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Abstract
Tensor networks are efficient for extremely high-
dimensional representation, but their model selec-
tion, known as tensor network structure search
(TN-SS), is a challenging problem. Although sev-
eral works have targeted TN-SS, most existing
algorithms are manually crafted heuristics with
poor performance, suffering from the curse of di-
mensionality and local convergence. In this work,
we jump out of the box, studying how to har-
ness large language models (LLMs) to automati-
cally discover new TN-SS algorithms, replacing
the involvement of human experts. By observ-
ing how human experts innovate in research, we
model their common workflow and propose an
automatic algorithm discovery framework called
tnGPS. The proposed framework is an elaborate
prompting pipeline that instruct LLMs to gener-
ate new TN-SS algorithms through iterative re-
finement and enhancement. The experimental
results demonstrate that the algorithms discov-
ered by tnGPS exhibit superior performance in
benchmarks compared to the current state-of-the-
art methods. Our code is available at https:
//github.com/ChaoLiAtRIKEN/tngps.

1. Introduction
Tensor networks (TNs) are powerful methods that have
proven to be highly beneficial in machine learning and
various other fields (Markov & Shi, 2008; Anandkumar
et al., 2014; Orús, 2014; Novikov et al., 2015; Cichocki
et al., 2016; Stoudenmire & Schwab, 2016; Cichocki et al.,
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2017; Orús, 2019; Glasser et al., 2019; Kossaifi et al., 2020;
Miller et al., 2021; Richter et al., 2021; Miller et al., 2021;
Haghshenas et al., 2022). Their effectiveness lies in the
ability to decompose extremely high-dimensional problems
into low-dimensional factors. However, tensor network
structure search (TN-SS)—the task of selecting the opti-
mal model-related hyperparameters such as TN ranks (Ye
& Lim, 2019) and topology (Li & Sun, 2020)—can be a
challenging problem due to its high-dimensional discrete
nature and computational difficulty (Hillar & Lim, 2013).

Until now, various approaches have been developed to solve
TN-SS, employing different methods (Hashemizadeh et al.,
2020; Li & Sun, 2020; Nie et al., 2021; Chen et al., 2022;
Li et al., 2022; 2023; Zheng et al., 2023; Zeng et al., 2024).
Among these, sampling-based algorithms (Hashemizadeh
et al., 2020; Li & Sun, 2020; Li et al., 2022; 2023) have
demonstrated superior performance in addressing TN-SS for
machine learning tasks. The core idea of these approaches is
to sequentially draw samples in the search space according
to their heuristic strategies, such as TNGA (evolutionary
algorithm, Li & Sun, 2020), GREEDY (greedy algorithm,
Hashemizadeh et al., 2020), and TNLS and TnALE (local-
search algorithms, Li et al., 2022; 2023), until optimal TN
structures are reached. Additionally, these sampling-based
approaches are more compatible with a variety of loss func-
tions, model architectures, and optimizers in machine/deep
learning.

However, achieving a good balance between exploration
and exploitation in sampling-based heuristic approaches
is notoriously difficult and seemingly endless. This issue
arises because different downstream tasks require different
balance points, and various heuristic strategies have distinct
preferences between exploration and exploitation. For ex-
ample, TNGA excels in exploration but performs poorly in
exploitation, suffering from the curse of dimensionality. In
contrast, TNLS and TnALE are more efficient than TNGA
as they leverage the local smoothness prior of the search
space. However, as noted by Li et al. (2023), they are more
prone to getting stuck in local minima, particularly with real-
world data. This issue not only leads to poor performance
of approaches but also results in a labor-intensive “research
cycle”, where human experts need to repeatedly develop
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new TN-SS algorithms to deal with different downstream
tasks.

Is there a (semi-)automatic way to advance this cycle, reduc-
ing the need for intensive labor efforts? If such a method
exists, it would free human experts to tackle more challeng-
ing problems. More importantly, it would help us address
the ultimate question: ”How far can this cycle take us?”

To answer the questions, we propose a large language model
(LLM)-driven automation framework, designed to automati-
cally discover unknown TN-SS algorithms. Leveraging the
remarkable full-domain knowledge of LLMs and their emer-
gent understanding and reasoning capabilities, the proposed
framework, termed tensor-network-purposed GPT-driven
structure search (tnGPS), takes the existing TN-SS algo-
rithms (coded in Python) as inputs, and then mimic human
experts’ workflow for innovative research, to generate a
batch of novel TN-SS algorithms expected to surpass the
state-of-the-art (SOTA) algorithms. It is worth noting that
in tnGPS LLMs play a crucial role in “innovation”: we con-
struct a pipeline of prompts through which LLMs explore
novel TN-SS algorithms from various perspectives, such as
knowledge categorization (KC), knowledge recombination
(KR), incremental innovation (II) and diversity injection
(DI). The generated new TN-SS algorithms are then eval-
uated in local computers with extensive downstream-task-
specific numerical experiments. The experimental results
are subsequently used to update the prompts, guiding the
LLMs to improve the algorithms in the next iteration.

We numerically evaluate the effectiveness of the discovered
TN-SS algorithms by tnGPS on benchmarks, comparing
them to the existing TN-SS algorithms. The experiment
results demonstrate that tnGPS can discover novel TN-SS
algorithms that not only outperform existing algorithms on
in-domain data but also exhibit superior performance on out-
of-domain data. In addition, we also implement ablation
experiments to analyze the contributions of various compo-
nents of the tnGPS framework. The main contributions of
this paper are summarized as two-fold:

• We propose tnGPS, a large language model (LLM)-
driven automation framework designed to automati-
cally generate novel and effective TN-SS algorithms
tailored to specific downstream tasks;

• Experimental results demonstrate that the algorithms
discovered by tnGPS outperform existing TN-SS algo-
rithms on benchmark data.

1.1. Related Works

Tensor network structure search (TN-SS). The problem
of TN-SS can be viewed as an extension of rank selection
for tensor decomposition (Rai et al., 2014; Zhao et al., 2015;
Yokota et al., 2016), which can be further traced back to

studies of matrix factorization (Babacan et al., 2012). Un-
like rank selection, TN-SS aim to search for a richer set
of model-related hyperparameters of a tensor network, in-
cluding not only TN-ranks (Cheng et al., 2020; Mickelin
& Karaman, 2020; Li et al., 2021; Kodryan et al., 2023)
but also network topology (Hayashi et al., 2019; Hashem-
izadeh et al., 2020; Li & Sun, 2020; Haberstich et al., 2023)
and permutation (Chen et al., 2022). From the technique
perspective, various methods have been employed includ-
ing Bayesian inference (Zeng et al., 2024), spectrum meth-
ods (Chen et al., 2022), continuous optimization (Zheng
et al., 2023) and discrete optimization (Li et al., 2023), etc..
In this work, we follow the technical route of discrete op-
timization, particularly the sampling-based technique, due
to its high precision and flexibility with a variety of loss
functions. Unlike the existing methods that solve TN-SS,
the goal of this work is to develop a “meta-method” that can
create novel and effective TN-SS algorithms through the
automatic discovery of algorithms.

Automatic algorithm discovery (AAD). The studies on
AAD can be traced back to the early 1900s (GRATCH,
1992; Minton, 1993). Building on this foundational works,
more recent studies (KhudaBukhsh et al., 2016; Meng & Qu,
2021; Yi et al., 2022) developed various frameworks based
on evolutionary programming and machine learning to dis-
cover efficient algorithms for solving computationally hard
problems such as complex combinatorial optimization. Par-
allel to these efforts, similar problems have been addressed
in the field of AutoML (He et al., 2021). The difference is
that the works (Bello et al., 2017; Real et al., 2020; Wang
et al., 2022; Chen et al., 2023) in AutoML dedicate efforts
to neural architecture search and optimizer design.

Large language models revolutionize AAD. LLMs have
demonstrated remarkable performance in code program-
ming (Haluptzok et al., 2023; Liventsev et al., 2023; Min
et al., 2024; Hong et al., 2024; Hemberg et al., 2024; Gur
et al., 2024). Since numerical algorithms are typically im-
plemented on computers through programming languages
like Python or C++, the capability of LLMs for code pro-
gramming can be naturally extended to AAD (Zelikman
et al., 2023; Liu et al., 2023; Pluhacek et al., 2023; Liu
et al., 2024; Ye et al., 2024; Romera-Paredes et al., 2024).
Note that conventional AAD methods discover new algo-
rithms from a handcrafted, finite-dimensional algorithm
space, while LLMs can explore new algorithms from an
infinite-dimensional code space, which encompasses knowl-
edge drawn from extensive training data across multiple
fields. The most closely related methods to ours are the
works (Liu et al., 2023; 2024) that utilize LLMs to evolve
algorithms for solving the well-known traveling salesman
problem. Unlike their works, we target the TN-SS problem
in this paper, establishing an AAD framework that leverages
LLMs to mimic human experts.
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2. Preliminaries
In this section, we first review the problem of tensor network
structure search for self-constrained purposes. Following
this, we introduce a workflow that models how human ex-
perts typically innovate in research. This workflow will
then be used in the next section to guide the design of the
proposed framework.

2.1. Tensor Network Structure Search (TN-SS)

To provide intuitive simplicity, we review TN-SS through
its application to tensor decomposition. Let X ∈
RI1×I2×···×IN be a non-zero tensor of order N . In this
work, we consider solving TN-SS by minimizing the fol-
lowing objective function (Li & Sun, 2020):

F (A) := ϕ(A)+λ· min
{Zn}N

n=1

∥X − tns({Zn};A)∥2F /∥X∥2F︸ ︷︷ ︸
relative squared error (RSE)

.

(1)
Here, A ∈ A ⊆ RN×N represents the adjacency matrix
that formulates the graphical diagram of a tensor network,
i.e., the tensor network (TN) structure. The feasible set
A is determined by specific searching domains, such as
TN-ranks, permutations (Li et al., 2022) and topology (Li
& Sun, 2020). The set {Zn}Nn=1 represents the collection
of core tensors (Cichocki et al., 2016) of a tensor network
tns({Zn};A) associated to the TN-structure A (Ye & Lim,
2019). The objective function (1) describes a linear combi-
nation of two terms with a tuning parameter λ > 0, where
the first term ϕ(A) models a TN’s complexity (such as
compression ratio and graph sparsity), and the second term
calculates the minimization of relative squared error (RSE)
in tensor decomposition, modeling the expressibility of a
TN. In summary, within the context of tensor decomposition,
TN-SS aims to find the optimal TN structures, modeled with
A, that minimizes both the TN’s complexity and the RSE.

2.2. A Unified Paradigm for TN-SS Algorithms

In this work, we consider minimizing the objective func-
tion (1) as a discrete optimization problem. Most existing
algorithms that solve (1) follow a “sampling-evaluation”
paradigm (Li & Sun, 2020; Li et al., 2022; 2023). Algo. 1
provides its basic description, in which the key ingredient is
the sampling operation as follows:

p← GenerateSamples(C,P, F, i,m,#Iter, L), (2)

where p denotes a collection of adjacency matrices defined
in (1), the arrow ← represents the value assignment, and
C,P, F, i,m,#Iter, L denotes arguments required in the
function. They contain important information such as the
current optimal TN structures C, historical sampled struc-
tures and their corresponding evaluation scores (P, F ), as
described in Algo. 1. The operation (2) implies that in

Algorithm 1 The “Sampling-Evaluation” Paradigm
1: Initialize:
2: m ▷ Number of samples
3: L ▷ Set of hyperparameters
4: #Iter ▷ Maximum number of iterations
5: P ← [] ▷ Historical TN structures, initially empty
6: F ← [] ▷ Historical evaluation scores, initially empty
7: C ← [] ▷ The best TN structures, initially empty
8:
9: for i = 1 to #Iter do

10: p← GenerateSamples(C,P, F, i,m,#Iter, L)
11: F ← F ∪ Eval(p) ▷ Evaluate new samples
12: P ← P ∪ p ▷ Update historical samples
13: Update C if necessary ▷ Update the best structure
14:
15: Output: Set C containing the best TN structures.

each iteration a batch of new adjacency matrices are gener-
ated, conditioned on the historical adjacency matrices and
their corresponding evaluation scores in the searching pro-
cess. Given adjacency matrices, the evaluation scores are
calculated in the operation Eval( p ), by minimizing the
objective (1) with respect to {Zn}Nn=1.

Under the paradigm illustrated in Algo. 1, the existing
TN-SS algorithms differ mainly from the customization
on the GenerateSamples( · ) in (2). For example, TNGA (Li
& Sun, 2020) specifies (2) with evolutionary operators;
GREEDY (Hashemizadeh et al., 2020), TNLS (Li et al.,
2022) and TnALE (Li et al., 2023) leverage incremen-
tal, random or alternating sampling in neighborhood to
generate new samples. In this work, we aim to leverage
LLMs to discover new ideas for designing the function
GenerateSamples( · ), with the goal of improving the perfor-
mance of solving TN-SS.

2.3. How Human Experts do Innovation?

The intuition of this work is to harness LLMs to mimic
human experts to realize the goal of discovering novel TN-
SS algorithms. In doing so, we formalize below a basic
but complete workflow, shown in Figure 1, to describe how
human experts do innovative research.

In academic research, human experts typically begin with
preliminary studies, such as gathering information through
literature reviews and paper retrieval. The gathered infor-
mation is then compiled into an idea pool, which includes
numerous existing ideas related to the targeted problem,
such as solving TN-SS. Each idea is accompanied by vari-
ous descriptors, including an evaluation score and contextual
information that describes the idea’s background, intuition,
and other relevant details. Subsequently, in the knowledge
categorization (KC) phase, the ideas are refined into knowl-
edge clusters. Each cluster consists of different ideas that
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 : ideas. Different colors indicate the idea from different blocks.

: workflow indicators, indicating the transition of blocks.

: clusters containing similar ideas.

: arrows pointing from input to output for an operations.

Figure 1. A basic workflow to illustrate how human experts do
innovation in research.

follow a similar hypothesis or principle. In Idea Dropout
(ID), this phase models the behavior of human experts by
filtering out certain ideas from the pool, allowing them to fo-
cus only on the most interesting ones for deeper study. The
metrics used in ID are typically multivariate, encompassing
factors such as personal interests, performance, trends, or
even randomness due to the large scale of the idea pool.

In this work, innovation is considered as an operation that
generates new ideas from existing ones. As shown in Fig-
ure 1, we model innovation as a two-stage process consisting
of knowledge recombination (KR) and incremental innova-
tio (II) These phases are key ingredients to create values
in not only research but also in strategy and entrepreneur-
ship (Rubin & Abramson, 2018; Xiao et al., 2022). More
specifically speaking, KR refers to the process of generating
new ideas by merging, integrating, or reconfiguring existing
ideas. II involves gradual improvements or minor modifi-
cations to existing ideas. Additionally, Figure 1 formalizes
diversity injection (DI), which is forced to generate new
ideas that are “orthogonal” to the existing ones. DI is com-
monly observed in real-world scenarios, such as brainstorm-
ing sessions in team meetings or critical comments from
non-experts. Significant innovation is ultimately expected
to emerge by recursively invoking KR, II, and DI within
the workflow.

3. tnGPS: a LLM-Driven Framework for
TN-SS Algorithm discovery

In this section, we introduce tnGPS, an LLM-driven frame-
work for discovering TN-SS algorithms. The introduction
primarily focuses on the technical aspects, illustrating how

tnGPS is designed with a pipeline of prompts to harness
LLMs in order to discover novel TN-SS algorithms, mim-
icking the innovation process of human experts.

Global architecture of tnGPS. We conceptualize tnGPS
as a system where the inputs are known TN-SS algorithms
encoded in Python, and the outputs are newly discovered
TN-SS algorithms. Inspired by the way human experts con-
duct innovative research, tnGPS is designed with a global
pipeline similar to the one depicted in Figure 1. In this
design, the LLM acts as an agent to perform the functions
of each phase shown in Figure 1, replacing human experts.
Below, we introduce the specific implementation of each
block in detail.

Idea Pool, also referred to as “the pool” for brevity
throughout the paper, is defined as a set of algo-
rithms described as (algorithm, score). Here,
algorithm contains various implementations of the func-
tion GenerateSamples( · ) as defined in Eq. (2) of a TN-SS
algorithm using Python, and score is a scalar value indi-
cating the algorithm’s performance in the TN-SS problem.
To help LLMs understand TN-SS algorithms effectively, all
algorithms in the pool are standardized with a unified
interface, as depicted in Figure 2. Additionally, the text
in Figure 2 will serve as the “pilot” for constructing the
prompt, as discussed at the end of this section.

Knowledge categorisation (KC). In this phase, we cre-
ate clusters of algorithms using LLMs. Each cluster con-
tains similar algorithms, representing a distinct piece
of knowledge on how to solve TN-SS. In doing so, we first
simplify and initialize the clusters with each algorithm in the
pool. Once a new algorithm (e.g. one generated by tnGPS)
is coming, we prompt the LLM to evaluate the methodolog-
ical similarity between the new algorithm and the cluster
centroids, which are the algorithms with the best scores in
each cluster. The new algorithm is then assigned an index
to declare its cluster membership. The key prompt used in
this phase is illustrated in Figure 3.

Idea dropout (ID). The dropout is conducted by randomly
selecting algorithms from the pool using a roulette selection
mechanism. Consider N algorithms, indexed from 1 to N
based on their scores, ranked from highest to lowest. In-
spired by the previous work (Li & Sun, 2020), the roulette
selection performs a sequential sampling without replace-
ment The probability of selecting the kth algorithm is given
by

Pr(k) = max

{
0.01, ln

(
α

eps+ k

)}
, (3)

where eps is a very small positive number to ensure numeri-
cal stability, ln( · ) denotes the natural logarithm function,
and α > 0 is a hyperparameter that controls the selection
preference. A smaller value of α increases the likelihood of
selecting algorithms with higher scores.
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Function description: 
def GenerateSample(history_populations, fitness_scores, best_individual, 
     new_individuals_numbers, current_iteration, maximum_iteration, hyperparameters): 

     # GenerateSample: Function takes in integer vectors and output integer vectors. 

     # Inputs: 
     # history_populations: Dictionary. Keys are integer strings from '1' to some  
     # larger value. Each key contains  a list of integer numpy vectors. 
     # fitness_scores: Dictionary. Keys are same as history_populations.  

     # hyperparameters: Dictionary. Keys are strings contain the constants  
     # used for computation. Default values should be provided using .get().  

     # Output: 
     # new_individuals: List, len new_individuals_numbers, contains integer  
     # numpy vectors. Each vector's len is the same as the len of the vectors in 
     # history_populations. Furthermore, The elements are within range  
     # [1,hyperparameters[‘code_upperbound']]. 

     return new_individuals

… (omitted)

Figure 2. The prompt used for interface description.

Algorithm 1: # centroid 

Algorithm N: # centroid 

============= 
New Algorithm: 

============== 
Which algorithm in the above is methodologically most similar to the new algorithm? 
Just give me the function number with no other words. 

… (omitted)…
…
…

Figure 3. The key prompt used in knowledge categorisation (KC).
The purple sentence specifies the goal of the prompt.

To select a preferred algorithm in ID, we need to implement
the roulette selection twice. First, we perform selection at
the knowledge level. This involves selecting the centroids
of clusters to determine which clusters will be considered.
Second, within the selected clusters, we perform selection at
the algorithm level to choose the preferred algorithm from
each cluster. This “bi-level” process is repeated until the
desired number of algorithms has been selected.

Knowledge recombination (KR). Guided by the workflow
shown in Figure 1, KR is a fundamental phase to generate
novel TN-SS algorithms in tnGPS. In this phase, the input
consists of N ≥ 0 pairs of (algorithm, score). The
output is M new algorithms generated by the LLM. The
key prompt used in KR is illustrated in Figure 4. The de-
sign of this prompt aims to enable the LLM to understand
the factors contributing to the superior performance of cer-
tain algorithms while avoiding the meaningless stacking of
Python code.

Incremental innovation (II) follows KR as another block
for creating innovation in tnGPS. Unlike KR which recom-
bines algorithms, II aims at mortifying algorithms indi-
vidually and slightly. Figure 5 gives the key prompt used
in this phase. In our experience with GPT-3.5/4, we found

Algorithm 1: 

Algorithm 1 score: 
                 

Algorithm N: 

Algorithm N score: 
# Algorithms 1 to N are implementations of the ‘GenerateSample’ function. A lower score 
implies better performance.  

Learning from their results, think about what works and what doesn’t, provide M novel 
methods with lower scores. You are encouraged to be creative to incorporate novel 
ideas but do not simply stack methods together.

… (omitted)

…

…

…

…

Figure 4. The key prompt used in knowledge recombination (KR).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

that the LLM tends to improve code aspects such as effi-
ciency, readability, and parallelism, which are not the focus
of this phase. To prevent this, we include specific instruc-
tions (highlighted in orange in Figure 5) to guide the LLM
away from these unintended improvements and focus on the
targeted modifications.

Algorithm 1: 

                    
Algorithm N: 

Independently make improvements over these Algorithms that will increase their 
practical performance (not on the code efficiency, readability and parallel 
processing level). You are encouraged to be creative to incorporate novel ideas.

… (omitted)
…

…

Figure 5. The key prompt used in incremental innovation (II).
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Diversity injection (DI). We implement DI by leveraging
the LLM to create new clusters in the algorithm pool. In
doing so, we design the prompt as Figure 6, instructing
the LLM to generate TN-SS algorithms that are method-
ologically distinct from the centroids of existing clusters.
Following this, the newly created algorithms from DI serve
as centroids for new clusters. The newly created algorithms
from DI serve as centroids for new clusters. Since rely-
ing solely on existing knowledge can lead to “path depen-
dence”—where new ideas are heavily influenced by past
knowledge—we encourage the LLM to explore new ideas in
DI without considering performance metrics (e.g., scores).
This approach enriches the diversity of the algorithm pool.

Format restriction and prompt architecture. In addition
to the goal-oriented prompts mentioned earlier, we need to
enforce specific format restrictions on the LLM’s output.
For instance, this includes omitting unnecessary analyses
and specifying the desired format for code outputs. Further-
more, instructions related to code writing must be included
to ensure that there are no compilation failures during evalu-
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Algorithm 1: # centroid 

                   
Algorithm N: # centroid 

Give me a novel ‘GenerateSample’ that is methodologically different from the 
above algorithms. You are encouraged to be creative to incorporate novel ideas 
but do not simply stack methods together.

… (omitted)
…

…

Figure 6. The key prompt used in diversity injection (DI). The
purple sentence specifies the goal and the orange sentence clarifies
the restriction.

ation. To meet these requirements, we designed the prompt
shown in Figure 7. It’s important to note that the prompt in
Figure 7 was developed through a trial-and-error process,
making it dependent on the specific LLM used and our code-
writing conventions. As a result, manual adjustments may
be necessary when using different LLM models.

Provide runnable code that has implemented all your ideas (If any part 
requires choice, use choices from random). Do not leave any placeholder for 
me, all the functionality should be actually implemented. Your response format 
<code> 
Your code 
</code> 
Also, you don’t need to add any other words.

Figure 7. The prompt used for format restriction of the output.
The purple sentence specifies the goal and the orange sentence
clarifies the restriction.

Finally, the complete prompts used in KC, KR, II and
DI are constructed following the same architecture as shown
in Figure 8. It consists of three parts: interface description
(Figure 2), those goal-oriented prompts following a list of
algorithms and scores (e.g., Figures 3, 4, 5, 6), and format
restriction (Figure 7). These three parts are concatenated
together to provide comprehensive instructions to the LLM.

Interface description

Format restriction

A list of algorithms (and scores) 

Purpose and restriction instructions.
+

beginning

end

Figure 8. Illustration to prompt architecture.

Experiments (evaluation) with sandbox. All newly
generated TN-SS algorithms are evaluated on local (su-
per)computers using task-specific training data. However,
due to the probabilistic nature of LLMs, there is a possibility
of receiving unexpected outputs, such as unrunable code,
unnecessary comments, or error messages from the LLM
platforms. To address this issue, we construct a sandbox

environment to run the code in a relatively isolated setting
using small-scale training data before conducting high-cost
formal numerical experiments. If program errors, abnormal
resource consumption, or unexpected output formats occur,
the sandbox will immediately terminate the process and
remove the problematic code from the job queue awaiting
implementation.

4. Experimental Results
In this section, we use several benchmarks to demonstrate
that tnGPS can discover new algorithms that outperform
SOTA methods for TN-SS. Additionally, we conduct abla-
tion experiments to evaluate the impact of each component
within tnGPS on the discovery performance.

4.1. Natural Images Compression

In this experiment, we aim to use TN-SS algorithms to
search for optimal topology and ranks for a tensor network
(TN) to represent natural images with fewer parameters.

Data preparation. We randomly select 14 images from
the BSD500 dataset (Arbelaez et al., 2010). These images
are converted to grayscale and resized to 256× 256 pixels.
Each image is then reshaped into an order-8 tensor by the
default Python reshaping function. The 14 pre-processed
images are split into two sets: 4 images for training and 10
images for testing.

Settings of tnGPS. We use three existing TN-SS algorithms
as inputs: TNGA (Li & Sun, 2020), GREEDY (Hashem-
izadeh et al., 2020) and TNLS (Li et al., 2022). The eval-
uation phase in tnGPS calculates Eq. (1) for each gener-
ated algorithm, averaging the results over the images in the
training set. In Eq. (1), we set λ = 5 and use the same
compression ratio function ϕ as in previous work (Li & Sun,
2020). The hyperparameters required in tnGPS are listed
in Table 1. For this experiment, we set m = 2, n = 1,
α1 = α2 = 100, c = 5 and #Iter = 30. Additionally, we
select gpt-4-1106-preview as the LLM model, apply-
ing a temperature of 0.7 uniformly across all prompts. After
implementation, we select the top-three algorithms from the
pool (excluding the input algorithms), termed Ho-11, Ho-2,
and Ho-3, as the outputs of tnGPS. The three algorithms
will be evaluated and compared with the existing TN-SS
algorithms.

Implementation details. In the experiment, we imple-
ment four additional sampling-based TN-SS algorithms in-
cluding TNGA (Li & Sun, 2020), TNLS (Li et al., 2022),
GREEDY (Hashemizadeh et al., 2020) and TnALE (Li et al.,
2023). Since the vanilla TNGA and TNLS are designed to

1The name “Ho” is shorthand for ”homunculus”, representing
that these algorithms are created through some “unusual” means.
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Figure 9. Objective vs. number of sample curves of different algorithms on four training images.

Figure 10. Objective vs. number of sample curves of different algorithms on ten testing images.

Table 1. Parameters involved in tnGPS.

Parameter Description
#Iter Maximum iteration
α1 Parameter in Eq. 3 for cluster selection
α2 Parameter in Eq. 3 for algorithm selection
m Number of selected algorithms in ID
n Number of generated algorithms
c Maximum number of clusters

search only for the topology or permutation of a TN, we
extend them to fit the settings of this experiment. Specif-
ically, we extend TNGA by relaxing its binary constraint
for encoding the topology with integers as done in the pre-
vious works (Li et al., 2022; 2023). For TNLS, we fix the
permutation and set the template used in the algorithm to
be a complete graph, enabling simultaneous search for TN
topology and ranks. In GREEDY, we modify its objective
function from RSE to the function in (1), and further allow
the algorithm to both increase and decrease the ranks during
the search.

The parameter settings of the algorithms are as follows: in
TNGA, we set α = 100, β = 5, the elimination rate to
10%, and the mutation probability to 25%; in TNLS, we set
c1 = 0.99; and in TnALE, we set L0 = 0, L = 15, r2 = 1,
and D = 1. For all methods (including those generated

by tnGPS), we set the upper limit for rank search to 4, the
number of iterations in searching to 20, and the number
of samples2 in each iteration to 100. For TNGA and the
algorithms generated by tnGPS, we initialize them with
same TN structures, which have TN ranks close to one but
with a 15% probability of changing each rank from 1 to
2. We then select the best TN structure from the TNGA
initialization to initialize GREEDY, TNLS, and TnALE.

Results. Figures 9 and 10 show how the value of the ob-
jective function (3) changes with increasing the number of
samples for different TN-SS algorithms. Table 2 shows the
averaged performance metrics, including compression ratio
and RSE, of different algorithms on both the training and
test sets. As shown in Table 2, the three algorithms gen-
erated by tnGPS achieve comparable performance on the
training set, while ‘Ho-2” outperforms other algorithms on
average in the test set. Figure 10 visually demonstrates that
the curves associated with the three algorithms generated by
tnGPS tend to reach smaller values of the objective function
compared to other methods.

New insights gained from the generated algorithms. The
codes of Ho-1,2,3 are provided in Appendix B. These codes
reveal several new insights on how to improve the effective-
ness and efficiency of solving TN-SS problems. First, the

2In TnALE, the number of samples in each iteration is deter-
mined by other hyperparameters.
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Table 2. The averaged compression ratio (in log form, calculated by dividing the number of parameters of the image by the number of
parameters of the TN) and the RSE for the structures obtained by the algorithms.

Images
Log compression ratio↑ + RSE↓ – CR(RSE)

TNGA TNLS GREEDY TnALE Ho-1 Ho-2 Ho-3

Train 1.478 (0.128) 1.419 (0.119) 1.451 (0.123) 1.439 (0.122) 1.436 (0.120) 1.496 (0.124) 1.446 (0.121)
Test 1.332 (0.132) 1.335 (0.131) 1.331 (0.132) 1.328 (0.132) 1.329 (0.129) 1.352 (0.130) 1.322 (0.129)

Table 3. Number of parameters (×1000) for TGP model compression. The values in [square brackets] give the number of samples used to
find the structure for the first time. The symbol “-” means the algorithm fails to achieve the experiment’s configuration.

Initialization Baseline TNGA TNLS GREEDY TnALE Ho-1 Ho-2 Ho-3

CCPP
random

2.64 2.36 [1900] 2.50 [1900] 2.60 [850] 2.36 [588] 2.60 [1900] 2.24 [1600] 2.74 [1300]
MG 3.36 12.69 [8400] 17.25 [7600] - - 6.81 [9200] 3.01 [10000] 27.74 [8400]

CCPP
TT

2.64 2.24 [500] 2.24 [200] 2.24 [21] 2.24 [18] 2.24 [400] 2.24 [500] 2.24 [300]
MG 3.36 3.36 [100] 3.01 [500] 3.01 [64] 3.01 [42] 3.01 [500] 3.01 [1200] 3.01 [2400]

Table 4. Value of objective function (1) of the best algorithm dis-
covered by tnGPS and its variants. In the table, “baseline” refers
to the best result obtained from TNGA, TNLS, GREEDY, and
TnALE, “tnGPS” refers to the proposed model, and “KR, II,
DI” are tnGPS’s variants, whose corresponding components are
ablated.

baseline tnGPS KR II DI

Objective 0.1558 0.1102 0.1308 0.1273 0.1239

Table 5. Value of objective function (1) of the best algorithm dis-
covered by tnGPS and its variants. In the table, “baseline” refers
to the best result obtained from TNGA, TNLS, GREEDY, and
TnALE, “GPT-4, GPT-3.5, Claude-1, Claude-2” refers to tnGPS
using various LLMs, and “Incomplete descriptions” is the vari-
ant of tnGPS, whose interface description (Figure 2) is partially
removed.

baseline GPT-4 GPT-3.5 Claude-1 Claude-2 Incomplete
descriptions

0.1847 0.1813 0.1842 0.1840 0.1834 0.1819

new algorithms are no longer “Markovian”. Unlike previ-
ous methods that considered only the samples from the last
iteration, the new algorithms incorporate information from
all historical samples. Second, the annealing trick is used
inversely. For instance, in Ho-1, the algorithm employs a
mutation operation similar to TNGA, with the mutation rate
updated as in TNLS. However, contrary to the traditional
annealing trick used in TNLS, the mutation rate in Ho-1
increases progressively to enhance exploration. Third, the
new algorithms adopt various novel exploitation strategies
inspired by TNLS. Notably, Ho-2 introduces an innovative
Gaussian perturbation mutation strategy, which, to the best
of our knowledge, is unprecedented in the existing genetic

algorithms literature.

4.2. Model Compression for Gaussian Process: an
Out-of-Domain Experiment

In this experiment, we evaluate whether the algorithms gen-
erated by tnGPS maintain their effectiveness for the out-
of-domain tasks, i.e., tasks not considered in the algorithm
discovery process. In doing so, we follow previous TN-SS
works (Li et al., 2022; 2023) and consider the compres-
sion of a regression model using tensorial Gaussian process
(TGP) (Izmailov et al., 2018).

Experiment Setup. We apply TN-SS to the high-order vari-
ational mean tensor of TGP to compress the model while
preserving the prediction accuracy. Two datasets are used:
CCPP (Tüfekci, 2014) and MG (Flake & Lawrence, 2002).
In these datasets, the corresponding variational means are
tensors of order 4 with a mode dimension of 12, and order
6 with a mode dimension of 8, respectively. For the exper-
iment, the upper bound for rank search is set to 10. The
Adam (Kingma & Ba, 2014) learning rate is set to 0.001,
and the core tensors of TN are initialized with a Gaussian
distribution with a variance of 0.01. Due to the distinct
scales of the two datasets, the hyperparameter λ in Eq. (1)
is set to 105 for CCPP and 107 for MG, respectively.

We consider two types of initialization in the experiment:
random and TT. In random, the initial TN structures are
selected randomly following the same method used in the
preceding experiment. In TT, we first initialize TN struc-
tures using the method in random, but one of the initialized
structures is then replaced by tensor train (Oseledets, 2011),
which is the model used in the baseline (Izmailov et al.,
2018). If only one structure requires initialization, such as
in TNLS and TnALE, the baseline tensor train is used di-
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rectly. In the settings of MG + random, we set the number
of iterations in searching to 50, and the number of samples
in each iteration to 200. In other settings, we set the number
of iterations in searching to 30, and the number of samples
in each iteration to 100.

Results. The experimental results are presented in Table 3,
which shows the number of parameters (in thousands) re-
quired by tensor networks to represent the model. Addition-
ally, the number of samples used by the algorithms to find
the structure for the first time is indicated in square brack-
ets. We can see that, in the TT initialization, all algorithms
find better structures than the baseline, with GREEDY and
TnALE requiring fewer samples than the other algorithms.
However, in the random initialization, only Ho-2 finds
structures as good as those in TT. Although GREEDY and
TnALE still converge quickly, the solutions they find are
worse than Ho-2’s. Notably, in the setting of MG+random,
only Ho-2 finds a structure better than the baseline. These
results suggest that tnGPS can generate new TN-SS algo-
rithms that consistently outperform the existing SOTA meth-
ods in both in-domain and out-of-domain tasks.

4.3. Ablations

Next, we conduct ablation studies to evaluate the im-
pact of various components of tnGPS on its performance.
These components include those LLM-driven phases in the
pipeline, the interface description, and the selection of LLM
models. By systematically removing or modifying these
components, we aim to understand their individual contri-
butions to the overall effectiveness of tnGPS.

LLM-driven phases in tnGPS. Here, we individually ab-
late the phases including knowledge recombination (KR),
incremental innovation (II), and diversity injection (DI).
We use the variational mean tensor from the MG dataset
in the model compression experiment as the training data
for tnGPS to assess the impact of each phase on the overall
performance.

In this part, the hyper-parameter settings for the tnGPS are
the same as in the image compression experiment. The
other TN-SS algorithms maintain the same settings as in
the model compression experiment, except that we set the
number of samples per iteration to 50 and run the algorithms
for 10 iterations for simplicity.

We present the experimental results for the tnGPS compo-
nents in Table 4. As observed, the complete tnGPS model
achieves the best results, surpassing existing methods. How-
ever, the model’s performance declines when components
like KR, II and DI are removed, underscoring the impor-
tance of integrating, enhancing, and injecting ideas. Addi-
tionally, the ablation results for KR, II and DI still surpass
existing methods, suggesting the potential benefits of these

individual components in discovering better algorithms.

Selection of LLM models and interface descrip-
tion. We next examine how the selection of
LLM models affects tnGPS’s performance. We
compare GPT-4 (gpt-4-1106-preview), GPT-
3.5 (gpt-3.5-turbo-16k-0613), Claude-1
(claude-instant-1), and Claude-2 (claude-2).
Additionally, we analyze tnGPS’s sensitivity to interface
description (shown in Figure 2) by randomly removing 8
from the total 12 comments (see Figure 11 in Appendix).
For simplicity, we select image 2 from the training set in
the image compression experiment as the training data
and use the same hyper-parameter settings as in the image
compression experiment, except for adjusting the iteration
and sample settings for the TN-SS algorithm as done in the
LLM-driven phases ablation experiment.

As concluded from the results in Table 5, more powerful
LLMs like GPT-4 lead to better tnGPS performance. More-
over, by further analyzing the algorithms generated by GPT-
3.5, we found that it tends to make trivial modifications of
algorithms, such as the naive stacking of different meth-
ods. Additionally, the incomplete interface description does
not significantly affect the performance of tnGPS. We con-
jecture that the algorithms themselves provide sufficient
information to let LLMs understand the function to be gen-
erated. However, during the experiment, we observed that
the LLM sometimes misunderstood the meaning of the ob-
jective function values, for example, mistakenly thinking
that larger values implied better performance.

Concluding Remarks
Our experiential results confirm the positive impact of LLMs
on solving TN-SS. Specifically, the proposed framework,
tnGPS, can leverage insights gained from the existing al-
gorithms and the embedded knowledge in LLMs to auto-
matically discover novel TN-SS algorithms that achieve a
better balance between exploration and exploitation. The
benchmarks of image compression and model compression
consistently demonstrate the superiority of the discovered
algorithms in finding better TN structures.

Limitation. A primary limitation of our method is that the
final discovered algorithms’ performance is subject to varia-
tion due to changes in LLMs. Nonetheless, we anticipate a
positive correlation between the performance of designed
algorithms by our method and the capabilities of LLMs.

Impact Statement
This paper explores the potential of using LLMs to automati-
cally discover improved algorithms without human interven-
tion, a step that could significantly boost the efficiency of
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algorithm development and augment production processes.
However, it also raises concerns about LLMs generating
unreliable results due to the hallucination issue, which af-
fects their reliability and practicality. To address this, our
study emphasizes the significance of not only evaluating
the outputs produced by LLMs but also constructing pre-
cise prompts to guide them effectively. These approaches
help minimize the risk of unreliable results, ensuring the
practicality and reliability of LLMs for practitioners. More-
over, the increasing capabilities of LLMs may also lead to
the question of whether machines may eventually replace
human expertise entirely.
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Function description: 
def GenerateSample(history_populations,fitness_scores,best_individual, new_individuals_numbers,current_iteration,maximum_iteration,hyperparameters): 
(Comment 1)     # GenerateSample: Function takes in integer vectors and output integer vectors. 
(Comment 2)     # Inputs: 
(Comment 3)     # history_populations: Dictionary. Keys are integer strings from '1' to some larger value. Each key contains  a list of integer numpy vectors. 
(Comment 4)     # fitness_scores: Dictionary. Keys are same as history_populations. Each key contains to a list of floats, the lower the better. 
(Comment 5)     # best_individual: Numpy integer vector. 
(Comment 6)     # new_individuals_numbers: Integer. 
(Comment 7)     # current_iteration: Integer, 1 larger than the len of history_populations. 
(Comment 8)     # maximum_iteration: Integer. 
(Comment 9)     # hyperparameters: Dictionary. Keys are strings contain the constants used for computation. Default values should be provided using .get().  
(Comment 10)   # Output: 
(Comment 11)   # new_individuals: List, len new_individuals_numbers, contains integer numpy vectors. Each vector's len is the same as the len of the vectors in history_populations.  
(Comment 12)  # Furthermore, The elements are within range [1,hyperparameters['code_upperbound']]. 
     return new_individuals

Function description: 
def GenerateSample(history_populations,fitness_scores,best_individual, new_individuals_numbers,current_iteration,maximum_iteration,hyperparameters): 
     
     
     
    
     (Comment 5)     # best_individual: Numpy integer vector. 
     
     
     
     (Comment 9)     # hyperparameters: Dictionary. Keys are strings contain the constants used for computation. Default values should be provided using .get().  
     (Comment 10)   # Output: 
     
     (Comment 12)  # Furthermore, The elements are within range [1,hyperparameters['code_upperbound']]. 
     return new_individuals

Comments Removed↓Figure 11. Illustration of the interface description. In the interface description ablation experiment, comments {1, 2, 3, 4, 6, 7, 8, 11} are
removed.
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Figure 12. The workflow of tnGPS. Each prompt can be constructed using up to three components: the interface description, the in-context
algorithms, and the meta-prompt. The interface description is used to provide a precise objective, ensuring that the codes generated by the
LLM are correct. The in-context algorithms provide detailed information on the existing algorithms for LLM. Finally, the meta-prompt is
designed to guide the LLM. The other colors in the figure are utilized to indicate different clusters of algorithms.

A. The workflow of tnGPS
In Figure 12, we demonstrate the detailed workflow of tnGPS.

B. Codes for different TN-SS algorithms
In the following, we present the codes for Ho-1, Ho-2, and Ho-3, as well as the codes of the algorithms discovered by tnGPS
in the ablation experiments, and the codes for TNGA, TNLS, and GREEDY.
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B.1. Code for Ho-1
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
# Define default hyperparameters using .get()
hyperparams = {

'code_upperbound': hyperparameters.get('code_upperbound', 10),
'mutation_rate': hyperparameters.get('mutation_rate', 0.15),
'crossover_rate': hyperparameters.get('crossover_rate', 0.7),
'selection_pressure': hyperparameters.get('selection_pressure', 1.8),
'elitism_count': hyperparameters.get('elitism_count', 1),
'mutation_scaling_factor': hyperparameters.get('mutation_scaling_factor', 0.9),
'max_mutation': hyperparameters.get('max_mutation', 2),
'tournament_size_factor': hyperparameters.get('tournament_size_factor', 0.15)

}

# Nested functions under GenerateSample
def mutate(individual, scaling_factor):

mutation_count = max(1, int(len(individual) * scaling_factor * hyperparams['mutation_rate']))
mutation_indices = random.sample(range(len(individual)), mutation_count)
for i in mutation_indices:

individual[i] = random.randint(1, hyperparams['code_upperbound'])
return individual

def crossover(parent1, parent2):
crossover_indices = random.sample(range(len(parent1)), int(len(parent1) * hyperparams['crossover_rate']))
child = np.array([parent2[i] if i in crossover_indices else parent1[i] for i in range(len(parent1))])
return child

def tournament_selection(population, scores):
tournament_size = max(int(len(population) * hyperparams['tournament_size_factor']), 2)
selected_indices = random.sample(range(len(population)), tournament_size)
selected_scores = [(i, scores[i]) for i in selected_indices]
selected_scores.sort(key=lambda x: x[1])
return population[selected_scores[0][0]]

def create_new_individual(population, scores):
parent1 = tournament_selection(population, scores)
parent2 = tournament_selection(population, scores)
child = crossover(parent1, parent2)
mutation_scaling_factor = hyperparams['mutation_scaling_factor'] ** (1 + (maximum_iteration -

current_iteration) / maximum_iteration)↪→
child = mutate(child, mutation_scaling_factor)
return child

def elitism(population, scores):
sorted_population = sorted(zip(population, scores), key=lambda x: x[1])
return [ind for ind, _ in sorted_population[:hyperparams['elitism_count']]]

# Main logic for GenerateSample
population = [np.array(individual) for key in sorted(history_populations.keys()) for individual in

history_populations[key]]↪→
scores = [score for key in sorted(fitness_scores.keys()) for score in fitness_scores[key]]

new_individuals = []
elite_individuals = elitism(population, scores) if len(population) > 0 else []

for elite in elite_individuals:
new_individuals.append(elite)

remaining_individuals_count = new_individuals_numbers - len(new_individuals)
for _ in range(remaining_individuals_count):

if len(population) > 0:
new_individual = create_new_individual(population, scores)

else:
new_individual = np.random.randint(1, hyperparams['code_upperbound'] + 1, len(best_individual))

new_individuals.append(new_individual)

return new_individuals

14



tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models

B.2. Code for Ho-2
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
hyperparams = {

'code_upperbound': hyperparameters.get('code_upperbound', 10),
'mutation_rate': hyperparameters.get('mutation_rate', 0.1),
'crossover_rate': hyperparameters.get('crossover_rate', 0.6),
'selection_pressure': hyperparameters.get('selection_pressure', 1.5),
'elitism': hyperparameters.get('elitism', True),
'diversity_factor': hyperparameters.get('diversity_factor', 0.05),
'variance_decay': hyperparameters.get('variance_decay', 0.98),
'variance_min': hyperparameters.get('variance_min', 0.1),
'tournament_size_factor': hyperparameters.get('tournament_size_factor', 0.2),
'elite_diversity_boost': hyperparameters.get('elite_diversity_boost', 2.0),
'random_individual_chance': hyperparameters.get('random_individual_chance', 0.05),
'max_mutation': hyperparameters.get('max_mutation', 3)

}

# Calculate variance based on current iteration
variance = max(hyperparams['variance_decay'] ** (current_iteration - 1), hyperparams['variance_min'])

def mutate(individual):
# Perform mutation on an individual with limited number of gene changes
mutation_indices = random.sample(range(len(individual)), min(len(individual), hyperparams['max_mutation']))
for i in mutation_indices:

if random.random() < hyperparams['mutation_rate']:
individual[i] = random.randint(1, hyperparams['code_upperbound'])

return individual

def crossover(parent1, parent2):
# Perform uniform crossover between two parents
child = np.array([parent1[i] if random.random() < 0.5 else parent2[i] for i in range(len(parent1))])
return child

def select_parent(population, scores):
# Perform tournament selection
tournament_size = int(len(population) * hyperparams['tournament_size_factor'])
selected_indices = random.sample(range(len(population)), tournament_size)
selected_scores = [scores[i] for i in selected_indices]
winner_index = selected_indices[selected_scores.index(min(selected_scores))]
return population[winner_index]

def introduce_diversity(individual, diversity_boost=1.0):
# Introduce diversity to an individual by adding Gaussian noise
noise = np.random.randn(len(individual)) * variance * diversity_boost
individual = np.round(individual + noise)
individual = np.clip(individual, 1, hyperparams['code_upperbound']).astype(int)
return individual

def create_random_individual(length):
return np.random.randint(1, hyperparams['code_upperbound'] + 1, length)

# Convert history_population to a list of numpy arrays and fitness_scores to a list of scores
population = [np.array(individual) for key in sorted(history_populations.keys()) for individual in

history_populations[key]]↪→
scores = [score for key in sorted(fitness_scores.keys()) for score in fitness_scores[key]]

# Generate new individuals
new_individuals = []
for _ in range(new_individuals_numbers):

if random.random() < hyperparams['random_individual_chance']:
new_individual = create_random_individual(len(best_individual))

elif hyperparams['elitism'] and best_individual is not None and random.random() <
hyperparams['diversity_factor']:↪→
# Add a mutated and diversified version of the best individual
new_individual = mutate(introduce_diversity(best_individual.copy(),

hyperparams['elite_diversity_boost']))↪→
elif len(population) > 0:

# Create a new individual using crossover and mutation
parent1 = select_parent(population, scores)
parent2 = select_parent(population, scores)
child = crossover(parent1, parent2)
child = mutate(child)
new_individual = introduce_diversity(child)

else:
# If there is no history population, create a random individual
new_individual = create_random_individual(len(best_individual))

new_individuals.append(new_individual)

return new_individuals
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B.3. Code for Ho-3
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
# Define default hyperparameters
hyperparams = {

'code_upperbound': hyperparameters.get('code_upperbound', 10),
'mutation_rate': hyperparameters.get('mutation_rate', 0.2),
'crossover_rate': hyperparameters.get('crossover_rate', 0.5),
'selection_pressure': hyperparameters.get('selection_pressure', 2.0),
'elitism': hyperparameters.get('elitism', True),

}

def mutate(individual):
# Perform mutation on an individual
for i in range(len(individual)):

if random.random() < hyperparams['mutation_rate']:
individual[i] = random.randint(1, hyperparams['code_upperbound'])

return individual

def crossover(parent1, parent2):
# Perform crossover between two parents
child = parent1.copy()
for i in range(len(child)):

if random.random() < hyperparams['crossover_rate']:
child[i] = parent2[i]

return child

def select_parent(population, scores):
# Perform tournament selection
tournament_size = min(len(population), int(len(population) * hyperparams['selection_pressure']))
selected_indices = random.sample(range(len(population)), tournament_size)
selected_scores = [scores[i] for i in selected_indices]
winner_index = selected_indices[selected_scores.index(min(selected_scores))]
return population[winner_index]

def create_new_individual(population, scores):
# Create a new individual using crossover and mutation
if hyperparams['elitism'] and best_individual is not None:

parent1 = best_individual
else:

parent1 = select_parent(population, scores)

parent2 = select_parent(population, scores)
child = crossover(parent1, parent2)
child = mutate(child)
return child

# Convert history_population to a list of numpy arrays and fitness_scores to a list of scores
population = [np.array(individual) for key in sorted(history_populations.keys()) for individual in

history_populations[key]]↪→
scores = [score for key in sorted(fitness_scores.keys()) for score in fitness_scores[key]]

# Generate new individuals
new_individuals = []
for _ in range(new_individuals_numbers):

if len(population) > 0:
new_individual = create_new_individual(population, scores)

else:
# If there is no history population, create a random individual
new_individual = np.random.randint(1, hyperparams['code_upperbound'] + 1, len(best_individual))

new_individuals.append(new_individual)

return new_individuals

B.4. Code of the algorithm discovered by tnGPS in the tnGPS components ablation experiment
def GenerateSample(history_populations, fitness_scores, best_individual, new_individuals_numbers, current_iteration,

maximum_iteration, hyperparameters):↪→

def tournament_selection(populations, fitness_scores, tournament_size):
selected_indices = []
for _ in range(tournament_size):

participants = choices(range(len(populations)), k=tournament_size)
participants_fitness = [fitness_scores[i] for i in participants]
winner_index = participants[np.argmin(participants_fitness)]
selected_indices.append(winner_index)

return [populations[i] for i in selected_indices]

def uniform_crossover(parent1, parent2, crossover_rate):
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child = np.array([p1 if random() < crossover_rate else p2 for p1, p2 in zip(parent1, parent2)])
return child

def boundary_mutation(individual, mutation_rate, code_upperbound):
for i in range(len(individual)):

if random() < mutation_rate:
individual[i] = 1 if random() < 0.5 else code_upperbound

return individual

# Retrieve hyperparameters with defaults
tournament_size = hyperparameters.get('tournament_size', 3)
crossover_rate = hyperparameters.get('crossover_rate', 0.7) # Increased crossover rate for potentially better

offspring↪→
mutation_rate = hyperparameters.get('mutation_rate', 0.05) # Reduced mutation rate to maintain good traits
code_upperbound = hyperparameters.get('code_upperbound', 100)
elitism_count = hyperparameters.get('elitism_count', 1) # Introducing elitism to ensure the best individual is

carried forward↪→

current_population = history_populations[str(current_iteration - 1)]
current_fitness = fitness_scores[str(current_iteration - 1)]

# Sort the current population by fitness and apply elitism
sorted_indices = np.argsort(current_fitness)
elites = [current_population[i] for i in sorted_indices[:elitism_count]]

# Generate new individuals, starting with the elites
new_individuals = elites.copy()
while len(new_individuals) < new_individuals_numbers:

# Tournament selection
parents = tournament_selection(current_population, current_fitness, tournament_size)
# Uniform crossover
child1 = uniform_crossover(parents[0], parents[1], crossover_rate)
child2 = uniform_crossover(parents[1], parents[0], crossover_rate)
# Boundary mutation
child1 = boundary_mutation(child1, mutation_rate, code_upperbound)
child2 = boundary_mutation(child2, mutation_rate, code_upperbound)
# Add children to the new population
new_individuals.extend([child1, child2])

# Truncate in case we have extra individuals
return new_individuals[:new_individuals_numbers]

B.5. Code of the algorithm discovered by tnGPS in the LLM models and interface description ablation experiment
def GenerateSample(history_populations, fitness_scores, best_individual, new_individuals_numbers, current_iteration,

maximum_iteration, hyperparameters):↪→

# Hyperparameters with default values
hyper = {

'code_upperbound': hyperparameters.get('code_upperbound', 30),
'mutation_rate': hyperparameters.get('mutation_rate', 0.1),
'tournament_size': hyperparameters.get('tournament_size', 5),
'elitism_rate': hyperparameters.get('elitism_rate', 0.1),
'crossover_rate': hyperparameters.get('crossover_rate', 0.9),
'diversity_factor': hyperparameters.get('diversity_factor', 0.1),
'best_individual_influence': hyperparameters.get('best_individual_influence', 0.05)

}

def tournament_selection(populations, fitness_scores, tournament_size):
tournament_contestants = choices(list(zip(populations, fitness_scores)), k=tournament_size)
tournament_contestants.sort(key=lambda x: x[1]) # sort by fitness score, lower is better
winner = tournament_contestants[0][0] # return the individual with the best fitness
return winner

def mutate(individual, mutation_rate, code_upperbound):
mutation_indices = [i for i in range(len(individual)) if random() < mutation_rate]
for i in mutation_indices:

individual[i] = randint(1, code_upperbound)
return individual

def crossover(parent1, parent2, crossover_rate, best_individual, best_influence):
child = parent1.copy()
if random() < crossover_rate:

for i in range(len(parent1)):
if random() < best_influence:

child[i] = best_individual[i]
elif random() < 0.5:

child[i] = parent1[i]
else:

child[i] = parent2[i]
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return child

def introduce_diversity(population, diversity_factor, code_upperbound):
for individual in population:

if random() < diversity_factor:
mutation_index = randint(0, len(individual) - 1)
individual[mutation_index] = randint(1, code_upperbound)

return population

# Retrieve the latest population and their fitness scores
elite_population = history_populations[str(current_iteration - 1)]
elite_fitness = fitness_scores[str(current_iteration - 1)]

# Calculate the number of elites based on the elitism rate
number_of_elites = int(hyper['elitism_rate'] * new_individuals_numbers)

# Sort the elite_population based on fitness and select the top individuals
sorted_indices = np.argsort(elite_fitness)
elites = [elite_population[i] for i in sorted_indices[:number_of_elites]]

# Generate new individuals with crossover and mutation
new_individuals = []
while len(new_individuals) < new_individuals_numbers - number_of_elites:

parent1 = tournament_selection(elite_population, elite_fitness, hyper['tournament_size'])
parent2 = tournament_selection(elite_population, elite_fitness, hyper['tournament_size'])
child = crossover(parent1, parent2, hyper['crossover_rate'], best_individual,

hyper['best_individual_influence'])↪→
new_individuals.append(mutate(child, hyper['mutation_rate'], hyper['code_upperbound']))

# Introduce diversity
new_individuals = introduce_diversity(new_individuals, hyper['diversity_factor'], hyper['code_upperbound'])

# Include elites in the new population pool
new_individuals.extend(elites)

# Ensure all values are within the specified range
new_individuals = [np.clip(individual, 1, hyper['code_upperbound']) for individual in new_individuals]

return new_individuals

B.6. Code for TNGA
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
Ranking=np.argsort(fitness_scores['{}'.format(current_iteration-1)])
elite_num=int(len(fitness_scores['{}'.format(current_iteration-1)])*hyperparameters.get('elite_percentage',

0.9))↪→
Ranking=Ranking[0:elite_num]
populations_elite=[history_populations['{}'.format(current_iteration-1)][i].copy() for i in Ranking]
fitness_scores_elite=[fitness_scores['{}'.format(current_iteration-1)][i] for i in Ranking]
Rank_elite = np.argsort(fitness_scores_elite)
p = [ np.maximum(np.log(hyperparameters.get('alpha', 100)/(0.01+k*5)), 0.01) for k in

range(len(populations_elite)) ]↪→
prob = np.zeros(len(populations_elite))
for idx, i in enumerate(Rank_elite): prob[i] = p[idx]
new_individuals=[]
for i in range(new_individuals_numbers//2):

parents=choices(populations_elite, weights=prob, k=2)
female=parents[0].copy()
male=parents[1].copy()
index=np.arange(len(male))
np.random.shuffle(index)
index=index[0:(len(male)//2)]
tnp=female[index]
female[index]=male[index]
male[index]=tnp
new_individuals.append(male)
new_individuals.append(female)

if np.mod(new_individuals_numbers,2)!=0:
tnp=new_individuals[-1].copy()
np.random.shuffle(tnp)
new_individuals.append(tnp)

for i in range(new_individuals_numbers):
mask = np.random.uniform(0,1,[len(new_individuals[0])])<hyperparameters.get('mutation_rate', 0.25)
for j in range(len(new_individuals[0])):

if mask[j]:
mutate_range=np.arange(1,hyperparameters.get('code_upperbound', 15)+1)
mutate_range=np.delete(mutate_range, np.where(mutate_range == new_individuals[i][j]))
np.random.shuffle(mutate_range)
new_individuals[i][j]=mutate_range[0]
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return new_individuals

B.7. Code for TNLS
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
variance=hyperparameters.get('decay_rate', 0.99)**(current_iteration-2)
if variance<hyperparameters.get('variance_LB', 0.3):

variance=hyperparameters.get('variance_LB', 0.3)
new_individuals=[]
for i in range(new_individuals_numbers):

tnp=np.array(best_individual)+np.random.randn(len(best_individual))*variance
tnp=np.round(tnp)
tnp[np.where(tnp>hyperparameters.get('code_upperbound', 15))]=hyperparameters.get('code_upperbound', 15)
tnp[np.where(tnp<1)]=1
tnp=tnp.astype(int)
new_individuals.append(tnp)

return new_individuals

B.8. Code for GREEDY
def GenerateSample(history_populations,fitness_scores,best_individual,new_individuals_numbers,current_iteration,

maximum_iteration,hyperparameters):↪→
variance=hyperparameters.get('decay_rate', 0.99)**(current_iteration-2)
if variance<hyperparameters.get('variance_LB', 0.3):

variance=hyperparameters.get('variance_LB', 0.3)
new_individuals=[]
for i in range(new_individuals_numbers):

tnp=np.array(best_individual)+np.random.randn(len(best_individual))*variance
tnp=np.round(tnp)
tnp[np.where(tnp>hyperparameters.get('code_upperbound', 15))]=hyperparameters.get('code_upperbound', 15)
tnp[np.where(tnp<1)]=1
tnp=tnp.astype(int)
new_individuals.append(tnp)

return new_individuals
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