get the upper bound of ∥∂θ
K
t (αt)
∂αt

− ∂θ∗(αt)
∂αt

∥
According to the gradient descent.θkt = θk−1

t − γ∇θL(θ
k−1
t , Dt(αt)) using the chainrule,we have

∂θkt (αt)

∂αt
=

∂θk−1
t (αt)

∂αt
− γ

(
∇α∇θL(θ

k−1
t , Dt(αt)) +

∂θk−1
t

∂αt
∇2

θL(θ
k−1
t , Dt(αt))

)
(26)

Based on the optimality of θ∗(αt),we haveL(θ∗t , Dt(αt)) So we have

∇α∇θL(θ
∗
t , Dt(αt)) +

∂θ∗t (αt)

∂αt
∇2

θL(θ
∗
t , Dt(αt)) = 0 (27)

Substituting Eq.(27) into Eq.(26) yields

∂θkt (αt)

∂αt
− ∂θ∗t (αt)

∂αt

=
∂θk−1

t (αt)

∂αt
− ∂θ∗t (αt)

∂αt
− γ

(
∇α∇θL(θ

k−1
t , Dt(αt)) +

∂θk−1
t

∂αt
∇2

θL(θ
k−1
t , Dt(αt))

)

+ γ

(
∇α∇θL(θ

∗
t , Dt(αt)) +

∂θ∗t
∂αt
∇2

θL(θ
∗
t , Dt(αt))

)
=

∂θk−1
t (αt)

∂αt
− ∂θ∗t (αt)

∂αt
− γ

(
∇α∇θL(θ

k−1
t (αt), Dt(αt))−∇α∇θL(θ

∗
t , Dt(αt))

)
− γ

(
∂θk−1

t

∂αt
− ∂θ∗t (αt)

∂αt

)
∇2

θL(θ
k−1
t , Dt(αt)) + γ

∂θ∗t (αt)

∂αt

(
∇2

θL(θ
∗
t , Dt(αt))−∇2

θL(θ
k−1(αt)
t , Dt(αt))

)
(28)

Combining Eq.(27) and Lemma 4.2.1 yields∥∥∥∥∂θ∗t (αt)

∂αt

∥∥∥∥ =
∥∥∥∇α∇θL(θ

∗
t , Dt(αt))

[
∇2

θL(θ
∗
t , Dt(αt))

]−1
∥∥∥ ≤ L

µ
. (29)

13
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Then we have ∥∥∥∥∂θkt (αt)

∂αt
− ∂θ∗(αt)

∂αt

∥∥∥∥
≤
∥∥I − γ∇2

θL(θ
k−1
t , Dt(αt))

∥∥∥∥∥∥∥∂θk−1
t (αt)

∂αt
− ∂θ∗t (αt)

∂αt

∥∥∥∥∥+ γ

(
τ +

Lρ

µ

)
∥θk−1

t − θ∗(αt)∥

≤ (1− γµ)∥∂θ
k−1
t

∂αt
− ∂θ∗(αt)

∂αt
∥+ γ

(
τ +

Lρ

µ

)
∥θk−1

t − θ∗(αt)∥ (30)

Based on the lemma 4.2.1,the strongly-convex lower-level function L(θt, Dt(αt)),we have

∥θk−1
t (αt)− θ∗(αt)∥ ≤ (1− γµ)

k−1
2 ∥θ0t (αt)− θ∗(αt)∥. (31)

Over k from 1 to K,we have∥∥∥∥∂θKt (αt)

∂αt
− ∂θ∗t (αt)

∂αt

∥∥∥∥
≤ (1− γµ)K

∥∥∥∂θ0t (αt)

∂αt
− ∂θ∗t (αt)

∂αt

∥∥∥+ γ

(
τ +

Lρ

µ

)K−1∑
k=0

(1− γµ)K−1−k(1− γµ)
k
2 ∥θ0t (αt)− θ∗t (αt)∥

= (1− γµ)K
∥∥∥∥∂θ0t (αt)

∂αt
− ∂θ∗t (αt)

∂αt

∥∥∥∥+ (τµ+ Lρ)

µ2
(1− γµ− (1− γµ)

K+1
2 )∥θ0t (αt)− θ∗t (αt)∥

≤ L(1− γµ)K

µ
+

(
− (τµ+ Lρ)

µ2
(1− γµ)

K+1
2 +

(τµ+ Lρ)

µ2
(1− γµ)

)
∥θ0t (αt)− θ∗t (αt)∥ (32)

We have the upper bound of ∥∂θ
K
t (αt)
∂αt

− ∂θ∗(αt)
∂αt

∥ .Let B be the upper bound of ∥θ0t (αt)− θ∗t (αt)∥The final result is yielded:

∥∇αL(θ
K
t (αt), Du)−∇αL(θ

∗
t (αt), Du)∥ ≤

L2

µ
(1− γµ)

K
2 ∥θ0t − θ∗(αt)∥

+M

(
L(1− γµ)K

µ
+

(
− (τµ+ Lρ)

µ2
(1− γµ)

K+1
2 +

(τµ+ Lρ)

µ2
(1− γµ)

)
∥θ0t − θ∗(αt)∥

)
=

B

µ

(
L2(1− γµ)

K
2 − M(τµ+ Lρ)

µ
(1− γµ)

K+1
2

)
+

ML(1− γµ)K

µ
+

BM (τµ+ Lρ)

µ2
(1− γµ) (33)

The prove is complete.

C. Proofs of Theorem 4.4
Theorem 4.4 (Convergence Analyze). Choose γ ≤ 1

L , β = 1
4W . Then the average value of the outer function gradient

satisfies the following theorem.

1

T

T−1∑
t=0

∥∇L(θ∗t (αt), Du)∥2 ≤

16W

T
(L(θ∗0(α0), Du)− L(θ∗T (αT ), Du)) + C (34)

14
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Proof. According to lemma 4.2,2,the outer function’s derivate w.r.t α is W -Lipschitz. We have

L(θ∗t+1(αt+1), Du) ≤ L(θ∗t (αt), Du) + ⟨∇αL(θ
∗
t (αt), Du), αt+1 − αt⟩+

W

2
∥αt+1 − αt∥2

≤ L(θ∗t (αt), Du)− β⟨∇αL(θ
K
t (αt), Du)− L(θ∗t (αt), Du)⟩ − β∥L(θ∗t (αt), Du)∥2 + βW∥L(θ∗t (αt), Du)∥2

+ β2W∥∇L(θ∗t (αt), Du)− L(θKt (αt), Du)∥2

≤ L(θ∗t (αt), Du)−
(
β

2
− β2W

)
∥∇L(θ∗t (αt), Du)∥2 + (

β

2
+ β2W )∥∇L(θ∗t (αt), Du)− L(θKt (αt), Du)∥2 (35)

Substitute theorem 4.3 into the Eq.(35)

L(θ∗t+1(αt+1), Du) ≤ L(θ∗t (αt), Du)−
(
β

2
− β2W

)
∥∇L(θ∗t (αt), Du)∥2

+ (
β

2
+ β2W )

B2

µ2

(
L4(1− γµ)K .+

M2(τµ+ Lρ)2

µ2
(1− γµ− (1− γµ)

K+1
2 )2 +

M2L2(1− γµ)2K

µ2

)
(36)

Telescoping Eq.(36) over t from 0 to T - 1 yields

1

T

T−1∑
t=0

(
1

2
− βW

)
∥∇L(θ∗t (αt), Du)∥2

≤ L(θ∗0(α0), Du)− L(θ∗T (αT ), Du)

βT
+

(
1

2
+ βW

)(
B2

µ2
(L4(1− γµ)2K +

M2(τµ+ Lρ)2

µ2
(1− γµ)K+1)

+
M2L2(1− γµ)2K

µ2
+

B2M2 (τµ+ Lρ)
2

µ4
(1− γµ)2

)
(37)

Substitute β = 1
4W and K = log

(
max

{
BL2

µ , (1−γµ)M2(τµ+Lρ)2B2

µ4 , ML
µ

}
9
4ϵ

)
/ log 1

1−γµ , C = 3B2M2(τµ+Lρ)2(1−γµ)2

4µ4

+ϵ into this Eq.(37). We have

1

T

T−1∑
t=0

∥∇L(θ∗t (x), Du)∥2 ≤
16W

T
(L(θ∗0(α0), Du)− L(θ∗T (αT ), Du)) + C (38)

The prove is complete.

15


