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Abstract
In many real-world causal inference applications,
the primary outcomes (labels) are often partially
missing, especially if they are expensive or dif-
ficult to collect. If the missingness depends on
covariates (i.e., missingness is not completely at
random), analyses based on fully observed sam-
ples alone may be biased. Incorporating surro-
gates, which are fully observed post-treatment
variables related to the primary outcome, can im-
prove estimation in this case. In this paper, we
study the role of surrogates in estimating continu-
ous treatment effects and propose a doubly robust
method to efficiently incorporate surrogates in the
analysis, which uses both labeled and unlabeled
data and does not suffer from the above selec-
tion bias problem. Importantly, we establish the
asymptotic normality of the proposed estimator
and show possible improvements on the variance
compared with methods that solely use labeled
data. Extensive simulations show our methods
enjoy appealing empirical performance.

1. Introduction
In many causal inference applications, the primary outcomes
are missing for a non-trivial number of observations. For
instance, in studies on long-term health effects of medical
interventions, some measurements require expensive testing
and a loss to follow-up is common (Hogan et al., 2004).
In evaluating commercial online ad effectiveness, some in-
dividuals may drop out from the panel because they use
multiple devices (Shankar et al., 2023), leading to missing
revenue measures. In many of these studies, however, there
often exist short-term outcomes that are easier and faster to
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measure, e.g., short-term health measures or an online ad’s
click-through rate, that are observed for a greater share of
the sample. These outcomes, which are typically informa-
tive about the primary outcomes themselves, are referred to
as surrogate outcomes or surrogates.

There is a rich causal inference literature addressing missing
outcome data. Simply restricting to data with observed pri-
mary outcomes may induce strong bias (Hernán & Robins,
2010). Ignoring unlabeled data also reduces the effective
sample size for estimating the treatment effects and inflates
the variance. Chakrabortty et al. (2022) considered the miss-
ing completely at random (MCAR) setting and showed that
incorporating unlabeled data reduces variance. Zhang et al.
(2023) generalized the results to missing-at-random (MAR)
settings where the unlabeled data has a much larger size than
the labeled data. Kallus & Mao (2020) further examined the
role of surrogates in datasets with limited primary outcomes
and showed efficiency gains after including surrogates and
unlabeled data in the analysis. Singh (2022) proposed a
generalized kernel ridge regression framework, which in-
corporates information on surrogate outcomes in treatment
effect estimation. See also Zhang & Bradic (2022); Hou
et al. (2021); Zeng et al. (2023) for relevant discussions.

Continuous treatments appear in many applications; e.g.,
waiting time before follow-up, percent of discount, and drug
dosage. Existing estimation procedures include outcome
modeling (Newey, 1994) and treatment process modeling
(Galvao & Wang, 2015). Kennedy et al. (2017) proposed
doubly robust methods that model both the outcome and
the treatment process, and enjoy appealing robustness prop-
erties. Bonvini & Kennedy (2022) further examined high-
order estimators to achieve faster rates.

In this paper, we consider the estimation of dose-response
functions with limited primary outcome data. We propose
novel doubly robust methods using both labeled and un-
labeled data, with the help of surrogates. Our approach
avoids the potential selection bias caused by restricting only
to labeled data and provably reduces the variance. Impor-
tantly, we study the theoretical properties of the estimator
proposed, and establish its asymptotic normality to facili-
tate statistical inference. Our work serves as a counterpart
for Kallus & Mao (2020) in continuous treatment effects
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settings and enriches the existing dose-response estimation
literature (Kennedy et al., 2017; Bonvini & Kennedy, 2022).

The rest of this paper is organized as follows: In Section
2 we introduce the problem setup and notation. Section 3
provides assumptions to identify the continuous treatment
effect. Novel methodology and theoretical guarantees are
discussed in Section 4. Our simulation study in Section
6 demonstrates the performance of our method. Finally
we conclude with a discussion in Section 7. All proofs,
additional simulation results and a real data example are
included in supplementary materials.

2. Setup and Notation
In this section we introduce the problem of estimating con-
tinuous treatment effects with surrogates. We formalize
the problem using potential outcomes framework (Splawa-
Neyman et al., 1990; Rubin, 1974) and introduce notation
to present our results concisely.

2.1. Data Structure

Suppose we have access to two datasets L and U from a
randomized experiment/observational study. The labeled
dataset is L = {Zi = (Vi,Si, Ai, Yi, Ri = 1), 1 ≤ i ≤
n1}, where V is the set of covariates, S is the vector of
surrogates, A is the continuous treatment, and Y is the
primary outcome. Here R is an indicator with R = 1 if
a sample is from the labeled data L and R = 0 otherwise.
The unlabeled dataset consists of samples without primary
outcomes U = {Zi = (Vi,Si, Ai, Ri = 0), n1 + 1 ≤
i ≤ n1 + n2}. Hence the total sample size is n = n1 +
n2 and both L and U contain information on treatment A,
surrogates S and covariates V, but the primary outcome is
missing in the unlabeled dataset U due to, for example, loss
to follow-up. Let X = (V,S) be the union of covariates
and surrogates. Note that we will present the results for
S ̸= ∅, but S = ∅ can be viewed as a special setting where
our methodology still applies.

2.2. Estimand and Nuisance Functions

Now we define the continuous treatment effects of interest.
We use the random variable Y a to denote the potential
(counterfactual) outcome we would have observed had a
subject received treatment A = a, which may be contrary
to the observed Y . The continuous treatment effect (or
dose-response function) is defined as

θ(a) = E[Y a]. (1)

Without additional causal assumptions introduced in Section
3, θ(a) involves counterfactual outcome Y a and cannot be
identified by observed data. Note that since S contains post-
treatment surrogate outcomes and may be affected by the

treatment, we also use potential outcomes Sa to denote the
surrogate under treatment A = a.

We further introduce some nuisance functions that are
not of primary interest, but which our estimation method
depends on. Let µ(A,X, 1) = E[Y |A,X, R = 1] be
the regression function of the primary outcome in the la-
beled population R = 1. Denote the function obtained
by further regressing µ(A,X, 1) on (A,V) as τ(A,V) =
E[µ(A,X, 1)|A,V] , where the expectation is over the con-
ditional distribution of S given A,V. Denote the condi-
tional density of A given V as π(a|V) and the marginal
density of A as f(a) =

∫
π(a|v)dP(v). The ratio of

the marginal density and conditional density is denoted
as w(a,v) = f(a)/π(a|v). w(a,v) is known as a stabi-
lized weight in the literature (Robins et al., 2000; Ai et al.,
2021). The propensity score for R (i.e. the conditional
probability that the primary outcome is observed) is denoted
as ρ(A,X) = P(R = 1|A,X).

Let (V,S,A) denote the support of (V,S, A). For a (pos-
sibly random) function f on variables Z we use Pn[f(Z)]
or Pn[f ] to denote the sample average 1

n

∑n
i=1 f(Zi) on a

sample of size n. The sample over which averages are taken
should be clear from context. We use P[f ] =

∫
f(z)dP(z)

to denote the expectation of f(Z) where only randomness
of Z is considered and f is conditioned on. Finally we
use ∥f∥∞ = supz∈Z |f(z)| to denote the uniform norm,

∥f∥a =
{∫

f2(z)dP(z|A = a)
}1/2

to denote the L2-norm
with respect to the conditional distribution Z|A = a and
∥f∥2 =

{∫
f2(z)dP(z)

}1/2
to denote the usual L2-norm.

3. Identification
In this section we discuss sufficient conditions to identify
the dose-response function (1), summarized as follows:

Assumption 3.1. (Consistency) Y = Y a,S = Sa if A =
a, a ∈ A.

Assumption 3.2. (Exchangeability) (Y a,Sa) ⊥⊥ A | V for
a ∈ A.

Assumption 3.3. (Missing at random) R ⊥⊥ Y a |
V,Sa, A = a for a ∈ A.

Assumption 3.4. (Positivity) π(a|V) > 0, ρ(a,X) > 0
almost surely for a ∈ A.

Assumption 3.1 is also known as the stable unit treatment
value assumption (SUTVA), and requires an absence of inter-
ference between different individuals in the study. Assump-
tion 3.2 is commonly used to identify treatment effects and
holds in a randomized experiment or observational study
with all confounders measured. Assumption 3.3 ensures
whether the primary outcome is observed only depends on
covariates V, surrogates S, and treatment A so that the dis-
tributions of labeled and unlabeled data are comparable after
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Figure 1. Example of a causal graph with surrogate outcome S.

conditioning on X, A. Assumption 3.4 says every subject
has some chance to receive treatment A = a and has the
primary outcome observed. An illustrative causal graph is
shown in Figure 1. The readers are referred to Gill & Robins
(2001) for detailed discussions on identifying continuous
treatment effects and Kallus & Mao (2020) for the role of
surrogates in identifying treatment effects. With all these
assumptions, the treatment effects of interest can be iden-
tified using the observable distribution as summarized in
Theorem 3.5.
Theorem 3.5. Under Assumption 3.1–3.4 we have

θ(a) =E{E[E(Y |A = a,X, R = 1)|A = a,V]}
=E {E[µ(a,X, 1)|A = a,V]}
=E[τ(a,V)]

(2)

for fixed a ∈ A, where the expectations are over Y,S,V in
(2).

The identification formula (2) suggests the following plug-
in style estimator of θ(a): first regress Y on A,X in the
labeled dataset L and obtain an estimator of µ as µ̂, which
is further regressed on A,V to get an estimator τ̂ . Finally
we take an average over all the samples to get an estimator
of θ(a) as

θ̂(a) = Pn[τ̂(a,V)]. (3)

The performance of such a plug-in style estimator highly
depends on the estimation error of τ̂ . To see this, assume
the nuisance estimator τ̂ is independent of the samples that
we average over, then the conditional bias of θ̂(a) given τ̂ is

E
[
θ̂(a)

]
− θ(a) = E [τ̂(a,V)− τ(a,V)] ,

which solely depends on the estimation error of τ . When
τ is hard to estimate (e.g., non-smooth/sparse in high-
dimensional problems), the plug-in style estimator may in-
herit the slow convergence rate of τ̂ and have sub-optimal
performance.

4. Doubly Robust Estimation
In this section we present the novel method of this paper.
We begin with an alternative characterization of the dose-
response function (1) in Section 4.1, based on which we
propose a doubly robust estimator in Section 4.2.

4.1. Doubly Robust Characterization

Since treatment A is continuous, the function θ(a) in (2)
is not pathwise differentiable (Bickel et al., 1993; Dı́az
& van der Laan, 2013) and we need a novel way to ap-
ply semiparametric efficiency theory. The idea is to find a
pseudo-outcome φ(Z) := φ(Z;µ, π, ρ) depending on nui-
sance functions such that E[φ(Z;µ, π, ρ)|A = a] = θ(a),
i.e., regressing φ(Z;µ, π, ρ) on A yields the target dose-
response function ideally with second-order dependence on
nuisance estimation error. Following Rubin & van der Laan
(2005); Kennedy et al. (2017), we consider the functional
ψ = E[θ(A)], which is pathwise differentiable and admits
an efficient influence function. Then the pseudo-outcome
φ(Z;µ, π, ρ) is a component in the influence function of
ψ. We omit the derivation of the influence function and
only present the form of pseudo-outcome. Let (µ̄, π̄, ρ̄) be
nuisance functions that may not necessarily equal the true
(µ, π, ρ), and define

φ(Z; µ̄, π̄, ρ̄)

=

[
R(Y − µ̄(A,X, 1))

ρ̄(A,X)
+ µ̄(A,X, 1)− τ̄(A,V)

]
×
∫
V π̄(A|v)dP(v)
π̄(A|V)

+

∫
V
τ̄(A,v)dP(v),

where τ̄(A,V) = E[µ̄(A,X, 1)|A,V]. The following the-
orem shows an alternative characterization of the dose-
response function θ(a) through φ(Z; µ̄, π̄, ρ̄).
Proposition 4.1. Let (µ̄, π̄, ρ̄) be nuisance functions that
may not necessarily equal the true (µ, π, ρ). Then

E[φ(Z; µ̄, π̄, ρ̄)|A = a] = θ(a)

if either µ̄ = µ or (π̄, ρ̄) = (π, ρ).

Proposition 4.1 gives the first interpretation of the double
robustness of our methods. There are two chances to obtain
the dose-response function θ(a) by regressing the pseudo-
outcome φ(Z; µ̄, π̄, ρ̄) on A: we correctly specify either the
outcome regression model µ or both the propensity score
of R and conditional density of A given V (although see
Proposition 5.2 for a slightly different parameterization).

4.2. Estimation Procedure

The doubly robust characterization in Proposition 4.1 moti-
vates a two-stage procedure to estimate θ(a): In the first step
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Algorithm 1 Doubly Robust Estimation
Let (Dn

1 , D
n
2 , T

n) denote three independent samples of n
i.i.d observations of Z and Dn = (Dn

1 , D
n
2 ) denote the

training set to train the nuisance functions.

1. Nuisance functions training: Construct estimates of
µ, τ, ρ, w using Dn

1 . Then use Dn
2 to get an initial

estimator of θ(a) as

θ̂0(a) =
1

n

∑
i∈Dn

2

τ̂(a,Vi).

2. Pseudo-outcome regression: Construct estimated
pseudo-outcome

φ̂(Z)

=

[
R(Y − µ̂(A,X, 1))

ρ̂(A,X)
+ µ̂(A,X, 1)− τ̂(A,V)

]
× ŵ(A,V) + θ̂0(A)

for each sample in Tn and regress the pseudo-
outcomes on the treatment A in Tn using a linear
smoother to obtain

θ̂(a) = Ên [φ̂(Z)|A = a] =
∑
i∈Tn

Wi(a;A
n)φ̂(Zi),

where An = (A1, . . . , An) are the treatments in Tn

and Wi(a;A
n) is the coefficient of i-th sample.

3. (Optional) Cross-fitting: Swap the role of Dn
1 , D

n
2 , T

n

and repeat steps 1 and 2. Use the average of different
estimates as the final estimator of θ(a).

we model the nuisance functions that appear in the pseudo-
outcome φ(Z) with flexible nonparametric or machine learn-
ing methods. We then construct estimated pseudo-outcomes
φ̂(Z) and regress these on A to obtain an estimator of θ(a).
We will use the stability framework developed in Kennedy
(2023) to analyze such an estimator, which regresses im-
puted outcomes φ̂(Z) on treatment. The formal procedure
is summarized in Algorithm 1.

Sample splitting is used in Algorithm 1 to avoid complicated
empirical process assumptions that are difficult to justify in
practice and simplify our theoretical analysis (Robins et al.,
2008; Chernozhukov et al., 2018; Kennedy et al., 2020;
Levis et al., 2023; Bonvini et al., 2023). In Step 1, one
can use any appropriate regression/classification algorithms
to estimate µ, τ, ρ. However, there are fewer results on
estimating stabilized weight w(a,v) = f(a)/π(a|v). Ai
et al. (2021) proposed a method that directly estimates w
with entropy maximization. Alternatively, one can estimate

the conditional density π (see, e.g., Colangelo & Lee, 2020,
for discussions on related methods), and then the marginal
density can be estimated by

f̂(a) =
1

n

∑
i∈Dn

2

π̂(a|Vi)

and use their ratio to estimate w.

Our analysis in Section 5 applies to a wide class of nui-
sance estimators if the product of convergence rates is fast
enough. In step 2 we focus on linear smoother-based esti-
mators since they are relatively straightforward to analyze.
We believe similar results hold for a wider class of regres-
sion estimators under the stability framework in Kennedy
(2023) and leave the theoretical analysis of applying general
regression algorithms for future investigation. In applica-
tions, researchers can choose suitable parametric methods
based on their domain knowledge or flexible nonparametric
machine learning methods to avoid model misspecification
(or ensembles thereof).

5. Theoretical Results
In this section, we provide theoretical guarantees of the
proposed method. We first present estimation error guaran-
tees of Algorithm 1, for general linear smoothers. Then we
focus on a specific type of linear smoother, namely local
linear regression, and study the asymptotic distribution of
the estimator in Section 5.2.

5.1. Oracle Estimation Theory

In Algorithm 1 we obtain the estimator θ̂(a) by regressing
the imputed pseudo-outcome φ̂(Z) on A. It is natural to
compare θ̂(a) with the “oracle” estimator θ̃(a) defined as

θ̃(a) =
∑
i∈Tn

Wi(a;A
n)φ(Zi),

which regresses the ground-truth pseudo-outcome φ(Z) on
A using the same linear smoother. Intuitively it is hard for
θ̂ to have a faster convergence rate than θ̃. In the following
theorem, we summarize the conditions under which θ̂ enjoys
the same rate as θ̃ and hence is “oracle efficient”.
Theorem 5.1. Let θ̂(a) denote the doubly robust es-
timator obtained from Algorithm 1 and θ̃(a) =∑

i∈Tn Wi(a;A
n)φ(Zi) denote the oracle estimator with

oracle risk R2
n(a) = E[(θ̃(a)− θ(a))2] at point a. Suppose

• Var(φ(Z)|A = a) ≥ c, ∀ a ∈ A for some constants
c > 0.

• The estimator for nuisance functions in Step 2 is
uniformly consistent in the sense that supz |φ̂(z) −
φ(z)| = oP(1).
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Then we have

θ̂(a)−θ(a) = θ̃(a)−θ(a)+Ên

[
b̂(A)|A = a

]
+oP (Rn(a))

where b̂(a) = E[φ̂(Z) − φ(Z)|Dn, A = a] is the

conditional bias of φ̂(Z) and Ên

[
b̂(A)|A = a

]
=∑

i∈Tn Wi(a;A
n)̂b(Ai). Further assume

Ên

[
b̂(A)|A = a

]
= oP(Rn(a)),

then θ̂ is oracle efficient in the sense that

θ̂(a)− θ̃(a)

Rn(a)

P→ 0.

The conditions in Theorem 5.1 are mild: φ(Z) is not a func-
tion of A and hence its conditional variance given A should
be positive; We do not impose conditions on the conver-
gence rate of φ̂ but only require its consistency. The key
condition for θ̂ to be oracle efficient is Ên

[
b̂(A)|A = a

]
=

oP(Rn(a)) and hence we need a bound on the conditional
bias b̂(a), as summarized in the following proposition.

Proposition 5.2. Under the conditions in Theorem 5.1, fur-
ther assume the estimated conditional probability ρ̂(a,x) ≥
c and the estimated stabilized weight ŵ(a,v) ≤ C hold for
all a ∈ A,x ∈ X ,v ∈ V for some constant c, C > 0. Then
we have

|̂b(a)| ≲ ∥ρ̂− ρ∥a∥µ̂− µ∥a + ∥τ̂ − τ∥a∥ŵ − w∥a

+
1

n

∑
i∈Dn

2

τ̂(a,Vi)− P[τ̂(a,V)],

where recall ∥f∥2a =
∫
f2(z)dP(z|A = a). If we fur-

ther assume the weights of the linear smoother satisfy∑
i∈Tn Wi(a;A

n) ≤ C and there exists a neighborhood
N(a) around a such that Wi(a;A

n) = 0 if Ai /∈ N(a).
Then we have

Ên

[
b̂(A)|A = a

]
≲ sup

t∈N(a)

|̂b(t)|.

We note that the condition on linear smoothers will be satis-
fied by Nadaraya–Watson estimators (Nadaraya, 1964; Wat-
son, 1964) and local polynomial estimators (Fan et al., 1994;
Fan & Gijbels, 1996) when the kernel function used has com-
pact support, e.g., the uniform and Epanechnikov kernel.
In the bound for b̂(a), the first two terms depend on the
product of the convergence rates of nuisance functions. This
phenomenon is commonly observed in influence functions-
based doubly robust approaches (Kennedy et al., 2016; Cher-
nozhukov et al., 2018; Meza & Singh, 2021) and gives the
second interpretation of double robustness: Introducing an

extra term to the plug-in style estimator in φ can correct for
the first-order bias, making the remainder second-order and
“doubly small”. In common examples of ATE estimation,
conditional bias only involves estimation error of outcome
model and propensity scores. The additional dependence on
the convergence rate of τ̂ (compared with Proposition 4.1)
appears in the bias since the formula (2) is more complicated
compared with ATE-style functional and we use an agnostic
estimator of τ in Algorithm 1. In most settings we expect
the nuisance error rate ∥µ̂− µ∥a (with respect to measure
dP(z|A = a)) has the same order as the more common
conventional rate ∥µ̂− µ∥ (with respect to measure dP(z)),
which is n−α/(2α+d+1) if µ(a,x) belongs to a Hölder class
of order α and X is d-dimensional. Alternatively one can
always upper bound ∥µ̂ − µ∥a with ∥µ̂ − µ∥∞ at the cost
of log factors (Tsybakov, 2009, Section 1.6.2). The empiri-
cal process term 1

n

∑
i∈Dn

2
τ̂(a,Vi)−P[τ̂(a,V)] would be

OP(1/
√
n) provided that E[τ̂2(a,V)|Dn] is bounded. The

bound on Ên

[
b̂(A)|A = a

]
in Proposition 5.2 involves

sup
t∈N(a)

∣∣∣∣∣∣ 1n
∑
i∈Dn

2

τ̂(t,Vi)− P[τ̂(t,V)]

∣∣∣∣∣∣
as a coarse bound and for specific estimators, a tighter bound
can be derived. For instance, as we will see in local linear
estimation this empirical process term is oP

(
1/
√
nh
)

and
asymptotically negligible. Hence we can focus on the first
two second-order terms in the conditional bias. Theorem 5.1
together with Proposition 5.2 gives conditions under which
the estimator θ̂(a) has the same rate as the oracle estimator
θ̃(a). For instance, assume V = X (no surrogates) and
|X| = d, suppose the dose-response function θ(a) is α-
smooth (i.e. belongs to a Hölder class of order α) and w
and µ are s-smooth, then the rate condition for θ̂(a) to be
oracle efficient is

n−
2s

2s+d+1 ≤ n−
α

2α+1

or equivalently

s ≥ α(d+ 1)

2(α+ 1)
.

5.2. Asymptotic Normality

In the following discussions, we will analyze the estimator
θ̂(a) based on a particular linear smoother (i.e. the local
linear regression estimator). For a scalar bandwidth parap-
meter h, let gha(t) = [1, (t − a)/h]⊤ be the local linear
basis,Kha(t) = h−1K((t−a)/h) withK being a probabil-
ity density. The local linear regression solves the following
weighted least square problem:

min
β∈R2

∑
i∈Tn

Kha(Ai)
[
φ̂(Zi)− gha(Ai)

⊤β
]2
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which gives the closed-form solution:

β̂h(a) = D̂−1
haPn[gha(A)Kha(A)φ̂(Z)],

where D̂ha = Pn[gha(A)Kha(A)g
⊤
ha(A)] and Pn is the

sample average over Tn. Then the local linear estimator
of θ(a) is e⊤1 β̂h(a), i.e. the first component of β̂h(a). We
summarize the asymptotic properties of this local linear
estimator in Theorem 5.3, which is the key contribution of
our paper.

Theorem 5.3. (Asymptotic normality of Local Linear Esti-
mator) Let a ∈ A be an inner point of the compact support
A of A. Assume

1. The bandwidth h satisfies h = hn → 0 and nh→ ∞
as n→ ∞.

2. The marginal density of the treatment f(a) is con-
tinuously differentiable, the conditional variance
Var(φ(Z)|A = a) is continuous and the dose response
θ(a) is twice continuously differentiable.

3. For any a ∈ A,x ∈ X ,v ∈ V , the conditional vari-
ance Var(φ(Z)|A = a) > 0, the marginal density of
treatment f(a) ≥ c, the estimated conditional proba-
bility ρ̂(a,x) ≥ c and the estimated stablized weight
ŵ(a,v) ≤ C for some constant C, c > 0.

4. K is a continuous symmetric probability density with
support [−1, 1].

5. All nuisance functions are estimated consistently in ℓ∞
norm and the estimated pseudo-outcome also satisfies

∥φ̂− φ∥∞ = oP(1).

Furthermore, the convergence rates of nuisance esti-
mation satisfy

sup
|t−a|≤h

∥ρ̂− ρ∥t∥µ̂− µ∥t = oP

(
1√
nh

)
sup

|t−a|≤h

∥τ̂ − τ∥t∥ŵ − w∥t = oP

(
1√
nh

)
.

Then we have

√
nh

(
θ̂(a)− θ(a)−

h2θ′′(a)
∫
u2K(u)du

2

)
d→ N

(
0,
σ2(a)

∫
K2(u)du

f(a)

)
where

σ2(a) =E
{[

Var(Y |A = a,X, R = 1)

ρ(a,X)

+Var(µ(a,X, 1)|A = a,V)]w2(a,V)

∣∣∣∣A = a

}

Assumptions 1-4 in Theorem 5.3 are standard in the non-
parametric kernel regression literature. Assumption 5 guar-
antees that the contribution of nuisance estimation error
is asymptotically negligible compared with the smooth-
ing error. One can also use a symmetric kernel K sup-
ported on R that is square-integrable and has a finite
second-order moment. Then the rate condition would
be supt∈A ∥ρ̂ − ρ∥t∥µ̂ − µ∥t = oP

(
1√
nh

)
. Similar to

our discussions in Section 5.1, the rate conditions in as-
sumption 5 are imposed on the product of nuisance esti-
mation error since we use a doubly robust estimator and
the conditional bias is “second-order small”. The theo-
retically optimal bandwidth to estimate a twice continu-
ously differentiable function is h ≍ n−1/5 and yields a root
mean square error of order n−2/5. With such a choice
of h the requirement on the convergence rate becomes
supt∈A ∥ρ̂ − ρ∥t∥µ̂ − µ∥t = oP

(
n−2/5

)
, which, for ex-

ample, can be satisfied when ρ is consistent and µ is esti-
mated with rate OP(n

−2/5). In applications, one can select
the bandwidth using leave-one-out cross-validation (Härdle
et al., 1988) due to its computational ease. Specifically, after
we obtain the estimated pseudo-outcome, we treat them as
known and select h by

ĥopt = argmin
h∈H

∑
i

{
φ̂(Zi)− θ̂h(Ai)

1− Ŵh(Ai)

}2

. (4)

where Ŵh(Ai) = e⊤1 D̂
−1
hAi

e1h
−1K(0). In the setting of

Algorithm 1 we can select the bandwidth on Dn
2 to avoid

overfitting on Tn.

Similar to most nonparametric inference methods, Theo-
rem 5.3 shows the estimator θ̂ is centered around θ̄(a) =
θ(a)− h2θ′′(a)

∫
u2K(u)du/2 instead of θ(a) under opti-

mal smoothing, which is known as the “bias problem” in
the literature (Wasserman, 2006, Section 5.7). There are
several methods to overcome the bias problem and each of
them has its own consideration and trade-offs. For instance,
one can estimate the second-order derivative and debias
the estimator (Calonico et al., 2018; Takatsu & Westling,
2022) but this requires extra smoothness conditions. An-
other method is to undersmooth (Fan et al., 2022) and make
the bias decrease asymptotically relative to the variance.
Unfortunately, there does not seem to be a simple, practical
rule for choosing just the right amount of undersmoothing.
In this paper we choose to live with the bias and report un-
certainty quantification for θ̄. Theoretically, the bias shrinks
to 0 as n→ ∞ and the proposed estimator θ̂(a) is still con-
sistent for θ(a). To construct confidence intervals for θ̄(a)
one needs to estimate the variance. Define a localized func-
tional θh(a) = e⊤1 D

−1
haE[gha(A)Kha(A)θ(A)] (which can

be viewed as population version of local linear estimator

6
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e⊤1 β̂h(a)) with efficient influence function

ϕha(Z)

= e⊤1 D
−1
hagha(A)Kha(A)

×
(
φ(Z)− g⊤

ha(A)D
−1
haE[gha(A)Kha(A)θ(A)]

)
+ e⊤1 D

−1
ha

∫
gha(t)Kha(t)τ(t,V)f(t)dt− θh(a).

Following Kennedy et al. (2017); Takatsu & Westling
(2022), one can show the variance of θ̂(a) can be approxi-

mated by 1
nPn

[(
ϕ̂ha(Z)

)2]
for

ϕ̂ha(Z)

= e⊤1 D̂
−1
hagha(A)Kha(A)

(
φ̂(Z)− g⊤

ha(A)β̂h(a)
)

+ e⊤1 D̂
−1
ha

∫
gha(t)Kha(t)τ̂(t,V)dPn(t)− θ̂(a).

Finally, we compare the asymptotic variance in Theorem
5.3 with the asymptotic variance in Kennedy et al. (2017),
where the unlabeled dataset U and surrogates S are unavail-
able. Consider the MCAR setting where R is independent
of all other variables so that ρ(a,x) = ρ ∈ (0, 1), and for
simplicity assume n1 = nρ to show how the surrogates and
unlabeled data help to reduce the variance in this special set-
ting. Note that since R is independent of all other variables,
we have Var(Y |A = a,X, R = 1) = Var(Y |A = a,X)
and µ(a,X, 1) = E[Y |A = a,X, R = 1] = E[Y |A =

a,X] = µ(a,X). The asymptotic variance of θ̂(a) in our
setting (i.e. in Theorem 5.3) is reduced to

1

nh
E
{[

Var(Y |A = a,X)

ρ

+ Var(µ(a,X)|A = a,V)]w2(a,V)

∣∣∣∣A = a

} (5)

under the MCAR assumption (note the additional factor∫
K2(u)du/f(a) is omitted since it appears in both set-

tings). In the setting where the unlabeled data is unavailable,
the asymptotic variance is shown to be

1

n1h
E
{
Var(Y |A = a,V)w2(a,V)|A = a

}
(6)

in Kennedy et al. (2017). By the property of conditional
variance

Var(Y |A = a,V) =E[Var(Y |A = a,X)|A = a,V]

+ Var(E[Y |A = a,X]|A = a,V),

(6) can be re-written as

1

n1h
E {(Var(Y |A = a,X)

+Var(µ(a,X)|A = a,V))w2(a,V)|A = a
}
.

(7)

Comparing (5) with (7) we see the first term is the same
since nρ = n1. However the second term in (7) is improved
by a factor of ρ in (5). This shows how the variance of the
estimator is smaller after introducing unlabeled data and
surrogate outcomes. The amount of improvement depends
on the missing rate 1 − ρ and Var(µ(a,X)|A = a,V),
which measures the variation of µ(A,V,S) that cannot be
explained by (A,V).

6. Simulation Study
In this section we use simulations to evaluate the perfor-
mance of the proposed methods. We will illustrate the
advantage of doubly robust estimation over naive plug-in
style estimators. Consider the following data-generating
process: The covariates V have a multi-variate Gaussian
distribution

V = (V1, V2, V3, V4)
⊤ ∼ N(0, I4).

Conditioning on V, the continuous treatment A has normal
distribution N(λ(V), 1) with

λ(V) = 1 + 0.2V1 + 0.2V2 − 0.2V3 + 0.3V4.

The surrogates S has a normal distribution

S = (S1, S2)
⊤ ∼ N(0, I2).

The indicator of whether the outcome is observed or not
R is Bernoulli(0.5) (so we assume a missing completely
at random mechanism and ρ = 0.5). Finally the outcome
Y conditioning on A,X, R = 1 has a normal distribution
N(µ(A,X, 1), 1) with

µ(A,X, 1) =1 + (0.1,−0.1)⊤S+ (0.2, 0.2, 0.3,−0.1)⊤V

+A(1− 0.1V1 + 0.1V3)−A2.

By direct calculations we have

τ(A,V) = 1 + (0.2, 0.2, 0.3,−0.1)⊤V

+A(1− 0.1V1 + 0.3V3)−A2,

The dose-response function of interest is

θ(A) = 1 +A−A2.

To illustrate the performance of two estimators with dif-
ferent nuisance estimation errors we will manually set the
estimation error, which is applicable for simulation purposes.
For a fixed α we let ϵ1, . . . , ϵ4 ∼ N(n−α, n−2α) and set
λ̂(V) = λ(V)+ϵ1, the estimated conditional density ofA is
N
(
λ̂(V), 1

)
, µ̂(A,X, 1) = µ(A,X, 1) + ϵ2, τ̂(A,V) =

τ(A,V)+ϵ3, logit (ρ̂) = logit(ρ)+ϵ4. Such estimates guar-
antee the nuisance estimation error is of order n−α. After
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Figure 2. Root mean square error Versus α, where n−α is the estimation error of the nuisance functions.

we generate a sample of size n, the plug-in style estimator
is defined as θ̂(a) = 1

n

∑n
i=1 τ̂(a,Vi). To implement the

doubly robust estimator we split the sample into two parts
D,T (since the nuisance estimators are given there is no
need to split the sample into three parts as in Algorithm
1). We use D to construct estimator of the initial estima-
tor θ̂0(a) = 1

|D|
∑

i∈D τ̂(a,Vi), marginal density f̂(a) =
1

|D|
∑

i∈D π̂(a|Vi) and select the optimal bandwidth h∗ (i.e.
construct pseudo-outcomes and run LOOCV as in equation
(4) on D). We then construct pseudo-outcomes on T and
perform local linear estimation using the optimal bandwidth
h∗. Finally, the roles ofD and T are exchanged to obtain an-
other estimator and we average the two estimates as the final
doubly robust estimator. For sample size n ∈ {500, 2000}
and convergence rate α ∈ {0.1, 0.13, . . . , 0.4}, we repeat
the data generation and estimation process M = 500
times. We will aim at estimating θ(1) and compare the

RMSE=
{

1
M

∑M
m=1

[
θ̂m(1)− θ(1)

]2}1/2

of plug-in es-

timator and doubly robust estimator, where θ̂m(1) is the
estimate from m-th repetition. The results are summarized
in Figure 2.

As we see in Figure 2, if the nuisance estimation error is
large (α is small), the doubly robust estimator outperforms
the naive plug-in estimator. This can be explained by the
second-order bias term of the doubly robust estimator in
Proposition 5.2, i.e., the conditional bias is the product of
nuisance estimation errors and is “doubly small”. On the
other hand, the plug-in style estimator inherits the slow
convergence rate of τ̂ . As α increases, the estimators of nui-
sance functions are more accurate, and plug-in style estima-
tors finally outperform the doubly robust estimator because
the doubly robust estimator may suffer from accumulating
error in constructing pseudo-outcomes, bandwidth selection,
and local linear regression, which dominates the conditional

bias when nuisance estimation is accurate enough. In real
applications, there are typically many covariates and para-
metric models for nuisance functions may not be correct.
The convergence rate of nonparametric nuisance estimation
can be slow when the dimension of covariates is large so
the doubly robust estimator with a smaller bias is recom-
mended for use. Additional simulation results and a real
data example are provided in the supplementary materials.

7. Discussion
In this work, we study the estimation of continuous treat-
ment effects when there is limited access to the primary
outcome of interest but auxiliary information on surrogate
outcomes is available. We propose a doubly robust estimator
that is less sensitive to nuisance estimation error and hence
incorporates flexible nonparametric machine learning meth-
ods. Although nonparametric machine learning methods
usually suffer from slow convergence rates, they are widely
used in nuisance function estimation, especially when prac-
titioners do not have sufficient domain knowledge to justify
parametric models. Our doubly robust estimator facilitates
the application of nonparametric methods and enjoys op-
timal estimation rates under mild conditions. Asymptotic
normality is further established, which enables researchers
to construct confidence intervals and perform statistical in-
ference. We also show how incorporating information on
surrogate outcomes improves the variance, compared with
methods solely based on labeled data, as in Kennedy et al.
(2017). In summary, our methodology provides a robust and
efficient approach to leverage surrogate outcomes in con-
tinuous treatment effect estimation. However, our method
could not deal with the case where only covariate is avail-
able in the unlabeled dataset and continuous treatment is
also missing (corresponds to the generalizability problem as
in Dahabreh et al. (2019)). It is also interesting to extend our
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results to studies with multiple outcomes (Kennedy et al.,
2019; Du et al., 2024). We leave these problems for future
investigation.

Impact Statement
Our research introduces an efficient method for incorporat-
ing surrogate outcomes into the estimation of continuous
treatment effects, especially useful in contexts where mea-
suring the primary outcome for all subjects is costly or
impractical. This approach is particularly helpful in fields
like medicine, where it can facilitate the assessment of new
treatments’ effects on mortality rates, and in business, for
evaluating long-term strategies. By appropriately taking
advantage of surrogate outcomes and modeling the missing
mechanism of the primary outcome, our method enables
more feasible and data-driven decision-making, which pro-
vides important implications in difference areas and enhance
both the effectiveness and efficiency of research and strate-
gic planning.
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A. Background on Efficiency Theory
As discussed in Section 3, the plug-in estimator suffers from first-order error and is sensitive to the estimation accuracy of
nuisance functions. To address this problem, one can derive the efficient influence function of the target functional (E[θ(A)]
in our problem), based on which a one-step estimator can be obtained to reduce the bias. The efficient influence function
is critical in non-parametric efficiency theory (Bickel et al., 1993; Tsiatis, 2006; Van der Vaart, 2000; Laan & Robins,
2003; Kennedy, 2022). Mathematically, the influence function is the derivative of the target statistical functional in a Von
Mises expansion (i.e., distributional Taylor expansion). In the discrete case, it coincides with the Gateaux derivative of the
functional when the contamination distribution is a point mass. Influence functions are important in different respects. First,
the variance of the influence function is equal to the efficiency bound of the target statistical functional, which characterizes
the inherent estimation difficulty of the target functional and provides a benchmark to compare against when we construct
estimators. Moreover, it allows us to correct for first-order bias in the plug-in estimator and obtain doubly robust-style
estimators, which enjoy appealing statistical properties even if non-parametric methods with relatively slow rates are used in
nuisance estimation.

Suppose the statistical functional of interest ψ = ψ(P) admits the first-order Von Mises expansion. Mathematically, we have

ψ(P̂)− ψ(P) = −
∫
ϕ1(z, P̂)dP(z) +R2(P̂,P), (8)

where ϕ1(z,P) is the influence function of ψ(P), ψ(P̂) is the plug-in estimator and R2(P̂,P) is the second-order reminder.
Under regularity conditions, Von Mises expansion implies the pathwise differentiability

∂

∂ϵ
ψ (Pϵ)

∣∣∣∣
ϵ=0

=

∫
ϕ1(z;P)sϵ(z)dP(z)

where sϵ(z) = ∂
∂ϵ log pϵ(z)

∣∣
ϵ=0

is the submodel score function. (8) suggests that the plug-in estimator has first-order bias
−
∫
ϕ1(z, P̂)dP(z). Equivalently, we can write

ψ(P) = ψ(P̂) +
∫
ϕ1(z, P̂)dP(z) +R2(P̂,P),

which motivates us to correct for the first-order bias and arrive at the doubly robust estimator

ψ̂dr = ψ(P̂) + Pn{ϕ1(Z, P̂)}.

Under further empirical process assumptions or sample splitting assumptions, we can show the dominating term in the
conditional bias of ψ̂dr is R2(P̂,P), which is usually a second-order error term and depends on the product of convergence
rates of nuisance functions. We refer the readers to Kennedy et al. (2016); Kennedy (2022) for a more complete review. In
our problem, the estimand θ(a) in (2) is not pathwise differentiable and the ideas above do not apply directly. However,
the pseudo-outcome φ(Z) is obtained by deriving the influence function of E[θ(A)]. The readers are referred to Section
3.1 of Kennedy et al. (2017) for more discussion on the connection between the pseudo-outcome of θ(a) and the influence
function of E[θ(A)].

B. Proofs
B.1. Proof of Theorem 3.5

Proof.
E[Y a]

=E[E(Y a|V,Sa]

=E[E(Y a|A = a,V,Sa)]

=E[E(Y a|A = a,V,Sa, R = 1)]

=E{E[E(Y a|A = a,V,Sa, R = 1)|V]}
=E{E[E(Y a|A = a,V,Sa, R = 1)|A = a,V]}
=E{E[E(Y |A = a,V,S, R = 1)|A = a,V]},
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where the first and fourth equations follow from the property of conditional expectation. The second equation holds since
Assumption 3.2 implies Y a ⊥⊥ A|V,Sa. The third equation follows from Assumption 3.3. The fifth equation follows from
Assumption 3.2 (specifically Sa ⊥⊥ A|V). The last equation follows from Assumption 3.1. Note that positivity is implicitly
assumed to guarantee the conditional expectations are well-defined.

B.2. Proof of Proposition 4.1

Proof. If µ̄ = µ we have

φ(Z;µ, π̄, ρ̄) =

[
R(Y − µ(A,X, 1))

ρ̄(A,X)
+ µ(A,X, 1)− E[µ(A,X, 1)|A,V]

] ∫
V π̄(A|v)dP(v)
π̄(A|V)

+ θ(A).

Note that

E
[
R(Y − µ(A,X, 1))

ρ̄(A,X)

∣∣∣∣A = a,X, R

]
=

R

ρ̄(a,X)
E[Y − µ(a,X, 1)|A = a,X, R = 1] = 0,

E[µ(A,X, 1)− E[µ(A,X, 1)|A,V]|A = a,V] = 0.

These two equations imply

E
{[

R(Y − µ(A,X, 1))

ρ̄(A,X)
+ µ(A,X, 1)− E[µ(A,X, 1)|A,V]

] ∫
V π̄(A|v)dP(v)
π̄(A|V)

∣∣∣∣A = a

}
= 0

and hence
E[φ(Z;µ, π̄, ρ̄)|A = a] = θ(a).

If (π̄, ρ̄) = (π, ρ),

φ(Z; µ̄, π, ρ) =

[
R(Y − µ̄(A,X, 1))

ρ(A,X)
+ µ̄(A,X, 1)− E[µ̄(A,X, 1)|A,V]

] ∫
V π(A|v)dP(v)
π(A|V)

+

∫
V
E[µ̄(A,X, 1)|A,V = v]dP(v).

Note that

E
[
R(Y − µ̄(A,X, 1))

ρ(A,X)

∣∣∣∣A = a,X, R

]
=
R(µ(a,X, 1)− µ̄(a,X, 1))

ρ(a,X)
,

E
[
R(Y − µ̄(A,X, 1))

ρ(A,X)

∣∣∣∣A = a,X

]
= E

[
R(µ(a,X, 1)− µ̄(a,X, 1))

ρ(a,X)

∣∣∣∣A = a,X

]
= µ(a,X, 1)− µ̄(a,X, 1).

By the property of conditional expectation, we have

E
{[

R(Y − µ̄(A,X, 1))

ρ(A,X)
+ µ̄(A,X, 1)− E[µ̄(A,X, 1)|A,V]

] ∫
V π(A|v)dP(v)
π(A|V)

∣∣∣∣A = a,V

}
=E

{
µ(a,X, 1)− E[µ̄(a,X, 1)|A = a,V]

∣∣A = a,V
} ∫V π(a|v)dP(v)

π(a|V)

=E[µ(a,X, 1)− µ̄(a,X, 1)
∣∣A = a,V]

∫
V π(a|v)dP(v)
π(a|V)

.

Due to the following equation on the measure:

dP(v|a) = π(a|v)dP(v)∫
V π(a|v)dP(v)

, (9)

we can write

E
{[

R(Y − µ̄(A,X, 1))

ρ(A,X)
+ µ̄(A,X, 1)− E[µ̄(A,X, 1)|A,V]

] ∫
V π(A|v)dP(v)
π(A|V)

∣∣∣∣A = a

}
=

∫
V
E[µ(a,X, 1)− µ̄(a,X, 1)

∣∣A = a,V = v]

∫
V π(a|v)dP(v)

π(a|v)
dP(v|a)

=

∫
V
E[µ(a,X, 1)− µ̄(a,X, 1)

∣∣A = a,V = v]dP(v).

13
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Finally we get

E[φ(Z; µ̄, π, ρ)|A = a]

=

∫
V
E[µ(a,X, 1)− µ̄(a,X, 1)

∣∣A = a,V = v]dP(v) +
∫
V
E[µ̄(a,X, 1)|A = a,V = v]dP(v)

=

∫
V
E[µ(a,X, 1)|A = a,V = v]dP(v)

= θ(a).

B.3. Proof of Theorem 5.1

Proof. By Theorem 1 in Kennedy (2023), the linear smoother is stable if the variance Var(φ(Z)|A = a) is bounded away
from 0, i.e.

θ̂(a)− θ̃(a)− Ên [̂b(A)|A = a] = oP(Rn(a))

if supz |φ̂(z)− φ(z)| = oP(1).

B.4. Proof of Proposition 5.2

Proof. For abbreviations, we will omit conditioning onDn in our notation but all the expectations in this part are conditioning
on Dn (recall such expectation is denoted using P). Note that

E[φ(Z)|A = a] = θ(a)

by Proposition 4.1. By the property of conditional expectation

P
{[

R(Y − µ̂(a,X, 1))

ρ̂(a,X)
+ µ̂(a,X, 1)− τ̂(a,V)

]
ŵ(a,V)

∣∣∣∣A = a

}
=P

{[
R(µ(a,X, 1)− µ̂(a,X, 1))

ρ̂(a,X)
+ µ̂(a,X, 1)− τ̂(a,V)

]
ŵ(a,V)

∣∣∣∣A = a

}
=P

{[
ρ(a,X)(µ(a,X, 1)− µ̂(a,X, 1))

ρ̂(a,X)
+ µ̂(a,X, 1)− τ̂(a,V)

]
ŵ(a,V)

∣∣∣∣A = a

}
=P

{[(
1− ρ(a,X)

ρ̂(a,X)

)
(µ̂(a,X, 1)− µ(a,X, 1)) + µ(a,X, 1)− τ̂(a,V)

]
ŵ(a,V)

∣∣∣∣A = a

}
=P

{[(
1− ρ(a,X)

ρ̂(a,X)

)
(µ̂(a,X, 1)− µ(a,X, 1))

]
ŵ(a,V)

∣∣∣∣A = a

}
+ P[(τ(a,V)− τ̂(a,V))ŵ(a,V)|A = a]

(10)

where the first equation follows by conditioning on X, R,A = a, the second equation follows from conditioning on
X, A = a and the last equation follows from conditioning on V, A = a. Further note that θ(a) = E[τ(a,V)] and

P
[
θ̂0(a)

]
− θ(a) =

1

n

∑
i∈Dn

2

τ̂(a,Vi)− P[τ̂(a,V)] + P[τ̂(a,V)− τ(a,V)]. (11)

By equation 9

P[τ̂(a,V)− τ(a,V)] =

∫
V
(τ̂(a,v)− τ(a,v))dP(v) =

∫
V
(τ̂(a,v)− τ(a,v))w(a,v)dP(v|A = a).

Add equation 10 and equation 11 together we have

b̂(a) =P
{[(

1− ρ(a,X)

ρ̂(a,X)

)
(µ̂(a,X, 1)− µ(a,X, 1))

]
ŵ(a,V)

∣∣∣∣A = a

}
+ P[(τ(a,V)− τ̂(a,V))(ŵ(a,V)− w(a,V))|A = a] +

1

n

∑
i∈Dn

2

τ̂(a,Vi)− P[τ̂(a,V)].

14
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The bound on b̂ then follows from Cauchy-Schwarz’s inequality.

For linear smoother Ên, we have

∣∣∣Ên

[
b̂(A)|A = a

]∣∣∣ = ∣∣∣∣∣∑
i∈Tn

Wi(a;A
n)̂b(Ai)

∣∣∣∣∣ ≤ sup
t∈N(a)

|̂b(t)|
∑
i∈Tn

|Wi(a;A
n)| ≤ C sup

t∈N(a)

|̂b(t)|

B.5. Proof of Theorem 5.3

Proof. We will prove the results with the following decomposition. Let θ̃(a) = e⊤1 D̂
−1
haPn[gha(A)Kha(A)φ(Z)] be the

oracle estimator. We write

θ̂(a)− θ(a) = θ̃(a)− θ(a) + e⊤1 D̂
−1
haPn[gha(A)Kha(A)(φ̂(Z)− φ(Z))]

=: θ̃(a)− θ(a) +R1 +R2

where R1 = e⊤1 D̂
−1
ha (Pn − P)[gha(A)Kha(A)(φ̂(Z)− φ(Z))] and R2 = e⊤1 D̂

−1
haP[gha(A)Kha(A)(φ̂(Z)− φ(Z))].

Step 1: The CLT term. The existing results on local linear estimator (Fan et al., 1994; Fan & Gijbels, 1996) imply

√
nh

(
θ̃(a)− θ(a)−

h2θ′′(a)
∫
u2K(u)du

2

)
d→ N

(
0,
σ2(a)

∫
K2(u)du

f(a)

)
under the conditions stated in the theorem. The conditional variance can be computed as follows:

σ2(a) = Var(φ(Z)|A = a)

=E[(φ(Z)− θ(a))2|A = a]

=E

{[
R(Y − µ(a,X, 1))

ρ(a,X)
+ µ(a,X, 1)− τ(a,V)

]2
w2(a,V)

∣∣∣∣A = a

}

=E
{[

R(Y − µ(a,X, 1))2

ρ2(a,X)
+ (µ(a,X, 1)− τ(a,V))2

]
w2(a,V)

∣∣∣∣A = a

}
,

where the last equation follows since by conditioning on A = a,X, R one can show

E
{[

R(Y − µ(a,X, 1))(µ(a,X, 1)− τ(a,V))

ρ(a,X)

]
w2(a,V)

∣∣∣∣A = a

}
= 0.

For the first term in σ2(a)

E
{
R(Y − µ(a,X, 1))2w2(a,V)

ρ2(a,X)

∣∣∣∣A = a

}
=E

{
RVar(Y |A = a,X, R = 1)w2(a,V)

ρ2(a,X)

∣∣∣∣A = a

}
=E

{
Var(Y |A = a,X, R = 1)w2(a,V)

ρ(a,X)

∣∣∣∣A = a

}
,

where the first equation follows from conditioning on A = a,X, R and the second equation follows from conditioning on
A = a,X. For the second term in σ2(a) we have

E
[
(µ(a,X, 1)− τ(a,V))2w2(a,V)|A = a

]
= E

[
Var(µ(a,X, 1)|A = a,V)w2(a,V)|A = a

]
.

Hence

σ2(a) = E
{[

Var(Y |A = a,X, R = 1)

ρ(a,X)
+ Var(µ(a,X, 1)|A = a,V)

]
w2(a,V)

∣∣∣∣A = a

}
15
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Step 2: Bounding R1. Then we proceed to analyze R1 = e⊤1 D̂
−1
ha (Pn − P)[gha(A)Kha(A)(φ̂(Z) − φ(Z))]. We first

show e⊤1 D̂
−1
ha = OP(1). Recall D̂ha = Pn[gha(A)Kha(A)g

⊤
ha(A)] ∈ R2×2. Note that Pn[Kha(A)] is the kernel density

estimator of f(a) and standard results in the literature show

E[(Pn[Kha(A)]− f(a))2] = O

(
h2 +

1

nh

)
= o(1),

which implies D̂ha,11 = Pn[Kha(A)]
P→ f(a). For the element of D̂ha not on the diagonal

E
[(

A− a

h

)
Kha(A)

]
=

∫
t− a

h

1

h
K

(
t− a

h

)
f(t)dt =

∫
uK(u)f(a+ hu)du.

So we have∣∣∣∣E [(A− a

h

)
Kha(A)

]
−
∫
uK(u)f(a)du

∣∣∣∣ ≤ ∫ |u|K(u)|f(a+ hu)− f(a)| ≲ h

∫
u2K(u)du→ 0.

Since K is symmetric around 0 we have
∫
uK(u)du = 0 and hence

E
[(

A− a

h

)
Kha(A)

]
= O(h).

Further notice

Var

(
Pn

[(
A− a

h

)
Kha(A)

])
=

1

n
Var

((
A− a

h

)
Kha(A)

)
≤ 1

n
E

[(
A− a

h

)2

K2
ha(A)

]

=
1

n

∫ (
t− a

h

)2
1

h2
K2

(
t− a

h

)
f(t)dt

=
1

nh

∫
u2K2(u)f(a+ hu)du

≤ ∥f∥∞
nh

∫
u2K2(u)du = O

(
1

nh

)
.

Hence we have

E

{{
Pn

[(
A− a

h

)
Kha(A)

]}2
}

= O

(
h2 +

1

nh

)
= o(1),

which implies D̂ha,12 = Pn

[(
A−a
h

)
Kha(A)

] P→ 0. Finally

E

[(
A− a

h

)2

Kha(A)

]
=

∫ (
t− a

h

)2
1

h
K

(
t− a

h

)
f(t)dt =

∫
u2K(u)f(a+ hu)du.

So we have∣∣∣∣∣E
[(

A− a

h

)2

Kha(A)

]
−
∫
u2K(u)f(a)du

∣∣∣∣∣ ≤
∫
u2K(u)|f(a+ hu)− f(a)| ≲ h

∫
|u|3K(u)du→ 0.

One can similarly show

Var

((
A− a

h

)2

Kha(A)

)
= O(1/h)

16



Continuous Treatment Effects with Surrogate Outcomes

and hence

E


{
Pn

[(
A− a

h

)2

Kha(A)

]
−
∫
u2K(u)f(a)du

}2
 = O

(
h2 +

1

nh

)
= o(1),

which implies D̂ha,22 = Pn

[(
A−a
h

)2
Kha(A)

]
P→ f(a)

∫
u2K(u)du. Hence we have

D̂−1
ha

P→ diag

{
f(a)−1, f(a)−1

(∫
u2K(u)du

)−1
}
.

This implies e⊤1 D̂
−1
ha = OP(1). Then we consider (Pn − P)[gha(A)Kha(A)(φ̂(Z) − φ(Z))]. By Lemma 2 in Kennedy

et al. (2020) we have for j = 1, 2

(Pn − P)[gha,j(A)Kha(A)(φ̂(Z)− φ(Z))] = OP

(
∥gha,j(A)Kha(A)(φ̂(Z)− φ(Z))∥2√

n

)
Note that

∥gha,j(A)Kha(A)(φ̂(Z)− φ(Z))∥22
=P

[
g2ha,j(A)K

2
ha(A)(φ̂(Z)− φ(Z))2

]
≤∥φ̂− φ∥2∞

∫ (
t− a

h

)2(j−1)
1

h2
K2

(
t− a

h

)
f(t)dt

≤ ∥φ̂− φ∥2∞
h

∫
u2(j−1)K2(u)f(a+ hu)du

≲
∥φ̂− φ∥2∞

h
.

This together with ∥φ̂− φ∥∞ = oP(1) implies

(Pn − P)[gha,j(A)Kha(A)(φ̂(Z)− φ(Z))] = OP

(
∥φ̂− φ∥∞√

nh

)
= oP

(
1√
nh

)
.

We conclude that R1 = oP

(
1√
nh

)
.

Step 3: Bounding R2. The last step is to bound R2 = e⊤1 D̂
−1
haP[gha(A)Kha(A)(φ̂(Z)− φ(Z))]. Since e⊤1 D̂

−1
ha = OP(1)

we only need to consider

P[gha(A)Kha(A)(φ̂(Z)− φ(Z))] =

∫
gha(t)Kha(t)P[φ̂(Z)− φ(Z)|A = t]f(t)dt

In Proposition 5.2 we show b̂(a) is equal to

P[φ̂(Z)− φ(Z)|A = t] =P
{[(

1− ρ(t,X)

ρ̂(t,X)

)
(µ̂(t,X, 1)− µ(t,X, 1))

]
ŵ(t,V)

∣∣∣∣A = t

}
+ P[(τ(t,V)− τ̂(t,V))(ŵ(t,V)− w(t,V))|A = t] +

1

n

∑
i∈Dn

2

τ̂(t,Vi)− P[τ̂(t,V)]

Plug into the equation above we have∫
gha,j(t)Kha(t)P[φ̂(Z)− φ(Z)|A = t]f(t)dt

=

∫
gha,j(t)Kha(t)P

{[(
1− ρ(t,X)

ρ̂(t,X)

)
(µ̂(t,X, 1)− µ(t,X, 1))

]
ŵ(t,V)

∣∣∣∣A = t

}
f(t)dt

+

∫
gha,j(t)Kha(t)P[(τ(t,V)− τ̂(t,V))(ŵ(t,V)− w(t,V))|A = t]f(t)dt

+ (Pn − P)
∫
gha,j(t)Kha(t)τ̂(t,V)f(t)dt

17
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Here we slightly abuse the notation and denote Pn as the average over Dn
2 . By boundedness of nuisance estimates and

Cauchy-Schwarz’s inequality, we have∣∣∣∣∫ gha,j(t)Kha(t)P
{[(

1− ρ(t,X)

ρ̂(t,X)

)
(µ̂(t,X, 1)− µ(t,X, 1))

]
ŵ(t,V)

∣∣∣∣A = t

}
f(t)dt

∣∣∣∣
≲
∫

|gha,j(t)|Kha(t)∥ρ̂− ρ∥t∥µ̂− µ∥tf(t)dt

≤ sup
|t−a|≤h

∥ρ̂− ρ∥t∥µ̂− µ∥t
∫ ∣∣∣∣ t− a

h

∣∣∣∣j−1
1

h
K

(
t− a

h

)
f(t)dt

= sup
|t−a|≤h

∥ρ̂− ρ∥t∥µ̂− µ∥t
∫

|u|j−1
K (u) f(a+ hu)du

≲ sup
|t−a|≤h

∥ρ̂− ρ∥t∥µ̂− µ∥t.

Similarly we have ∣∣∣∣∫ gha,j(t)Kha(t)P[(τ(t,V)− τ̂(t,V))(ŵ(t,V)− w(t,V))|A = t]f(t)dt

∣∣∣∣
≤
∫

|gha,j(t)|Kha(t)∥τ̂ − τ∥t∥ŵ − w∥tf(t)dt

≲ sup
|t−a|≤h

∥τ̂ − τ∥t∥ŵ − w∥t.

For the remaining term (Pn − P)
∫
gha,j(t)Kha(t)τ̂(t,V)f(t)dt, by Lemma 2 in Kennedy et al. (2020) we have

(Pn − P)
∫
gha,j(t)Kha(t)(τ̂(t,V)− τ(t,V))f(t)dt = OP

(
∥
∫
gha,j(t)Kha(t)(τ̂(t,V)− τ(t,V))f(t)dt∥2√

n

)
where ∥∥∥∥∫ gha,j(t)Kha(t)(τ̂(t,V)− τ(t,V))f(t)dt

∥∥∥∥2
2

=

∫ [∫
gha,j(t)Kha(t)(τ̂(t,V)− τ(t,V))f(t)dt

]2
dP(v)

≤∥τ̂ − τ∥2∞
(∫

|gha,j(t)|Kha(t)f(t)dt

)2

≲ ∥τ̂ − τ∥2∞.

This together with ∥τ̂ − τ∥∞ = oP(1) implies

(Pn − P)
∫
gha,j(t)Kha(t)(τ̂(t,V)− τ(t,V))f(t)dt = oP

(
1√
n

)
. (12)

By direct calculations (where we assume the outcome is bounded hence τ is also bounded)

E

{[
(Pn − P)

∫
gha,j(t)Kha(t)τ(t,V)f(t)dt

]2}

≤ 1

n
E

{(∫
gha,j(t)Kha(t)τ(t,V)f(t)dt

)2
}

≲
1

n
E

{(∫
|gha,j(t)|Kha(t)f(t)dt

)2
}

≲
1

n
,
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which implies

(Pn − P)
∫
gha,j(t)Kha(t)τ(t,V)f(t)dt = OP

(
1√
n

)
.

Combining this equation with (12) yields

(Pn − P)
∫
gha,j(t)Kha(t)τ̂(t,V)f(t)dt = OP

(
1√
n

)
= oP

(
1√
nh

)
.

Hence under the rate conditions in the theorem, we conclude

R2 = OP

(
sup

|t−a|≤h

∥ρ̂− ρ∥t∥µ̂− µ∥t + sup
|t−a|≤h

∥τ̂ − τ∥t∥ŵ − w∥t

)
+ oP

(
1√
nh

)
= oP

(
1√
nh

)
.

The asymptotic normality then follows from Slutsky’s theorem.

C. Additional Simulation Results
C.1. Nuisance Functions Estimated by Parametric Methods

We evaluate the performance of plug-in-style estimator and doubly robust estimator when nuisance functions are estimated
using parametric models under the same setting as Section 6. We will fit linear regression models for µ, τ, λ and separately
consider correctly specifying the outcome model µ, τ or not, where a misspecified model left out the quadratic term in a
but keeps all other main effects and interactions. The conditional density of A given V is obtained by first estimating the
conditional mean of E[A|V] and plug-in the normal density (i.e., we assume the model for conditional density is always
correct). For the plug-in estimator we randomly separate the sample into two parts D,T . The first part D is used to fit the
regression models for all nuisance functions and we take the average on the second part as θ̂(a) = 1

|T |
∑

i∈T τ̂(a,Vi). The
roles of D,T are then exchanged to obtain another estimate and the final estimator is the average of two estimates. The
doubly robust estimator is implemented according to Algorithm 1, where the bandwidth is selected on D2. We generate
samples with sample size n ∈ {102.6, 102.8, . . . , 104.6}, apply two estimators to estimate θ(1) and repeat the process 500
times. The results are summarized in Figure 3.

103 104

Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

RM
SE

Plug-in with Correct Outcome Model
Plug-in with Wrong Outcome Model
DR-learner with Correct Outcome Model
DR-learner with Wrong Outcome Model

Figure 3. RMSE versus sample size (in log scale) when nuisance functions are estimated by parametric models.

When the outcome model is misspecified, the plug-in estimator (solely based on outcome modeling) is no longer consistent,
as shown in Figure 3. The doubly robust estimator, however, models both the outcome and treatment process and has a

19



Continuous Treatment Effects with Surrogate Outcomes

smaller estimation error when the outcome model is misspecified. Estimation with correctly specified outcome model
corresponds to α = 0.5 in Figure 2, where doubly robust estimator with outcome model and propensity score both correctly
specified has larger error compared with the plug-in estimator since slow rate of local linear smoothing O(n−2/5) dominates
the nuisance estimation error O(n−1/2).

C.2. Nuisance Functions Estimated by Nonparametric Methods

We further evaluate the performance of the plug-in style estimator and doubly robust estimator when nuisance functions
are estimated using nonparametric models under the same setting as Section 6. We will fit nuisance functions µ, τ, ρ by
superlearner combining generalized linear models and random forests. The conditional density of A given V is estimated by
kernel density estimation. The plug-in estimator is implemented the same way as in Appendix C.1 and the doubly robust
estimator is implemented according to Algorithm 1. We generate samples with sample size n ∈ {102.6, 102.8, . . . , 104},
apply two estimators to estimate θ(1) and repeat the process 500 times. The results are summarized in Figure 3.
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Figure 4. RMSE versus sample size when nuisance functions are estimated by nonparametric models.

As shown in Figure 4, the plug-in-style estimator has smaller estimation error when all the nuisance functions are fitted by
nonparametric methods. This could be explained by the diffculty in nonparametrically estimating conditional density π.
Due to the curse of dimensionality, a large sample size is required for the kernel density estimator to estimate π well. In our
simulations, we find π̂ could be small and hence violate the positivity assumption, yielding variation in the construction of
pseudo-outcome φ̂ and larger estimation error of dose-response compared with the plug-in estimator. In applications, prior
knowledge on the conditional density, including a reliable parametric model on π from domain knowledge or information
on the lower bound on π due to study design might help us reduce the variation of π̂ and estimate the conditional density
better, which could improve the performance of doubly robust estimator proposed.

C.3. Surrogates Dependent on Treatment and Covariates

In this section we provide additional simulation results on the setting where surrogates may depend on the treatment
and covariates. In real applications, the surrogates S are post-treatment short-term outcomes and are likely to depend on
pre-treatment covariates and the treatment. We follow the same setting and estimation procedures as in Section 6 (so the
nuisance estimation error is set manually) but modify the conditional distribution of S given (A,V) as

S ∼ N
(
(V1 +A, V2 −A)⊤, I2

)
.

The RMSE is estimated from M = 500 replications of the data-generating process and estimation procedures. The results
of DR-learner and plug-in estimators are summarized in Figure 5.
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(a) n = 500
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(b) n = 2000

Figure 5. Root mean square error Versus α, where n−α is the estimation error of the nuisance functions.

Figure 5 shows when surrogate outcomes S depend on treatment and covariates, the doubly robust estimator enjoys better
estimation accuracy compared with the plug-in estimator when α is small (and hence nuisance estimation error is large).
As α increases and the nuisance estimation error becomes smaller, the plug-in estimator gradually outperforms the doubly
robust estimator. The results are similar to those in Section 6 and readers are referred to Section 6 for more discussion and
explanation.

C.4. Comparison Between Supervised and Semi-supervised Methods

In this section we compare the supervised estimator, which implements the method in (Kennedy et al., 2017) on labeled data
L, with our semi-supervised estimator incorporating the unlabeled data U with surrogate outcomes. We follow the same
setting in Section 6 and implement method in (Kennedy et al., 2017) via similar cross-fitting techniques as in Algorithm
1 except that there is no need to fit ρ(a,x) = P(R = 1 | A = a,X = x) since their method only uses labeled data. All
the nuisance functions are estimated by correctly specified parametric models. We generate samples with sample size
n ∈ {102.6, 102.8, . . . , 104.6}, apply supervised and semi-supervised methods to estimate θ(1) and repeat the process
M = 500 times. The results are summarized in Figure 6.

Figure 6 shows the semi-supervised method incorporating unlabeled data with surrogate outcomes has a smaller estimation
error compared with the supervised method only using labeled data. The improvement comes from many aspects: As
discussed in Section 5.2, the asymptotic variance of our semi-supervised method is smaller than that of the supervised
method only using labeled data; Also in the semi-supervised setting, both labeled and unlabeled data are used to estimate
the nuisance functions, making nuisance estimation more accurate than supervised method solely based on labeled data
since the effective sample size of semi-supervised method is larger.

D. Real Data Analysis
In this section we apply the proposed method to the Job Corps study, conducted in the 1990s to evaluate the effects of the
publicly funded U.S. Job Corps program. The Job Corps program targets a population between 16 and 24 years old living in
the U.S. and coming from low-income households, where participants received an average of 1,200 hours of vocational
training over approximately eight months. Schochet et al. (2001) and Schochet et al. (2008) discuss the study design in
detail and analyze the effects of the Jobs Corps program on various outcomes. They found the Job Corps program effectively
increased educational attainment, prevented arrests, and increased employment and earnings. The effects of the Job Corps
program have been extensively studied under different causal inference frameworks (Flores & Flores-Lagunes, 2009; Huber,
2014; Frölich & Huber, 2017).

However, these previous studies on the Job Corps program mainly considered binary treatment definitions. In this work, we
are interested in estimating the effects of different doses of participation in the program on future involvement in the criminal
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Figure 6. RMSE versus sample size when nuisance functions are estimated by correctly specified parametric models.

justice system, namely the number of arrests in the fourth year after the program (outcome Y ). Specifically, our treatment
variable A is defined as the total hours spent either in academic or vocational classes of the program. The short-term
surrogate outcome S is the proportion of weeks employed in the second year after the program. Huber et al. (2020) used
generalized propensity score weighting to estimate the continuous treatment effects of time spent in the Job Corps program
under a mediation analysis framework. We re-analyze their dataset publically available on Harvard dataverse (Huber, 2020),
using the doubly robust estimator proposed as an illustration of our method.

We follow Huber et al. (2020) and focus on n = 4000 samples with a positive treatment (i.e., Ai > 0, 1 ≤ i ≤ n). To
identify the causal estimand, we invoke the conditional exchangeability in Section 3, where a set of covariates is conditioned
on to adjust for confounding bias. The covariate set V we adjust for confounding consists of age, gender, ethnicity, education,
marital status, previous employment status and income, welfare receipt during childhood, and family background (e.g.,
parents’ education). Missing dummies are created for covariates in V containing missing values. The readers are referred to
Table 4 in Huber et al. (2020) for descriptive statistics of the pretreatment covariates as well as the treatment, surrogate,
and outcome variables in the data. Conditioning on a rich set of covariates is important since it enables us to identify
the causal estimand by making the conditional exchangeability assumption plausible. In our analysis, the outcome Y
(number of arrests in year 4) is omitted for 25% of the samples randomly to mimic the setting where the primary outcome
is missing and a surrogate outcome is used as auxiliary information. We estimate the treatment effects θ(a) for each of
a ∈ {100, 150, 200, . . . , 2000} using both plug-in-style estimator and doubly robust estimator in Algorithm 1, where the
nuisance functions ρ, µ, τ are estimated by superlearner (Van der Laan et al., 2007) combining generalized linear model and
random forests, conditional density π is estimated by kernel density estimator. The estimated dose response curve is plotted
in Figure 7.

Figure 7 shows that, as participants spend more hours in the program, the expected number of arrests in year 4 has a
decreasing trend, which confirms the conclusion that such training programs effectively reduce involvement in the criminal
justice system. Importantly, the dose-response fitted by the doubly robust estimator is very similar to the results in Huber
et al. (2020): the shape of the function is similar to their Figure 2. (Note that the specific values on the y-axis are different
since they plot a contrast effect and we instead plot the expectation of potential outcome Y a.) As pointed out in Huber et al.
(2020), the treatment effect is highly nonlinear, which is further verified by the curve estimated from the doubly robust
estimator. By contrast, the curve estimated by a simple plug-in estimator in (3) fails to capture this non-linearity, possibly
because it suffers from a large first-order bias.
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Figure 7. Dose response curve of number of arrests in year 4 (outcome) versus hours in academic and/or vocational training (treatment)
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