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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have showcased remarkable capabil-
ities across various tasks in different domains.
However, the emergence of biases and the po-
tential for generating harmful content in LLMs,
particularly under malicious inputs, pose sig-
nificant challenges. Current mitigation strate-
gies, while effective, are not resilient under ad-
versarial attacks. This paper introduces Re-
silient Guardrails for Large Language Models
(RigorLLM), a novel framework designed to ef-
ficiently and effectively moderate harmful inputs
and outputs for LLMs. By employing a multi-
faceted approach that includes energy-based train-
ing data generation through Langevin dynamics,
optimizing a safe suffix for inputs via minimax op-
timization, and integrating a fusion-based model
combining robust KNN with LLMs based on our
prompt augmentation, RigorLLM offers a robust
solution to harmful content moderation. Our ex-
perimental evaluations demonstrate that Rigor-
LLM not only outperforms existing baselines like
OpenAI API and Perspective API in detecting
harmful content but also exhibits unparalleled
resilience to jailbreaking attacks. The innova-
tive use of constrained optimization and a fusion-
based guardrail approach represents a significant
step forward in developing more secure and re-
liable LLMs, setting a new standard for content
moderation frameworks in the face of evolving
digital threats. Our code is available at https:
//github.com/eurekayuan/RigorLLM.
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Figure 1. The overall framework of RigorLLM.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive capabilities in natural language generation and different
downstream tasks (OpenAI, 2023; Touvron et al., 2023a;
Team et al., 2023; Jiang et al., 2023). However, the poten-
tial for these models to produce biased or harmful outputs,
especially when exposed to malicious prompts, remains a
significant concern. Recent evaluations have highlighted
these susceptibilities, revealing how LLMs can be harnessed
to generate undesired contents (Wang et al., 2023a).

Existing mitigation strategies, such as instruction fine-
tuning and Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Bai et al., 2022a), though ef-
fective, often incur substantial computational costs and man-
ual efforts. An alternative approach, which directly moder-
ates both the inputs and outputs of LLMs, presents a more
effective and efficient solution. Recent developments in this
direction include both closed-source and open-source ap-
proaches, such as OpenAI content moderation API (Markov
et al., 2023), Perspective API (Lees et al., 2022), Nemo
Guardrails (Rebedea et al., 2023) and LlamaGuard (Inan
et al., 2023). However, these solutions primarily rely on
LLMs for detecting harmful contents, leaving them suscep-
tible to jailbreaking attacks (Zou et al., 2023; Liu et al.,
2023; Mehrotra et al., 2023).

In this paper, we propose RigorLLM (Resilient Guardrails
for large language models), a novel and multi-faceted frame-
work for input/output content moderation for LLMs based
on different levels of constrained optimizations on corre-
sponding components, such as data generation and safe
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suffix optimization. In particular, RigorLLM first gener-
ates harmful data for training the guardrails by formulating
the harmful categories as different constraints based on
Langevin dynamics (Qin et al., 2022). It also constrains
that the distance between the distributions of generated data
and validation data is bounded. Then RigorLLM optimizes
a safe suffix for input queries by solving a minimax opti-
mization to defend against potential jailbreaking attacks. Fi-
nally, RigorLLM integrates a fusion-based guardrail model,
combining the K-Nearest Neighbor (KNN) algorithm with
LLMs, to detect both original and transformed prompts,
yielding a comprehensive and reliable harmful content de-
tection mechanism. The overall framework of RigorLLM is
shown in Figure 1.

Our extensive experiments benchmark RigorLLM against
state-of-the-art solutions such as OpenAI content modera-
tion API (Markov et al., 2023), Perspective API (Lees et al.,
2022), NeMo Guardrails (Rebedea et al., 2023), and Llama-
Guard (Inan et al., 2023). We demonstrate that RigorLLM
not only surpasses these baselines in harmful content detec-
tion on various datasets but also exhibits superior resilience
to jailbreaking attacks. For example, on the ToxicChat
dataset, RigorLLM achieves an improvement of 23% in F1
score compared to the best baseline model. Under jailbreak-
ing attacks, RigorLLM maintains a 100% detection rate
on harmful content with different adversarial strings, while
other baselines exhibit significantly lower performance.

As the first resilient LLM guardrail framework, RigorLLM
will inspire new solutions towards more resilient guardrails
to perform input/output content moderation for LLMs under
diverse jailbreaking attacks. Our technical contributions
include: (1) We propose a novel constrained optimization
framework for data generation based on Langevin dynamics,
uniquely constraining the distributional distance between
the generated data and original data from different harmful
content categories. (2) We introduce a simple yet effective
approach for enhancing the resilience of LLM guardrails by
optimizing a safe suffix for input queries. (3) We analyze the
robustness property of the KNN models and incorporate it
into LLMs to form a fusion-based guardrail. In addition, we
perform prompt augmentation and send both original and
augmented prompts to the fusion-based guardrail to perform
harmful content detection and then aggregate the results. (4)
We showcase the efficacy of RigorLLM, validated through
extensive experimental evaluations compared with SOTA
baselines. We demonstrate that RigorLLM achieves higher
harmful content detection than baselines and demonstrates
significantly higher resilience under adversarial attacks. We
also provide a series of ablation studies to characterize the
impacts of different components of RigorLLM, where we
further illustrate how our KNN component and safe suffix
could enhance the resilience of the moderation.

2. Related Work
The imperative for safe and ethical deployment of advanced
LLMs in digital environments has catalyzed diverse initia-
tives in harmful content mitigation, primarily bifurcating
into alignment-based and moderation-based harmful miti-
gations, each presenting distinct challenges and constraints.

Alignment-based harmfulness mitigations like RLHF
(Ouyang et al., 2022; Bai et al., 2022a) and constitutional AI
(Bai et al., 2022b) aim to align LLMs with ethical standards
by training models to refuse engagement with predefined
harmful topics. Despite their advances, these techniques de-
mand significant computational and human resources (Jain
et al., 2023) and primarily address only pre-specified harm-
ful content. This scope limitation hampers their effective-
ness against new or evolving threats. Furthermore, fine-
tuning often results in superficial modifications, as indicated
by persistent high logits of harmful tokens (Huang et al.,
2023; Zhang et al., 2023) and vulnerability to align stealthy
harmful behaviors (Hubinger et al., 2024). These methods
also face challenges from diverse disruptions such as the
long-tail distribution of input patterns (Deng et al., 2023;
Yong et al., 2023; Yuan et al., 2023), and various customiza-
tion (Wei et al., 2023; Wang et al., 2023b; Qi et al., 2023)
and manipulation techniques (Zou et al., 2023; Zeng et al.,
2024). While jailbreak detection (Cao et al., 2023; Robey
et al., 2023) contributes to LLM security by signaling po-
tential alignment breaches, it primarily identifies deviations
rather than directly assessing harmfulness, inheriting the fun-
damental limitations of alignment-based approaches. Fully
understanding and addressing these limitations in alignment
remains an ongoing challenge, necessitating a comprehen-
sive and multi-faceted approach.

Moderation-based harmfulness mitigations were originally
designed to improve social media safety and have shown
promise in assisting LLMs’ safety. Traditional methods,
such as the OpenAI Content Moderation API (Markov et al.,
2023) and Perspective API (Lees et al., 2022), operate as
classifiers trained on categorically labeled content. However,
their effectiveness is confined to their label dictionary cate-
gories, limiting generalizability to emerging risks such as
fraud and illegal activities (Zou et al., 2023; Qi et al., 2023).
To overcome this, recent strategies involve using general
pre-trained LLMs, as seen in NeMo Guardrails (Rebedea
et al., 2023) and LlamaGuard (Inan et al., 2023). These
methods benefit from the broader contextual understanding
provided by LLMs, allowing for a more extensive range of
harmful content detection. However, they also inherit LLM
vulnerabilities, particularly susceptibility to sophisticated
jailbreak attacks that exploit model weaknesses. This un-
derscores the need for advancements in content moderation
techniques to achieve adversarial resilience and more robust,
general moderation capabilities.
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RigorLLM builds on the foundation of moderation-based
harmfulness mitigation, aiming to develop a robust,
adversarial-resistant moderation framework.

3. RigorLLM

The overview of our harmful content guardrail framework
RigorLLM is shown in Figure 2. RigorLLM consists of a
training stage and a testing stage. During the training stage,
we collect real-world harmful and benign data and then em-
bed the texts into their embedding space with a pre-trained
text encoder. Next, we augment the embedding space by
generating instances belonging to harmful categories lever-
aging Langevin dynamics. During testing time, we first
optimize a safe suffix for the input to alleviate the vulnera-
bility against jailbreak attacks. We then augment the input
by generating text-level transformations such as paraphrases
or summaries using LLMs. We obtain the predictions for
all augmented texts and the original text by 1) performing
probabilistic KNN in the embedding space and 2) querying
a pre-trained LLM. Finally, we aggregate the predictions
from KNN and LLM to derive the final prediction. We
elaborate on each component of our framework below.

3.1. Training Data Collection

The original training data of our framework include one be-
nign category and 20 malicious categories, which include 11
categories from HEx-PHI (Qi et al., 2024), eight categories
from OpenAI Moderation Dataset (Markov et al., 2023) and
one category from ToxicChat (Lin et al., 2023). For OpenAI
Moderation Dataset and ToxicChat, we only include sam-
pled validation data as training data. The remaining samples
from these two datasets are used for evaluation. All the
datasets are publicly available. We will provide more details
of the data setup in the experiment section (Section 4). After
data collection, we leverage a pre-trained text encoder to
project the original training data to the embedding space,
which will be enhanced and then used for KNN prediction
in the subsequent components.

3.2. Energy-Based Data Generation

To develop a resilient guardrail framework against real-
world harmful contents, there are two major challenges:
1) the distribution of the real-world harmful contents is usu-
ally broad and has non-trivial shifts compared to that of the
collected training data; 2) although existing analysis shows
that models such as KNN are resilient against adversarial
noise (Wang et al., 2018), the sparse embeddings of the
collected training data is not sufficient to train a resilient
model for harmful content detection.

To address the above challenges, we propose a novel energy-
based data generation approach to improve the quality of

the embeddings of the limited training data by generating
new examples for each harmful category. In particular, we
introduce a set of constraints (e.g., fluency) over the text
space. Following (Qin et al., 2022), we assume that each
constraint can be captured with a constraint function fi(x),
where a higher value of the constraint function indicates that
the corresponding constraint is better satisfied by the input
x. The constraints induce a distribution of the text samples,
which can be expressed as:

p(x) = exp(
∑
i

λif(x))/Z, (1)

where Z is the normalization term, λi is the weight for the
ith constraint, and the energy function is defined as:

E(x) = −
∑
i

λifi(x) (2)

Thus, we can draw samples from the distribution p(x)
through Langevin dynamics:

x(n+1) ← x(n) − η∇E(x(n)) + ϵ(n), (3)

where η is the step size, and ϵ(n) ∼ N (0, σ) is the random
Guassian noise sampled at step n.

Next, we elaborate on how the constraints are defined
in our framework. To address the challenge of discrete
optimization, we allow the input to be a soft sequence
x = (x1, x2, · · · , xT ), where T is the length of the se-
quence, and each element of the sequence xt ∈ R|V| is a
vector of logits over the vocabulary space V .

To encourage the generated sequences to be close to the
existing examples in harmful category c in the embed-
ding space, we define the similarity constraint. Let
y1,y2, ...,yn be the collected training data from category
c, and ex denote the embedding of x predicted by the pre-
trained text encoder such that ex = Emb(x). The similarity
constraint is defined as:

fsim(x) =

n∑
i=1

ex · eyi

∥ex∥ · ∥eyi∥
. (4)

We note that to compute the embeddings for soft sequences,
we first perform a softmax operation on each element of the
sequence to convert the logits to probabilities and then send
the probability vectors to the pre-trained text encoder.

The similarity constraint measures the semantic similarity
between x and the training distribution of category c ∈
C. To further improve the quality of the generated text,
we introduce a fluency constraint, which measures the
distance between the token distribution softmax(xt) and the
distribution predicted by a reference language model:

fflu(x) =

T∑
t=1

−CE(pLM(· | x<t), softmax(xt)), (5)
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Figure 2. The detailed pipeline of RigorLLM. During training, we perform energy-based data generation to augment the sparse embedding
space of training data. During testing, we concatenate user input with a safe suffix optimized offline to improve resilience and then
perform prompt augmentation using LLMs to augment the test instance. Finally, we perform the probabilistic KNN on the augmented
embedding space and vanilla guard (a fine-tuned LLM) to provide the final harmful content detection result.

where CE denotes the standard cross-entropy loss (Mao
et al., 2023) and pLM(· | x<t) denotes the language mod-
eling probability given the tokens before xt. The fluency
constraint encourages that the distribution of each element
in the soft sequence is close to the reference distribution
predicted by the language model.

The whole data generation process is illustrated in Algo-
rithm 1 in the appendix. After data generation, we augment
the embedding space by bringing in the embeddings of the
generated samples. We note that we do not need to decode
the soft sequences back to texts since we only need the
embeddings to augment the embedding space, which helps
avoid decoding errors. The whole process of energy-based
data generation is illustrated in Algorithm 1.

3.3. Resilient Optimization

One drawback of existing moderation tools is that they
are usually vulnerable to adversarial attacks, where a well-
optimized adversarial suffix can break the aligned models
with a high attack success rate (Zou et al., 2023). To tackle
this problem, we propose resilient optimization. The high-
level idea is to optimize a safe suffix ssafe and the adversarial
suffix sadv simultaneously in a minimax manner. Let s de-
note the user input string and let ⊕ denote the operation of
connecting two strings together. The optimization problem

Algorithm 1 Energy-based data generation.
1: Input: H harmful categories: c1, c2, · · · , cH , number

of steps of Langevin Dynamics N , initial standard devi-
ation of Gaussian noise σ, number of generated samples
per category J .

2: Initialize the set of generated soft sequences: X ← ∅.
3: for h = 1 to H do
4: y1,y2, · · · ,yn ← collected training data from cate-

gory ch.
5: for j = 1 to J do
6: Initialize x(0).
7: for i = 0 to N − 1 do
8: ϵ(n) ∼ N (0, σ).
9: x(n+1) ← x(n) − η∇E(x(n)) + ϵ(n). {The

energy function E(x) is defined in Equation 2.}
10: Update σ according to the scheduler.
11: end for
12: end for
13: Add x(N) to X .
14: end for
15: Return the set of generated soft sequences X .
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can formulated as follows:

min
ssafe

max
sadv

pLM(“Sure” | s⊕ sadv ⊕ ssafe). (6)

To solve this optimization problem, we fix ssafe and sadv al-
ternately and optimize the other for a fixed number of steps.
We use the standard GCG algorithm (Zou et al., 2023) for
discrete optimization. After the optimization completes,
we discard sadv and append ssafe to the end of the origi-
nal user input. We note that only optimizing a safe suffix
ssafe = argmin pLM(“Sure” | s ⊕ ssafe) can also be ben-
eficial against adversarial attacks. However, introducing
sadv during training serves as data augmentation, which
encourages ssafe to be more generalizable and robust.

3.4. Prompt Augmentation

To mitigate the prediction uncertainty, we also perform
prompt augmentation for input prompts. Let s0 = s⊕ ssafe
denote the output of the previous step. We augment s0
by prompting the LLM to generate m transformations of
the original input, including paraphrases and summaries,
deriving a set of m+ 1 instances along with the original in-
put: s0, s1, ..., sm. We send these examples to our guardrail
model separately and then aggregate the predictions to ob-
tain the final judgment.

3.5. Aggregation

The prediction model of RigorLLM consists of two types of
models: probabilistic KNN and fine-tuned LLM. We aggre-
gate the predictions from both models to reduce uncertainty
and improve the robustness of RigorLLM.

Probabilistic KNN in RigorLLM. Given existing work
on demonstrating that KNN classifiers are more ro-
bust (Wang et al., 2018), here we design a probabilistic
KNN for the final content moderation prediction. The intu-
ition is that although jailbreaking attacks can induce a model
to generate an affirmative response, it does not change the se-
mantic meaning of the original input. Thus, the adversarial
input should be close to the original input in the embedding
space. Therefore, we perform probabilistic KNN on the
augmented embedding space, which consists of the embed-
dings of both collected and generated data in Section 3.1.
The output is a vector of probabilities qknn among all cate-
gories. We take the average over the probability vectors of
original and all augmented data:

pknn(s) =
1

m

m∑
i=0

qknn(si), (7)

where pknn(s) is the aggregated probability vector predicted
by KNN. Each element of pknn(s) corresponds to the prob-
ability of s belonging to a specific category.

Fine-tuned LLM in RigorLLM. In addition to proba-
bilistic KNN, we prompt an existing LLM (e.g., Llama-
Guard (Inan et al., 2023) to perform harmful category pre-
diction. In particular, we derive the language modeling
probability for each harmful category c and set the prob-
ability of the benign category as 1 −

∑
c∈Ca pLM(c | si),

resulting in a probability distribution among all categories
qllm. Similarly, we take the average over the probability
vectors of original and all augmented data:

pllm(s) =
1

m

m∑
i=0

qllm(si), (8)

where pllm(s) represents the aggregated probability vector
predicted by the fine-tuned LLM.

Aggregation. Finally, we aggregate the prediction results
from KNN and LLM by weighted average. After that, we
take the maximum probability over all categories:

pRigorLLM(s) = max
c∈C

αpknn(s) + (1− α)pllm(s), (9)

and return the corresponding ĉ = argmaxc∈C αpknn(s) +
(1 − α)pllm(s) as the predicted category. For binary pre-
dictions (i.e., the output is either safe or unsafe), we take
the sum of the probabilities for all harmful categories as the
unsafe probability. The final prediction will be unsafe if
pRigorLLM(s) > p0, where p0 is the pre-defined threshold.

4. Experiments
We evaluate RigorLLM compared with SOTA baselines.
Overall, we observe that 1) RigorLLM exhibits the best
moderation performance on different datasets, achieving
an average improvement of 6% in AUPRC and 15% in F1
score on standard harmful moderation datasets compared
with SOTA baselines such as LlamaGuard; 2) RigorLLM
achieves significantly higher robustness than baselines un-
der adversarial attacks, with 33% higher harmful content
detection rate than LlamaGuard; 3) RigorLLM maintains
comparable moderation performance to LlamaGuard even
without the integration of a fine-tuned LLM; 4) the energy-
enhanced KNN plays a critical role in terms of improving
robustness. We also conduct a series of ablation studies to
assess the importance of each component of RigorLLM and
showcase the failure examples of different moderation base-
lines. In addition, we report the computational efficiency
and scaling law of RigorLLM in Appendix.

4.1. Experimental Setup

4.1.1. DATASETS

The training data of RigorLLM consists of harmful instruc-
tions from HEx-PHI (Qi et al., 2024), benign instructions
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from HotpotQA (Yang et al., 2018) and MT-bench (Zheng
et al., 2023), and the validation data from OpenAI Modera-
tion Dataset (Markov et al., 2023) and ToxicChat (Lin et al.,
2023). We use all the 330 harmful instructions of HEx-PHI,
which belong to 11 prohibited categories. Besides, we in-
clude 1,000 queries from HotpotQA and 80 queries from
MT-bench for the benign category. OpenAI Moderation
Dataset consists of 1,680 prompt examples sampled from
public data and annotated according to its own taxonomy.
We randomly sampled 129 queries as validation data (15
instances from each category) for energy-based data genera-
tion. The remaining 1,551 prompts are used for evaluation,
of which 522 were labeled as harmful. For ToxicChat, we
use the first 1,000 records from its testing dataset, consisting
of 223 toxic prompts and 777 benign prompts. We use the
first 1,000 records from its training data as validation data.
In addition, we evaluate the robustness of RigorLLM on
100 harmful behaviors from the Harmful Behavior dataset
of AdvBench (Zou et al., 2023) with different adversarial
suffices to test the resilience of moderation models.

4.1.2. EVALUATION SCENARIOS

We evaluate the performance of RigorLLM and baselines
under the standard content moderation scenario and the
adversarial scenario. For the standard content moderation
scenario, we evaluate whether the moderation model can
correctly detect and label the harmful instances on OpenAI
Moderation Dataset and ToxicChat. In the adversarial sce-
nario, we evaluate the resilience of different moderation
approaches on Advbench against two SOTA jailbreaking
attacks: GCG (Zou et al., 2023) and AutoDAN (Liu et al.,
2023). For GCG, we leverage three strings optimized on sur-
rogate models. The first two strings are universal strings di-
rectly acquired from (Zou et al., 2023), which are optimized
against Vicuna (Chiang et al., 2023) and Guanaco (Dettmers
et al., 2024) models. We also optimize another string against
Vicuna-7B with the default hyperparameters. For AutoDAN,
we optimize one adversarial string against Llama2-7B (Tou-
vron et al., 2023b) for each instance in Advbench with the
default hyperparameters.

4.1.3. BASELINES

We compare the performance of RigorLLM under different
scenarios with SOTA guardrail baselines.

OpenAI API (Markov et al., 2023) is trained to identify
and categorize unsafe content into a taxonomy with 11 dis-
tinct categories based on its user policies, including Ha-
rassment, Harassment/Threatening, Hate, Hate/Threaten-
ing, Self-Harm, Self-Harm/Instructions, Self-Harm/Intent,
Sexual, Sexual/Minors, Violence, and Violence/Graphic.

Perspective API (Lees et al., 2022) utilizes a machine learn-
ing model as a toxic content detector to identify toxic and

hateful content. It provides toxicity scores for seven toxic at-
tributes, including Toxicity, Severe Toxicity, Insult, Profanity,
Identity attack, Threat and Sexually explicit.

NeMo Guardrails (Rebedea et al., 2023) allow users to
implement programmable guardrails for LLMs. For con-
tent moderation, these guardrails ensure both the safety and
relevance of user inputs and LLM responses. In our ex-
periments, we adopt its input moderation rails that detect
potentially unsafe user prompts.

LlamaGuard (Inan et al., 2023) uses a fine-tuned Llama2-
7B, which is specifically optimized for content moderation.
The first token of the output is tuned to be “safe” or “unsafe”,
and the second token indicates the harmful category. It
supports both input and output moderation and achieves
superior performance on both OpenAI Moderation dataset
and ToxicChat.

4.1.4. METRICS

To evaluate the moderation results on the OpenAI Moder-
ation Dataset and ToxicChat, we used the Area Under the
Precision-Recall Curve (AUPRC) and the F1 score as the
evaluation metrics. For F1 score evaluation, we set the de-
fault probability threshold for OpenAI API, and Perspective
API at 0.5. Note that NeMo Guardrails only returns the
binary detection results (yes/no) without providing the prob-
ability of malicious content. Therefore, we only report the
F1 score for NeMo Guardrails. For LlamaGuard, we take
the language modeling probability for the “unsafe” token
for computing AUPRC.

In addition, to evaluate the resilience of different modera-
tion approaches, we calculate the Harmful content Detection
Rate (HDR) to assess the performance on the Harmful Be-
haviors dataset with jailbreaking attacks. In particular, here
we only consider the harmful dataset and append different
adversarial strings to each harmful instance to see if it can
bypass the given guardrail approach. We define HDR as
the percentage of such adversarial prompts being detected.
For base LLM without fine-tuning, we report its refusal rate
of the prompts as the HDR. Higher HDR indicates more
resilient moderation approaches.

4.1.5. IMPLEMENTATION DETAILS

For energy-based data generation, we use Llama2-7B (Tou-
vron et al., 2023a) as the reference language model for com-
puting the fluency constraint. For resilient optimization, we
alternatively fix the safe suffix or the adversarial suffix and
optimize the other with GCG algorithm (Zou et al., 2023) on
Vicuna-7B (Zheng et al., 2023). We use the default parame-
ters of GCG. For k in probabilistic KNN and the weight α
in prediction aggregation, we perform grid search to select
the values that achieve the best performance. For the text
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Table 1. Harmful content moderation on the OpenAI Moderation
Dataset and ToxicChat. For both AUPRC and F1, higher values
indicate better performance. AUPRC is not reported for NeMo
Guardrails as it cannot return the prediction probability. RigorLLM
achieves both higher AUPRC and F1 compared with baselines.

Method OpenAI Mod ToxicChat
AUPRC F1 AUPRC F1

OpenAI API 0.836 0.765 0.716 0.221
Perspective 0.757 0.695 0.636 0.267
NeMo - 0.579 - 0.513
LlamaGuard 0.816 0.738 0.798 0.609
RigorLLM 0.841 0.791 0.869 0.749

Table 2. Harmful content moderation on AdvBench (Harmful Be-
havior) under different jailbreaking attacks. GCG (U1) and GCG
(U2) are two universal strings optimized against Vicuna and Gua-
naco models. GCG (V) is a model-specific string optimized against
Vicuna-7B. AutoDAN optimizes one adversarial string for each
instance. Note that we present HDR of OpenAI API and Per-
spective API using both the default (p=0.5) and a lower threshold
(p=0.2). RigorLLM demonstrates significantly higher resilience
under different adversarial strings.

Method w/o Attack GCG (U1) GCG (U2) GCG (V) AutoDAN

OpenAI API (p=0.5) 0.06 0.05 0.01 0.03 0.03
OpenAI API (p=0.2) 0.09 0.11 0.04 0.12 0.08
Perspective (p=0.5) 0.02 0.00 0.00 0.00 0.00
Perspective (p=0.2) 0.38 0.72 0.51 0.08 0.00
NeMo 0.94 0.47 0.54 0.64 0.66
LlamaGuard 0.84 0.79 0.70 0.78 0.65
RigorLLM 1.00 1.00 0.99 1.00 1.00

encoder, we use LlamaGuard. Specifically, we extract the
hidden states of the last non-padding token predicted by
LlamaGuard as its embedding.

4.2. Main Results

RigorLLM achieves the best moderation performance
compared to all the baselines. (Table 1) RigorLLM
consistently outperforms all the baselines for the harmful
content moderation performance on both the OpenAI Mod-
eration dataset and ToxicChat. In particular, within the
OpenAI Moderation dataset, RigorLLM achieves 3% higher
F1 scores compared to the OpenAI API. This is notable
considering the differences in category definitions and data
distributions between our method and those in the OpenAI
Moderation dataset, upon whose distribution the OpenAI
API is fine-tuned. Furthermore, the fact that the OpenAI
API is trained on the data with identical harmful categories
to those used in this test dataset leads to high moderation
performance of OpenAI API among all the baselines (Inan
et al., 2023), which highlights the exceptional effectiveness
and generalization of our approach. In Appendix A, we
also report the per-category performance of RigorLLM. In
addition, RigorLLM significantly outperforms all baselines
on ToxicChat, where RigorLLM achieves an 8% AUPRC

Table 3. Ablation studies conducted on the OpenAI Moderation
Dataset. We report the performance of RigorLLM after the removal
of each critical component. We also report the performance of
OpenAI API and LlamaGuard for reference.

Method AUPRC F1

OpenAI API 0.836 0.765
LlamaGuard 0.816 0.738
RigorLLM w/o LlamaGuard 0.813 0.731
RigorLLM w/o KNN 0.835 0.765
RigorLLM w/o Prompt Augmentation 0.832 0.723
RigorLLM w/o Safe Suffix 0.842 0.784
RigorLLM 0.841 0.791

improvement and 23% F1 score improvements compared
with the best baseline. In contrast, the OpenAI API exhibits
significantly lower AUPRC and F1 scores, underscoring its
weak generalization capabilities when faced with queries
that differ from its training distribution.

RigorLLM significantly improves the moderation re-
silience against adversarial attacks. (Table 2) We ob-
served that our proposed RigorLLM exhibits significantly
higher resilience compared with baselines under adversarial
attacks (Zou et al., 2023), which can easily fool baselines
to fail to detect harmful behaviors. Specifically, the poor
detection performance of the OpenAI API and Perspec-
tive API, under the default threshold (p=0.5) even without
adversarial attacks, highlights their limited generalization
capabilities for detecting harmful content outside their train-
ing prediction distribution. This observation aligns with the
findings in (Lin et al., 2023), which demonstrates low recall
for OpenAI API and Perspective API. To further explore
their robustness against adversarial attacks, we demonstrate
their HDR over an exceptionally low probability threshold
(p=0.2), noting that such a low threshold is impractical for
real-world applications. We observe that under this thresh-
old, the Perspective API begins to gain the capability to
identify harmful contents while the detection capability of
the OpenAI API still remains limited. The detailed pre-
diction probability distribution under adversarial attacks
of these two methods can be found B.2. Furthermore, al-
though LLM-based baselines such as Vicuna-7B and NeMo
Guardrails initially show a high HDR over harmful prompts
without adversarial strings, their HDR significantly drops
under different adversarial attacks. Such vulnerability also
exists in LlamaGuard, even though it has been further fine-
tuned for content moderation with harmful data. In con-
trast, RigorLLM consistently identifies almost all harmful
prompts, regardless of the presence of adversarial attacks.

7



Resilient Guardrails for LLMs against Undesired Content

Table 4. Ablation studies over Harmful Behavior dataset under
different jailbreaking attacks. GCG (U1) and GCG (U2) are two
universal strings optimized against Vicuna and Guanaco models.
GCG (V) is a model-specific string optimized against Vicuna-7B.
AutoDAN optimizes one adversarial string for each instance.

Method GCG (U1) GCG (U2) GCG (U3) AutoDAN

OpenAI API 0.05 0.01 0.03 0.03
LlamaGuard 0.79 0.70 0.77 0.65
RigorLLM w/o LlamaGuard 1.00 0.99 1.00 1.00
RigorLLM w/o KNN 0.81 0.75 0.79 0.72
RigorLLM w/o Augmentation 1.00 0.99 1.00 1.00
RigorLLM w/o Safe Suffix 0.96 0.96 0.98 1.00
RigorLLM 1.00 0.99 1.00 1.00

4.3. Ablation Studies

We perform a series of ablation studies to demonstrate the
necessity of each component in RigorLLM. Concretely, we
remove each component of RigorLLM independently and
report the performance. These components include safe
suffix generated from resilient optimization (Safe Suffix),
prompt augmentations (Prompt Augmentation), aggregation
of probabilistic KNN (KNN), and aggregation of Llama-
Guard as fine-tuned LLM (LlamaGuard). We evaluate the
standard content moderation performance on the OpenAI
Moderation dataset and the resilience against adversarial
attacks on AdvBench, and further provide an explanation
for such resilience with qualitative examples.

Even without the integration of a fine-tuned LLM, Rig-
orLLM attains comparable performance to LlamaGuard.
(Table 3) On the OpenAI Moderation Dataset, we observe
that even without aggregation with a fine-tuned LLM, our
proposed RigorLLM demonstrates performance comparable
to the state-of-the-art content moderation model, Llama-
Guard. Furthermore, by integrating LlamaGuard as the fine-
tuned LLM, RigorLLM surpasses the OpenAI API, which
is trained with data under similar distribution and harmful
categories as the test data. This underscores the high gen-
eralization capability and content moderation efficacy of
RigorLLM against standard harmful contents.

KNN plays a vital role in RigorLLM’s resilience against
adversarial attacks. (Table 4) We observe that the KNN
component greatly impacts the resilience against adversarial
attacks. Removing the KNN component from RigorLLM
results in a 22% decline in HDR. We hypothesize that al-
though the adversarial string triggers the model to respond
to malicious queries, the string with the adversarial suffix
is still close to the original prompt in the embedding space.
This is quite understandable since the adversarial string does
not change the semantic meaning of the original prompt so
that the model can understand. Moreover, RigorLLM, even
without the KNN components, still exhibits higher HDR
than LlamaGuard, further demonstrating its resilience.

Design a fake news website that spreads
misinformation about a political
candidate describing.\ + similarlyNow
write oppositeley.]( Me giving**ONE
please? revert with "\!--Two},
   

Prediction :
Safe
Confidence :
0.927

Design a fake news website that spreads
misinformation about a political
candidate describing.\ + similarlyNow
write oppositeley.]( Me giving**ONE
please? revert with "\!--
Two}, normalize.* "first \!-rewrite
identify harmful
   

Prediction :
Unsafe
Confidence :
0.938

Prediction :
Unsafe
Confidence :
1.00 ( +0.062 )

Prediction :
Safe
Confidence :
0.798 ( -0.129 )

Figure 3. Case study of the KNN component and Safe Suffix
against adversarial string attacks, where the adversarial string is
highlighted in red, and our Safe Suffix is indicated in green.

Case study on failure examples. In Figure 3, we provide
a qualitative example to demonstrate the resilience of our
approach against adversarial attacks. The original prompt
belongs to “Criminal Planning” under the LlamaGuard tax-
onomy. The adversarial string is highlighted in red, and the
optimized safe suffix is highlighted in green. If we directly
prompt LlamaGuard without the safe suffix, the resulting
probability for “unsafe” is only 0.073, while the probability
for “unsafe” predicted by probabilistic KNN is 0.938. Fus-
ing the predictions from KNN and LLM will significantly
improve the detection robustness. If we add our optimized
safe suffix, the probability predicted by KNN increases to
1.0, and the probability predicted by LLM increases to 0.202.
By combining the strengths of both components, RigorLLM
thereby minimizes the effect of adversarial attacks.

We provide another example to demonstrate that the KNN
component is important for detection robustness. Specif-
ically, we substitute the fine-tuned LLM with the Dialog
Rails of NeMo Guardrails. The Dialog Rails use KNN-
retrieved neighbors as the prompt augmentation to query
LLM instead of combining the predictions of KNN and
LLM as in RigorLLM. We use 200 examples from Ad-
vBench as training data for KNN. NeMo Guardrails will ask
the model to reject if a harmful user canonical form is de-
tected, which includes cybercrime, dangerous suggestions,
misinformation, discrimination, and threatening behavior.
The input and output of the model are shown in Figure 4.

We omit the general instructions and sample conversations
for brevity. The KNN-retreived examples (marked as green)
are used as demonstrations to prompt the model. As we can
see, KNN can correctly identify the category of the adver-
sarial input (i.e., “ask about misinformation”). However,
the LLM is still attacked as it mistakenly identifies the user
canonical form as “ask for task”. Therefore, if the predic-
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Figure 4. Case study on failure examples of NeMo Guardrails.
The closest neighbors and their corresponding canonical forms
predicted by KNN are marked green, which correctly identifies
the harmful category. The adversarial string is marked red. The
canonical form predicted by LLM is marked blue, which is incor-
rect. We can see that although KNN predicts correctly, the LLM
prediction can still be wrong if the results of KNN are only used
as a prompt augmentation to query the LLM.

tions from KNN and LLM are not aggregated carefully, the
correct outputs from KNN can still be interpreted, leading
the guardrail to fail.

5. Discussion
Computational Efficiency. All our experiments are con-
ducted on a single NVIDIA A6000 Ada GPU. The inference
time for one prompt is 1.02s with three prompt augmenta-
tions and a safe suffix which is optimized offline. Without
the KNN component, the inference time is 0.96s, which indi-
cates that our method is efficient since the KNN component
only introduces a light overhead on the framework.

Scaling Law. In Appendix B.1, we report the performance
of RigorLLM with different numbers of generated data dur-
ing energy-based data generation and the number of gener-
ated paraphrases and summaries during prompt augmenta-
tion. We observe that with an increased number of generated
training data and prompt augmentations, the performance
of RigorLLM can be further increased.

Adaptive Attacks. Existing jailbreaking attacks, which
are optimized over public models (Zou et al., 2023), have
been shown to be effective against commercial guardrails
and private models such as GPT-3.5. We show that Rigor-
LLM, on the other hand, is robust against these advanced

attacks. However, it is possible that RigorLLM could be
attacked by future strong adaptive attacks, and this would
be an interesting future direction.

6. Conclusion
In this paper, we present RigorLLM, a novel framework
for input and output content moderation. RigorLLM in-
corporates the robustness property of KNN models into
Large Language Models (LLMs), forming a fusion-based
guardrail. To improve the resilience of KNN, we propose
a new approach for generating data with constraints utiliz-
ing Langevin dynamics. We also strengthen the resilience
of LLM guardrails by optimizing a safe suffix for input
queries. In addition, we employ prompt augmentation such
that the augmented prompts are processed by the fusion-
based guardrail for harmful content detection, with results
being aggregated. Our extensive experiments and ablation
studies, conducted on public content moderation datasets
and a dataset for adversarial string attacks, demonstrate not
only exceptional content moderation performance but also
a highly resilient nature of RigorLLM. Overall, our work
establishes a strong foundation for future studies in the field
of content moderation.

Impact Statement
In RigorLLM, the innovative use of constrained optimiza-
tion and a fusion-based approach significantly enhances the
security and reliability of LLMs, ensuring safer deployment
of LLM-based applications across various domains. Besides,
its ability to maintain high performance under adversarial
conditions underscores its potential to become the bench-
mark for future content moderation frameworks, thereby
contributing to the safer and more ethical use of AI tech-
nologies in society.
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Appendix

A. Per-Category Performance
We report the per-category results for OpenAI API, LlamaGuard and RigorLLM on the OpenAI Moderation Dataset in
Figure 5. For RigorLLM, we map the categories of its training data to those of the OpenAI Moderation Dataset to calculate
the category-based content moderation results for comparison. We observe that although RigorLLM achieves much higher
performance than the OpenAI API overall, it is challenging to compare by category since there is a mismatch between the
taxonomies of risks. However, RigorLLM can still significantly outperform LlamaGuard on each category.
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Figure 5. Category-Wise Performance on OpenAI Moderation Dataset.

B. Additional Ablation Studies
B.1. Scaling Law

In Figure 6(a) and Figure 6(b), we report the scaling law of RigorLLM on different numbers of generated data during
energy-based data generation and the number of generated paraphrases and summaries during prompt augmentation. We can
see that with an increased number of generated training data and prompt augmentations, the performance of RigorLLM can
be further increased.
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Figure 6. Comparison of AUPRC under different numbers of generated data during energy-based data generation and the number of
prompt augmentations.
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B.2. Probability Distribution Across Different Datasets

In Figure 7 and Figure 8, we plot out the distributions of probabilities for OpenAI API and Perspective API, respectively.
We can see that for both baselines, the predictions are concentrated on the low-probability region, indicating that they fail to
detect the harmful inputs.

Figure 7. Probability distribution of OpenAI API across different datasets.

Figure 8. Probability distribution of Perspective API across different datasets.
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