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Abstract

Predicting multivariate time series is crucial, de-
manding precise modeling of intricate patterns, in-
cluding inter-series dependencies and intra-series
variations. Distinctive trend characteristics in
each time series pose challenges, and existing
methods, relying on basic moving average ker-
nels, may struggle with the non-linear structure
and complex trends in real-world data. Given that,
we introduce a learnable decomposition strategy
to capture dynamic trend information more rea-
sonably. Additionally, we propose a dual atten-
tion module tailored to capture inter-series depen-
dencies and intra-series variations simultaneously
for better time series forecasting, which is imple-
mented by channel-wise self-attention and autore-
gressive self-attention. To evaluate the effective-
ness of our method, we conducted experiments
across eight open-source datasets and compared
it with the state-of-the-art methods. Through
the comparison results, our Leddam (LEarnable
Decomposition and Dual Attention Module) not
only demonstrates significant advancements in
predictive performance but also the proposed de-
composition strategy can be plugged into other
methods with a large performance-boosting, from
11.87% to 48.56% MSE error degradation. Code
is available at this link: https://github.com/Levi-
Ackman/Leddam.
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1. Introduction
The rising demands in diverse real-world domains have
generated an urgent requirement for precise multivariate
time series forecasting methodologies, as demonstrated in
fields like energy management (Dong et al., 2023; Wu et al.,
2024; Yi et al., 2023a), weather forecasting (Anonymous,
2024b;c;a), disease control (Yi et al., 2023b; Liu et al.,
2023; Zhou et al., 2022b; Ni et al., 2023), and traffic plan-
ning (Rangapuram et al., 2018; Zhao et al., 2017; Shao et al.,
2022). The foundation of precise forecasting models lies
in effectively identifying and modeling intricate patterns
embedded in multivariate time series. Two primary pat-
terns (Figure 1(a)) emerge as inter-series dependencies and
intra-series variations (Zhang & Yan, 2023). The former
delineates the intricate interplay and correlations among dis-
tinct variables, while the latter encapsulates both enduring
and ephemeral fluctuations within each specific time series.

However, the time series of each constituent variable in mul-
tivariate time series data often displays distinctive variations
in its trends. Such discrepancies inherent in raw time se-
ries may complicate the modeling of inter-series dependen-
cies (Liu et al., 2024). Furthermore, time series in the real
world are continually susceptible to distributional shifts in-
duced by the evolution of their trends—a distinctive attribute
that adds complexity to modeling the dynamic intra-series
variation patterns within the sequences (Taylor & Letham,
2018; Liu et al., 2022b). Therefore, a robust forecasting
method should be capable of addressing the following two
challenges: (1) How to precisely unravel patterns within
raw time series under the interference of trend components.
(2) How to efficiently model inter-series dependencies and
intra-series variations.

Certain studies (Wu et al., 2021; Zhou et al., 2022c; Wang
et al., 2023; Zeng et al., 2023) aim to address the first chal-
lenge by conducting trend-seasonal decomposition of the
original time series using Moving Average kernel (MOV).
However, such an untrainable procedure along with moving
average kernels leads to a lack of robustness. Moreover, the
uniform assignment of weights to each data point within the
sliding window may impede their ability to discern specific
patterns. Such limitation becomes apparent when dealing
with intricate time series data (RAW data), particularly those
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Figure 1. (a) Demonstration of inter-series dependencies and intra-series variations. (b) Visualization of different decomposition schemes
in Electricity data. RAW means the raw time series. MOV means moving average kernel, and LD means our learnable decomposition
module.

with non-linear structures or significant noise levels, as il-
lustrated in Figure 1(b) (RAW VS. MOV). Therefore, it is
necessary to develop a learnable decomposition method to
revitalize multivariate time series forecasting tasks.

For the second challenge of modeling inter-series depen-
dencies and intra-series variations in time series forecast-
ing, recent efforts have turned to Transformer architec-
tures renowned for their robust pairwise dependency de-
lineation and multi-level representation extraction within
sequences (Vaswani et al., 2017). iTransformer (Liu et al.,
2024) effectively handles inter-series dependencies through
‘Channel-wise self-attention’, embedding entire time series
into a token but lacks explicit learning of intra-series vari-
ations. Other works directly employ pair-wise attention
mechanisms for intra-series variations (Liu et al., 2022a;
Zhou et al., 2022a; Li et al., 2019; Liu et al., 2022b). How-
ever, they improperly use permutation-invariant attention
mechanisms on the temporal dimension (Zeng et al., 2023).
Alternatively, some approaches shift to partitioning time
series into patches and applying self-attention modeling on
these patches (Nie et al., 2023; Zhang & Yan, 2023). Yet,
such methods inherently lead to information loss as patches
encapsulate only a portion of the original sequence. More-
over, the optimal patch length is also hard to determine.
Therefore, we aim to deal with it by generating features suit-
able for modeling intra-series variations while maximizing
information preservation to avoid the above disadvantages.

In this paper, we aim to revitalize multivariate time series
forecasting with Leddam (LEarnable Decomposition and
Dual Attention Module). Specifically, we first introduce a
trainable decomposition module to decompose the original
time series data into more reasonable Trend and Seasonal
parts. This allows the kernel to prioritize the present data

point and adapt to non-linear structures or noise in raw time
series, capturing dynamic trend information effectively (see
LD in Figure 1(b)). Secondly, we design a ‘Dual Attention
Module’, where 1) channel-wise self-attention to capture
inter-series dependencies; 2) an enhanced methodology in-
volving an auto-regressive process and attention mechanism
on generated tokens to model intra-series variations. Our
Leddam aims to provide a more robust and comprehensive
solution to time series forecasting challenges. The primary
contributions are summarized as follows.

• We propose the incorporation of a learnable convolu-
tion kernel initialized with a Gaussian distribution to
enhance time series decomposition.

• We devise a ‘Dual Attention Module’ that adeptly cap-
tures both inter-series dependencies and intra-series
variations concurrently.

• We validate our Leddam by showing that not only
demonstrates significant advancements in predictive
performance but also the proposed decomposition strat-
egy can be plugged into other methods with a large
performance boosting, from 11.87% to 48.56% MSE
error degradation.

2. Related work
Time Series Data Decomposition. Due to the capacity
of the moving average kernel to smooth out short-term
fluctuations or noise in the time series, Autoformer (Wu
et al., 2021) initially proposed employing the moving av-
erage kernel for extracting the trend part of the time series.
Later works, including MICN (Wang et al., 2023), FED-
former (Zhou et al., 2022c), DLinear (Zeng et al., 2023), etc.,
have predominantly adhered to their methodology. However,
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a rudimentary averaging kernel may inadequately capture
precise trends in time series characterized by more intri-
cate patterns than simple linear relationships. It applies
uniform weighting to all data points within the window
size, which may not be suitable for capturing non-linear or
non-stationary trends present in the data.

Intra-series Variations Modeling. It is important to com-
prehend the temporal variations inherent within the time
series for a precise time series forecasting model. Due to the
intrinsic limitations of point-to-point attention mechanisms,
such as those employed in models like Informer (Zhou et al.,
2022a), Reformer (Kitaev et al., 2020), and Pyraformer (Liu
et al., 2022a), the resultant attention maps are prone to
suboptimality. This arises from the fact that individual
points in a time series, in contrast to words (Vaswani et al.,
2017) or image patches (Dosovitskiy et al., 2021), lack
explicit semantic information. Subsequent endeavours in-
volve partitioning the primary time series into a series of
patches (Zhang & Yan, 2023; Nie et al., 2023), followed
by applying self-attention mechanisms across these patches
to model temporal variations. However, segmenting time
series into patches inevitably introduces information loss.

Inter-series Dependencies Modeling. Inter-series depen-
dencies constitute a pivotal attribute that distinguishes multi-
variate time series from their univariate counterparts. It has
come to our attention that the majority of transformer-based
methodologies opt to treat values from different variables at
the same time step or from distinct channels as tokens (Zhou
et al., 2022a; Kitaev et al., 2020; Liu et al., 2022a;b) to
model inter-series dependencies. Such strategies may result
in attention maps that lack meaningful information, conse-
quently impeding the effective and accurate modeling of the
information we seek (Liu et al., 2024). Certain endeavours
have sought to adopt channel-independent designs, aiming
to mitigate the reduction in predictive accuracy induced by
this operation, as exemplified by PatchTST (Nie et al., 2023)
and DLinear (Zeng et al., 2023). Channel Independence (CI)
regarding variates of time series independently and adopting
the shared backbone, have gained consistently increasing
popularity in forecasting with performance promotions as
an architecture-free method. Recent works (Han et al., 2023;
Li et al., 2023) found that while Channel Dependence (CD)
benefits from a higher capacity ideally, CI can greatly boost
the performance because of sample scarcity, since most of
the current forecasting benchmarks are not large enough.
However, neglecting the interdependencies among variables
may lead to suboptimal outcomes (Liu et al., 2024). Cross-
former (Zhang & Yan, 2023) strives to partition time series
into patches and subsequently engage in the learning of
inter-series dependencies on these patches, a process which,
as argued previously, may engender information loss. iTran-
former (Liu et al., 2024) achieves more precise modeling of
relationships among variables of multivariate time series by
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Figure 2. Overall structure of proposed Leddam. We start by
embedding the time series and incorporating positional encoding.
Then, the time series is decomposed into its trend and seasonal
parts, each addressed through distinct methodologies. Finally, the
processed outcomes of these two components are aggregated to
obtain the ultimate predictive result.

embedding the entire time series of a variate into a token,
thereby avoiding information loss.

3. Methodology
In this section, we elucidate the overall architecture of Led-
dam, which is depicted in Figure 2. We will first define the
problem and then describe the proposed Learnable Convolu-
tional Decomposition strategy and Dual Attention Module.

3.1. Problem Definition

Given a multivariate time series input X ∈ RN×T , time
series forecasting tasks are designed to predict its future F
time steps Ŷ ∈ RN×F , where N is the number of variates
or channels, and T represents the look-back window length.
We aim to make Ŷ closely approximate Y ∈ RN×F , which
represents the ground truth.

3.2. Learnable Decomposition Module

We employ a superior learnable 1D convolutional decom-
position kernel instead of a moving average kernel to com-
prehensively encapsulate the nuanced temporal variations
in the time series.

Projection and position embedding. Following iTrans-
former (Liu et al., 2024), we first map time series data
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Figure 3. General process of ‘Dual Attention Module’ to deal with Inter-series dependencies and Intra-series variations, respectively.
‘Channel-wise self-attention’ embeds the whole series of a channel to generate ‘Whole Series Embedding’, and transformer encoders are
employed to model Inter-series dependencies. ‘Auto-regressive self-attention’ generates ‘Auto-regressive Embedding’ and still utilizes
transformer encoders to model Intra-series variations

X ∈ RN×T from the original space to a new space, subse-
quently incorporating positional encoding Pos ∈ RN×D as
Xembed ∈ RN×D following Xembed = (XW + b) + Pos,
with weights W ∈ RT×D, b ∈ R1×D, where D is the di-
mension of the layer.

Learnable 1D convolutional decomposition kernel. To re-
alize the learnable convolutional decomposition, we need to
define the convolutional decomposition kernel first. Specifi-
cally, we pre-define a stride of S = 1 and a kernel size of
K = 25 experimentally. Regarding its weight, initialization
is performed utilizing a Gaussian distribution. We assume
its weight is ω ∈ R1×1×K , and a hyperparameter σ ∈ R.
Here we set σ = 1.0. Then, we have

U ∈ R1×1×K ,

U [0, 0, i] = exp

(
− (i−K/2)2

2σ2

)
, i = 1, 2, . . . ,K,

ω = Softmax(U, dim = −1). (1)

Therefore, this initialization results in the central position
of the convolutional kernel having the maximum weight,
while the edge positions of the kernel have relatively smaller
weights. This is typically beneficial for convolutional layers
to be more sensitive to the central position when recogniz-
ing specific features. Given a multivariate time series input
Xembed ∈ RN×D, where N represents the dimensionality
of channels, corresponding to the number of variables in
the time series, and D is the dimensionality of the embed-
ding after positional and temporal encoding, to maintain
the equivalence of sequence lengths before and after con-

volution, padding is employed using terminal values. So
we get Xpadded ∈ RN×(D+K−1), we split it into N indi-
vidual time series xi ∈ R1×(D+K−1), i = 1, 2, . . . , N .
Subsequently, for each xi, we apply a learnable 1D con-
volutional kernel with shared weights to extract its trend
component denoted as x̂i ∈ R1×D. Subsequently, the con-
volutional outputs of all x̂i are concatenated to form the
resultant matrix XTrend ∈ RN×D. We get the seasonal part
XSeasonal ∈ RN×D by XSeasonal = Xembed − XTrend.
The whole process can be summarized as

XTrend = LD(Padding(Xembed)),

XSeasonal = Xembed −XTrend. (2)

Trend part. Given the smoother and more predictable na-
ture of the trend part, we employ a simple MLP for projec-
tion to derive the trend part’s output akin to (Zeng et al.,
2023; Wang et al., 2023), which reads:

W ∈ RD×F , b ∈ R1×F ,

XTout = XTrendW + b. (3)

Seasonal part. Considering the suitability of the seasonal
component for modeling inter-series dependencies and intra-
series variations, we transform XSeasonal ∈ RN×D into
two distinct embeddings: ‘Whole Series Embedding’ and
‘Auto-regressive Embedding’. This facilitates the modeling
and learning processes for the two patterns.
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3.3. Dual Attention Module

We propose a ‘Dual Attention Module’ to model the inter-
series dependencies and intra-series variations simultane-
ously. Concretely, we devise ‘Channel-wise self-attention’
for modeling the former and ‘Auto-regressive self-attention’
for modeling the latter.

Inter-series dependencies modeling. To model inter-series
dependencies, follow iTranformer (Liu et al., 2024), we
consider XSeasonal[i, :] ∈ R1×D, i = 1, 2, . . . , N as a
token as shown in Figure 3. Subsequently, all tokens are
sent into a vanilla transformer encoder for learning purposes
to get XInter ∈ RN×D:

Q = XSeasonalW + b, K = XSeasonalW + b,

V = XSeasonalW + b, W ∈ RD×D, b ∈ R1×D,

Attn = softmax
(QKT

√
dk

)
V, (4)

H = LayerNorm(XSeasonal +Attn),

XInter = LayerNorm(FFN(H) +H).

We denote this process as ‘Channel-wise self-attention’ and
the generated embeddings as ‘Whole Series Embedding’,
which, while, maintaining most information of the sequence
in contrast to patches or segments, is better suitable for mod-
eling inter-series dependencies, as all semantic information
of the variates are saved.

Intra-series variations modeling. To capture intra-series
variations, we propose an advanced methodology. Herein,
the initial sequence undergoes auto-regressive processing,
generating tokens that, while meticulously retaining the
entirety of the original information, partially emulate the
dynamic variations present in raw time series.

For intra-series variations, as shown in Figure 3, we first split
XSeasonal into N individual time series xi

s ∈ R1×D, i =
1, 2, . . . , N . For each xi

s, given a length L, we generate
Si ∈ RD

L ×D tokens by cutting the given length of the
sequence from the beginning and concatenate it to the end
of the time series:

Si[j, :] = xi
s[j · L : D]||xi

s[0 : j · L], (5)

for j ∈
{
0, 1, . . . ,

⌊
D

L

⌋
− 1

}
.

Tokens generated in this process are nominated as ‘Auto-
regressive Embedding’. This auto-regressive token genera-
tion approach enables the dynamic simulation of temporal
variations within the time series. In contrast to methods
involving the utilization of sampling strategies to derive sub-
sequences or the partitioning of the primary time series into
patches or segments, which inevitably lead to information
loss, this approach maximally preserves the information of

the original time series. Then we still use another vanilla
transformer encoder whose weight is shared across all chan-
nels to model intra-series variations, but considering our
primary interest in the temporal information of the raw se-
quence, we designate the raw sequence xi

s solely as Q, while
utilizing the entire sequence Si as both K and V:

Q = xi
sW + b, K = SiW + b, V = SiW + b,

Attn = softmax
(QKT

√
dk

)
V, (6)

H = LayerNorm(xi
s +Attn),

Xi
Intra = LayerNorm(FFN(H) +H),

XIntra = X1
Intra||X2

Intra|| . . . Xn
Intra.

And the output Xi
Intra of all channels is concatenated as

XIntra ∈ RN×D. The ultimate output results of the sea-
sonal part have been obtained by:

W ∈ RD×F , b ∈ R1×F ,

XSout = (XInter +XIntra)W + b. (7)

Prediction generating. We obtain the ultimate predictive
outcomes through Ŷ = XSout

+XTout
.

4. Experiments
4.1. Experimental Settings

In this section, we first introduce the whole experiment set-
tings under a fair comparison. Secondly, we illustrate the
experiment results by comparing Leddam with the eight
current state-of-the-art (SOTA) methods. Further, we con-
ducted an ablation study to comprehensively investigate the
effectiveness of the learnable convolutional decomposition
module and the effectiveness of the Dual attention module.

Table 1. The Statistics of the eight datasets used in our experi-
ments.

Datasets ETTh1&2 ETTm1&2 Traffic Electricity Solar-Energy Weather
Variates 7 7 862 321 137 21

Timesteps 17,420 69,680 17,544 26,304 52,560 52,696
Granularity 1 hour 5 min 1 hour 1 hour 10 min 10 min

Datasets. We conduct extensive experiments on selected
eight widely-used real-world multivariate time series fore-
casting datasets, including Electricity Transformer Temper-
ature (ETTh1, ETTh2, ETTm1, and ETTm2), Electricity,
Traffic, Weather used by Autoformer (Wu et al., 2021), and
Solar-Energy datasets proposed in LSTNet (Lai et al., 2018).
For a fair comparison, we follow the same standard proto-
col (Liu et al., 2024) and split all forecasting datasets into
training, validation, and test sets by the ratio of 6:2:2 for the
ETT dataset and 7:1:2 for the other datasets. The character-
istics of these datasets are shown in Table 1 (More can be
found in the Appendix A.1).
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Table 2. Multivariate forecasting results with prediction lengths F ∈ {96, 192, 336, 720} and fixed look-back length T = 96. Results are
averaged from all prediction lengths. Full results are listed in the Appendix.

Models Leddam iTransformer TimesNet MICN DLinear PatchTST Crossformer TiDE SCINet
Ours (2024) (2023) (2023) (2023) (2023) (2023) (2023) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.431 0.429 0.454 0.447 0.458 0.450 0.561 0.535 0.456 0.452 0.449 0.442 0.624 0.575 0.434 0.437 0.486 0.467

ETTh2 0.373 0.399 0.383 0.407 0.414 0.427 0.587 0.525 0.559 0.515 0.387 0.407 0.942 0.684 0.611 0.550 0.954 0.723

ETTm1 0.386 0.397 0.407 0.410 0.400 0.406 0.392 0.414 0.403 0.407 0.387 0.400 0.513 0.509 0.403 0.427 0.411 0.418

ETTm2 0.281 0.325 0.288 0.332 0.291 0.333 0.328 0.382 0.350 0.401 0.283 0.327 1.219 0.827 0.293 0.336 0.310 0.347

Electricity 0.169 0.263 0.178 0.270 0.192 0.295 0.187 0.295 0.212 0.300 0.216 0.304 0.244 0.334 0.251 0.344 0.268 0.365

Solar-Energy 0.230 0.264 0.233 0.262 0.301 0.319 0.296 0.371 0.330 0.401 0.270 0.307 0.641 0.639 0.347 0.417 0.282 0.375

Traffic 0.467 0.294 0.428 0.282 0.620 0.336 0.542 0.315 0.625 0.383 0.555 0.362 0.550 0.304 0.760 0.473 0.804 0.509

Weather 0.242 0.272 0.258 0.279 0.259 0.287 0.243 0.299 0.265 0.317 0.259 0.281 0.259 0.315 0.271 0.320 0.292 0.363

1st Count 7 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Evaluation protocol. Following TimesNet (Wu et al.,
2023), we use Mean Squared Error (MSE) and Mean Abso-
lute Error (MAE) as the core metrics for the evaluation. To
fairly compare the forecasting performance, we follow the
same evaluation protocol, where the length of the historical
horizon is set as T = 96 for all models and the prediction
lengths F ∈ {96, 192, 336, 720}. Detailed hyperparameters
of Leddam can be found in the Appendix A.2.

Baseline setting. We carefully choose very recently
EIGHT well-acknowledged forecasting models as our base-
lines, including 1) Transformer-based methods: iTrans-
former (Liu et al., 2024), Crossformer (Zhang & Yan, 2023),
PatchTST (Nie et al., 2023); 2) Linear-based methods: DLin-
ear (Zeng et al., 2023), TiDE (Das et al., 2023); and 3) TCN-
based methods: SCINet (LIU et al., 2022), MICN (Wang
et al., 2023), TimesNet (Wu et al., 2023).

4.2. Experiments Results

Quantitative comparison. Comprehensive forecasting re-
sults are listed in Table 2 with the best bold in red and the
second underlined in blue. We leave full forecasting re-
sults in APPENDIX G to save place. The lower MSE/MAE
indicates the better prediction result. It is unequivocally
evident that Leddam has demonstrated superior predictive
performance across all datasets except Traffic, in which
iTransformer gets the best forecasting performance. Like
PatchTST and iTransformer, Leddam employs a vanilla
transformer encoder as its backbone, devoid of any struc-
tural modifications. It is noteworthy, however, that these
three models consistently exhibit superior performance
across all datasets. This at least partially indicates that,
compared to intricately designed model architectures, su-
perior representation of raw time series features, such as
‘Whole Series Embedding’ used in iTransformer and Led-
dam along with PatchTST’s patches, may indeed consti-
tute the pivotal factors for achieving more efficient time-

series predictions. It is noteworthy that among these three
models, PacthTST employs a channel-independent design,
exclusively addressing intra-series variations without con-
sidering inter-series dependencies. iTransformer utilizes
channel-wise self-attention to model inter-series dependen-
cies but falls short of adequately capturing intra-series varia-
tions. Compared to both, the proposed Leddam incorporates
‘Whole Series Embedding’ and ‘Auto-regressive Embed-
ding’ to model inter-series dependencies and intra-series
variations. Consequently, Leddam demonstrates superior
performance across various datasets. However, these three
models still maintain a leading position over other mod-
els across most datasets. This aligns with our hypothesis
that appropriately modeling inter-series dependencies and
intra-series variations in multivariate time series is key for
achieving more precise forecasting.

4.3. Model Analysis

Ablation study of dual attention module We conducted
ablation experiments across five datasets, including ETTh1,
Traffic, Electricity, Solar-Energy, and Weather, to validate
the performance enhancement introduced by our ‘Auto-
regressive self-attention’ and ‘Channel-wise self-attention’
components. ‘Channel’ means we only used ‘Channel-wise
self-attention’. ‘Auto’ means we only used ‘Auto-regressive
self-attention’. ‘w/o All’ means we simply replace the ‘Auto-
regressive self-attention’ and ‘Channel-wise self-attention’
components with a linear layer.

We observe substantial performance improvements in Ta-
ble 3 introduced by the ‘Auto-regressive self-attention’ and
‘Channel-wise self-attention’ components. ‘Auto-regressive
self-attention’ brings an average of 19.02% of MSE to de-
crease across five datasets compared to using linear layer,
and ‘Channel-wise self-attention’ achieves 21.09% improve-
ment. Moreover, their synergistic integration yields further
enhancements in model performance, getting an average
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Table 3. Ablation of model structure across five datasets with prediction lengths F = 96, and input length T = 96.

Models ETTm1 Electricity Traffic Weather Solar-Energy

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

w/o All 0.350 0.368 0.197 0.275 0.644 0.389 0.195 0.235 0.306 0.330

w/o Auto 0.337 0.371 0.148 0.242 0.438 0.288 0.168 0.212 0.211 0.253

w/o Channel 0.335 0.369 0.152 0.242 0.467 0.285 0.167 0.212 0.226 0.263

Leddam (Ours) 0.320 0.359 0.139 0.233 0.424 0.269 0.158 0.203 0.202 0.240

Table 4. Predictive performance comparison of moving average kernel and trainable 1D convolutional kernel across four datasets. The
prediction horizon is uniformly set at F = 720, while the input length T = 96.

Design ETTh2 ETTm2 Electricity Traffic Solar-Energy

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear 0.831 0.657 0.554 0.522 0.245 0.333 0.645 0.394 0.356 0.413

LD UTL 0.742 0.607 0.541 0.505 0.220 0.311 0.602 0.378 0.333 0.397

LD TL 0.684 0.576 0.521 0.488 0.209 0.302 0.584 0.345 0.313 0.376

25.03% of MSE decrease, reaching an optimal level. This
attests to the efficacy of both design elements and once again
validates our hypothesis, namely, appropriately modeling
inter-series dependencies and intra-series variations in mul-
tivariate time series can yield better predictive performance.

Superiority of Learnable Decomposition Module over
Moving Average Kernel. To better emphasize the advan-
tages of our Learnable Decomposition Module with weights
initialized using a Gaussian distribution, in comparison to
conventional Moving Average Kernel, we conducted an ex-
tensive experiment. Given that DLinear arguably represents
the most prominent instantiation utilizing a Moving Aver-
age Kernel for trend information extraction, and achieves
performance comparable to other state-of-the-art methods
with the mere use of two simple linear layers, we select it
as our baseline. For comparison, we substitute its Moving
Average Kernel with our Learnable Decomposition Module,
denoting the modified model as LD TL if the kernel is set
to trainable, else LD UTL if the kernel is set to untrainable.

In comparison to a simple Moving Average Kernel, the
Learnable Decomposition Module, as depicted in Table 4,
consistently exhibits superior predictive performance across
all four datasets regardless of its trainability. The untrainable
version of the 1D convolutional kernel brings an average
7.28% of MSE decrease across five datasets compared to
using a Moving Average Kernel, while the trainable version
gives 11.98%. The obtained results conclusively demon-
strate the superior efficacy of our Learnable Decomposition
Module over a simple Moving Average Kernel, and the train-
ability of the kernel plays a significant role in its adaptability.
We leave further analysis to APPENDIX B.1-B.4.

Decomposition result analysis. To further investigate why
our Learnable Decomposition Module (LD) is a better time

series decomposition solution than Moving Average Kernel
(MOV), we conducted the following analysis on the seasonal
part and trend part obtained.

Since the seasonal part represents repetitive patterns in the
raw sequence, a good seasonal part should capture all major
frequencies in the raw sequence. We separately calculated
the amplitude similarity of the dominant frequencies (top
25%) between the seasonal part obtained by each method
and the raw sequence, denoted as FFT. A better decom-
position strategy should yield a seasonal part with higher
similarity to the dominant frequencies of the raw sequence.

A good trend part should effectively capture the trend
changes in the original sequence. Thus, we employed Dy-
namic Time Warping (DTW) (Mü, 2007) to compute the
similarity between the raw sequence and the trend parts
obtained from the two decompositions, denoted as DTW. A
superior decomposition strategy should result in a trend part
with higher DTW similarity to the raw sequence.

We selected the final variate of each dataset. The variates
used are as follows.

• ETT Dataset: Oil Temperature (OT) every hour or 15
minutes.

• Electricity: hourly electricity consumption of the
321st (last) user.

• Solar-Energy: solar power production every 10 min-
utes of the 137th (last) PV plant.

• Traffic: hourly road occupancy rates measured by the
862nd (last) sensor.

• Weather: CO2 (ppm) collected every 10 minutes.

LD is pre-trained on task: input-96-forecast-720. To avoid
cherry-picking, both metrics are computed by averaging the
results calculated over the entire test dataset.
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Table 5. Decomposition result analysis. Comparison of DTW and
FFT for LD and MOV across eight datasets.

Kernel LD (Ours) MOV

Dataset/Metric DTW FFT DTW FFT

Electricity 0.643 0.942 0.618 0.931

Solar Energy 0.910 0.781 0.873 0.734

Traffic 0.603 0.993 0.563 0.991

Weather 0.858 0.760 0.846 0.691

ETTh1 0.741 0.892 0.724 0.852

ETTh2 0.675 0.900 0.652 0.887

ETTm1 0.821 0.754 0.808 0.717

ETTm2 0.925 0.894 0.908 0.759

The DTW and FFT of LD are consistently superior to that
of the MOV across all eight datasets in Table 5. This demon-
strates that LD is a better time series decomposition method
compared to MOV.

Analysis of different attention mechanisms in inter-series
dependencies modeling. We devised a comprehensive ex-
periment to investigate three prevalent approaches for model-
ing inter-series dependencies: ‘Channel-wise self-attention’,
‘Point-wise self-attention’, and ‘Patch-wise self-attention’.
The first considers the entire sequence of a variate as a to-
ken (Liu et al., 2024), the second regards distinct variables
at the same timestamp as tokens (Zhou et al., 2022a;c), and
the third treats patches of the raw sequence as tokens (Zhang
& Yan, 2023; Nie et al., 2023). Specifically, we eliminate
the ‘Auto-regressive self-attention’ branch from the origi-
nal Leddam structure to concentrate on inter-series depen-
dencies modeling. We sequentially employ ‘Channel-wise
self-attention’, ‘Point-wise self-attention’, and ‘Patch-wise
self-attention’. In Figure 4, it is readily apparent that com-
pared to ‘Point-wise self-attention’, and ‘Patch-wise self-
attention’, ‘Channel-wise self-attention’ exhibits superior
predictive performance, implies a much better inter-series
dependencies modeling ability.

Analysis of different attention mechanisms in intra-
series variations modeling. Similarly, we replace the
‘Channel-wise self-attention’ branch from the original Led-
dam structure and use ‘Point-wise self-attention’, ‘Patch-
wise self-attention’, and ‘Auto-regressive self-attention’ for
intra-series variations modeling. The superiority of the
‘Auto-regressive self-attention’ architecture is proved by the
experimental results in Figure 4.

4.4. Learnable Decomposition Generalization Analysis

In this subsection, we investigate the generalizability of the
learnable decomposition module of Leddam by plugging it
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Figure 4. Predictive performance comparison(MSE) of ‘Channel-
wise self-attention’, ‘Auto-regressive self-attention’, ‘Patch-wise
self-attention’, and ‘Point-wise self-attention’ across ETTh2,
ETTm2 and Traffic datasets. The prediction horizon is uniformly
set at F = 96, while the input length T = 96.

into other different kinds of models.

Model selection and experimental setting. To achieve
this objective, we conduct experiments across a spectrum
of representative time series forecasting model structures,
including (1) Transformer-based methods: Informer (Zhou
et al., 2022a), Transformer (Vaswani et al., 2017); (2) Linear-
based methods: LightTS (Zhang et al., 2022); and (3) TCN-
based methods: SCINet (LIU et al., 2022); (4) RNN-based
methods: LSTM (Hochreiter & Schmidhuber, 1997). We
standardize the input length T to 96, and similarly, the
prediction length F is uniformly set to 96. Subsequently,
comparative experiments were conducted on five datasets:
ETTh2, ETTm2, Weather, Electricity, and Traffic. Specif-
ically, we sequentially replaced the ‘Auto-regressive self-
attention’ and ‘Channel-wise self-attention’ components in
Leddam with each model. The comparative analysis was
performed to assess the predictive performance before and
after the incorporation of Leddam, comparing the original
models with the augmented counterparts. And more results
can be found in APPENDIX D.

Quantitative results. In Table 6, it is apparent that the
incorporation of the Leddam structure leads to a notably
substantial enhancement in the predictive performance of
various models, even with the introduction of only a single
linear layer. Specifically, LightTS demonstrates an average
MSE reduction of 11.87% across five datasets, other models
are LSTM: 48.56%, SCINet: 23.15%, Informer: 31.72%,
and Transformer: 26.27%. Particularly noteworthy is the
performance enhancement observed in the classical LSTM
model, where the MSE experiences a remarkable decrease
of 76.97% and 80.28% on ETTh2 and ETTm2, respectively,
a profoundly surprising result. This unequivocally substan-
tiates the generality of the Leddam structure.
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Table 6. Improvements of LD over different models with prediction lengths F = 96, and fixed lookback length T = 96. LD means
Learnable decomposition.

Models LightTS LSTM SCINet Informer Transformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2
Original 0.439 0.464 1.537 0.987 0.784 0.680 2.234 1.239 1.528 1.029

+ LD 0.370 0.413 0.354 0.395 0.446 0.469 1.086 0.804 0.645 0.635

Improvement 15.78% 10.97% 76.97% 59.99% 43.12% 31.04% 51.40% 35.10% 57.77% 38.30%

ETTm2
Original 0.249 0.345 1.009 0.797 0.302 0.406 0.368 0.475 0.295 0.418

+ LD 0.201 0.293 0.199 0.299 0.220 0.322 0.302 0.402 0.287 0.399

Improvement 19.05% 15.00% 80.28% 62.48% 27.03% 20.71% 17.91% 15.37% 2.58% 4.45%

Weather
Original 0.166 0.234 0.221 0.302 0.214 0.290 0.201 0.285 0.167 0.248

+ LD 0.165 0.232 0.186 0.258 0.181 0.261 0.177 0.259 0.164 0.242

Improvement 0.60% 0.77% 15.84% 14.57% 15.33% 9.96% 11.72% 9.00% 1.32% 2.14%

Electricity
Original 0.233 0.337 0.305 0.384 0.247 0.345 0.374 0.441 0.275 0.368

+ LD 0.194 0.297 0.159 0.263 0.201 0.306 0.220 0.321 0.166 0.273

Improvement 16.74% 11.79% 47.80% 31.44% 18.62% 11.30% 41.16% 27.18% 39.64% 25.81%

Traffic
Original 0.640 0.405 0.680 0.375 0.668 0.427 0.806 0.453 0.739 0.397

+ LD 0.594 0.378 0.531 0.338 0.590 0.373 0.640 0.415 0.517 0.312

Improvement 7.16% 6.60% 21.91% 9.87% 11.64% 12.65% 20.56% 8.45% 30.04% 21.41%

5. Conclusion
Given the non-linear and intricate trend characteristics in-
herent in real-world time series data, this paper formulates
a learnable convolution kernel as an improvement over the
simple moving average kernel for time series decomposi-
tion. The Gaussian initialization and adaptable properties
enable it to better align with the nuances of real-time series
data, resulting in a more contextually fitting decomposi-
tion. Additionally, we present the dual attention module,
incorporating both channel-wise self-attention and autore-
gressive self-attention. This innovative design facilitates the
simultaneous capture of inter-series dependencies and intra-
series variations with precision. Experimentally, our method
achieves state-of-the-art performance and demonstrates re-
markable framework generality, as supported by compelling
analyses. In the future, we aim to optimize the application
of our learnable convolutional kernel in the context of series
decomposition.
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A. Experimental Details
A.1. Dataset Statistics

We elaborate on the datasets employed in this study with the following details.

• ETT Dataset (Zhou et al., 2022a) comprises two sub-datasets: ETTh and ETTm, which were collected from electricity
transformers. Data were recorded at 15-minute and 1-hour intervals for ETTm and ETTh, respectively, spanning from
July 2016 to July 2018.

• Solar-Energy (Lai et al., 2018) records the solar power production of 137 PV plants in 2006, which are sampled every
10 minutes.

• Electricity1 Dataset1 encompasses the electricity consumption data of 321 customers, recorded on an hourly basis,
covering the period from 2012 to 2014.

• Traffic Dataset2 consists of hourly data from the California Department of Transportation. It describes road occupancy
rates measured by various sensors on San Francisco Bay area freeways.

• Weather Dataset3 contains records of 21 meteorological indicators, updated every 10 minutes throughout the entire
year of 2020.

We follow the same data processing and train-validation-test set split protocol used in TimesNet (Wu et al., 2023), where the
train, validation, and test datasets are strictly divided according to chronological order to make sure there are no data leakage
issues. We fix the length of the lookback series as T = 96 for all datasets, and the prediction length F ∈ {96, 192, 336, 720}.

A.2. Implementation Details and Model Parameters

We trained our Leddam model using the L2 loss function and employed the ADAM optimizer. We initialized the random
seed as rs = 2021. We also configured the hyperparameter k = 25-kernel size of the decomposition kernel (the Moving
Average Kernel (MOV) and Learnable Decomposition Module (LD)). During the training process, we incorporated an early
stopping mechanism, which would halt training after six epochs if no significant reduction in loss was observed on the
validation set. For evaluation purposes, we used two key performance metrics: the mean square error (MSE) and the mean
absolute error (MAE). We carried a grid hyperparameter search, where dimension of layer dim ∈ {256, 512}, learning
rate lr in{0.001, 0.0001, 0.0005}, dropout ratio dr ∈ {0.0, 0.2, 0.5} and number of network layers nl ∈ {1, 2, 3}. Our
implementation was carried out in PyTorch and executed on an NVIDIA V100 32GB GPU. All the compared baseline
models that we reproduced are implemented based on the benchmark of TimesNet (Wu et al., 2023) Repository, which
is fairly built on the configurations provided by each model’s original paper or official code. It is worth noting that both
the baselines used in this paper and our Leddam have fixed a long-standing bug. This bug was originally identified in
Informer (Zhou et al., 2022a) (AAAI 2021 Best Paper) and subsequently addressed by FITS (Anonymous, 2024a). For
specific details about the bug and its resolution, please refer to GitHub Repository4.

B. Further Analysis of Different Decomposition Methodologies
B.1. Decomposition Result Visualization

We present a detailed comparison of results obtained by decomposing various datasets using the Moving Average Kernel
(MOV) and Learnable Decomposition Module (LD).

We still selected the final variate of each dataset. LD are pretrained on task: input-96-forecast-720. Given a sampling
frequency of 10, 15 minutes, or 1 hour for these datasets, we opt to decompose time series of two lengths: 120 and 720, to
better contrast the decomposition results and reflect the extracted seasonal and trend patterns respectively.

The decomposition performance of LD is consistently superior to that of the MOV across all eight datasets in Figure 5–12.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://pems.dot.ca.gov/
3https://www.bgc-jena.mpg.de/wetter/
4https://github.com/VEWOXIC/FITS
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Figure 5. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on ETTh1.

B.2. Visualization of Weights

We present visualizations of the weight for the Learnable Decomposition Module (LD) and Moving Average Kernel (MOV)
in Figure 13. It is observed that, unlike MOV, which employs uniform weights across all datasets, our LD adapts to the
characteristics of different datasets, generating context-specific weights for sequence decomposition.

B.3. Impact of RevIN

To explore how much ReVIN (Kim et al., 2022) improves the performance of LD (and MOV), we utilized Autoformer (Wu
et al., 2021) as the baseline and investigated the performance of LD and MOV under scenarios with and without ReVIN. In
Table 7, We computed that ReVIN yielded an average MSE performance improvement (reduction) of 5.24% across all tasks
for LD, and 9.04% for MAE. For MOV: 1.75% for MSE and 3.32% for MAE. Compared to MOV, ReVIN would bring
greater performance improvements to LD.

B.4. Further Improvement of Multi-scale Hybrid Decomposition

In MICN (Wang et al., 2023), it is observed that they employ a multi-scale decomposition strategy akin to FEDformer (Zhou
et al., 2022c). Specifically, they utilize decomposition kernels of varying scales, followed by integrating all decomposed
outputs to derive the trend part:

i = 1, . . . , n

Xi
Trend = AvgPool(Padding(Xembed))kerneli

XTrend = Intergrating(X1
Trend, . . . , X

n
Trend)

XSeasonal = Xembed −XTrend (8)

MICN argues that using simple mean operations to integrate these different patterns is a superior plan.

We also conducted exploratory experiments to investigate the performance of our Learnable Decomposition Module (LD)
in this particular context. We replaced the fundamental decomposition kernel employed in MICN, i.e., the basic Moving

13
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Figure 6. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on ETTh2.

Average Kernel (MOV), with our LD. Subsequently, comparative experiments were conducted on four datasets(ETTm2,
Weather, Electricity, Traffic) with input length T = 96 and prediction length F = 96. The LD consistently outperforms
MOV under a multi-scale decomposition strategy across all datasets in Table 8, which highlights the excellence of LD.

C. Further Analysis of Auto-regressive Self-attention
Our experiments in Table 9 demonstrate that our Auto-regressive Embedding, compared to Point-wise and Patch-wise
Embedding, maintains crucial temporal positional information within permutation-invariant self-attention mechanisms. This
is demonstrated by the low dependency of Auto-regressive Embedding on positional encoding.

D. Generalization Analysis of Leddam
To better illustrate the generality of our Leddam framework and its performance improvement across various models, we
opted to visualize the predictive outcomes on three representative datasets (Electricity, ETTh2, Traffic) in Figure 14-18. For
a prediction task with input length T = 96 and prediction length F = 96, we present a comparative analysis of the predictive
performance of different models before and after integrating our Leddam framework. To achieve this objective, we conduct
experiments across a spectrum of representative time series forecasting model structures, including (1) Transformer-based
methods: Informer (Zhou et al., 2022a), Transformer (Vaswani et al., 2017); (2) Linear-based methods: LightTS (Zhang
et al., 2022); and (3) TCN-based methods: SCINet (LIU et al., 2022); (4) RNN-based methods: LSTM (Hochreiter &
Schmidhuber, 1997). After the introduction of the Leddam framework, various models have consistently demonstrated
superior predictive performance.

E. Model Efficiency Study
We evaluated the parameter count, and the inference time (average of 5 runs on a single NVIDIA V100 32GB GPU)
with batch size = 1 on ETTh1 and Electricity dataset. We set the dimension of layer dim ∈ {96, 192, 336, 720}, and
the number of network layers nl = 2. The task is input-96-forecast-720. We explored Leddam and four cutting-edge

14



Leddam: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling

Trend Seasonal

12
0

72
0

Figure 7. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on ETTm1.

transformer-based multivariate time series forecasting models:iTransformer, Crossformer, PatchTST, and FEDformer.
Results can be found in Table 10.

F. Hyperparameter Sensitivity Analysis
We investigated the impact of the most significant parameters of Leddam: dimension of layer (dim), number of network
layers (nl), dropout ratio (dr), and size of decomposition kernel (k). The default settings were: dr = 0.0, dim = 512,
nl = 2, k = 25. Based on Table 11– 14, we can easily conclude that Leddam is insensitive to dropout ratio and kernel size,
while more sensitive to the number of network layers and the dimension of layers. For the kernel size, we argue after our
initialization with a Gaussian distribution of 0 mean and 1 variance, the weight of the central element is the largest. As
moving away from the center, the weights gradually decrease. Therefore, when the kernel size increases, the weights of the
farther points become smaller, thus not significantly affecting the final decomposition result.

G. Full Forecasting Results
The full multivariate forecasting results are provided in the following section due to the space limitation of the main text.
Table 15 contains the detailed results of eight baselines and our Leddam on eight well-acknowledged forecasting benchmarks.

H. Influence of Input Length on Prediction Performance
In principle, extending the look-back window increases the receptive field, leading to a potential improvement in forecasting
performance. A robust Time Series Forecasting (TSF) model equipped with a strong temporal relation extraction capability
should yield improved results with larger look-back window sizes (Zeng et al., 2023). As demonstrated in Figure 19, Our
Leddam model consistently and effectively diminishes MSE scores as the receptive field expands, affirming its capacity to
leverage longer look-back windows and superior temporal relation extraction capabilities.
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Figure 8. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on ETTm2.
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Figure 9. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on Electricity.
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Figure 10. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on Solar-Energy.
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Figure 11. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on Traffic.
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Figure 12. Trend-Seasonal Decomposition Results obtained by LD (Red) and MOV (Blue) on Weather.

 

  

 

 

(e) Solar-Energy

(f) Traffic

(g) Weather

(h) Electricit

(a) Initialized LD

(b) MOV

 (c) ETTh2

(d) ETTm2 y

Figure 13. Weight Visualization of the Learnable Decomposition Module (LD) and Moving Average Kernel (MOV). (a) The weight of
initialized LD and (b) MOV are the same for all datasets. (c)-(h) is the weight visualization of the LD after training on other datasets.
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Table 7. Model Comparison

Dataset/Metric pred len LD+ReVIN MOV+ReVIN LD MOV

MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 96 0.667 0.526 0.694 0.538 0.664 0.531 0.671 0.534
720 0.659 0.538 0.753 0.559 0.647 0.547 0.688 0.556

ETTm2 96 0.207 0.281 0.218 0.292 0.216 0.299 0.223 0.306
720 0.414 0.404 0.422 0.41 0.435 0.43 0.426 0.423

Weather 96 0.201 0.249 0.217 0.266 0.289 0.366 0.233 0.304
720 0.373 0.369 0.378 0.373 0.402 0.408 0.394 0.396

Table 8. Comparision of Learnable Decomposition Module (LD) and Moving Average Kernel (MOV) under multi-scale decomposition
strategy across ETTm2, Weather, Electricity, and Traffic datasets with prediction lengths F = 96, and input length T = 96.

Design ETTm2 Electricity Traffic Weather

MSE MAE MSE MAE MSE MAE MSE MAE

Original 0.197 0.296 0.202 0.268 0.172 0.279 0.530 0.321

LD 0.183 0.281 0.170 0.230 0.164 0.276 0.515 0.310

Decrease 6.87% 5.07% 15.97% 14.02% 4.71% 1.11% 2.83% 3.28%

Table 9. Forecasting performance of Auto-regressive, Point-wise, and Patch-wise Embedding on the ETTh2, ETTm2, and Weather datasets.
The forecasting task is input-96-forecast-96/720. w/o means without position embedding, pos means position embedding is used.

Models pred len Type Auto Patch Point

Dataset/Metric MSE MAE MSE MAE MSE MAE

ETTh2
96 w/o 0.294 0.343 0.382 0.429 1.453 1.000

pos 0.293 0.343 0.354 0.404 0.958 0.803

720 w/o 0.413 0.432 0.926 0.703 3.533 1.625
pos 0.416 0.433 0.835 0.666 1.569 0.991

ETTm2
96 w/o 0.176 0.257 0.226 0.321 0.419 0.511

pos 0.175 0.256 0.208 0.314 0.335 0.447

720 w/o 0.398 0.395 0.963 0.726 2.826 1.386
pos 0.393 0.394 0.732 0.671 1.411 0.996

Weather
96 w/o 0.166 0.211 0.176 0.240 0.219 0.309

pos 0.167 0.213 0.165 0.234 0.174 0.260

720 w/o 0.342 0.343 0.355 0.405 0.351 0.395
pos 0.342 0.344 0.337 0.370 0.346 0.388

Table 10. Model efficiency analysis. * means ‘former.’ Para means ‘Parameter count(M).’ Time means ‘inference time(ms).’

Datasets/Models dim Leddam PatchTST Cross* iTrans* FED*

Param Time Para Time Para Time Para Time Para Time

ETTh1 256 2.50 233.92 3.27 251.00 8.19 399.00 1.27 177.67 3.43 303.556
512 9.20 249.34 8.64 266.66 32.11 445.74 4.63 190.92 13.68 345.736

Electricity 256 2.59 283.04 3.27 322.53 13.66 432.40 1.27 192.12 4.24 347.634
512 9.36 296.70 8.64 411.96 43.04 507.54 4.63 249.60 15.29 398.599
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Figure 14. Visualization of input-96-predicts-96 results of LSTM (with and without Leddam) on three datasets (Electricity, ETTh2,
Traffic). The above rows represent the performance incorporating our Leddam framework, while the below rows depict the predictive
performance of the original model.
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Figure 15. Visualization of input-96-predicts-96 results of SCINet (with and without Leddam) on three datasets (Electricity, ETTh2,
Traffic). The above rows represent the performance incorporating our Leddam framework, while the rows below depict the predictive
performance of the original model.
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Figure 16. Visualization of input-96-predicts-96 results of Transformer (with and without Leddam) on three datasets (Electricity, ETTh2,
Traffic). The above rows represent the performance incorporating our Leddam framework, while the rows below depict the predictive
performance of the original model.
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Figure 17. Visualization of input-96-predicts-96 results of Informer (with and without Leddam) on three datasets (Electricity, ETTh2,
Traffic). The above rows represent the performance incorporating our Leddam framework, while the rows below depict the predictive
performance of the original model.
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Figure 18. Visualization of input-96-predicts-96 results of LightTS (with and without Leddam) on three datasets (Electricity, ETTh2,
Traffic). The above rows represent the performance incorporating our Leddam framework, while the rows below depict the predictive
performance of the original model.

Table 11. Impact of dropout ratio (dr). dr ∈ {0.0, 0.1, 0.2, 0.5}

Dataset ETTm1 ETTm2

dr/Metric MSE MAE MSE MAE

0.0 0.469 0.447 0.406 0.400
0.1 0.468 0.446 0.404 0.401
0.2 0.476 0.452 0.406 0.401
0.5 0.474 0.452 0.409 0.404

Table 12. Impact of dimension of layer (dim). dim ∈ {128, 256, 512, 1024}

Dataset ETTm1 ETTm2

dim/Metric MSE MAE MSE MAE

128 0.486 0.454 0.399 0.397
256 0.473 0.449 0.403 0.399
512 0.469 0.447 0.406 0.400

1024 0.492 0.459 0.402 0.397
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Table 13. Impact of number of network layers (nl). nl ∈ {1, 2, 3, 4}

Dataset ETTm1 ETTm2

nl/Metric MSE MAE MSE MAE

1 0.474 0.447 0.398 0.398
2 0.469 0.447 0.406 0.400
3 0.482 0.456 0.427 0.413
4 0.485 0.456 0.407 0.401

Table 14. Impact of kernel size (k). k ∈ {15, 25, 55, 75, 105}

Dataset ETTm1 ETTm2

k/Metric MSE MAE MSE MAE

15 0.469 0.447 0.406 0.400
25 0.469 0.447 0.406 0.400
55 0.469 0.448 0.407 0.401
75 0.470 0.446 0.406 0.401

105 0.469 0.447 0.406 0.400

Traffic ETTm2

Weather Electricity

Figure 19. Forecasting performance (MSE and MAE) of Leddam with varying look-back windows on 4 datasets: ETTm2, Electricity,
Traffic, and Weather. The look-back windows are selected to be T ∈ {48, 96, 192, 336, 504, 720, 960}, and the prediction horizons are
F = 720.
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Table 15. Multivariate long-term forecasting result comparison. We use prediction lengths F ∈ {96, 192, 336, 720}, and input length
T = 96. The best results are in bold and the second bests are underlined.

Model Leddam iTransformer TimesNet MICN DLinear PatchTST Crossformer TiDE SCINet
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2023) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.377 0.394 0.386 0.405 0.384 0.402 0.421 0.431 0.386 0.400 0.378 0.396 0.420 0.439 0.377 0.397 0.404 0.415
192 0.424 0.422 0.441 0.436 0.436 0.429 0.474 0.487 0.437 0.432 0.424 0.425 0.541 0.520 0.425 0.431 0.456 0.445
336 0.459 0.442 0.487 0.458 0.491 0.469 0.569 0.551 0.481 0.459 0.466 0.448 0.722 0.648 0.461 0.443 0.519 0.481
720 0.463 0.459 0.503 0.491 0.521 0.500 0.770 0.672 0.519 0.516 0.529 0.500 0.814 0.692 0.471 0.478 0.564 0.528

Avg 0.431 0.429 0.454 0.447 0.458 0.450 0.561 0.535 0.456 0.452 0.449 0.442 0.624 0.575 0.434 0.437 0.486 0.467

E
T

T
h2

96 0.292 0.343 0.297 0.349 0.340 0.374 0.299 0.364 0.333 0.387 0.302 0.348 0.745 0.584 0.400 0.440 0.707 0.621
192 0.367 0.389 0.380 0.400 0.402 0.414 0.441 0.454 0.477 0.476 0.388 0.400 0.877 0.656 0.528 0.509 0.860 0.689
336 0.412 0.424 0.428 0.432 0.452 0.452 0.654 0.567 0.594 0.541 0.426 0.433 1.043 0.731 0.643 0.571 1.000 0.744
720 0.419 0.438 0.427 0.445 0.462 0.468 0.956 0.716 0.831 0.657 0.431 0.446 1.104 0.763 0.874 0.679 1.249 0.838

Avg 0.373 0.399 0.383 0.407 0.414 0.427 0.587 0.525 0.559 0.515 0.387 0.407 0.942 0.684 0.611 0.550 0.954 0.723

E
T

T
m

1

96 0.319 0.359 0.334 0.368 0.338 0.375 0.324 0.375 0.345 0.372 0.322 0.362 0.360 0.401 0.347 0.384 0.350 0.385
192 0.369 0.383 0.377 0.391 0.374 0.387 0.366 0.402 0.380 0.389 0.366 0.387 0.403 0.440 0.397 0.409 0.382 0.400
336 0.394 0.402 0.426 0.420 0.410 0.411 0.408 0.426 0.413 0.413 0.396 0.404 0.543 0.528 0.417 0.430 0.419 0.425
720 0.460 0.442 0.491 0.459 0.478 0.450 0.481 0.476 0.474 0.453 0.464 0.446 0.744 0.666 0.472 0.485 0.494 0.463

Avg 0.386 0.397 0.407 0.410 0.400 0.406 0.392 0.414 0.403 0.407 0.387 0.400 0.513 0.509 0.403 0.427 0.411 0.418

E
T

T
m

2

96 0.176 0.257 0.180 0.264 0.187 0.267 0.179 0.275 0.193 0.292 0.178 0.260 0.259 0.349 0.192 0.274 0.201 0.280
192 0.243 0.303 0.250 0.309 0.249 0.309 0.307 0.376 0.284 0.362 0.242 0.301 0.543 0.551 0.253 0.313 0.283 0.331
336 0.303 0.341 0.311 0.348 0.321 0.351 0.325 0.388 0.369 0.427 0.304 0.344 1.038 0.715 0.315 0.352 0.318 0.352
720 0.400 0.398 0.412 0.407 0.408 0.403 0.502 0.490 0.554 0.522 0.410 0.404 6.037 1.693 0.413 0.406 0.439 0.423

Avg 0.281 0.325 0.288 0.332 0.291 0.333 0.328 0.382 0.350 0.401 0.283 0.327 1.219 0.827 0.293 0.336 0.310 0.347

E
le

ct
ri

ci
ty

96 0.141 0.235 0.148 0.240 0.168 0.272 0.164 0.269 0.197 0.282 0.195 0.285 0.219 0.314 0.237 0.329 0.247 0.345
192 0.159 0.252 0.162 0.253 0.184 0.289 0.177 0.285 0.196 0.285 0.199 0.289 0.231 0.322 0.236 0.330 0.257 0.355
336 0.173 0.268 0.178 0.269 0.198 0.300 0.193 0.304 0.209 0.301 0.215 0.305 0.246 0.337 0.249 0.344 0.269 0.369
720 0.201 0.295 0.225 0.317 0.220 0.320 0.212 0.321 0.245 0.333 0.256 0.337 0.280 0.363 0.284 0.373 0.299 0.390

Avg 0.169 0.263 0.178 0.270 0.192 0.295 0.187 0.295 0.212 0.300 0.216 0.304 0.244 0.334 0.251 0.344 0.268 0.365

So
la

r
E

ne
rg

y 96 0.197 0.241 0.203 0.237 0.250 0.292 0.222 0.310 0.290 0.378 0.234 0.286 0.310 0.331 0.312 0.399 0.237 0.344
192 0.231 0.264 0.233 0.261 0.296 0.318 0.277 0.343 0.320 0.398 0.267 0.310 0.734 0.725 0.339 0.416 0.280 0.380
336 0.241 0.268 0.248 0.273 0.319 0.330 0.297 0.386 0.353 0.415 0.290 0.315 0.750 0.735 0.368 0.430 0.304 0.389
720 0.250 0.281 0.249 0.275 0.338 0.337 0.390 0.445 0.356 0.413 0.289 0.317 0.769 0.765 0.370 0.425 0.308 0.388

Avg 0.230 0.264 0.233 0.262 0.301 0.319 0.296 0.371 0.330 0.401 0.270 0.307 0.641 0.639 0.347 0.417 0.282 0.375

Tr
af

fic

96 0.426 0.276 0.395 0.268 0.593 0.321 0.519 0.309 0.650 0.396 0.544 0.359 0.522 0.290 0.805 0.493 0.788 0.499
192 0.458 0.289 0.417 0.276 0.617 0.336 0.537 0.315 0.598 0.370 0.540 0.354 0.530 0.293 0.756 0.474 0.789 0.505
336 0.486 0.297 0.433 0.283 0.629 0.336 0.534 0.313 0.605 0.373 0.551 0.358 0.558 0.305 0.762 0.477 0.797 0.508
720 0.498 0.313 0.467 0.302 0.640 0.350 0.577 0.325 0.645 0.394 0.586 0.375 0.589 0.328 0.719 0.449 0.841 0.523

Avg 0.467 0.294 0.428 0.282 0.620 0.336 0.542 0.315 0.625 0.383 0.555 0.362 0.550 0.304 0.760 0.473 0.804 0.509

W
ea

th
er

96 0.156 0.202 0.174 0.214 0.172 0.220 0.161 0.229 0.196 0.255 0.177 0.218 0.158 0.230 0.202 0.261 0.221 0.306
192 0.207 0.250 0.221 0.254 0.219 0.261 0.220 0.281 0.237 0.296 0.225 0.259 0.206 0.277 0.242 0.298 0.261 0.340
336 0.262 0.291 0.278 0.296 0.280 0.306 0.278 0.331 0.283 0.335 0.278 0.297 0.272 0.335 0.287 0.335 0.309 0.378
720 0.343 0.343 0.358 0.349 0.365 0.359 0.311 0.356 0.345 0.381 0.354 0.348 0.398 0.418 0.351 0.386 0.377 0.427

Avg 0.242 0.272 0.258 0.279 0.259 0.287 0.243 0.299 0.265 0.317 0.259 0.281 0.259 0.315 0.271 0.320 0.292 0.363

1st Count 31 30 6 9 0 0 0 0 0 0 2 1 1 0 0 0 0 0
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