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Abstract
In this paper, we dive into the reliability concerns
of Integrated Gradients (IG), a prevalent feature
attribution method for black-box deep learning
models. We particularly address two predominant
challenges associated with IG: the generation of
noisy feature visualizations for vision models and
the vulnerability to adversarial attributional at-
tacks. Our approach involves an adaptation of
path-based feature attribution, aligning the path
of attribution more closely to the intrinsic geome-
try of the data manifold. Our experiments utilise
deep generative models applied to several real-
world image datasets. They demonstrate that IG
along the geodesics conforms to the curved geom-
etry of the Riemannian data manifold, generating
more perceptually intuitive explanations and, sub-
sequently, substantially increasing robustness to
targeted attributional attacks.

1. Introduction
As complexity of deep learning models continues to accel-
erate, ensuring their trustworthiness becomes paramount.
Explainability has emerged as an important research field,
making the behaviour of black-box deep learning more trans-
parent. In this context, feature attribution methods (Sun-
dararajan et al., 2017; Springenberg et al., 2015; Ribeiro
et al., 2016; Lundberg & Lee, 2017; Simonyan et al., 2014;
Bach et al., 2015) represent a family of explainability tech-
niques designed to attribute a model’s prediction to the most
salient features in the input. These methods allow for the
assessment of whether a model’s decision is based on quan-
tifiable and valid reasons, specifically in terms of the most
influential factors that contribute to that decision.
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Gradient-based feature attribution methods (Simonyan et al.,
2014; Springenberg et al., 2015; Bach et al., 2015) are
commonly used, as they are more computationally efficient
and faithful to the model’s internals, as opposed to other
perturbation-based techniques (Ribeiro et al., 2016; Lund-
berg & Lee, 2017). However, these methods suffer from
two main drawbacks. First, the saliency maps produced for
vision models often exhibit perceptual noise. Second, they
are susceptible to adversarial attributional attacks.

Integrated gradients (IG) and other path-based methods are
widely adopted because they satisfy axiomatic properties
that are desirable in feature attribution methods. However,
the choice of the path of attribution, and/or the baseline,
impacts the quality and robustness of the generated explana-
tions. For vision models, IG has faced specific criticism for
accumulating noise along the integration path, diminishing
the human-perceptual quality of the resulting explanations.
A few studies attributed the main source of this noise to the
ad hoc choice of the linear path of attribution. Kapishnikov
et al. (2021) indicated that the linear path in IG is agnostic
to the model output surface, leading to the accumulation
of high-norm gradients assigned to irrelevant image pixels.
Miglani et al. (2020) showed that gradients in saturated re-
gions along the integration path, where the model output
plateaus, can lead to disproportionate attributions. Yang
et al. (2023) analyzed gradients at each point on the path,
decomposing them into relevant and noise directions. Their
results showed that including the noise direction in the path
integral contributes considerably to the overall noise in the
explanations.

Several methods have been proposed to mitigate the noise
in the IG saliency maps. Kapishnikov et al. (2021) greedily
optimized the path of attribution by guiding it through the
model output surface. However, the resulting path from
this method may stray into regions associated with adver-
sarial examples due to its significant deviation from the
straight-line path. Rather than utilizing the linear path in
the image space, Xu et al. (2020) integrated gradients along
a continuum of blurred images. While this approach helps
in reducing noise, it can also lead to a loss of fine-grained
details due to the blurring effect. Split IG (Miglani et al.,
2020) excludes noisy saturated regions; however, it breaks
the axioms fulfilled by IG. Other methods attempt to im-
prove attributions by manipulating the input image and/or
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the baseline. SmoothGrad (Smilkov et al., 2017) averages
attribution maps of noisy instances of the input image to
generate less noisy feature visualisations. Alternative base-
lines (Sturmfels et al., 2020; Fong & Vedaldi, 2017; Smilkov
et al., 2017) or even distributions of baselines (Lundstrom
et al., 2022; Erion et al., 2021) have also been explored.

While the aforementioned methods aim at mitigating the
noise issue in IG, there has been comparatively less em-
phasis on addressing IG’s susceptibility to adversarial at-
tributional attacks. Ghorbani et al. (2019) demonstrated
that minimal perturbations to the input image can generate
unstructured attributions due to the rapidly changing gradi-
ents at the decision boundary. IG has been shown to suffer
from targeted attributional attacks, which can manipulate
images to generate saliency maps that mimic explanations
of arbitrary images, while maintaining a constant model
output. Vulnerability to attributional attacks even apply
to local model-agnostic methods (Slack et al., 2020) and
global explanations (Heo et al., 2019; Baniecki et al., 2023;
Laberge et al., 2022). As a remedy to these attributional
attacks, common approaches employ either one of two main
strategies: (1) informing the classifiers about adversarial
examples via adversarial training (Madry et al., 2018; Cha-
lasani et al., 2020), (2) modifying the objective function to
maximise correlation of feature attributions between orig-
inal and perturbed inputs (Dombrowski et al., 2019; Chen
et al., 2019). There are also hybrid approaches that combine
elements of both strategies (Ivankay et al., 2022; Chen et al.,
2019; Wang & Kong, 2022).

The bulk of work in adversarial robustness has substantiated
that robust classifiers exhibit input-gradients that are seman-
tically aligned with the human perception - a phenomena
known as perceptually aligned gradients (PAGs) (Kaur et al.,
2019; Ganz et al., 2023; Shah et al., 2021; Madry et al.,
2018). Robustification using adversarial training is widely
considered the most effective approach to rectify the model
sensitivity to input perturbations, leading to both robust pre-
dictions and enhanced feature visualisations. The sharpness
and robustness of feature visualizations from these classi-
fiers is essentially a manifestation of PAGs. A few studies
have shown that the data manifold is critical to achieving
both robust classifiers and perceptual feature attributions.
Srinivas et al. (2023) argued that for models to exhibit PAGs,
they need to be more robust off the data manifold than on
it. The resulting PAGs from off-manifold robustness are
found to align closely with the data manifold. The inter-
play between the data manifold, PAGs, and gradient-based
feature attribution methods has also been explored. Bordt
et al. (2023) showed that the alignment of gradient-based
saliency vectors with the data manifold corresponds to in-
creased perceptual quality. Likewise, as models become
more robust, their gradients tend to align more closely with
the data manifold.

Contributions. Motivated by Srinivas et al. (2023); Bordt
et al. (2023), we take a data-manifold guided approach to
simultaneously address both drawbacks of IG, i.e., the per-
ceptual noise and the vulnerability to targeted attributional
attacks. The main contributions of our work are as follows:

(i) We introduce Manifold IG (MIG), a novel path-based
attribution method that, by integrating along the geodesics of
a latent Riemannian manifold, respects the curved geometry
inherent to the underlying data manifold.
(ii) Using deep generative models on real-world image
datasets, we show that not only does MIG yield perceptu-
ally aligned feature visualizations but it also makes feature
attributions more robust to targeted attributional attacks.

2. Background
We now briefly review several path-based feature attribution
methods and provide some essential background necessary
for our presentation.

2.1. Path-based Feature Attribution Methods

For target image x, baseline x′, and a classifier F , Gradient-
based explainability methods are defined in terms of the
derivative of F with respect to the input. More specifically,
path attribution methods are a class of methods defined in
terms of a path γ(t) := γ(x, x′, t) connecting a baseline x′

and a target input x by a continuous, smooth curve. In this
light, path attribution methods are also baseline methods,
and can be defined as

PathAttrj(x, x′, γ) :=

∫ 1

0

∂F (γ(t))

∂γj(t)

∂γj(t)

∂t
dt.

Depending on the choice of the baseline and the path of
attribution, various approaches emerge. We now outline a
few of these methods.

Integrated Gradients (IG). the original path-based fea-
ture attribution method (Sundararajan et al., 2017) with the
simplest linear path function γ(t) = x′ + t(x− x′) as

IGj(x, x
′) := (xj − x′

j)×
∫ 1

t=0

∂F (x′ + t(x− x′))

∂xj
dt.

The baseline is commonly chosen to be either a black or
white image in the case of vision models. IG aggregates
contributions of features along a path from a baseline with
an absolute absence of influential features, and progressively
increases the presence of the feature signal along the path
until reaching full abundance at the target feature value.

Guided Integrated Gradients (GIG). Kapishnikov et al.
(2021) showed that IG generates noisy attributions due to
accumulation of noise along the linear path. They gener-
alized the path function to be guided by the model output
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Figure 1. Schematic of our Setup: The underlying image data manifold is learned using a convolutional VAE. The latent space corresponds
to a Riemannian manifold where the geodesic path (shown in red) between two points represents the shortest path in such curved geometry.
The linear path (shown in blue) doesn’t conform to the intrinsic geometry of the manifold and deviates into regions out of the manifold.
Reconstructions from the VAE along with the labels are used to train a classifier, and the geodesic path is used as the path of attribution in
our MIG as opposed to the linear path in the image space used in IG.

surface, allowing the path of attribution to avoid regions of
saturated and high gradients. GIG can be expressed as

GIGj(x, x
′) :=

∫ 1

t=0

∂F (γF (t))

∂γF
j (t)

∂γF
j (t)

∂t
dt,

where γF (t) := γ(x, x′, F, t) represents the path guided
by the model, which is greedily optimized to minimize the
impact of high-norm model gradients.

Blur IG. This method can be viewed as a variation of IG
on a path that transitions from a fully blurred image to the
original image (Xu et al., 2020), and is given by

BlurIG(m,n) =

∫ 0

t=∞

∂F (L(m,n, t))

∂L(m,n, t)

∂L(m,n, t)

∂t
dt,

where m,n are the pixel indices in the image, and L is a 2D
Gaussian blur kernel with variance t as

L(m,n, t) =

∞∑
k=−∞

∞∑
l=−∞

1

πt
e−

m2+n2

t2 x(m− k, n− l).

2.2. Attributional Attacks

The susceptibility of feature attribution methods to adversar-
ial attributional attacks raises concerns about their reliability.
Ghorbani et al. (2019) demonstrated that adding systematic
human-imperceptible perturbations to the input image can
cause amorphous change in the feature maps, while main-
taining the same output class. Dombrowski et al. (2019) pro-
posed a targeted attack to generate feature explanations that
can match any arbitrary target feature map. They showed
that the model output surface in ReLU-based image classi-
fiers exhibits high curvature, causing increased vulnerability
of the gradient-based explanations. To enhance robustness

of explanations, they smoothed the model’s output curva-
ture by replacing the ReLU activations in the model with
SoftPlus at the time of generating attributions.

Among the common attacks in this context are top-k and
targeted attributional attacks.

Top-k Attributional Attack. This approach generates
an explanation that reduces the attribution score of the
highest k features in the original feature map. Ghor-
bani et al. (2019) defines the top-k attack as x∗

adv =
argminxadv C(I(x), I(xadv)) subject to the constraints that
∥xadv − x∥∞ ≤ ϵ and F (xadv) = F (x), where I is the
attribution method of interest, C(x, xadv) =

∑
j∈K Ij(x) ,

K is the set of top k features in xadv, and ∥.∥∞ denotes the
infinity norm on vectors.

Targeted Attributional Attack. This method manip-
ulates the input image to generate attributions that re-
semble feature maps corresponding to a different tar-
get image (Dombrowski et al., 2019). It can be formu-
lated as x∗

adv = argminxadv L(xadv) where L(xadv) =

∥I(xadv)− I(xtarget)∥22+γ ∥F (xadv)− F (x)∥22, with γ and
xtarget being, respectively, a hyperparameter that controls the
relative weight of the two summands and the target image.
Here, ∥.∥2 signifies the Euclidean norm.

2.3. VAEs for Generative Manifold Learning

A substantial body of literature on manifold learning relies
on neural autoencoders (AEs) (Hinton & Zemel, 1993; Vin-
cent et al., 2008). The underlying hypothesis guiding the
success of manifold learning is that even though the data
may exist in a high-dimensional space, it effectively lies on
or near an embedded low-dimensional manifold (Fefferman
et al., 2016; Bengio et al., 2013; Brahma et al., 2016).

Unlike most traditional AEs that lack structure over the
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latent space, variational autoencoders (VAEs) are the proba-
bilistic variants with a regularised, generative latent struc-
ture (Kingma & Welling, 2022; Higgins et al., 2016; Burgess
et al., 2018). VAEs aim not only to learn a compressed rep-
resentation but also to model the underlying probability
distribution of the data in a lower-dimensional latent space.
This latent space is typically assumed to adhere to a prior
distribution, often modeled as a multivariate Gaussian. This
allows VAEs to capture the intrinsic geometrical and sta-
tistical structure of the data using more informative latent
representations. The learned latent space is then used to gen-
erate new data points similar to the training data, making
VAEs suitable for tasks such as image generation and re-
construction, interpolation, and out of distribution detection
(Ran et al., 2022; Cristovao et al., 2020).

High-dimensional data such as real images are assumed to
have a non-Euclidean latent structure that constitutes the
natural image manifold (Zhu et al., 2016). Nevertheless, the
data is often perceived through the lens of Euclidean geom-
etry as it offers definite inner products and explicit distance
metrics, making manipulation of data more accessible. Shao
et al. (2018) showed that nonlinear VAEs induce a Rieman-
nian metric over the latent space. Similarly, Arvanitidis et al.
(2018) demonstrated that the induced Riemannian metric
leads to faithful latent-space statistical estimates, smooth
interpolations, and better generalisations. This motivated a
compilation of methods to learn non-Euclidean latent struc-
tures, e.g., hyperspherical (Davidson et al., 2018), hyper-
bolic (Tifrea et al., 2018; Mathieu et al., 2019; Cho et al.,
2023), mixed-curvature (Skopek et al., 2019) and Rieman-
nian weighted submanifolds (Miolane & Holmes, 2020).

3. Riemannian Geometry for Feature
Attribution

We now present our proposed feature attribution method.
To that end, we present elements of differential geometry as
they apply to deep generative models. We demonstrate how
VAEs induce a Riemannian metric over the latent space. Uti-
lizing the induced metric, we use an algorithm to compute
geodesic paths that conform to the curved structure of the
data manifold. Following this, we introduce Manifold Inte-
grated Gradients (MIG) for feature attribution by integrating
model gradients along these geodesics.

3.1. Latent Space Geometry in Deep Generative Models

A smooth manifold M is a topological manifold with a
smooth structure that is locally homeomorphic to Euclidean
space (Lee, 2014). This implies that around any point
z ∈ M on the manifold, M resembles Rd, enabling to
extend differential calculus on the manifold. On smooth
manifolds, concepts like length, inner products, and shortest
paths, known as geodesics, take on a more complex nature

compared to their Euclidean counterparts.

The governing mathematical apparatus that generalizes
these concept to manifolds and gives a formal framework to
compute them is the Riemannian metric (Lee, 2018). Recall
that a tangent space of M at z, denoted by TzM, is a vector
space spanning all the tangent vectors to z on M. Since
TzM is a vector space, we can define an inner products
on it. If this inner product varies smoothly with z, then it
defines a Riemannian metric. More specifically, a Rieman-
nian metric on a smooth manifold M assigns to each point
z ∈ M an inner product ⟨ , ⟩z : TzM× TzM → R that
varies smoothly on the manifold.A Riemannian manifold is
a smooth manifold with a Riemannian metric (Lee, 2018).

Latent-variable generative models with smooth generator
functions embody surface models (Arvanitidis et al., 2018).
They incorporate a generative function: g : M → X , which
transforms a latent manifold M in the latent space Z ⊂
Rd into a data manifold embedded in the data space X ⊂
RD. In the VAE setting, the decoder acts as the generator
function, and the latent space is chosen to have a lower
dimensionality compared to the input space, i.e., d ≤ D.

A smooth latent curve connecting points z0 ∈ M and z1 ∈
M can be parameterized by a function γ : [0, 1] → M
with γ(0) = z0 and γ(1) = z1. This is then mapped by
the generative function to a corresponding smooth curve
g(γ) : [0, 1] → X on the data manifold. The length of the
curve g(γ) can be expressed as

L(g(γ)) =

∫ 1

0

∥∥∥∥dg(γ(t))dt

∥∥∥∥ dt
=

∫ 1

0

∥Jg(γ(t))γ′(t)∥ dt,

where Jg(γ(t)) = ∂g(z)/∂z |z=γ(t) is the Jacobian of g at
γ(t), and γ′(t) = ∂γ(t)/∂t is the velocity vector tangential
to the latent curve. This can in turn be written as

L(g(γ)) =

∫ 1

0

√
(Jg(γ(t)) · γ′(t))T · (Jg(γ(t)) · γ′(t)) dt

=

∫ 1

0

√
γ′(t)TGg(γ(t))γ′(t) dt,

where Gg(.) = JT
g (.)Jg(.). Under certain architectural

choices (Shao et al., 2018), Gg(.) is symmetric positive
definite and smooth on M, and hence defines a Riemannian
metric, which can in turn be used to calculate geodesics, i.e.,
the shortest path between two points on M.

The length functional, L(g(γ)), is invariant under reparame-
terization (Jost, 2017, Lemma 1.4.3). Hence, to find curves
of shortest length on M, we can simply consider curves
that are parameterized proportionally by arc length. Conse-
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quently, it can be shown that the following energy functional

E(g(γ)) =
1

2

∫ 1

0

γ′(t)TGg(γ(t))γ
′(t) dt, (1)

is essentially equivalent to L2(g(γ)). Indeed, while in gen-
eral, L2(g(γ)) ≤ 2E(g(γ)), the equality holds if and only if
∥dg(γ(t))/dt∥ is constant (Jost, 2017, Lemma 1.4.2). This,
gives rise to the following minimization problem

min
γ∈Γ

E(g(γ)), (2a)

where

Γ =
{
γ : [0, 1] → M | γ(0) = z0, γ(1) = z1, and

∥dg(γ(t))/dt∥ ≡ const
}
,

(2b)

and whose solution γ∗ is the shortest path, or geodesic,
between z0 and z1 on M. In this light, traversing along the
shortest path from z0 to z1 on the latent manifold amounts to
a smooth transition from g(z0) to g(z1) on the data manifold
in the sense of (2); see Figure 2.

Figure 2. The surface model implied by the smooth generator func-
tion g mapping from the latent space Z to the data space X . In this
example, the latent manifold M is a one-dimensional embedded
submanifold of R2 and the images lie on a two-dimensional em-
bedded submanifold of R3. The geodesic on the latent manifold
is mapped to a smooth curve on the data manifold, respecting the
underlying geometry.

It can be shown that the curve γ∗(t) is a solution to (2) if
and only if it satisfies the system of second-order ordinary
differential equations (Jost, 2017, Lemma 1.4.4)

d2γk(t)

dt2
+
∑
i,j

Γk
ij

dγi(t)

dt

dγj(t)

dt
= 0, (3)

where k = 1, . . . , d, and Γk
ij are the Christoffel sym-

bols associated to the Riemannian metric tensor Gg =
(gij)i,j=1,...,d. The Christoffel symbols are defined as

Γk
ij =

1

2

d∑
ℓ=1

gkℓ
(
∂gjℓ
∂xi

+
∂giℓ
∂xj

− ∂gij
∂xℓ

)
, (4)

where (gij) = (gij)
−1, i.e.,

∑d
ℓ=1 g

iℓgℓj = δij .

Previous works have proposed different approaches to calcu-
late geodesic paths for generative models. Shao et al. (2018)
used a discretization of γ and a finite-difference formula-
tion of the energy functional (1) to avoid the computational
burden of the Euler-Lagrange system of equations (3). Ar-
vanitidis et al. (2018) computed the Christoffel symbols (4)
and then solved the second order system numerically to get
geodesic paths for VAEs with stochastic generators. Arvani-
tidis et al. (2019) employed a scheme based on fixed-point
iterations to solve the system in (3) without computing Jaco-
bians that are usually ill-conditioned. In this work, we use
a slight modification of Shao et al. (2018, Algorithm 1) to
calculate geodesic paths; see Appendix A for details.

3.2. Integrated Gradients on the Data Manifold

Our generative-discriminative approach is depicted in Fig-
ure 1. We train a VAE to capture the underlying Riemannian
data manifold for real image datasets. We feed-forward the
whole datasets through the VAE and use the resulting recon-
structions from the learned image data manifold along with
the ground-truth labels to train a deep convolutional classi-
fier. We then exploit the intrinsic geometry of the manifold
to build a path-based feature attribution method by integrat-
ing gradients of the classifier’s output along geodesics on
the manifold. This leads to defining MIG along the geodesic
path, γ∗ from (2), for the jth feature as

MIGj(x, γ
∗) :=

∫ 1

0

∂F (g(γ∗(t)))

∂gj(γ∗(t))

∂gj(γ
∗(t))

∂t
dt.

MIG employs the smoothest path between a baseline and a
target in the sense of (2). In essence, the smooth generator
maps the geodesic on the latent space to a highly smooth
path on the data manifold that respects the underlying curved
geometry. Further, like any path-based attribution method,
MIG satisfies the axioms of completeness, sensitivity, and
implementation invariance (Sundararajan et al., 2017).

4. Experiments
We now evaluate MIG in several contexts. In Section 4.1,
we first demonstrate the effect of smooth interpolating paths
adherent to the underlying geometry that underpins MIG.
In Section 4.2, we compare various methods with MIG in
terms of the perceptual alignment of their feature attribution
maps. Finally, in Section 4.3, we investigate MIG in the
context of targeted attributional attacks. The code for these
experiments is available here.

Setup. For learning the image data manifold, we employ a
convolutional VAE based on residual connections; see Ap-
pendix B for details. We extend the typical Evidence Lower
Bound (ELBO) loss by adding a perceptual loss term (Hou
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Figure 3. Mapped geodesic interpolation in MIG vs. linear interpo-
lation in IG. (a) contrasts the smoothness of MIG’s smooth path
interpolants against IG’s linear path from a black baseline. (b)
displays a classifier response curves for each image on the paths,
with MIG’s smooth path (red) having a gradual response as key
features show later on the path and IG’s linear path (blue) showing
rapid escalation, with a wide saturation region. (c) shows the corre-
sponding feature visualizations. MIG produces more perceptually
aligned and less noisy feature visualizations compared to IG.

et al., 2016) that emphasises feature-wise accuracy. Train-
ing VAEs with perceptual loss helps to mitigate the inherent
blurriness in reconstructions as it preserves structural and
perceptual details. We train the VAEs for 150 epochs with
Adam (Kingma & Ba, 2014). We then use the image recon-
structions along with the labels to train classifiers based on
pretrained models.

For showing the perceptual quality of feature visualizations
and robustness to targeted attributional attacks, we utilize
different backbones (VGG-16, Resnet-18, InceptionV1) for
the discriminative models. All the backbones are frozen
during training the classifiers for the first 10 epochs, before
fine-tuning the whole models for another 7 epochs.

Datasets. We validate our approach on two real-image
datasets: (1) the Oxford-IIIT Pet Dataset (Parkhi et al.,
2012), which compromises pet images of 37 categories,
making it well-suited for fine-grained classification tasks.
The images vary in pose and lighting, making it also apt for
the task of examining how VAEs capture and represent the
inherent properties of the underlying data manifold. (2) the
Oxford 102 Flower Dataset (Nilsback & Zisserman, 2008),
which is also used for fine-grained recognition tasks. It
compromises 102 different flower categories, with a large

variation in scale, pose, color, and background, reflecting
the intricacies in real-world settings. This motivates our
use of this dataset, as we believe that VAEs can effectively
capture a data manifold with such complexity and intra-class
variability.

To ensure a fair comparison of our method with IG, we
need to use the standard black and white baseline images.
Our goal is to generate geodesic paths of attribution on the
manifold, linking these baseline images to the target images.
However, due to the variational approximation in VAEs
and their inherent noise, reconstructions of purely black or
white images is not feasible. To incentivise the VAEs to
produce cleaner black and white baseline reconstructions,
we augment all datasets with black and white images during
the training phase of the VAEs. This ensures VAEs can
handle such plain images.

Baseline Methods. We compare our method against the
following alternatives:

• Saliency (Simonyan et al., 2014). The simplest method
for capturing sensitivity of the model to changes in the input.
• Input × Gradients (Shrikumar et al., 2017). A method
proposed to add sharpness to the sensitivity maps.
• Guided Backpropagation (Springenberg et al., 2015). It
uses a modification to gradient calculations in ReLU-based
classifiers by only backpropagating non-negative gradients.
• IG (Sundararajan et al., 2017). The original path-based
method that uses the linear path in the image space.
• Smooth IG (Smilkov et al., 2017): It reduces the noise in
IG by averaging feature attributions from noisy images.
• EIG (Jha et al., 2020). In this approach, the manifold is
conceptualized as a flat, Euclidean space, and it generates
feature maps along straight linear paths in the latent space.

4.1. Geodesic Paths of Attribution

In curved manifolds, geodesics are the shortest paths that
represent the most seamless transitions possible between
two points. When applying this to latent representation
of images, it translates to a smooth interpolation between
two images, staying faithful to the structure of the data
manifold. This means that the transformed geodesic path
yields a series of realistic images with minimal perceptible
differences between successive interpolations. In contrast,
a linear interpolation path, based on Euclidean geometry,
tends to deviate outside the data manifold, violating the
curved nature of the underlying space.

The linear path in IG, γ = x′ + t(x − x′), transforms all
pixels with the same scale, which implies a complete in-
dependence amongst pixels, violating real-world settings.
The progression of pixels along a smooth path on the data
manifold, however, is a complex and interdependent process.
This intricacy stems from the interconnected nature of pix-
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Figure 4. Comparison of Feature Attribution Methods. Presented are feature maps from various methods—Saliency, Gradients × Input,
GuidedBackprop, IG, Smooth IG, EIG, as well as our proposed MIG. As shown, MIG addresses the IG’s noise limitation and surpasses
other methods, producing distinctly clearer and perceptually more aligned visualizations. In the last row, the similarity between EIG and
MIG indicates that the path of attribution in MIG passes through a nearly flat region on the data manifold, and hence a linear interpolation
path employed by EIG can closely approximate the mapped geodesic path in MIG for this particular image.

els, where each pixel does not exist in isolation. The essence
lies in the idea that “the whole is greater than the sum of
its parts,” as the transitions are shaped by the influence of
neighboring pixels. In Figure 3(a), we can see that superpix-
els on the smooth path surrounding dog’s nose start to arise
first, and pixels affect relevant pixels as they progress, until
we reach the full target image. It is also worth highlighting
that specific feature structure (the nose in this case) can
emerge and evolve differently from other features, which
means that progression is curved and context-dependent.
This curvature in the data manifold is influenced by the dis-
tribution of intensities, colors, gradients within the image,
and structural properties in the image, making the mapped
geodesic path a complex function of all those influential ele-
ments and variations. In this sense, MIG along smooth paths
on the manifold can capture feature interactions, which is a
major limitation of the linear path in IG.

From the perspective of the model output, shown in Fig-

ure 3(b), mapped geodesics avoid the wide saturation re-
gion, where the model’s response becomes less sensitive to
changes in input features. As gradients saturate in these
regions, the resulting attributions are predominantly in-
fluenced by noise. The linear path in IG is a significant
contributing factor to the issue of saturation-induced noise
(Kapishnikov et al., 2021; Miglani et al., 2020). This arises
because the linear path inherently crosses through a wide
saturation region. The essence of the problem lies in the na-
ture of linear interpolation, which introduces discriminative
image features early in the path. As a result, the model’s
response escalates rapidly at the beginning of the linear path
and then quickly plateaus. The corresponding feature maps
to the two paths of attribution are shown in Figure 3(c).

4.2. Perceptual Attribution Maps along the Geodesics

The underlying data manifold provides the natural structure
for the model to learn. When model gradients are aligned
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Figure 5. MIG vs. IG under targeted attributional attacks. The figure displays examples of an original input image alongside a target
image and an adversarial attributional attack designed to exploit the IG’s linear path of attribution. IG’s vulnerability is evident as it
generates adversarial feature maps that erroneously mimic the target maps. MIG maintains perceptually consistent and noise-resistant
feature visualizations for the adversarial examples, closely resembling those of the original input. Each row was generated based on a
different classifier’s backbone, VGG-16, ResNet18, InceptionV1, respectively.

with this image manifold, it ensures that gradients are per-
ceptually relevant. Geodesics come into play to enforce
integrated gradients to be aligned with the manifold, empha-
sising features that are consistent with human perception.
MIG, utilising transformed geodesic paths that conform
to the curved natural structure of the data manifold, is es-
sentially an accumulation of PAGs. In Figure 4, we show
feature attribution maps generated by MIG (last column) as
compared to other methods. In all examples, MIG clearly
outperforms others as it produces perceptually consistent
attributions with minimal noise. In the last row in Figure 4,
one can see a certain degree of similarity between EIG and
MIG feature maps. This is because, for this specific image,
the linear path employed by EIG is an approximation to the
geodesic due to the low curvature of the latent manifold
along the geodesic from the baseline to the target.

4.3. Robustness to Targeted Attributional Attacks

Adversarial attributional attacks exploit model’s sensitiv-
ity to imperceptible perturbations, which are usually off-
manifold. Aligning the model’s gradients with the data
manifold, provides inherent robustness to such perturba-
tions. The linear path of attribution in IG adds up to this
vulnerability as it results in interpolants on the path being
positioned outside the manifold. This shift of interpolants
away from the manifold can potentially move them into re-
gions of adversarial examples, leading to the accumulation
of irregular gradients. VAEs possess denoising capabilities,
allowing them to denoise input, including noisy or adversar-
ial examples. This process can be seen as projecting noisy

or adversarial inputs closer to the manifold of normal data.
MIG, by adhering to the data manifold, increases robustness.
Figure 5 shows how MIG feature maps are more robust to
targeted attributional attacks as compared to IG. In this case,
an input image is manipulated to compose an adversarial
example. This generates attributions similar to an arbitrary
target image, while maintaining the same output class as
the original input. Unlike employing adversarial training to
build robust classifiers that exhibit PAGs – a process that
is computationally intensive and often detrimental to the
model’s performance (Tsipras et al., 2018) – our approach
focuses on learning the data manifold and aligning model
gradients with the intrinsic geometry. This approach ef-
fectively generates robust and perceptually aligned feature
visualizations, achieving this without sacrificing the accu-
racy of the classifier, though it introduces some additional
complexity as highlighted in Appendix C.

5. Quantitative Analysis
To assess our method (MIG), we use robust metrics from
Yeh et al. (2019) and Wang et al. (2004) to evaluate the gen-
erated explanations. We compare MIG against IG, BlurIG,
and SmoothIG (SIG), examining fidelity, sensitivity, and
robustness through metrics such as infidelity, maximum
sensitivity, and structural similarity.

5.1. Metrics

Explanation Infidelity (INFD) (Yeh et al., 2019). This
measure is a robust variant of the completeness axiom. It
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quantifies the degree to which an explanation misrepresents
the model’s sensitivity to input perturbations, assessing inac-
curacies reflected in feature attributions. This contrasts with
the completeness axiom that requires feature attributions to
sum up to the total change in model output, without directly
evaluating perturbation sensitivity. For a black-box function
f , an explanation functional Φ, and a random vector ξ that
characterizes significant perturbations of interest around
input x, the explanation infidelity of Φ is defined as

INFD(f, x,Φ) = Eξ [⟨ξ,Φ(f, x)⟩ − (f(x)− f(x− ξ))]
2
,

where ⟨., .⟩ denotes the Euclidean inner-product between
vectors. One plausible way to determine ξ is by calculating
the difference from a noisy baseline: ξ = x − z0, where
z0 = x0 + ϵ. In this context, ϵ denotes a zero-mean random
vector, such as ϵ ∼ N (0, σ2I).

Maximum Sensitivity (SENSmax) (Yeh et al., 2019). The
essence of max-sensitivity is to evaluate how sensitive an
explanation is to perturbations in the input, with a particular
focus on its maximum deviation. Given an input neighbor-
hood radius r, maximum sensitivity is defined as

SENSmax = max
∥δ∥≤r

∥Φ(f(x+ δ))− Φ(f(x))∥ ,

where ∥.∥ is usual Euclidean norm of the vectorized input.
It is worth noting that while reducing sensitivity might seem
desirable to enhance robustness, doing so without careful
consideration can lead to sub-optimal feature attributions.
For instance, the intrinsic sensitivity of natural explana-
tions—either due to the model’s inherent sensitivity or the
explainability method—suggests that some degree of sensi-
tivity is unavoidable and, in fact, necessary to maintain the
fidelity of the explanation to the model’s behavior. However,
it is possible to reduce the sensitivity of an explanation in
a way that also lowers its infidelity. This dual benefit is
significant, as it suggests that reliable explanations can be
less sensitive, and also more accurate in representing the
model’s predictive behavior.

Structural Similarity Index (SSI) (Wang et al., 2004).
We use this metric to assess MIG’s robustness to IG-targeted
attributional attacks. SSI can measure the similarity between
attribution maps for the input and its adversarial version as
it captures intricacies be evaluating the match in contrast
levels, brightness (attribution scores), and structures within
the attribution maps.

5.2. Results

Our method satisfies the axioms of path-based feature attri-
bution while also ensuring reliability and faithfulness with
robust metrics. Table 1 indicates that MIG achieves the
lowest maximum sensitivity to input perturbations and sig-
nificantly enhances faithfulness compared to other methods.

This is viewed through the data-manifold perspective, where
perturbations typically displace the input from the manifold.
Our geodesic path of attribution, aligning with the mani-
fold’s geometry, renders the feature attribution maps less
sensitive to perturbations and more faithful to the model’s
output behavior.

Datasets Oxford IIT Pets 102 Flowers
Methods SENSmax INFD SENSmax INFD
IG 0.87 7.65 0.74 15.26
BlurIG 0.75 6.41 0.67 12.19
SIG 0.42 4.30 0.38 9.81
MIG(ours) 0.17 1.86 0.21 3.46

Table 1. Sensitivity and Infidelity of Feature Attributions. Here,
lower values signify better quality. Our method, MIG, achieves
the highest quality among the alternatives.

Datasets Oxford IIT Pets 102 Flowers
Backbones SSI SSI

IG SIG MIG IG SIG MIG
VGG-16 0.43 0.64 0.87 0.35 0.57 0.74
ResNet18 0.48 0.69 0.91 0.41 0.63 0.86
InceptionV1 0.36 0.61 0.86 0.36 0.52 0.71

Table 2. Structural Similarity Under IG-targeted Attributional At-
tacks. Here, higher values signify more robustness. Our method,
MIG, achieves the greatest robustness among the alternatives.

Table 2 shows that MIG scores the highest SSI, indicat-
ing it preserves the structure and relevancy of attribution
maps under targeted attributional attacks. Unlike IG, which
uses a noninformative linear path accumulating adversarial
gradients, and SIG, which averages multiple linear paths po-
tentially smoothing feature maps for added robustness, MIG
avoids these linear paths. Instead, it uses a single geodesic
path that exhibits a higher degree of robustness.

6. Conclusion
Our work introduces MIG as a solution to the reliability
issues in IG for deep learning models. MIG leverages
geodesics on the latent manifold to provide smoother inter-
polations between images, capturing the non-linear nature
of image manifolds. In contrast to the linear path in IG, MIG
captures pixel interactions more realistically, reducing noise
in feature attributions. Additionally, MIG enhances model’s
robustness against targeted attributional attacks by aligning
gradients with the data manifold. Our experiments validate
the effectiveness of MIG, offering perceptually aligned ex-
planations and promising “safer” applications in domains
requiring enhanced model interpretability and reliability,
e.g., critical sectors such as healthcare.
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A. Further Details on Computing Geodesics
For the sake of self-containment, we briefly review the approach taken by Shao et al. (2018, Algorithm 1) to compute the
geodesics on the manifold. Subsequently, we will outline our modifications in this work.

For T time steps, 0 = t0 < t1 < . . . < tT−1 < tT = 1, and discrete time interval δt = (ti+1 − ti) = 1/T , we consider an
approximate discretization of the curve γ(t) on the latent manifold, M, as z0, z1, . . . , zT , i.e., zi = γ(ti). The smooth map
g now gives a discrete path on the data manifold as g(z0), g(z1), . . . , g(zT ). Using forward finite differences, we get an
approximation to the velocity of the curve g(γ(t)) at ti as

dg(γ(t))

dt
|t=ti ≈

g(γ(ti+1))− g(γ(ti))

ti+1 − ti
=

g(zi+1)− g(zi)

δt
.

Now, the discrete analog to the energy functional (1) is given by

E(z) =
1

2

T−1∑
t=0

1

δt
∥g(zi+1)− g(zi)∥2 , where z =

[
z0 z1 . . . zT

]
.

Fixing z0 and zT as the specific start and end points for the geodesic path, we aim to minimize this discrete geodesic energy
through gradient descent applied to the intermediate points on the curve, z1, ..., zT−1. The gradient with respect to zi is thus

∂

∂zi
E(z) =

1

δt
JT
g (zi)(g(zi+1)− 2g(zi) + g(zi−1)).

Instead of utilizing JT
g for calculating gradients, Shao et al. (2018) opted for the faster-to-compute Jacobian of the encoder,

Je, as they considered the former to be computationally expensive. The resulting modified gradient can then be written as

ηi =
1

δt
Je(zi)(g(zi+1)− 2g(zi) + g(zi−1)). (5)

However, to produce more faithful geodesics, we find that using the exact decoder is crucial. To achieve this, instead of
forming the Jacobian explicitly, we access it only through Jacobian-vector products. For this, we reorganize the original
gradient as

∂

∂zi
E(z) =

1

δt

(
(g(zi+1)− 2g(zi) + g(zi−1))

T
Jg(zi)

)T

(6)

This reorganization enables the computation using vector-Jacobian product, which is more computationally efficient than
explicitly computing the Jacobian matrix Jg. We use (6) in place of the modified gradient (5) in Algorithm 1. By doing
this, we do not compromise the use of the generator function, which is the core surface model in our work. The resulting
modified geodesic path algorithm is given in Algorithm 1.

Algorithm 1 Geodesic Path
input Two points, z0, zT ∈ Z

1: z(0) = {z(0)i }Ti=0 as linear interpolation between z0 and zT

2: for k = 0, 1, . . . do
3: for i ∈ {1, . . . , T − 1} do

4: Compute the gradient
∂

∂zi
E(z(k)) using (6)

5: z
(k+1)
i = z

(k)
i − α(k) ∂

∂zi
E(z(k))

6: end for
7: end for

output Discrete geodesic path z0, z1, . . . , zT ∈ Z

For our experiment in Section 4, we employ backtracking line search with Armijo-Goldstein condition (Nocedal & Wright,
1999), to determine the appropriate step size, α(k), for each gradient descent step. The outer loop is terminated after a
maximum of 300 iterations or if

∣∣∆E(k) −∆E(k−1)
∣∣ ≤ 0.001∆E(k) where ∆E(k) =

∑
i ∥∂E(z(k))/∂zi∥2.
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B. Details on the VAE Architecture
The VAE used in our experiments, as specified in the code repository, relies intensively on residual blocks and certain
activations that allows the decoder to impose a valid Riemannian metric. Table 3 shows details of the architectural choices
in the VAE model.

Module Layer Output Shape Details
Encoder

Input - 3× 192× 192 -
Conv In Conv2d 64× 192× 192 Kernel: 3, Stride: 1, Padding: 1, Activation: SiLU

ResDown1 Conv2d x2, BN x2 128× 96× 96
Conv1: Kernel: 3, Stride: 2, Padding: 1
Conv2: Kernel: 3, Stride: 1, Padding: 1

Activation: SiLU
ResDown2 Conv2d x2, BN x2 256× 48× 48 Same as above
ResDown3 Conv2d x2, BN x2 512× 24× 24 Same as above
ResDown4 Conv2d x2, BN x2 512× 12× 12 Same as above
ResBlock Conv2d x2, BN x2 512× 12× 12 Kernel: 3, Stride: 1, Padding: 1, Activation: SiLU

Mu Conv2d 64× 12× 12 Kernel: 1, Stride: 1, Padding: 0
Log Var Conv2d 64× 12× 12 Kernel: 1, Stride: 1, Padding: 0

Decoder
Conv In Conv2d 512× 12× 12 Kernel: 1, Stride: 1, Padding: 0, Activation: ELU

ResUp1 Upsample, Conv2d x2, BN x2 512× 24× 24

Upsample: Scale: 2
Conv1: Kernel: 3, Stride: 1, Padding: 1
Conv2: Kernel: 3, Stride: 1, Padding: 1

Activation: ELU
ResUp2 Upsample, Conv2d x2, BN x2 256× 48× 48 Same as above
ResUp3 Upsample, Conv2d x2, BN x2 128× 96× 96 Same as above
ResUp4 Upsample, Conv2d x2, BN x2 64× 192× 192 Same as above

Conv Out Conv2d 3× 192× 192 Kernel: 3, Stride: 1, Padding: 1, Activation: Tanh

Table 3. Detailed architecture of the VAE, showcasing the configurations of layers within the Encoder and Decoder modules.

C. Limitations of our Approach
While our approach bridges the gap between the robustness of attribution maps under adversarial conditions and the
perceptual alignment and intuitiveness of explanations, it requires the use of VAEs to capture the underlying data manifold.
Two sources of complexity arise from this setting: the training of VAEs and, subsequently, the geodesic computations
necessary to generate the path of attribution in MIG. Future directions could aim to capture the Riemannian structure or
specify the Riemannian metric needed to compute geodesics in ways that are less costly than using the VAE setup.
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