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Abstract
We posit that to achieve superhuman agents, fu-
ture models require superhuman feedback in order
to provide an adequate training signal. Current ap-
proaches commonly train reward models from hu-
man preferences, which may then be bottlenecked
by human performance level, and secondly these
reward models require additional human prefer-
ences data to further improve. In this work, we
study Self-Rewarding Language Models, where
the language model itself is used via LLM-as-
a-Judge prompting to provide its own rewards
during training. We show that during Iterative
DPO training, not only does instruction follow-
ing ability improve, but also the ability to provide
high-quality rewards to itself. Fine-tuning Llama
2 70B on three iterations of our approach yields a
model that outperforms many existing systems on
the AlpacaEval 2.0 leaderboard, including Claude
2, Gemini Pro, and GPT-4 0613. While there is
much left still to explore, this work opens the door
to the possibility of models that can continually
improve in both axes.

1. Introduction
Training Large Language Models (LLMs) using human
preference data can vastly improve the instruction following
performance of pretrained models (Ouyang et al., 2022; Bai
et al., 2022a). The standard approach of Reinforcement
Learning from Human Feedback (RLHF) learns a reward
model from these human preferences. The reward model
is then frozen and used to train the LLM using RL, e.g.,
via PPO (Schulman et al., 2017), and the human labeling
process is then possibly repeated in order to improve the
reward model (Ziegler et al., 2019). A recent alternative is
to avoid training the reward model at all, and directly use
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human preferences to train the LLM, as in Direct Prefer-
ence Optimization (DPO; Rafailov et al., 2023). In both
cases, the approach is bottlenecked by the size and quality
of the human preference data. Futhermore, we hypothesize
that training solely on human preferences will constrain
models from improving beyond human level and achieving
superhuman performance, which will require superhuman
feedback.

In this work, we instead propose to train a self-improving
reward model in order to avoid this bottleneck. Unlike
traditional methods where the reward model is frozen or
requires human-labeled data in order to be updated, our
model is designed to continuously update itself during LLM
alignment. The key to such an approach is to develop an
agent that possesses all the abilities desired during training,
rather than separating them out into distinct models such
as a reward model and a language model. In the same
way that pretraining and multitasking training of instruction
following tasks allow task transfer by training on many tasks
at once (Collobert & Weston, 2008; Radford et al., 2019;
Ouyang et al., 2022), incorporating the reward model into
that same system allows task transfer between the reward
modeling task and the instruction following tasks.

We thus introduce Self-Rewarding Language Models, that
both (i) act as instruction following models generating re-
sponses for given prompts; and (ii) can generate and evalu-
ate new instruction following examples to add to their own
training set. We train these models using an Iterative DPO
framework similar to that recently introduced in Xu et al.
(2023). Starting from a seed model, in each iteration there
is a process of Self-Instruction creation whereby candidate
responses are generated by the model for newly created
prompts, and are then assigned rewards by that same model.
The latter is implemented via LLM-as-a-Judge prompting,
which can also be seen as an instruction following task. A
preference dataset is built from the generated data, and the
next iteration of the model is trained via DPO, see Figure 1.

In our experiments, we start with a Llama 2 70B (Touvron
et al., 2023) seed model fine-tuned on Open Assistant (Köpf
et al., 2023), and then perform the above training scheme.
We find that not only does the instruction following per-
formance improve from Self-Rewarding LLM alignment
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Figure 1: Self-Rewarding Language Models. Our self-alignment method consists of two steps: (i) Self-Instruction creation:
newly created prompts are used to generate candidate responses from model Mt, which also predicts its own rewards via
LLM-as-a-Judge prompting. (ii) Instruction following training: preference pairs are selected from the generated data,
which are used for training via DPO, resulting in model Mt+1. This whole procedure can then be iterated resulting in both
improved instruction following and reward modeling ability.

compared to the baseline seed model, but importantly the
reward modeling ability, which is no longer fixed, improves
as well. This means that the model during iterative training
is able, at a given iteration, to provide a higher quality pref-
erence dataset to itself than in the previous iteration. While
this effect likely saturates in real-world settings, it provides
the intriguing possibility of obtaining reward models (and
hence LLMs) that are superior to ones that could have been
trained from the original human-authored seed data alone.

2. Self-Rewarding Language Models
Our approach first assumes access to a base pretrained lan-
guage model, and a small amount of human-annotated seed
data. We then build a model that aims to possess two skills
simultaneously:

1. Instruction following: given a prompt that describes
a user request, the ability to generate a high quality,
helpful, and harmless response.

2. Self-Instruction creation: the ability to generate and
evaluate new instruction-following examples to add to
its own training set.

These skills are used so that the model can perform self-
alignment, i.e., they are the components used to iteratively
train itself using AI Feedback (AIF).

Self-instruction creation consists of generating candidate re-
sponses and then having the model itself judging their qual-
ity, i.e., it acts as its own reward model, replacing the need
for an external one. This is implemented via the LLM-as-a-
Judge mechanism (Zheng et al., 2023b), i.e., by formulating
the evaluation of responses as an instruction following task.
This self-created AIF preference data is used as a training
set.

Our overall self-alignment procedure is an iterative one,

which proceeds by building a series of such models, with
the aim that each improves over the last. Importantly, be-
cause the model can both improve its generation ability, and
act as its own reward model through the same generation
mechanism, this means the reward model itself can improve
through these iterations. This deviates from standard prac-
tice where the reward model is either fixed (Ouyang et al.,
2022) or requires new human-labeled preference data to
update it (Ziegler et al., 2019). We believe our approach can
increase the ceiling of the potential for self-improvement of
these learning models going forward, removing a constrain-
ing bottleneck.

We describe these steps in more detail below. An overview
of the approach is illustrated in Figure 1.

2.1. Initialization

Seed Instruction Following Data We are given a seed
set of human-authored (instruction prompt, response) gen-
eral instruction following examples that we use for training
in a supervised fine-tuning (SFT) manner, starting from a
pretrained base language model. Subsequently this will be
referred to as Instruction Fine-Tuning (IFT) data.

Seed LLM-as-a-Judge Instruction Following Data We
also assume we are provided a seed set of (evaluation instruc-
tion prompt, evaluation result response) examples which can
also be used for training. While this is not strictly necessary,
as the model using IFT data will already be capable of train-
ing an LLM-as-a-Judge, we show that such training data can
give improved performance (see Appendix A.3 for support-
ing results). In this data, the input prompt asks the model
to evaluate the quality of a given response to a particular in-
struction. The provided evaluation result response consists
of chain-of-thought reasoning (a justification), followed by
a final score (in our experiments out of 5). The exact prompt
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format we chose is given in Appendix Figure 6, which in-
structs the LLM to evaluate the response using five additive
criteria (relevance, coverage, usefulness, clarity and exper-
tise), covering various aspects of quality. Subsequently this
will be referred to as Evaluation Fine-Tuning (EFT) data.

We use both these seed sets together during training.

2.2. Self-Instruction Creation

Using the model we have trained, we can make it self-
modify its own training set. Specifically, we generate addi-
tional training data for the next iteration of training.

This consists of the following steps:

1. Generate new prompts: We generate a new prompt xi

using few-shot prompting1, sampling prompts from
the original seed IFT data, following the approach of
Wang et al. (2023) and Honovich et al. (2023).

2. Generate candidate responses: We then generate N
diverse candidate responses {y1i , . . . , yNi } for the given
prompt xi from our model using sampling.

3. Evaluate candidate responses: Finally, we use the
LLM-as-a-Judge ability of our same model to evaluate
its own candidate responses with scores rni ∈ [0, 5]
(see the exact prompt in Appendix Figure 6).

2.3. Instruction Following Training

As previously described, training is initially performed with
the seed IFT and EFT data (Section 2.1). This is then aug-
mented with additional data via AI (Self-)Feedback.

AI Feedback Training After performing the self-
instruction creation procedure, we can augment the seed
data with additional examples for training, which we refer
to as AI Feedback Training (AIFT) data.

To do this, we construct preference pairs, which are training
data of the form (instruction prompt xi, winning response
ywi , losing response yli). To form the winning and losing pair
we take the highest and lowest scoring responses from the N
evaluated candidate responses (see Section 2.2), following
Xu et al. (2023), discarding the pair if their scores are the
same. These pairs can be used for training with a preference
tuning algorithm. We use DPO (Rafailov et al., 2023).

2.4. Overall Self-Alignment Algorithm

Iterative Training Our overall procedure trains a series
of models M1, . . . ,MT where each successive model t uses
augmented training data created by the t− 1th model. We

1The prompts are generated from a fixed model in advance,
but we show that they can also be generated by the newly trained
model in each iteration in Appendix A.5.

thus define AIFT(Mt) to mean AI Feedback Training data
created using model Mt. In each iteration, we use an un-
seen subset of the generated prompts so that AIFT(Mt) is
different from all the previous AIFT data.

Model Sequence We define the models, and the training
data they use as follows:

M0 : Base pretrained LLM with no fine-tuning.

M1 : Initialized with M0, then fine-tuned on the IFT+EFT
seed data using SFT.

M2 : Initialized with M1, then trained with AIFT(M1) data
using DPO.

M3 : Initialized with M2, then trained with AIFT(M2) data
using DPO.

This iterative training resembles the procedure used in Pair-
wise Cringe Optimization and specifically is termed Iterative
DPO, introduced in Xu et al. (2023); however, an external
fixed reward model was used in that work. See Section 4
for more discussion.

3. Experiments
3.1. Experimental Setup

Base Model In our experiments we use Llama 2 70B
(Touvron et al., 2023) as our base pretrained model.

3.1.1. SEED TRAINING DATA

IFT Seed Data We use the human-authored examples
provided in the Open Assistant dataset (Köpf et al., 2023)
for instruction fine-tuning. Following Li et al. (2024) we use
3,200 examples, by sampling only the first conversational
turns in the English language that are high-quality, based on
their human annotated rank (choosing only the highest rank
0). In our experiments, we compare to a model fine-tuned
from the base model using only this data via supervised
fine-tuning, and refer to it as our SFT baseline.

EFT Seed Data The Open Assistant data also provides
multiple ranked human responses per prompt from which
we can construct evaluation fine-tuning data. We split this
into train and evaluation sets, and use it to create LLM-as-a-
Judge data. This is done by placing it in the input prompt
format (detailed in Figure 6 in Appendix), which consists
of the scoring criteria description, and the given instruction
and response to be evaluated. For training targets, chain-
of-thought justifications and final scores out of 5 are not
directly provided, so we use the SFT baseline to generate
such output evaluations for each input, and accept them into
the training set if the ranking of their scores agrees with the
human rankings in the dataset. We resample the training
set by discarding some of the data that receives the most

3



Self-Rewarding Language Models

common score so that the scores are not too skewed, as we
observe many samples receive a score of 4. This results
in 1,630 train and 541 evaluation examples (which do not
overlap with the IFT data).

3.1.2. EVALUATION METRICS

We evaluate the performance of our self-rewarding models
in two axes: their ability to follow instructions, and their
ability as a reward model (ability to evaluate responses).

Instruction Following We evaluate head-to-head perfor-
mance between various models using GPT-4 2 (Achiam
et al., 2023) as an evaluator over 256 test prompts (which we
refer to as IFT test data) derived from various sources follow-
ing Li et al. (2024) using the AlpacaEval evaluation prompt
(Li et al., 2023). We try the prompt in both orders comparing
pairwise, and if the GPT-4 evaluations disagree we count
the result as a tie. We also perform a similar evaluation
with humans (authors). We additionally report results in the
AlpacaEval 2.0 leaderboard format which is evaluated over
805 prompts, and compute the win rate against the baseline
GPT-4 Turbo model based on GPT-4 judgments. Further,
we report results on MT-Bench (Zheng et al., 2023b) a set of
challenging multi-turn questions in various categories from
math and coding to roleplay and writing, which uses GPT-4
to grade the model responses out of 10. Finally we also
test the models on a set of 9 NLP benchmarks: ARC-Easy
(Clark et al., 2018), ARC-Challenge (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), SIQA (Sap et al., 2019),
PIQA (Bisk et al., 2020), GSM8K (Cobbe et al., 2021),
MMLU (Hendrycks et al., 2021), OBQA (Mihaylov et al.,
2018) and NQ (Kwiatkowski et al., 2019).

Reward Modeling We evaluate the correlation with hu-
man rankings on the evaluation set we derived from the
Open Assistant dataset, as described in Section 3.1.1. Each
instruction has on average 2.85 responses with given rank-
ings. We can thus measure the pairwise accuracy, which
is how many times the order of the ranking between any
given pair agrees between the model’s evaluation and the
human ranking. We also measure the exact match count,
which is how often the total ordering is exactly the same for
an instruction. We also report the Spearman correlation and
Kendall’s τ . Finally, we report how often the responses that
the model scores a perfect 5 out of 5 are rated as the highest
ranking by humans.

3.1.3. TRAINING DETAILS

Instruction Following Training The training hyperpa-
rameters we use are as follows. For SFT we use learning

2We used a fixed model gpt-4-1106-preview for all eval-
uations.

rate 5.5e−6 which decays (cosine) to 1.1e−6 at the end
of training, batch size 16 and dropout 0.1. We only calcu-
late the loss on target tokens instead of the full sequence.
For DPO we use learning rate 1e−6 which decays to 1e−7,
batch size 16, dropout 0.1, and a β value of 0.1. We perform
early stopping by saving a checkpoint every 200 steps and
evaluating generations using Claude 2 (Anthropic, 2023)
on 253 validation examples derived from various sources
following Li et al. (2024). This is evaluated pairwise against
the previous step’s generations using the AlpacaEval evalu-
ation prompt format (Li et al., 2023).

Self-Instruction Creation To generate new prompts we
use a fixed model3, Llama 2-Chat 70B with 8-shot prompt-
ing following Self-Instruct (Wang et al., 2023), where we
sample six demonstrations from the IFT data and two from
the model generated prompts4, and use decoding parameters
T = 0.6, p = 0.9. We use their prompt template for non-
classification tasks and apply the same filtering techniques,
including the ROUGE-L (Lin, 2004) similarity check, key-
word filtering, and length filtering. These filtering steps
ensure that generated prompts are diverse and similar to
the IFT seed data. Except for the prompt generation part,
the other parts of the creation pipeline (generating the re-
sponse, and evaluating it) use the Self-Rewarding model
being trained. For candidate response generation we sam-
ple N = 4 candidate responses with temperature T = 0.7,
p = 0.9. When evaluating candidate responses, as there
is variance to these scores, in our experiments we also use
sampled decoding (with the same parameters) and generate
these evaluations multiple (3) times and take the average.
We added 3,964 such preference pairs to form the AIFT(M1)
dataset used to train M2 via DPO, and 6,942 pairs 5 to form
AIFT(M2) used to train M3.

3.2. Results

3.2.1. INSTRUCTION FOLLOWING ABILITY

Head to head performance results are provided in Figure 2.

EFT+IFT Seed Training Performs Similarly to IFT
Alone We find that adding the Evaluation Fine-Tuning
(EFT) task to training does not impact instruction follow-
ing performance compared to using Instruction Fine-Tuning
(IFT) data alone with an almost equal head to head (30.5%
wins vs. 30.9% wins). This is a positive result because it
means the increased capability of a model to self-reward

3We opted for a fixed model to simplify the post-processing
such as ROUGE-L similarity filtering, but used a different subset
of the generated prompts in each iteration.

4Initially, before we had model-generated prompts, we selected
all 8 demonstrations from the IFT data.

5In the first iteration, we used fewer generated prompts (5K
instead of 15K) for faster experimentation.
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Figure 2: Instruction following ability improves with
Self-Training: We evaluate our models using head-to-head
win rates on diverse prompts using GPT-4. The SFT Base-
line is on par with Self-Rewarding Iteration 1 (M1). How-
ever, Iteration 2 (M2) outperforms both Iteration 1 (M1)
and the SFT Baseline. Iteration 3 (M3) gives further gains
over Iteration 2 (M2), outperforming M1, M2 and the SFT
Baseline by a large margin.

does not affect its other skills. We can thus use IFT+EFT
training as Iteration 1 (M1) of our Self-Rewarding model,
and then run further iterations.

Iteration 2 (M2) Improves over Iteration 1 (M1) and
SFT Baseline Iteration 2 of Self-Rewarding training (M2)
provides superior instruction following to Iteration 1 (M1)
with 55.5% wins for M2 compared to only 11.7% for M1 in
a head to head evaluation. It provides similar gains over the
SFT Baseline as well (49.2% wins vs. 14.5% wins). Clearly,
there is a large jump in performance from M1 to M2 by
using the preference data AIFT(M1) provided by the reward
model from Iteration 1.

Iteration 3 (M3) Improves over Iteration 2 (M2) We
see a further gain in Iteration 3 over Iteration 2, with 47.7%
wins for M3 compared to only 12.5% for M2 in a head
to head evaluation. Similarly, the win rate over the SFT
Baseline for M3 increases to 62.5% wins vs. 9.8%, i.e.,
winning more often than the M2 model did. Overall, we
see large gains from M2 to M3 through training using the
preference data AIFT(M2) provided by the reward model
from Iteration 2.

Table 1: AlpacaEval 2.0 results (win rate over GPT-4 Turbo
evaluated by GPT-4). Self-Rewarding iterations yield im-
proving win rates. Iteration 3 (M3) outperforms many ex-
isting models that use proprietary training data or targets
distilled from stronger models.

Alignment Targets

Model Win Rate Distilled Proprietary

Self-Rewarding 70B
Iteration 1 (M1) 9.94%
Iteration 2 (M2) 15.38%
Iteration 3 (M3) 20.44%

Selected models from the leaderboard
GPT-4 0314 22.07% ✓
Mistral Medium 21.86% ✓
Claude 2 17.19% ✓
Gemini Pro 16.85% ✓
GPT-4 0613 15.76% ✓
GPT 3.5 Turbo 0613 14.13% ✓
LLaMA2 Chat 70B 13.87% ✓
Vicuna 33B v1.3 12.71% ✓
Humpback LLaMA2 70B 10.12%
Guanaco 65B 6.86%
Davinci001 2.76% ✓
Alpaca 7B 2.59% ✓

Self-Rewarding Models Perform Well on AlpacaEval 2
Leaderboard We evaluate our models on the AlpacaEval
2.0 leaderboard, with results given in Table 1. We observe
the same findings as in the head-to-head evaluations, that
training iterations yield improved win rates, in this case
over GPT4-Preview (11/06), from 9.94% in Iteration 1, to
15.38% in Iteration 2, to 20.44% in Iteration 3. Our Iteration
3 model outperforms many existing models in this metric,
including Claude 2, Gemini Pro, and GPT4 0613. We show
some selected models from the leaderboard in the table. We
note that many of those competing models contain either
proprietary alignment data (which is typically large, e.g.,
over 1M annotations in Touvron et al. (2023)) or use targets
that are distilled from stronger models. In contrast, our Self-
Rewarding model starts from a small set of seed data from
Open Assistant, and then generates targets and rewards from
the model itself for further iterations of training.

Improvements From Further Iterations Eventually Sat-
urate We also conducted a fourth iteration on AlpacaEval
2, where the win rate was 22.97%, outperforming GPT-4
0314. We observe the improvements from the iterations are
decreasing in each iteration (5.44%, 5.06%, 2.53%) similar
to other iterative algorithms. The trend seems to be that it
will saturate with no further improvements.

Fine-Grained Analysis As described earlier, the over-
all performance of the model in AlpacaEval 2.0 improves
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Figure 3: AlpacaEval 2.0 win rate breakdown for instruction
categories (full names given in Appendix). Self-Rewarding
models give gains across several topics, but tend to e.g. give
less gains on mathematics and reasoning tasks.

with each iteration of training. It would be interesting to
break down the overall performance improvement to see
exactly what type of tasks these improvements come from.
Therefore, we cluster the instructions in AlpacaEval test
set into different groups based on three perspectives: (1)
instruction category (2) instruction complexity (3) expected
response length. We achieve this by using GPT-4. The
detailed statistical information of the breakdown and the
prompting techniques we used for getting this breakdown
can be found in Appendix A.6. Results for the instruction
category are given in Figure 3, and the other two in Ap-
pendix Figure 11. From the results we can conclude that
(i) Self-Rewarding models can substantially improve the
win rate in most categories, but there are some tasks for
which this approach does not improve, such as mathematics
and logical reasoning, indicating that our current training
approach mainly allows the models to better utilize their
existing knowledge. (ii) Through Self-Rewarding model
training, the model’s win rate increases on almost all tasks
of different complexity, and especially on slightly more diffi-
cult tasks (complexity of 5, 6, 7 out of 10). (iii) The models
also show a steady increase in the win rate on tasks with
instructions with different expected response lengths.

Data Distribution Analysis We perform a t-SNE (Van der
Maaten & Hinton, 2008) visualization of the IFT, EFT and
AIFT(M1) data, shown in Appendix A.1. We find good
overlap between the IFT and AIFT(M1) examples, which
is desired as we want to avoid distribution shift in input
prompts during our training. In contrast, the EFT examples
lie in a different part of the embedding space, which can help
explain why they would not affect IFT performance. We

Table 2: MT-Bench Results (on a scale of 10). Self-
Rewarding iterations yield improving scores across various
categories. Math, code & reasoning performance and itera-
tion gains are smaller than for other categories, likely due
to the makeup of the Open Assistant seed data we use.

Overall Math, Code Humanities, Extraction,
Score & Reasoning STEM, Roleplay & Writing

SFT 6.85 3.93 8.60
M1 6.78 3.83 8.55
M2 7.01 4.05 8.79
M3 7.25 4.17 9.10

Table 3: NLP Benchmarks. Self-Rewarding models mostly
tend to maintain performance compared to the Llama 2 70B
base model and the SFT Baseline, despite being fine-tuned
on very different instruction-following prompts.

ARC (↑)
challenge

HellaSwag
(↑)

GSM8K
(↑)

MMLU
(↑)

NQ
(↑)

Llama 2 57.40 85.30 56.80 68.90 25.30
SFT 55.97 85.17 50.72 69.76 34.35
M1 57.51 84.99 60.27 69.34 35.48
M2 54.51 84.27 59.29 69.31 33.07
M3 53.13 83.29 57.70 69.37 31.86

Self-Rewarding M3
vs.

SFT Baseline

Self-Rewarding M2
vs.

SFT Baseline

Self-Rewarding M1
vs.

SFT Baseline

66.0

56.0

28.0

16.0

24.0

26.0

18.0

20.0

46.0

Self-Rewarding Wins Tie SFT Baseline Wins

Figure 4: Human evaluation results. Iterations of Self-
Rewarding (M1, M2 and M3) provide progressively better
head-to-head win rates compared to the SFT baseline, in
agreement with the automatic evaluation results.

observe that generations from M1 on AlpacaEval have an
average length of 1092 characters, for M2 they are 1552, and
for M3 they are 2552, so the model is learning to generate
longer responses, which we note may be a factor in relative
performance.

Human Evaluation To examine whether human judg-
ments align with automatic evaluation results, we conduct
human evaluations that compare SFT baseline generations
with the generations from each iteration of Self-Rewarding
training, i.e., models M1, M2, and M3. Specifically, we
randomly select 50 instructions from the IFT test set. Each
instruction corresponds to three pairs of generations (i.e.,
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baseline vs. M1, baseline vs. M2, baseline vs. M3). For
each pair of generations, we assign them to three differ-
ent annotators (blind evaluation performed by the authors)
to make a pairwise judgment, and take a majority vote to
decide which generation is better. The human evaluation
results are shown in Figure 4. Notably, Self-Rewarding mod-
els from later iterations show a larger advantage over the
SFT baseline model, which is consistent with GPT-4’s judg-
ments, and demonstrates the effectiveness of our iterative
training procedure.

MT-Bench Performance Further Validates These Results
We report performance on MT-Bench in Table 2 for the SFT
baseline and iterations of the Self-Rewarding model. We
again see improvements across the iterations of training
from M1 to M3, from 6.78 (out of 10) up to 7.25, with
larger relative gains in the humanities, STEM, roleplay,
writing and extraction categories, and smaller gains in the
math, code and reasoning categories. We expect that the
latter is due to the seed prompts we use from Open Assistant
tending to underemphasize the reasoning-based tasks. We
note also that these improvements are in spite of our method
using and constructing prompts that only involve a single
turn, given the MT-Bench benchmark itself is a multi-turn
evaluation.

Self-Rewarding Models Did Not Lose Ability on NLP
Benchmarks As shown in Table 3, the performance on
most NLP benchmark tasks evaluated is roughly similar to
the baselines. Further detailed results on more datasets are
given in Appendix Table 10, following the same pattern. We
hypothesize that given that our training data (seed data and
synthetically generated data) are based on the Open Assis-
tant prompts which may not be especially relevant to skills
needed in the Table 3 tasks, it is expected that the task perfor-
mance stays roughly similar, or may even drop. For example,
in InstructGPT training (Ouyang et al., 2022) they found that
“during RLHF fine-tuning, we observe performance regres-
sions compared to GPT-3 on certain public NLP datasets”
which they refer to as an “alignment tax.” A clear future
direction is to extend the self-rewarding paradigm to these
types of tasks, by relying not only on seed prompts from
Open Assistant, but also on seed prompts found in a larger
variety of datasets.

3.2.2. REWARD MODELING ABILITY

Reward modeling evaluation results are provided in Table 4.

EFT Augmentation Improves over SFT Baseline Firstly,
we find that adding Evaluation Fine-Tuning (EFT) data into
training, which gives examples to the model of how to act
as an LLM-as-a-Judge, naturally improves its performance
compared to training with Instruction Fine-Tuning (IFT)

Table 4: Reward Modeling ability improves with Self-
Training: We evaluate the LLM-as-a-Judge via various met-
rics which measure alignment with held-out human prefer-
ence data. Self-Rewarding Iteration 2 (Model M2), which is
trained using the self-rewarding model derived from its pre-
vious iteration M1 outperforms Iteration 1 (M1), while M1

itself outperforms a standard SFT baseline model trained on
only Instruction Fine-Tuning (IFT) data. Iteration 3 (Model
M3) gives further improvements over Iteration 2.

Self-Rewarding Models
Model SFT Iter 1 (M1) Iter 2 (M2) Iter 3 (M3)

Training data IFT IFT+EFT IFT+EFT IFT+EFT
+AIFT(M1) +AIFT(M1)

+AIFT(M2)

Pairwise acc. (↑) 65.1% 78.7% 80.4% 81.7%
5-best % (↑) 39.6% 41.5% 44.3% 43.2%
Exact Match % (↑) 10.1% 13.1% 14.3% 14.3%
Spearman corr. (↑) 0.253 0.279 0.331 0.349
Kendall τ corr. (↑) 0.233 0.253 0.315 0.324

data alone. IFT data covers a wide range of general instruc-
tion tasks, and so does endow the SFT Baseline with the
ability to evaluate responses; however, EFT data gives more
examples of this specific task. We find improvements across
all five metrics measured when using IFT+EFT vs. IFT
alone, e.g., the pairwise accuracy agreement with humans
increases from 65.1% to 78.7%.

Reward Modeling Ability Improves with Self-Training
We find that performing a round of self-reward training im-
proves the ability of the model at providing self-rewards for
the next iteration, in addition to its improved instruction fol-
lowing ability. Model M2 (Iteration 2) is trained using the
reward model from M1 (Iteration 1), but provides improved
performance on all five metrics compared to M1. For ex-
ample, pairwise accuracy improves from 78.7% to 80.4%.
Iteration 3 (M3) improves several of these metrics further
compared to M2, for example pairwise accuracy increases
from 80.4% to 81.7%. This performance gain is achieved
despite there being no additional EFT data provided, and the
examples created during the Self-Instruction creation loop
do not tend to look like LLM-as-a-Judge training examples.
We hypothesize that because the model is becoming better at
general instruction following, it nevertheless also improves
at the LLM-as-a-Judge task.

Importance of the LLM-as-a-Judge Prompt In these
experiments we used the LLM-as-a-Judge prompt format
shown in Appendix Figure 6. In preliminary experiments we
also tried various other prompts to decide the most effective
one to use. For example, we tried the prompt proposed in
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Li et al. (2024) which also proposes a 5-point scale, but
describes the options as multiple choice in a range of quality
buckets, see Appendix Figure 7. In contrast, our prompt
describes the points as additive, covering various aspects
of quality. We find a large difference between these two
prompts when using the SFT Baseline, e.g. 65.1% pairwise
accuracy for ours, and only 26.6% pairwise accuracy for
theirs. See Appendix A.2 for further details.

4. Related Work
Automatically improving or self-correcting large language
models is becoming a major focus of research. A recent
survey from Pan et al. (2023) attempts to summarize the
topic. However, this is a rapidly moving area, and there are
already promising new works not covered there.

Reinforcement Learning from Human Feedback (RLHF)
Preference learning approaches such as in Ziegler et al.
(2019); Stiennon et al. (2020); Ouyang et al. (2022); Bai
et al. (2022a) train a fixed reward model from human pref-
erence data, and then use the reward model to train via
reinforcement learning (RL), e.g. via Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017). Thus, the reward
signal in a certain sense already comes from a model even
in these works, but distilled from human data. Nevertheless,
this is commonly referred to as RL from Human Feedback
(RLHF). Methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023) avoid training the reward
model entirely, and instead directly train the LLM using
human preferences. Several other such competing meth-
ods exist as well (Zhao et al., 2023; Zheng et al., 2023a;
Yuan et al., 2023), including Pairwise Cringe Optimization
(PCO) (Xu et al., 2023). PCO uses an iterative training
approach similar to the one in our work, except with a fixed
reward model, and that work also showed that Iterative DPO
improves over DPO using the same scheme.

Reinforcement Learning from AI Feedback (RLAIF)
Constitutional AI (Bai et al., 2022b) uses an LLM to give
feedback and refine responses, and uses this data to train
a reward model. This fixed, separate reward model is then
used to train the language model via RL, called “RL from
AI Feedback” (RLAIF). Lee et al. (2023) compare RLAIF
and RLHF procedures and find the methods they compare
perform roughly equally. They use an “off-the-shelf” LLM
to perform LLM-as-a-Judge prompting to build a training
set to train a fixed reward model, which is then used for
RL training. They also experiment with using the fixed
but separate LLM-as-a-Judge model directly, which the
authors report is computationally expensive due to using
it within PPO training (rather than the offline step in the
iterative approach we use in our work, which is relatively
computationally cheap). Finally, SPIN (Chen et al., 2024b)

recently showed they can avoid reward models entirely in
an Iterative DPO-like framework by using human labels
as the winning response in a pair, and the last iteration’s
generations as the losing response in the pair. The authors
note this has the limitation that once the model generations
reach human performance, they are bottlenecked. Further,
each input prompt is required to have a human annotated
response, in contrast to our work.

Improving LLMs via Data Augmentation (and Curation)
Several methods have improved LLMs by (self-)creating
training data to augment fine-tuning. Self-Instruct (Wang
et al., 2023) is a method for self-instruction creation of
prompts and responses, which can be used to improve a
base LLM. We make use of a similar technique in our work,
and then use our self-reward model to score them. Several
approaches have also created training data by distilling from
powerful LLMs, and shown a weaker LLM can then perform
well. For example, Alpaca (Taori et al., 2023) fine-tuned a
Llama 7B model with text-davinci-003 instructions created
in the style of self-instruct. Alpagasus (Chen et al., 2024a)
employed a strong LLM-as-a-Judge (ChatGPT) to curate the
Alpaca dataset and filter to a smaller set, obtaining improved
results. Instruction Backtranslation (Li et al., 2024) similarly
augments and curates training data, but augmenting via
backtranslating from web documents to predict prompts.
The curation is done by the LLM(-as-a-Judge) itself, so
can be seen as an instance of a self-rewarding model, but
in a specialized setting. Reinforced Self-Training (ReST)
(Gulcehre et al., 2023) uses a fixed, external reward to curate
new high-quality examples to iteratively add to the training
set, improving performance. In our experiments, we found
that adding only positive examples in a related manner did
not help, whereas preference pairs did help (see Appendix
Section A.4 for details).

LLM-as-a-Judge Using LLM-as-a-Judge prompting to
evaluate language models has become a standard approach
(Dubois et al., 2023; Li et al., 2023; Fernandes et al., 2023;
Bai et al., 2023; Saha et al., 2023), and is being used to
train reward models or curate data as well, as described
above (Lee et al., 2023; Chen et al., 2024a; Li et al., 2024).
While some works such as Kim et al. (2023) create training
data to train an LLM to perform well as a judge, to our
knowledge it is not common to combine this training with
general instruction following skills as in our work.

5. Conclusion
We have introduced Self-Rewarding Language Models,
models capable of self-alignment via judging and training
on their own generations. The method learns in an itera-
tive manner, where in each iteration the model creates its
own preference-based instruction training data. This is done
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by assigning rewards to its own generations via LLM-as-a-
Judge prompting, and using Iterative DPO to train on the
preferences. We showed that this training both improves
the instruction following capability of the model, as well as
its reward-modeling ability across the iterations. This is a
clear advantage over having a separate reward model, which
cannot further improve without additional human prefer-
ence data. While there are many avenues left unexplored,
we believe this is exciting because this means the model is
better able to assign rewards in future iterations for improv-
ing instruction following – a kind of virtuous circle. While
this improvement likely saturates in realistic scenarios, it
still allows for the possibility of continual improvement be-
yond the human preferences that are typically used to build
reward models and instruction following models today.

6. Limitations
There are many avenues yet to explore and understand,
among them the topics of further evaluation, including safety
evaluation, and understanding the limits of iterative training.

We showed that the iterations of training improve both in-
struction following and reward modeling ability, and ran
three iterations in a single setting. A clear line of further
research is to understand the “scaling laws” of this effect
both for more iterations, and with different language models
with more or less capabilities in different settings.

We observed an increase in length in model generations, and
there is a known correlation between length and estimated
quality, which is a topic that should be understood more
deeply in general, and in our results in particular as well.
It would also be good to understand if so-called “reward-
hacking” can happen within our framework, and in what
circumstances. As we are using both a language model as
the training reward, and a language model for final evalu-
ation, even if they are different models, this may require
a deeper analysis than we have provided. While the hu-
man evaluation we conducted did provide validation of the
automatic results, further study could bring more insights.

Impact Statement
This work opens the door to the possibility of training LLMs
such that they continually improve on both the instruction
following ability and the reward modeling ability through-
out each iteration, but studying how this affects outputs will
be important. For such models, safety will be crucial, and
future work should focus on this. In our experiments, the
reward is not explicitly constrained by safety-related crite-
ria. Therefore, a clear further avenue of study is to conduct
safety evaluations – and to explore safety training within
our framework. Reward models have been built exclusively
for safety in existing systems (Touvron et al., 2023), and

a promising avenue here would be to use the LLM-as-a-
Judge procedure to evaluate for safety specifically in our
self-rewarding training process. Given that we have shown
that reward modeling ability improves over training itera-
tions, this could mean in the best case that the safety of the
model could potentially improve over time as well, with
later iterations being able to catch and mitigate more chal-
lenging safety situations that earlier iterations cannot. From
a broader perspective, this work could pave the way for
methods that provide feedback that are more high-quality
than human feedback, thereby creating training data that are
more high-quality, and potentially safer, than what machines
can do in the current paradigm.
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A. Appendix
A.1. Distributions of IFT, EFT and AIFT data
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(a) Instruction distribution of IFT, EFT and AIFT data.
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(b) Response distribution of IFT, EFT, and AIFT data.

Figure 5: Distributions of both instructions and responses for IFT, EFT and AIFT data.

We have plotted the distribution of instructions for IFT, EFT and AIFT(M1) data, and the distribution of responses for IFT,
EFT and AIFT(M1) data in Figure 5. It is clear that the IFT data and EFT data come from very different distributions while
the IFT and AIFT(M1) data come from similar distributions. We provide examples of IFT, EFT and AIFT(M1) data in
Table 5.

A.2. EFT Prompts

The EFT prompt which we use in our main experiments is shown in Figure 6.

Other EFT prompts we have tried At first, we took the EFT prompt from Li et al. (2024) as shown in Figure 7. However,
we found that this prompt was not as effective as our additive score-counting prompt because the model needed to treat
the task as a multiple-choice problem, and it was difficult for the model to break down this multiple-choice problem into
sub-problems involving evaluating various aspects of the response. When using the model trained on 3,200 IFT data only,
its performance on the EFT test set using our additive score-counting prompt and prompt from Li et al. (2024) is shown in
Table 6.

A.3. Self-rewarding Models Using IFT Data Only

To demonstrate the importance of the EFT data, we also trained a series of models starting with the model trained only on
the IFT data. The following is the model sequence.

M0 : Base pretrained LLM with no fine-tuning.

M ′
1 : Initialized with M0, then fine-tuned on the IFT seed data only using SFT.

M ′
2 : Initialized with M ′

1, then trained with AIFT(M ′
1) data using DPO.

M ′
3 : Initialized with M ′

2, then trained with AIFT(M ′
2) data using DPO.

Since we did not use EFT data to train the series of models, they were not always able to score the responses according
to the format and even when they did, the scores given typically converged to 4. Therefore, even when starting from the
same number of generated new prompts, we could only collect a very small number of valid training samples for DPO. In
total, we collected 541 pairs to form the AIFT(M ′

1) dataset used to train M ′
2 via DPO, and 429 pairs to form AIFT(M ′

2)
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IFT Instruction: When did Cuba abolish slavery?

Response: Slavery in Cuba was abolished on October 7, 1886 by a Spanish royal decree that also made the patronato system illegal. This decree followed a
period of reform in which the Spanish Crown attempted to improve the conditions of enslaved people in Cuba. Prior to this, enslaved people had been brought
to Cuba from Africa as part of the Middle Passage and were used to support the sugar cane plantations.
The abolition of slavery did not bring racial harmony to Cuba, and free black Cubans faced discrimination after emancipation. However, they became an
important part of the Cuban independence movement and its Liberation Army (“Los Mambises”). Since then, Black Cubans have made great gains since the
revolution and continue to fight against racism.

EFT Instruction: Review the user’s question and the corresponding response using the additive 5-point scoring system described below. Points are accumulated
based on the satisfaction of each criterion:
- Add 1 point if the response is relevant and provides some information related to the user’s inquiry, even if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question, but does not completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a useful way, regardless of whether it seems to have been written by an
AI Assistant or if it has elements typically found in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the user’s question directly and comprehensively, and is
well-organized and helpful, even if there is slight room for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant, without extraneous information, reflecting expert
knowledge, and demonstrating a high-quality, engaging, and insightful answer.
User: Who are you?
<response>I am an enthusiastic human, pretending to reply as an assistant in order to help train the Open Assistant LLM, in order to create alternatives to
websites like ChatGPT3.</response>
After examining the user’s instruction and the response:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>”
Remember to assess from the AI Assistant perspective, utilizing web search knowledge as necessary.

Response: To evaluate the response in alignment with this additive scoring model, we’ll systematically attribute points based on the outlined criteria.
1. Relevance: The response is relevant and provides some information related to the user’s inquiry. +1 point
2. Substantial portion of the user’s question: The response does not address a substantial portion of the user’s question, only mentioning the purpose of training
the Open Assistant LLM. 0 points
3. Basic elements of the user’s question: The response does not answer the basic elements of the user’s question in a useful way. 0 points
4. Clearly written from an AI Assistant’s perspective: The response is not written from an AI Assistant’s perspective, as it is stated that the responder is an
enthusiastic human. 0 points
5. Impeccably tailored to the user’s question: The response does not demonstrate expert knowledge, nor is it tailored to the user’s question, and does not provide
an engaging or insightful answer. 0 points
Score: 1/5

AIFT(M1) Instruction: What are some tips for taking better photos with my smartphone?

Winning Response: 1. Clean your lens: Before you start shooting, make sure your phone’s lens is clean. Use a microfiber cloth or a soft, lint-free cloth to
gently wipe the lens.
2. Use good lighting: Good lighting is key to taking great photos. Try to take photos in natural light, and avoid using the flash if possible. If you’re taking
photos indoors, try to find a room with lots of natural light.
3. Focus on your subject: Make sure your subject is in focus by tapping on it on your phone’s screen. This will help the camera adjust its focus and ensure that
your subject is sharp.
4. Use gridlines: Many smartphones have a gridlines feature that can help you compose your shots. The gridlines can help you line up your subject and create a
more balanced composition.
5. Get close to your subject: Get closer to your subject to fill the frame and create a more interesting photo. This can also help you avoid distracting backgrounds.
6. Use burst mode: If you’re taking action shots or trying to capture a moving subject, use burst mode to take multiple shots in quick succession. This will
increase your chances of getting a good shot.
7. Experiment with angles: Try shooting from different angles to create more interesting shots. For example, try shooting from above or below your subject.
8. Edit your photos: Use editing apps to enhance your photos and correct any issues. Some popular editing apps for smartphones include Snapseed, Lightroom,
and VSCO.
Overall, the key to taking better photos with your smartphone is to practice and experiment with different techniques. Try out different settings and compositions
to see what works best for you.

Losing Response: 1. Clean your lens: Before you start shooting, make sure your phone’s lens is clean. Use a soft, microfiber cloth to gently wipe the lens and
remove any smudges or dirt.
2. Use good lighting: Good lighting is key to taking great photos. Try to shoot in natural light, and avoid using the flash if possible. If you’re shooting indoors,
try to find a room with lots of natural light, or use a lamp to provide additional lighting.
3. Focus on your subject: Make sure your subject is in focus by tapping on it on your phone’s screen. This will help the camera adjust its focus and ensure that
your subject is sharp.
4. Use grid lines: Many smartphones have a grid line feature that can help you compose your shots. Use the grid lines to line up your subject and create a more
balanced and visually appealing photo.
5. Get close to your subject: Don’t be afraid to get close to your subject. This can help you capture more detail and create a more interesting photo.
6. Experiment with angles: Try shooting from different angles to see what works best. For example, you might try shooting from above or below your subject
to create a more dynamic shot.
7. Use burst mode: If you’re shooting a moving subject, try using burst mode to capture multiple shots in quick succession. This will increase your chances of
getting a sharp and well-timed shot.
8. Edit your photos: Don’t be afraid to edit your photos after you’ve taken them. There are lots of apps available that can help you adjust things like brightness,
contrast, and saturation to make your photos look their best.

Table 5: Examples of our IFT, EFT and AIFT(M1) data.
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Review the user’s question and the corresponding response using the additive 5-point scoring system described below. Points
are accumulated based on the satisfaction of each criterion:

- Add 1 point if the response is relevant and provides some information related to the user’s inquiry, even if it is in-
complete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question, but does not completely resolve the
query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a useful way, regardless of whether it
seems to have been written by an AI Assistant or if it has elements typically found in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the user’s question directly
and comprehensively, and is well-organized and helpful, even if there is slight room for improvement in clarity, conciseness or
focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant, without extraneous
information, reflecting expert knowledge, and demonstrating a high-quality, engaging, and insightful answer.

User: <INSTRUCTION_HERE>

<response><RESPONSE_HERE></response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>”

Remember to assess from the AI Assistant perspective, utilizing web search knowledge as necessary. To evaluate
the response in alignment with this additive scoring model, we’ll systematically attribute points based on the outlined criteria.

Figure 6: LLM-as-a-Judge prompt for our LLM to act as a reward model and provide self-rewards for its own model
generations. The model is initially trained with seed training data of how to perform well at this task, and then improves
at this task further through our self-rewarding training procedure. (Note the prompt, derived from Li et al. (2024), states
“utilizing web search”, but our model is not actually capable of this.)

used to train M ′
3. The win rates are shown in Figure 8. From the figure we can conclude that EFT data helps to get better

performance in the same number of iterations and the gap in performance between the model trained with EFT data and the
model trained without EFT data widens in the later iterations.

A.4. Preference optimization outperforms augmenting with positive examples only

As an ablation, we tried an alternative self-training procedure of adding high-quality self-instruction creation examples to
supervised fine-tuning (without preference optimization), rather than DPO. In this variant, we add additional examples of
(instruction prompt, response) curated by the model to the seed set for supervised fine-tuning, following other approaches
(Li et al., 2024; Adolphs et al., 2023; Gulcehre et al., 2023), rather than constructing preference data. In this setup we only
add examples where the candidate response was evaluated to give a perfect score of rni = 5. Unfortunately we could not
find a configuration where this approach helped. For example, adding 11,254 such examples that scored 5 out of 5, and
optimizing the mixing weight in training, still yielded a head to head with the SFT Baseline of 29% wins vs 30% wins, i.e.,
no improvement.

A.5. Augmented Prompt Generation Using Newly Trained Models

In our experiments, for time efficiency, we have created a fixed pool of augmented prompts in advance using ChatLlama
70B. In a real interactive system, ideally, those prompts could come from real users so that we can ensure the models are
trained to align with real user requirements. Here, we also examine whether our newly trained Self-Rewarding models in
each iteration can generate new prompts through in-context learning, instead of using ChatLlama 70B. To check this, we
constructed 30 prompts with in-context examples using the original seed IFT data as described in Section 2.2 and tested
whether M1, M2 and M3 still possess in-context learning ability and can generate high quality instructions. According to
manual inspection, all models can generate novel instructions given in-context examples in all 30 cases. However, for M2
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Below is a question from an user and a candidate response. Please grade the response on a 5-point scale using the following
criteria:

1: It means the answer is incomplete, vague, off-topic, controversial, or not exactly what the user asked for. For ex-
ample, some content seems missing, numbered list does not start from the beginning, the opening sentence repeats user’s
question. Or the response is from another person’s perspective with their personal experience (e.g. taken from blog posts), or
looks like an answer from a forum. Or it contains promotional text, navigation text, or other irrelevant information.
2: It means the answer addresses most of the asks from the user. It does not directly address the user’s question. For example, it
only provides a high-level methodology instead of the exact solution to user’s question.
3: It means the answer is helpful but not written by an AI Assistant. It addresses all the basic asks from the user. It is complete
and self contained with the drawback that the response is not written from an AI assistant’s perspective, but from other people’s
perspective. The content looks like an excerpt from a blog post, web page, or web search results. For example, it contains
personal experience or opinion, mentions comments section, or share on social media, etc.
4: It means the answer is written from an AI assistant’s perspective with a clear focus of addressing the instruction. It provide a
complete, clear, and comprehensive response to user’s question or instruction without missing or irrelevant information. It is
well organized, self-contained, and written in a helpful tone. It has minor room for improvement, e.g. more concise and focused.
5: It means it is a perfect answer from an AI Assistant. It has a clear focus on being a helpful AI Assistant, where the response
looks like intentionally written to address the user’s question or instruction without any irrelevant sentences. The answer
provides high quality content, demonstrating expert knowledge in the area, is very well written, logical, easy-to-follow,
engaging and insightful.

User: <INSTRUCTION_HERE>

<response><RESPONSE_HERE></response>

Please first briefly describe your reasoning (in less than 100 words), and then write “Score: <rating>” in the last
line. Answer in the style of an AI Assistant, with knowledge from web search if needed. To derive the final score based on the
criteria, let’s think step-by-step.

Figure 7: LLM-as-a-Judge prompt taken from Li et al. (2024).

and M3, the model is likely to first generate a few instructions, then generate a separator, and then start responding to the
instructions.

A.6. AlpacaEval Test Sample Clustering

We used the GPT-4 (gpt-4-1106-preview) model to categorize the instructions in the AlpacaEval test set into clusters
from three perspectives: (1) instruction category, (2) instruction complexity, and (3) expected response length. To obtain
instruction categories for the AlpaceEval test set, we used the prompt in Figure 9 and obtained 20 categories in total. Then,
to cluster the instructions into different groups, we use the prompt in Figure 10 for each test example. The corresponding
statistics are given in Table 7, Table 8, Table 9. The fine-grained results on instruction complexity and expected response
length are given in Figure 11.

A.7. NLP Benchmark Results and MT-Bench Results

We provide the detailed model performance on a number of NLP benchmarks in Table 10 and on MT-Bench in Table 11. In
particular, some NLP benchmarks including ARC-Challenge, HellaSwag, SIQA, PIQA, and OBQA are all text completion
tasks. In these tasks, given the multiple choice options, we choose the option corresponding to the highest log probability
scored by the models as the final answer. As such, the objective of these particular tasks is quite different from what our
algorithm tries to optimize, so the results on these tasks may not reflect the true capability of our models.
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EFT PROMPT MULTIPLE CHOICE PROMPT OURS

PAIRWISE ACCURACY (↑) 26.6% 65.1%
5-BEST % (↑) 23.5% 39.6%
EXACT MATCH % (↑) 1.1% 10.1%
SPEARMAN CORR. (↑) -0.18 0.25
KENDALL τ CORR. (↑) -0.16 0.23

Table 6: We tried various LLM-as-Judge prompts using the model trained with 3,200 IFT data only and found that our
additive score-counting prompt worked best which demonstrates significant improvements in EFT performance comparing
to the prompt used by Li et al. (2024).

Self-Rewarding M ′
3

vs.
SFT Baseline

Self-Rewarding M ′
2

vs.
SFT Baseline

50.4

46.5

32.8

34.8

16.8

18.8

Self-Rewarding Wins Tie SFT Baseline Wins
Self-Rewarding M3

vs.
M ′

3

Self-Rewarding M2
vs.
M ′

2

38.7

34.8

44.5

36.7

16.8

28.5

Left Wins (in Left vs. Right) Tie Right Wins

Figure 8: EFT data helps the self-rewarding loop: We evaluated the series of models trained using self-reward loops
starting from the model trained using only IFT data. We performed head-to-head win rates comparisons on the IFT test set.
While M ′

2 can improve over the SFT baseline and M ′
3 can improve even more over the SFT baseline, they lag far behind the

corresponding models (M2, M3) that started from a base model trained using both IFT and EFT data, see Figure 2.

<LIST ALL ALPACAEVAL INSTRUCTIONS>
Given the above list of possible instructions, define between a maximum of 20 categories that would cover the types of
intructions, for example recipes, reasoning tasks, general knowledge etc. Try to cover as many of the instructions as possible
with the maximum 20 categories, while keeping the categories high-level, simple and easy to understand.

Figure 9: Prompt used to obtain instruction categories on the AlpacaEval test set.

Instruction: <INSTRUCTION>
Given the above, categorize it into one of the following 20 categories:
<LIST ALL CATEGORIES>

Secondly, score the instruction in terms of complexity: how complex you think it is to answer from 1-10 (where 10
is a complex question whereby first reasoning or breaking down the question into multiple subquestions for example might help
improve the answer).

Thirdly, indicate how long you think the response to the instruction should be, either (a) 1 sentence, (b) 1-3 sen-
tences, (c) 1 paragraph, (d) 2 paragraphs, or (e) 3 or more paragraphs.

Provide your final response in the following format:
Category: <one of the 20 categories>
Complexity: <score out of 10>
Length: <length category>. Do not provide the actual response.

Figure 10: Prompt for categorizing instructions based on their topics, complexities and expected response lengths.
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Table 7: Breakdown of AlpacaEval test set instructions by instruction category.

Category Number Percentage

Science / Technology / Engineering 134 16.65%
Professional / Business / Marketing 77 9.57%
Social Interaction / Relationships / Human Behavior 68 8.45%
Miscellaneous / Other 61 7.58%
Mathematics / Logical Reasoning 52 6.46%
Cooking / Recipes 48 5.96%
Software Development / Coding / Algorithms 44 5.47%
Travel / Geography / Exploration 41 5.09%
Literature / Writing / Communication 39 4.84%
History / Social Studies 38 4.72%
Entertainment / Media Analysis 34 4.22%
Language Learning / Linguistics 32 3.98%
Music / Audio / Arts 30 3.73%
DIY Projects / Hobbies 24 2.98%
Technology / Gadgets / Consumer Products 20 2.48%
Gaming / Game Development 18 2.24%
Exercise / Health / Wellness 16 1.99%
Philosophy / Ethics / Ideology 15 1.86%
Sports / Athletics / Physical Activity 12 1.49%
Strategy / Problem-Solving / Critical Thinking 2 0.24%

Table 8: Breakdown of AlpacaEval test set instructions by instruction complexity. The instructions increase in complexity
from 1 to 9, where 10 is a complex question that requires first reasoning or breaking the problem into sub-problems before it
can be solved.

Complexity Number Percentage

3 238 29.57%
2 206 25.59%
4 122 15.16%
6 79 9.81%
5 68 8.45%
7 41 5.09%
1 34 4.22%
8 14 1.74%
9 3 0.37%

Table 9: Breakdown of AlpacaEval test set instructions by expected response length.

Expected Length Number Percentage

1-3 sentences 361 44.84%
1 paragraph 269 33.42%
1 sentence 143 17.76%
2 paragraphs 31 3.85%
3 or more paragraphs 1 0.13%
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Figure 11: AlpacaEval win rate breakdown for instruction complexities (left) and expected response lengths (right). Self-
Rewarding models give gains across most complexities and all response length ranges.

Table 10: NLP Benchmarks. Self-Rewarding models mostly tend to maintain performance compared to the Llama 2 base
model and the SFT Baseline, despite being fine-tuned on very different instruction-following prompts.

Commonsense Reasoning Math Reasoning World Knowledge

ARC_easy ARC_challenge HellaSwag SIQA PIQA GSM8K
(em)

MMLU
(macro_avg/acc)

OBQA
(acc_comp)

NQ
(em)

Llama 2 80.20 57.40 85.30 50.70 82.80 56.80 68.90 60.20 25.30
SFT Baseline 76.49 55.97 85.17 51.48 82.59 50.72 69.76 57.80 34.35
M1 78.14 57.51 84.99 53.02 82.92 60.27 69.34 57.60 35.48
M2 74.84 54.51 84.27 51.23 81.94 59.29 69.31 57.60 33.07
M3 72.35 53.13 83.29 49.28 80.79 57.70 69.37 58.40 31.86

Table 11: MT-Bench Fine-grained Results. We list our models’ performance on each problem category. Self-reward is
especially effective in improving the model’s ability in writing, role-playing, extraction, and STEM tasks.

Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall

SFT Baseline 8.83 8.15 5.30 3.00 3.50 6.90 9.18 9.95 6.85
M1 9.10 7.65 4.35 3.05 4.10 7.20 8.93 9.85 6.78
M2 9.10 8.00 4.60 3.30 4.25 7.65 9.40 9.80 7.01
M3 9.58 8.73 4.80 3.50 4.20 7.80 9.45 9.95 7.25
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