
UP2ME: Univariate Pre-training to Multivariate Fine-tuning as
a General-purpose Framework for Multivariate Time Series Analysis

Yunhao Zhang 1 Minghao Liu 1 Shengyang Zhou 1 Junchi Yan 1

Abstract

Despite the success of self-supervised pre-training
in texts and images, applying it to multivariate
time series (MTS) falls behind tailored methods
for tasks like forecasting, imputation and anomaly
detection. We propose a general-purpose frame-
work, named UP2ME (Univariate Pre-training
to Multivariate Fine-tuning). It conducts task-
agnostic pre-training when downstream tasks are
unspecified. Once the task and setting (e.g. fore-
casting length) are determined, it gives sensi-
ble solutions with frozen pre-trained parameters,
which has not been achieved before. UP2ME is
further refined by fine-tuning. A univariate-to-
multivariate paradigm is devised to address the
heterogeneity of temporal and cross-channel de-
pendencies. In univariate pre-training, univari-
ate instances with diverse lengths are generated
for Masked AutoEncoder (MAE) pre-training,
discarding cross-channel dependency. The pre-
trained model handles downstream tasks by for-
mulating them into specific mask-reconstruction
problems. In multivariate fine-tuning, it con-
structs a dependency graph among channels using
the pre-trained encoder to enhance cross-channel
dependency capture. Experiments on eight real-
world datasets show its SOTA performance in
forecasting and imputation, approaching task-
specific performance in anomaly detection. Our
code is available at https://github.com/
Thinklab-SJTU/UP2ME.

1School of Artificial Intelligence & Department of Computer
Science and Engineering & MoE Key Lab of Artificial Intelligence,
Shanghai Jiao Tong University. Correspondence to: Junchi Yan
<yanjunchi@sjtu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Pre-training

Task-agnostic

Multivariate

Fine-tuning

Forecasting

Predict length:192

Imputation

Missing ratio:25%

Anomaly Detection

Observe length: 200

Immediate

Reaction (IR) Mode

Forecasting

Predict length:192

Imputation

Missing ratio:25%

Anomaly Detection

Observe length: 200

Univariate

Pre-training

Fine-tuning

Fine-tuning

Fine-tuning

Dataset

Pre-trained Model

Fine-tuned Models

Initial Solutions

Optimized Solutions

Fine-

Tuning (FT)

Mode

Figure 1: UP2ME Workflow: Given the dataset, UP2ME
performs task-agnostic univariate pre-training. The result-
ing pre-trained model can execute immediate forecasting,
imputation and anomaly detection across various settings
without parameter modifications. Once the downstream task
and its setting are determined, multivariate fine-tuning tai-
lors UP2ME to the specific task for more accurate solutions.

1. Introduction
Recently, deep learning for multivariate time series (MTS)
analysis has developed rapidly and has been applied to
many tasks, such as forecasting, imputation and anomaly
detection. Among these methods, task-specific ones tai-
lored to tasks’ characteristics constitute the most signifi-
cant proportion. For example, models have been developed
based on trend-season decomposition for forecasting (Wu
et al., 2021), conditional diffusion for imputation (Tashiro
et al., 2021) and association discrepancy for anomaly detec-
tion (Xu et al., 2022). Despite the effectiveness, selecting
proper task-specific methods for different tasks can be ex-
hausting. Even within the same task, when the setting (e.g.
the forecasting length) changes, the model often needs to be
retrained (Bi et al., 2023).

Until recently, a few MTS backbones emerged towards the
goal of general-purpose analysis (Wu et al., 2023). While
the same main architecture (except the output layer) is
shared within tasks, the parameters need to be trained from
scratch for each task and its corresponding setting.

Self-supervised pre-training, which pre-trains a model on
downstream agnostic tasks and then fine-tunes it for spe-

1

https://github.com/Thinklab-SJTU/UP2ME
https://github.com/Thinklab-SJTU/UP2ME

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

cific usages, is a promising way to achieve multi-task mod-
els. Following the success in natural language processing
(NLP) (Devlin et al., 2019; Brown et al., 2020) and computer
vision (CV) (Chen et al., 2020; He et al., 2022), pre-training
methods have also been proposed for MTS, and mainly fall
into contrastive learning and mask-reconstruction modeling.
The former (Eldele et al., 2021; Yue et al., 2022) learns
representation by discriminating pre-defined positive and
negative pairs. The latter (Zerveas et al., 2021; Dong et al.,
2023) masks a proportion of the data and uses the remaining
to reconstruct masked parts. Different from NLP and CV,
most previous pre-training methods for MTS can not rival
carefully designed task-specific methods. Moreover, they
only serve as model initializers and can not perform down-
stream tasks without parameter or architecture modification.
Note that instead of pre-training on MTS data, a series of
very recent works adapt pre-trained large language models
(LLMs) to MTS tasks (Nate Gruver & Wilson, 2023; Zhou
et al., 2023), which goes beyond the scope of this work.

To fill the gap, we propose a unified framework for
MTS analysis, named UP2ME (Univariate Pre-training to
Multivariate Fine-tuning). As shown in Figure 1, when
data is available but the downstream tasks and settings are
undetermined, UP2ME performs task-agnostic pre-training.
Without any parameter modification, the pre-trained model
provides initial reasonable solutions to forecasting, impu-
tation and anomaly detection in immediate reaction (IR)
mode. Once the downstream tasks and settings are deter-
mined, UP2ME further adapts to the task and provides more
accurate solutions in fine-tuning (FT) mode.

Temporal dependency captures relations over time, while
cross-channel dependency captures relations between data
with distinct physical meanings. The latter remains rela-
tively stable due to underlying physical dynamics (Kipf
et al., 2018). Inspired by the heterogeneity, we develop a
univariate to multivariate paradigm. UP2ME omits cross-
channel dependency during univariate pre-training, priori-
tizing temporal dependency. Channel dependency is subse-
quently incorporated during multivariate fine-tuning. Specif-
ically, UP2ME uses variable window length and channel
decoupling (see details in Sec. 2.1.1) to generate univariate
instances with diverse lengths for MAE pre-training (He
et al., 2022). Formulated as specific mask-reconstruction
tasks, the pre-trained model can directly execute forecast-
ing, imputation and anomaly detection without parameter
or architecture modification. Freezing the pre-trained en-
coder and decoder during fine-tuning, UP2ME introduces
trainable Temporal-Channel (TC) layers to capture cross-
channel dependency and further refine temporal dependency.
TC layers require a dependency graph representing relation-
ships among channels, and this graph is constructed using
the pre-trained frozen encoder. The contributions are:

1) Inspired by the heterogeneity of temporal and cross-
channel dependency, we propose a general-purpose frame-
work for MTS named UP2ME, where univariate pre-training
concentrates on temporal dependency and cross-channel de-
pendency is incorporated in multivariate fine-tuning.

2) In univariate pre-training, variable window length and
channel decoupling are used to generate instances for MAE
pre-training. The pre-trained model handles multiple tasks
by formulating them into specific mask-reconstruction prob-
lems. In multivariate fine-tuning, UP2ME refines temporal
dependency and constructs a graph among channels via the
pre-trained encoder to capture cross-channel dependency.

3) We evaluate UP2ME on eight real-world datasets, ad-
dressing three downstream tasks: forecasting, imputation
and anomaly detection. Using the original Transformer
and Graph Transformer without inductive-biased architec-
tures, pre-trained UP2ME(IR) with frozen parameters is
comparable with previous state-of-the-art (SOTA) methods
on several datasets. The fine-tuned UP2ME(FT) surpasses
all previous task-specific, general-purpose and pre-training
methods in forecasting and imputation, approaching task-
specific performance in anomaly detection.

2. Methodology
As the overview in Figure 2 shows, we are given a multi-
variate time series dataset X ∈ RT×C , where T > 0 is the
number of timestamps and C > 1 is the number of channels.
In Section 2.1, UP2ME is pre-trained on the given dataset
in the univariate setting to capture temporal dependency.
The pre-trained model can provide initial solutions in IR
mode. In Section 2.2, UP2ME is fine-tuned in the multivari-
ate setting to capture cross-channel dependency and refine
temporal dependency for more accurate solutions.

2.1. Univariate Pre-training

For pre-training, we specifically use MAE (He et al., 2022),
which has proven effective for images. Compared with
previous mask-reconstruction methods for time series, we
propose two techniques for instance generation: variable
window length and channel decoupling.

2.1.1. INSTANCE GENERATION

Variable Window Length. Images are often cropped to a
fixed size in CV (e.g. 224 × 224 for Imagenet), while for
time series, it is unknown during pre-training and should be
determined by the setting of downstream tasks (e.g. past and
future window length for forecasting). To meet the uncertain
requirements for window length, we make it variable during
pre-training. Specifically, for each training step, we first
randomly sample a window length L then generate a batch

2

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Encoder (trainable)

Decoder (trainable)

Encoder (frozen)

Decoder (frozen)

TC Layers (trainable)

Patch & Mask

4 univariate

instances with

distinct lengths

Concat with

mask tokens

Forecast

future series

1 aligned

multivariate

instance

Reconstruct

masked

patches

Cross-channel

dependency

capture

&

Temporal

dependency

refine

Figure 2: Overview of UP2ME framework. Left: Univariate Pre-training. Univariate instances are generated using
variable window length and channel decoupling in Sec. 2.1.1. Generated instances are fed into the encoder and decoder
for MAE pre-training in Sec. 2.1.2. Formulating downstream tasks as specific mask-reconstruction problems, UP2ME can
give sensible solutions without parameter modification in Sec. 2.1.3 (right part without TC layers). Right: Multivariate
Fine-tuning (forecasting in this example). The pre-trained frozen encoder encodes a multivariate series into latent tokens.
The tokens are used to construct a dependency graph among channels in Sec. 2.2.1. Learnable Temporal-Channel (TC)
layers which take constructed graph as input, are inserted before the frozen decoder for fine-tuning in Sec. 2.2.2.

of instances with this length:

n ∼ {Nmin, . . . , Nmax}, L = nP (1)

where P is the patch size to divide time series (Nie
et al., 2023; Zhang & Yan, 2023), Nmin, Nmax are hyper-
parameters for minimal/maximum patch number.

Channel Decoupling. To generate an instance of length L,
previous works sample a timestamp t and get multivariate
sub-series Xt+1:t+L ∈ RL×C as an instance for model
input. With channel decoupling, we independently sample
the timestamp t ∼ {0, . . . , T − L} and channel index c ∼
{1, . . . , C}. The univariate sub-series with its channel index
(Xt+1:t+L,c, c) will be viewed as an instance.

Note that channel decoupling is different from channel in-
dependence (Nie et al., 2023). Channel independence is
a technique to process multivariate sub-series: Xt+1:t+L

is split into C univariate series and input to the model to-
gether. Though channels are processed independently, their
co-occurrence reflects cross-channel dependency to some
extent. With channel decoupling, we completely discard
cross-channel dependency and only focus on temporal de-
pendency during pre-training.

Another advantage of channel decoupling is its efficiency
for high-dimensional data. For dataset with large C, we
can pack B(B << C) decoupled univariate series into a

mini-batch instead of processing all channels at once. Exper-
imental evaluation of pre-training overhead with and without
channel decoupling is shown in Figure 5 of Appendix C.

2.1.2. MASKED AUTOENCODER PRE-TRAINING

With the above two instance generation techniques, the pre-
training process is similar to MAE for image (He et al.,
2022). For convinence, we use (x(pt), c),x(pt) ∈ RL, c ∈
{1, . . . , C} to represent a generated instance. The univari-
ate series x(pt) is first split into non-overlapping patches
of length P : {x(patch)

1 , . . . ,x
(patch)
N }, where x

(patch)
i ∈

RP , N = L/P . Then each patch is embedded into a token
with dmodel dimensions through linear projection, added
with learnable positional and channel embeddings:

h
(patch)
i = W(emb)x

(patch)
i + p

(pos)
i + v(ch)

c (2)

where W(emb) ∈ Rdmodel×P is the projection matrix,
p
(pos)
i ,v

(ch)
c ∈ Rdmodel are positional embedding for in-

dex i and channel embedding for channel c. We randomly
sample a subset of patches with ratio α to mask, here we
use M to represent indices of masked patches and U for un-
masked patches. Unmasked patches are input to an encoder
to capture temporal dependency:

h
(enc)
i = Encoder(

⋃
j∈U

h
(patch)
j)i,∀i ∈ U (3)

3

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

These encoded unmasked patches, together with learnable
tokens indicating masked patches, are input to a decoder for
masked patch reconstruction:

h
(dec−in)
i =

{
u(mask) + p

(pos)
i + v

(ch)
c i ∈ M

W(proj)h
(enc)
i i ∈ U

h
(dec−out)
i = Decoder

(
[h

(dec−in)
1 , . . . ,h

(dec−in)
N]

)
i

x
(rec)
i = W(rec)h

(dec−out)
i ,∀i ∈ M

(4)

where u(mask) ∈ Rdmodel denotes the presence of a masked
patch, W(proj) ∈ Rdmodel×dmodel projects latent tokens
from encoder space to decoder space, [·, ·] denotes con-
catenation, W(rec) ∈ RP×dmodel projects latent tokens to
original patches. The encoder/decoder are both composed of
standard Transformer layers. The normalization technique,
RevIN (Kim et al., 2022), is used to reduce distribution shift.

Mean squared error (MSE) between the reconstructed and
ground truth masked patches is used as pre-training loss:

L =
1

P |M|
∑
i∈M

∥x(patch)
i − x

(rec)
i ∥

2

2 (5)

2.1.3. IMMEDIATE REACTION MODE

Different from the original MAE for images where the de-
coder is removed after pre-training, UP2ME preserves both
the pre-trained encoder and decoder for potential down-
stream tasks. Formulating different downstream tasks as
specific mask-reconstruction problems, UP2ME can per-
form immediate forecasting, anomaly detection and impu-
tation with frozen parameters. As the immediate reaction
(IR)1 mode only utilizes temporal dependency and acts sim-
ilarly on each channel, we only describe the computation
process for a single channel in this section.

Forecasting. To forecast future time series x(future) ∈
RLf based on its past x(past) ∈ RLp , we view past series
as unmasked patches and future series as masked patches2:

Mforecast = {i|Lp

P
< i ≤ Lp + Lf

P
}

Uforecast = {i|1 ≤ i ≤ Lp

P
}

(6)

Imputation. Point-wise missing can be easily handled by
traditional interpolation methods. Moreover, missing pat-
terns in real world are often structured and appear con-
secutively (Tashiro et al., 2021). We focus on this more

1We use this new terminology instead of zero-shot as the pre-
training and inference are within the same dataset, unlike a strict
zero-shot setting where models operate on completely unseen data.

2Without loss of generality, we assume all windows are divisi-
ble by P ; otherwise, we can pad them to proper length.

challenging scenario where continuous blocks of data are
missing. Given observed data x(imp) ∈ RLimp and a mask
for missing positions m ∈ [0, 1]Limp (mi = 1 if i-th value is
missing), we patch m into {m(patch)

1 , . . . ,m
(patch)
Limp/P

} using

the same patching process for x(imp). Patches containing at
least one missing point are viewed as masked patches and
fully-observed patches are viewed as unmasked:

Mimputate = {i
∣∣∣∥m(patch)

i ∥0 ≥ 1}

U imputate = {i
∣∣∣∥m(patch)

i ∥0 = 0}
(7)

Anomaly Detection. Due to the rarity and irregularity of
anomalies, it is much more difficult to reconstruct them from
other parts of the series than normal points. Based on this, to
detect anomalies from observed series x(det) ∈ RLdet , we
iteratively mask each patch and use other unmasked patches
to reconstruct it, MSE between reconstructed series and
original series is used as the anomaly score:

for i = 1, . . . ,
Ldet

P
:

Mdetect
i = {i} Udetect

i = {1, . . . , Ldet

P
}\{i}

x̃(det) =
[
x
(rec)
1 , . . . ,x

(rec)
Ldet/P

]
AnomoalyScore(t) = |x(det)

t − x̃
(det)
t |2, 1 ≤ t ≤ Ldet

(8)

In each iteration, we use Udetect
i as unmasked patches to

reconstruct Mdetect
i , resulting in x

(rec)
i ∈ RP . These re-

constructed patches are concatenated into x̃(det) ∈ RLdet to
compute anomaly score. For multivariate data, we compute
the anomaly score for each channel and use the average
across channels as the final anomaly score.

Despite distributions and ratios of mask in three downstream
tasks being different from those in pre-training, experiments
in Section 3 show that our IR mode generalizes well and is
on par with some task-specific methods.

2.2. Multivariate Fine-tuning

In fine-tuning, the downstream task and the correspond-
ing setting are given. UP2ME takes a multivariate in-
stance x(ft) ∈ RLft×C as input and performs forecast-
ing/detection/imputation. Specifically, we freeze param-
eters of the pre-trained encoder and decoder while incor-
porating learnable Temporal-Channel (TC) layers between
them. The main function of the TC layer is to capture de-
pendency among channels and, incidentally, adjust temporal
dependency to reduce the gap between pre-training and
downstream tasks.

4

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

2.2.1. SPARSE DEPENDENCY GRAPH CONSTRUCTION

A straightforward method for capturing cross-channel de-
pendency is to employ self-attention across C channels,
which corresponds to constructing a fully connected depen-
dency graph. However, the O(C2) complexity limits its ap-
plicability to potentially high-dimensional datasets (Zhang
& Yan, 2023). Hence, it is necessary to build a sparse graph
that preserves most dependency with fewer edges to guide
cross-channel dependency capturing.

Since the encoder has acquired meaningful representations
through pre-training, we leverage it for sparse graph con-
struction. Each channel of x(ft) is first patched and then
independently input to the encoder to get latent tokens, de-
noted as {

⋃
i∈Uc

h
(enc)
i,c }Cc=1, where Uc indicates unmasked

patches in channel c, h(enc)
i,c indicates the i-th encoded patch

in channel c. Then we use these latent tokens to construct a
dependency graph among channels:

h(ch)
c = Max Pooling(

⋃
i∈Uc

h
(enc)
i,c),∀c ∈ {1, . . . , C}

Ac,c′ =
⟨h(ch)

c ,h
(ch)
c′ ⟩

∥h(ch)
c ∥2∥h

(ch)
c′ ∥2

,∀c, c′ ∈ {1, . . . , C}

E = topK(A, rC) ∧ KNN(A, r)

(9)

We use max pooling to get a token h
(ch)
c representing chan-

nel c. The correlation matrix A is defined as the pairwise
cosine similarity of these tokens. The intersection of rC
largest elements and r-nearest neighbors of each channel
is used as the final graph E, with r as a constant hyper-
parameter.

Note that it is common to measure dependency between
sentences or words using cosine similarity of latent embed-
dings from pre-trained models (Reimers & Gurevych, 2019;
Ren et al., 2023). For MTS, Shao et al. (2022) also em-
ploys the cosine similarity of latent tokens from a separate
pre-trained model to guide spatial-temporal graph neural
network learning. Our graph construction process differs
from previous works for MTS which use channel indepen-
dence (Nie et al., 2023), low-rank approximation (Zhang &
Yan, 2023), statistics or learning methods (Wu et al., 2020).
Using the pre-trained encoder, we construct a non-linear
and sparse graph with at most rC edges. The additional
computational cost incurred by the construction is minimal,
as there is no learning component.

2.2.2. TEMPORAL-CHANNEL LAYER

Concatenating encoded patches with tokens indicat-
ing unmasked patches (Eq. 4), we get H(TC−in) ∈
RN(dec)×C×dmodel , where N (dec) is the number of patches
in each channel for decoding. Before input to the decoder,
H(TC−in) and the constructed dependency graph E pass

through K ≥ 1 Temporal-Channel (TC) layers to capture
cross-channel dependency and adjust temporal dependency.
With few inductive biases, our TC layer contains a standard
Transformer layer for temporal dependency and a standard
Graph Transformer layer (Dwivedi & Bresson, 2021) for
cross-channel dependency :

H(ch,0) = H(TC−in)

for k = 1, . . . ,K :

H(time,k)
:,c = Transformer(H(ch,k−1)

:,c),∀c

H
(ch,k)
i,: = Graph Transformer(H(time,k)

i,: ,E),∀i

H(dec−in) = H(TC−out) = H(ch,K)

(10)

where H
(ch,k−1)
:,c ∈ RN(dec)×dmodel denotes tokens of all

steps in channel c and H
(time,k)
i,: ∈ RC×dmodel denotes all

channels at step i. Passing through several learnable TC
layers, the final H(dec−in) ∈ RN(dec)×C×dmodel is input to
the frozen decoder to get solutions for downstream tasks.
A Graph Transformer layer functionally equals a standard
Transformer layer using the graph structure as the attention
weight mask, but is more efficient on sparse graphs (Dwivedi
& Bresson, 2021). The overall computation complexity of
a TC layer is O(CN2) + O(rCN) = O(CN2), which is
linear w.r.t C thanks to the constructed sparse graph, making
UP2ME scalable to high dimensional data.

3. Experiments
We conduct experiments on eight real-world datasets:
1)ETTm1, 2)Weather, 3)Electricity, 4)Traffic, 5)SMD,
6)PSM, 7)SWaT, 8)GECCO. On each dataset, we perform
three different downstream tasks: forecasting, imputation
and anomaly detection3. We vary the specific settings for
tasks, such as prediction length for forecasting and miss-
ing ratio for imputation, etc. We pre-train one UP2ME for
each dataset as the base model and fine-tune it to adapt to
different downstream tasks and settings. Results of two
UP2ME modes are reported: 1)UP2ME(IR): immediate
reaction mode which directly provides initial solutions with
the pre-trained model; 2)UP2ME(FT): fine-tuning mode
which adapts to specific downstream tasks and settings. For
each task, three categories of methods are compared: 1)
task-specific methods; 2) general-purpose methods; 3) pre-
training methods. Detailed setup is shown in Appendix A.

3.1. Main Results

Forecasting. We select PatchTST (Nie et al., 2023), DLin-
ear (Zeng et al., 2023), Crossformer (Zhang & Yan, 2023),
FEDformer (Zhou et al., 2022) as task-specific methods;
TimesNet (Wu et al., 2023) as the general-purpose method;

3Anomaly detection is only evaluated on the last four datasets
as the first four lack ground truth anomaly annotations.

5

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

TS2Vec (Yue et al., 2022) and SimMTM (Dong et al., 2023)
as pre-training methods. Each method predicts future series
with different lengths (Lf). Evaluation metrics are Mean
Square Error (mSE) and Mean Absolute Error (mAE) 4.

The results are shown in Table 1. Without any adjustment to
model parameters, UP2ME(IR) is comparable with previous
SOTA methods on ETTm1, Electricity, Traffic and GECCO
datasets. This indicates that our instance generation tech-
niques enable the model to generalize to downstream tasks
where the mask distribution and ratio are different from pre-
training. After fine-tuning, UP2ME makes more accurate
forecasting and outperforms previous SOTAs on all datasets.
Note that our UP2ME only uses standard Transformer and
Graph Transformer layers, without inductive biased architec-
ture designs e.g. flattened projection (PatchTST, TimesNet,
SimMTM), trend-season decomposition (DLinear, FED-
former), hierarchical encoder-decoder (Crossformer) or fre-
quency domain enhancement (FEDformer, TimesNet).

Imputation. We select SAITS (Du et al., 2023),
GRIN (Cini et al., 2022), LI (Linear Interpolation) and
SI (Spline Interpolation) as task-specific methods; general-
purpose and pre-training methods are same as those for
forecasting. We evaluate performances on different missing
ratio levels and use mSE and mAE as evaluation metrics.

Table 2 shows that UP2ME(IR) outperforms most previous
baselines on Electricity, Traffic, SMD and GECCO and also
achieves comparable results on ETTm1 and SWaT. It is
worth mentioning that the architecture and parameters are
the same as those for forecasting, showing UP2ME’s capa-
bility to handle multiple tasks. Equipped with cross-channel
dependency after fine-tuning, UP2ME(FT) outperforms all
other methods over a large margin on 7 out of 8 datasets.

Anomaly Detection. We select DCdetector (Yang et al.,
2023), AnomalyTrans (Xu et al., 2022), iForest (Liu et al.,
2012), OCSVM (Schölkopf et al., 2001) as task-specific
methods and use the same general and pre-training meth-
ods as forecasting and imputation. Following Yang et al.
(2023); Xu et al. (2022), we use the train and validation set
to select a threshold and label anomalies with it for F1-score
evaluation. Moreover, to mitigate the impact of threshold
selection for a more comprehensive comparison, we also
threshold at every possible point to evaluate the Average
Precision (AP) (Manning, 2009). The widely-used segment
adjustment strategy (Shen et al., 2020; Xu et al., 2022; Yang
et al., 2023) is utilized for F1-score and AP evaluation.

Table 3 shows that two task-specific SOTA methods, DCde-
tector and AnomalyTrans, perform better on the first three
datasets, but our UP2ME still outperforms traditional task-
specific, general-purpose and pre-training methods and ap-

4For distinction, we use “MAE” to denote Masked AutoEn-
coder and “mAE” for Mean Absolute Error.

proaches task-specific methods. While on the more challeng-
ing GECCO dataset with various types of anomalies (Yang
et al., 2023), UP2ME outperforms task-specific methods
over a large margin, indicating the superiority of our uni-
variate pre-training to multivariate fine-tuning paradigm.

3.2. Model Analysis

Ablations of Pre-training. As Figure 3(a) shows, train-
ing from scratch is less effective than pre-training and then
fine-tuning, though the network architectures are the same.
Without variable window length, the IR mode can not handle
varying prediction lengths, thus performs poorly. Channel
decoupling slightly improves both modes and contributes
more to fine-tuning. Also, channel decoupling is indis-
pensable for pre-training on high-dimensional datasets (e.g.
Traffic (C = 862)); otherwise, the computational overhead
would be unaffordable (see experiments in Appendix C)

Mask Ratio α in Pre-training. Figure 3(b) shows the
influence of mask ratio in pre-training. A lower mask ratio
(≤ 30%) would result in decreased performance of IR mode.
While an excessively high mask ratio (≥ 70%) has negative
impacts on both IR and FT modes. The optimal ratios are
40% ∼ 60%, within which both two modes perform well
and outperform training from scratch (0.369). The default
mask ratio used in our main experiments is 50%.

Graph Construction in Fine-tuning. Figure 3(c) shows
that channel independence without graph structure performs
the worst. The graph constructed by the pre-trained encoder
outperforms those via random processes, Pearson correla-
tion and Euclidean distance. We failed to evaluate Dynamic
Time Wrapping (DTW) due to its quadratic complexity and
non-parallelizability. UP2ME approaches the theoretical
upper bound, i.e. full connection, with small computational
overhead (see memory occupancy in Figure 3(d)). Note that
the full connection is unaffordable for high-dimensional
datasets (see Figure 6 in Appendix C). Figure 4(a) shows a
correlation matrix for graph construction on Weather, where
channels #4, #7, #9 and #10 are highly correlated and form
a connected community. Actually, they are related to dew
point, water vapor and humidity, indicating that our graph
construction is reasonable.

Hyper-parameter r in Fine-tuning. Figure 3(d) shows
that increasing hyper-parameter r in fine-tuning improves
performance, but also increases memory occupancy. Ex-
ceeding a certain threshold, the improvement becomes
marginal, but memory occupancy rises rapidly. This in-
dicates that UP2ME can preserve the most important corre-
lations with a relatively sparse graph. To strike a balance
between performance and efficiency, the default r is set to
r = min(10, ⌈0.5C⌉).

Varying Past Window for Forecasting. Zeng et al. (2023)

6

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Table 1: mSE/mAE of forecasting. The prediction length Lf is set to {96, 192, 336, 720} for the first four datasets and {50,
100, 150, 200} for the last four. Results are averaged over 4 different lengths. Bold/underline indicates the best/second. Our
methods are marked in gray. OOM: out-of-memory problem. See Table 5 in Appendix B for the full results.

Methods Task-Specific General Pre-Training

PatchTST DLinear Crossformer FEDformer TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

Metric mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE

ETTm1 0.353 0.382 0.358 0.379 0.443 0.461 0.427 0.447 0.393 0.408 0.787 0.651 0.350 0.384 0.360 0.372 0.341 0.374
Weather 0.228 0.264 0.244 0.297 0.239 0.299 0.311 0.365 0.247 0.283 0.261 0.330 0.232 0.270 0.266 0.288 0.221 0.260

Electricity 0.164 0.255 0.168 0.265 0.205 0.306 0.239 0.349 0.194 0.293 0.377 0.451 OOM 0.165 0.252 0.155 0.245
Traffic 0.395 0.265 0.436 0.300 0.528 0.292 0.658 0.413 0.622 0.332 0.973 0.569 OOM 0.401 0.257 0.390 0.253
SMD 0.893 0.174 0.992 0.199 0.925 0.185 1.020 0.236 0.995 0.188 1.289 0.427 0.894 0.187 0.924 0.201 0.872 0.169
PSM 0.303 0.310 0.314 0.341 0.377 0.326 0.326 0.330 0.301 0.311 0.687 0.580 0.315 0.325 0.602 0.499 0.290 0.300
SWaT 0.217 0.066 0.354 0.168 0.237 0.110 0.263 0.103 0.226 0.063 10.082 1.559 0.248 0.138 0.292 0.093 0.210 0.062

GECCO 1.656 0.322 1.703 0.457 2.637 0.657 1.735 0.383 1.655 0.314 2.469 0.771 1.615 0.331 1.476 0.328 1.413 0.299

Table 2: mSE/mAE of imputation. Results are averaged over 4 missing ratio settings (0% ∼ 12.5%, 12.5% ∼ 25%,
25% ∼ 37.5%, 37.5% ∼ 50%). See Table 6 in Appendix B for the full results.

Methods Task-Specific General Pre-Training

SAITS GRIN LI SI TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

Metric mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE

ETTm1 0.201 0.278 0.492 0.496 0.912 0.577 2.046 1.060 0.172 0.266 0.275 0.353 0.328 0.380 0.275 0.318 0.128 0.221
Weather 0.103 0.160 0.232 0.306 0.179 0.198 1.016 0.741 0.113 0.166 0.125 0.201 0.171 0.228 0.150 0.191 0.079 0.108

Electricity 0.211 0.319 0.313 0.399 1.277 0.860 1.759 1.058 0.140 0.256 0.227 0.324 OOM 0.107 0.204 0.097 0.193
Traffic 0.573 0.311 0.509 0.291 2.253 0.994 2.696 1.092 0.508 0.276 0.559 0.299 OOM 0.338 0.223 0.294 0.197
SMD 0.865 0.207 1.148 0.346 1.289 0.167 3.215 0.870 0.877 0.178 1.217 0.372 0.842 0.155 0.839 0.166 0.756 0.103
PSM 0.601 0.450 0.821 0.486 0.232 0.257 3.026 1.132 0.302 0.330 1.497 0.733 0.225 0.269 0.340 0.334 0.144 0.197
SWaT 2.929 0.754 6.140 0.872 0.186 0.055 13.579 1.564 0.240 0.102 6.091 1.257 0.155 0.066 0.192 0.064 0.121 0.045

GECCO 3.828 1.142 5.091 1.216 1.634 0.250 11.720 2.063 1.778 0.412 6.065 1.401 1.515 0.314 1.405 0.299 1.468 0.290

Table 3: F1-score/AP (in %) of anomaly detection. See Table 7 in Appendix B for the full results.

Methods Task-Specific General Pre-Training

DCdetector AnomalyTrans iForest OCSVM TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

Metric F1 AP F1 AP F1 AP F1 AP F1 AP F1 AP F1 AP F1 AP F1 AP

SMD 84.40 82.75 90.98 93.49 54.92 80.65 67.23 73.42 83.09 90.59 74.13 87.79 83.01 93.91 82.69 93.90 83.31 93.58
PSM 97.50 98.73 97.37 98.80 90.82 96.61 86.53 96.86 90.53 99.70 87.44 96.48 93.37 99.73 96.05 99.75 97.16 99.76
SWaT 96.52 99.57 95.01 98.92 37.36 91.46 61.61 88.55 90.83 97.37 26.20 82.12 89.29 97.38 92.89 97.83 93.85 98.07

GECCO 31.71 31.87 34.45 48.54 26.37 38.92 52.41 62.08 46.45 68.53 16.77 37.76 47.32 63.30 55.91 65.47 63.39 65.09

Scratch W/o Var Win W/o Chnl Decp UP2ME

0.34

0.35

0.35

0.36

0.36

0.36

0.37

0.38

m
SE

0.370

0.361 0.360

0.369

0.339

0.344
0.341

Immediate Reaction
Fine-tuning

(a)

10 20 30 40 50 60 70 80 90
Mask Ratio (%)

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

m
SE

0.460

0.390 0.385

0.354
0.360 0.357

0.376
0.383

0.485

0.341
0.347

0.339 0.343 0.341 0.338

0.353 0.354 0.353

Immediate Reaction
Fine-tuning

(b)
Independence Random Pearson Euclidean Full UP2ME

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

m
SE

0.132

0.114

0.089 0.089

0.077 0.079

(c)

1 3 5 7 10 15 21
r

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

m
SE

0.142

0.124

0.114

0.103

0.086
0.081 0.081

mSE
Memory Occupancy

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

M
em

or
y

Oc
cu

pa
nc

y
(G

B)

1.432 1.433 1.468
1.615

2.069

3.118

4.598

(d)

Figure 3: Analysis of pre-training and fine-tuning. (a) Forecasting mSE of ablations in pre-training on ETTm1. (b)
Forecasting mSE against mask ratios α in pre-training on ETTm1. (c) Imputation mSE of different graph constructions in
fine-tuning on Weather. (d) mSE and memory occupancy against r in fine-tuning on Weather with 25% ∼ 37.5% missing.

argues that many methods fail to leverage longer past win-
dows for better forecasting. Figure 4(b) shows that besides
TimesNet, performances of other models show an increasing
trend while the window length increases from 120 to 720.
Further increasing it to 1440, performances of PatchTST,

SimMTM and UP2ME(FT) get worse, while UP2ME(IR)
can further utilize the expanded receptive field to improve
forecasting. As UP2ME(IR) does not require re-training for
different lengths, we can efficiently adjust the past window
length to get better performance in practice.

7

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

1 6 11 16 21

1

6

11

16

21

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

#4: dew point temperature #7: actual water vapor pressure
#9: specific humidity #10: water vapor concentration

(a)

120 240 360 480 600 720 840 960 1080 1200 1320 1440
Input Length

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

m
SE

UP2ME(IR)
UP2ME(FT)
SimMTM

PatchTST
TimesNet

(b)

0 5 10 25 50 75 100
Data Proportion (%)

0.26

0.28

0.30

0.32

0.34

m
SE

0.40

0.42

0.44

0.46 UP2ME
SimMTM

PatchTST
TimesNet

(c)

Figure 4: (a) A correlation matrix A utilized for graph construction during imputation fine-tuning on the Weather dataset.
(b) Forecasting mSE against varying past window length on ETTm1, the prediction length is set to 192. (c) Forecasting mSE
on ETTm2 dataset against varying available data proportions. TimesNet and PatchTST are trained from scratch, SimMTM
and UP2ME are pre-trained on ETTm1 and fine-tuned on the available ETTm2 data. 0% for UP2ME stands for IR mode.

Adaption to Limited Data Scenarios Following Dong
et al. (2023), we evaluate the performance of UP2ME in
limited data scenario on ETTm2 dataset in Figure 4(c). With
enough data, PatchTST, SimMTM and UP2ME achieve
similar performance. However, in data-limited scenarios
(≤ 10%), UP2ME(IR) without fine-tuning achieves the best
performance, showing our UP2ME has a certain degree of
transferability, which is critical to limited data scenarios.

4. Related Works
4.1. Task-specific Methods for Time Series

Forecasting. Early works employ RNNs (Flunkert et al.,
2017), CNNs (Lea et al., 2017), and GNNs (Wu et al., 2020)
as backbones. Later, Transformers were adapted. Li et al.
(2019b); Zhou et al. (2021) use sparse attention. Liu et al.
(2022) introduces a hierarchical module that captures fea-
tures at multiple scales. Wu et al. (2021); Zhou et al. (2022);
Huang et al. (2023) introduce frequency domain features
into Transformers. Nie et al. (2023); Zhang & Yan (2023)
divide series into patches and propose channel indepen-
dence/dependence to model cross-channel dependency. Be-
sides Transformers, recent works also employ linears (Zeng
et al., 2023) and MLPs (Ekambaram et al., 2023).

Imputation. Imputation fills the missing values in MTS
caused by sensor issues, etc. Early methods train RNNs with
supervised learning (Cao et al., 2018; Yoon et al., 2018), fol-
lowed by works using Transformers (Du et al., 2023). With
the development of deep generative models, VAEs (Ram-
chandran et al., 2021; Fortuin et al., 2020), GANs (Liu et al.,
2019; Luo et al., 2019) and Diffusion models (Tashiro et al.,
2021) have also been introduced for MTS imputation. Be-
sides temporal dependency, Cini et al. (2022) incorporates
GNNs to capture cross-channel dependency.

Anomaly Detection. Anomaly detection aims to identify

unusual patterns or outliers caused by irregular events, etc.
Early works introduce probabilistic clustering (Tariq et al.,
2019) and stochastic process (Su et al., 2019) into RNNs.
Zhao et al. (2020); Deng & Hooi (2021) use GNN to capture
cross-channel dependency to improve detection. Li et al.
(2019a); Zhou et al. (2019); Li et al. (2022) use deep gen-
erative models. Yu & Sun (2020) models it as a decision
process solved by RL. More recent works introduce prior
knowledge into Transformers: Xu et al. (2022) discrimi-
nates abnormal points via their local and global association
patterns, Yang et al. (2023) utilizes contrastive consistency
and performs detection via the difference of two views.

General-purpose Architecture. Wu et al. (2023) proposes
such a general-purpose architecture for MTS analysis. It
transforms data into a set of 2D tensors based on its multiple
periods and utilizes CNNs to extract features. Changing the
output layer and training criterion, it can perform multiple
tasks with the same main architecture.

Despite the effectiveness of task-specific methods, selecting
and switching between them for different tasks is challeng-
ing. Although Wu et al. (2023) maintains the main architec-
ture, it is still required to train its parameters from scratch
for each task and each setting.

4.2. Pre-training Methods for Time Series

Beyond CV and NLP, pre-training methods have also been
devised for MTS recently and can be roughly classified into
contrastive learning and mask-reconstruction.

Contrastive Learning. It learns representations by dis-
criminating between positive and negative pairs. Methods
differ in how to define pairs for MTS. Mohsenvand et al.
(2020); Eldele et al. (2021) use augmentations, such as am-
plitude scale and time shift, to generate positive pairs.Woo
et al. (2022) decomposes time series into trend and season

8

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

components and performs contrastive learning on them re-
spectively. Yang & Hong (2022) utilizes features in time and
spectral domains. Zhang et al. (2022) further requires repre-
sentations in two domains to be consistent. Yue et al. (2022);
Franceschi et al. (2019) view overlapped timestamps of dif-
ferent sub-series as positive pairs. Hyvarinen & Morioka
(2017); Agrawal et al. (2022) define a pair of consecutive
sub-series as a positive pair, and Tonekaboni et al. regard
nearby sub-series in the time domain as positive.

Mask-Reconstruction. It learns representations by mask-
ing a proportion of the data and reconstructing it via the
remaining unmasked parts (Devlin et al., 2019; Brown et al.,
2020; He et al., 2022). As for MTS, Zerveas et al. (2021)
masks consecutive sub-series in the original space and uses
a Transformer with a linear output layer to reconstruct them.
Nie et al. (2023) divides time series into patches and masks
patches in the latent space. Following MAE in CV (He
et al., 2022), decoupled encoder-decoders are used to per-
form point-wise (Li et al., 2023) and patch-wise (Shao et al.,
2022) mask-reconstruction. Dong et al. (2023) reconstructs
the original time series from multiple randomly masked
series. Instead of reconstruction, Cheng et al. (2023) pro-
poses masked codeword classification and representation
regression for learning in latent space.

Besides the above two, there are alternative paradigms (Mal-
hotra et al., 2017; Lyu et al., 2018; Sarkar & Etemad, 2020).
Unlike NLP (Radford et al., 2019) and CV (Bai et al., 2023),
to our knowledge, existing pre-training methods, cannot
solve downstream tasks without parameter modification, and
they can hardly rival those carefully designed task-specific
methods. Recent efforts involve adapting pre-trained large
language models (LLMs) for time series tasks instead of
pre-training models with MTS datasets (Nate Gruver & Wil-
son, 2023; Zhou et al., 2023; Chang et al., 2024), which
extends beyond the scope of this work.

5. Conclusion, Limitations and Future Works
We have proposed UP2ME as a general-purpose framework
for MTS analysis. Technically, it utilizes a univariate pre-
training to multivariate fine-tuning paradigm which captures
temporal dependency during pre-training and incorporates
cross-channel dependency during fine-tuning. Functionally,
the pre-trained UP2ME provides initial sensible solutions
to forecasting, imputation and anomaly detection without
parameter modification, which has not been achieved before.
Further accuracy is achieved through fine-tuning.

Due to the different data formats and the feasibility of con-
ducting classification without parameter modification in
IR mode, UP2ME currently does not support classifica-
tion. Unlike NLP foundation models, which are pre-trained
on multiple datasets and can execute downstream tasks in

zero-shot mode on unseen data, our approach pre-trains
one model on a single dataset and adapts it to multiple
downstream tasks within the same dataset, consistent with
prior works for MTS (Yue et al., 2022; Dong et al., 2023).
But our univariate-to-multivariate paradigm is suitable for
large-scale multi-dataset pre-training: 1) univariate pre-
training ensures that varying numbers of channels across
datasets do not hinder pre-training; 2) when the downstream
dataset is determined, multivariate fine-tuning further in-
corporates channel dependency to enhance performance.
However, building a foundation model that can adapt to di-
verse datasets for MTS remains an open question for future
exploration.

Acknowledgement
This work was in part supported by National Natural Science
Foundation of China (62222607, 92370201, 72342023).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agrawal, M. N., Lang, H., Offin, M., Gazit, L., and Sontag,

D. Leveraging time irreversibility with order-contrastive
pre-training. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2022.

Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell,
T., Malik, J., and Efros, A. A. Sequential modeling
enables scalable learning for large vision models. arXiv
preprint arXiv:2312.00785, 2023.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.
Accurate medium-range global weather forecasting with
3d neural networks. Nature, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Cao, W., Wang, D., Li, J., Zhou, H., Li, L., and Li, Y.
Brits: Bidirectional recurrent imputation for time series.
In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Chang, C., Wang, W.-Y., Peng, W.-C., and Chen, T.-F.
Llm4ts: Aligning pre-trained llms as data-efficient time-

9

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

series forecasters. arXiv preprint arXiv:2308.08469,
2024.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International Conference on Machine
Learning (ICML), 2020.

Cheng, M., Liu, Q., Liu, Z., Zhang, H., Zhang, R., and
Chen, E. Timemae: Self-supervised representations of
time series with decoupled masked autoencoders. arXiv
preprint arXiv:2303.00320, 2023.

Cini, A., Marisca, I., and Alippi, C. Filling the g ap s: Mul-
tivariate time series imputation by graph neural networks.
In International Conference on Learning Representations
(ICLR), 2022.

Deng, A. and Hooi, B. Graph neural network-based anomaly
detection in multivariate time series. In AAAI Conference
on Artificial Intelligence (AAAI), 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL-HLT), 2019.

Dong, J., Wu, H., Zhang, H., Zhang, L., Wang, J., and
Long, M. Simmtm: A simple pre-training framework
for masked time-series modeling. In Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Du, W., Côté, D., and Liu, Y. Saits: Self-attention-based
imputation for time series. Expert Systems with Applica-
tions, 2023.

Dwivedi, V. P. and Bresson, X. A generalization of trans-
former networks to graphs. AAAI Workshop on Deep
Learning on Graphs: Methods and Applications, 2021.

Ekambaram, V., Jati, A., Nguyen, N., Sinthong, P., and
Kalagnanam, J. Tsmixer: Lightweight mlp-mixer model
for multivariate time series forecasting. In ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining (KDD), 2023.

Eldele, E., Ragab, M., Chen, Z., Wu, M., Keong, C., Kwoh,
X. L., and Guan, C. Time-series representation learning
via temporal and contextual contrasting. In International
Joint Conference on Artificial Intelligence (IJCAI), 2021.

Flunkert, V., Salinas, D., and Gasthaus, J. Deepar: Prob-
abilistic forecasting with autoregressive recurrent net-
works. International Journal of Forecasting, 2017.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S. Gp-
vae: Deep probabilistic time series imputation. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. Unsuper-
vised scalable representation learning for multivariate
time series. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2019.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Huang, Q., Shen, L., Zhang, R., Ding, S., Wang, B.,
Zhou, Z., and Wang, Y. CrossGNN: Confronting noisy
multivariate time series via cross interaction refinement.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Hyvarinen, A. and Morioka, H. Nonlinear ica of temporally
dependent stationary sources. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2017.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo, J.
Reversible instance normalization for accurate time-series
forecasting against distribution shift. In International
Conference on Learning Representations (ICLR), 2022.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel,
R. Neural relational inference for interacting systems. In
International Conference on Machine Learning (ICML),
2018.

Lea, C. S., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G.
Temporal convolutional networks for action segmentation
and detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

Li, D., Chen, D., Jin, B., Shi, L., Goh, J., and Ng, S.-K.
Mad-gan: Multivariate anomaly detection for time series
data with generative adversarial networks. In Interna-
tional Conference on Artificial Neural Networks (ICANN),
2019a.

Li, L., Yan, J., Wen, Q., Jin, Y., and Yang, X. Learning
robust deep state space for unsupervised anomaly detec-
tion in contaminated time-series. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 2022.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X.,
and Yan, X. Enhancing the locality and breaking the
memory bottleneck of transformer on time series fore-
casting. In Advances in Neural Information Processing
Systems (NeurIPS), 2019b.

Li, Z., Wang, P., Rao, Z., Pan, L., and Xu, Z. Ti-MAE:
Self-supervised masked time series autoencoders. arXiv
preprint arXiv:2301.08871, 2023.

10

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation-based
anomaly detection. ACM Transactions on Knowledge
Discovery from Data (TKDD), 2012.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., and Dust-
dar, S. Pyraformer: Low-complexity pyramidal attention
for long-range time series modeling and forecasting. In
International Conference on Learning Representations
(ICLR), 2022.

Liu, Y., Yu, R., Zheng, S., Zhan, E., and Yue, Y. Naomi:
Non-autoregressive multiresolution sequence imputation.
In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Luo, Y., Zhang, Y., Cai, X., and Yuan, X. E2gan: End-to-
end generative adversarial network for multivariate time
series imputation. In International Joint Conference on
Artificial Intelligence (IJCAI), 2019.

Lyu, X., Hueser, M., Hyland, S. L., Zerveas, G., and Raetsch,
G. Improving clinical predictions through unsupervised
time series representation learning. Machine Learning
for Health (ML4H) Workshop at NeurIPS, 2018.

Ma, J. and Perkins, S. Time-series novelty detection using
one-class support vector machines. In International Joint
Conference on Neural Networks (IJCNN), 2003.

Malhotra, P., TV, V., Vig, L., Agarwal, P., and Shroff, G.
Timenet: Pre-trained deep recurrent neural network for
time series classification. In European Symposium on
Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), 2017.

Manning, C. D. An introduction to information retrieval.
Cambridge university press, 2009.

Mohsenvand, M. N., Izadi, M. R., and Maes, P. Contrastive
representation learning for electroencephalogram classifi-
cation. In Machine Learning for Health (ML4H), 2020.

Nate Gruver, Marc Finzi, S. Q. and Wilson, A. G. Large
Language Models Are Zero Shot Time Series Forecasters.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

Nie, Y., H. Nguyen, N., Sinthong, P., and Kalagnanam, J. A
time series is worth 64 words: Long-term forecasting with
transformers. In International Conference on Learning
Representations (ICLR), 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 2019.

Ramchandran, S., Tikhonov, G., Kujanpää, K., Koskinen,
M., and Lähdesmäki, H. Longitudinal variational autoen-
coder. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2021.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. In Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2019.

Ren, S., Wu, Z., and Zhu, K. Q. Emo: Earth mover dis-
tance optimization for auto-regressive language modeling.
arXiv preprint arXiv:2310.04691, 2023.

Sarkar, P. and Etemad, A. Self-supervised ecg representation
learning for emotion recognition. IEEE Transactions on
Affective Computing (TAC), 2020.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. Estimating the support of a high-
dimensional distribution. Neural computation, 2001.

Shao, Z., Zhang, Z., Wang, F., and Xu, Y. Pre-training
enhanced spatial-temporal graph neural network for mul-
tivariate time series forecasting. In ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining (KDD), 2022.

Shen, L., Li, Z., and Kwok, J. Timeseries anomaly de-
tection using temporal hierarchical one-class network.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D.
Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. In ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (KDD), 2019.

Tariq, S., Lee, S., Shin, Y., Lee, M. S., Jung, O., Chung,
D., and Woo, S. S. Detecting anomalies in space using
multivariate convolutional lstm with mixtures of proba-
bilistic pca. In ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD), 2019.

Tashiro, Y., Song, J., Song, Y., and Ermon, S. Csdi: Condi-
tional score-based diffusion models for probabilistic time
series imputation. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Tonekaboni, S., Eytan, D., and Goldenberg, A. Unsuper-
vised representation learning for time series with temporal
neighborhood coding. In International Conference on
Learning Representations (ICLR).

Woo, G., Liu, C., Sahoo, D., Kumar, A., and Hoi, S. CoST:
Contrastive learning of disentangled seasonal-trend rep-
resentations for time series forecasting. In International
Conference on Learning Representations (ICLR), 2022.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

11

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long,
M. Timesnet: Temporal 2d-variation modeling for gen-
eral time series analysis. In International Conference on
Learning Representations (ICLR), 2023.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., and Zhang,
C. Connecting the dots: Multivariate time series fore-
casting with graph neural networks. In ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining (KDD), 2020.

Xu, J., Wu, H., Wang, J., and Long, M. Anomaly trans-
former: Time series anomaly detection with association
discrepancy. In International Conference on Learning
Representations (ICLR), 2022.

Yang, L. and Hong, S. Unsupervised time-series represen-
tation learning with iterative bilinear temporal-spectral
fusion. In International Conference on Machine Learning
(ICML), 2022.

Yang, Y., Zhang, C., Zhou, T., Wen, Q., and Sun, L. Dcde-
tector: Dual attention contrastive representation learning
for time series anomaly detection. In ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining (KDD), 2023.

Yoon, J., Zame, W. R., and van der Schaar, M. Estimat-
ing missing data in temporal data streams using multi-
directional recurrent neural networks. IEEE Transactions
on Biomedical Engineering, 2018.

Yu, M. and Sun, S. Policy-based reinforcement learning for
time series anomaly detection. Engineering Applications
of Artificial Intelligence, 2020.

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y.,
and Xu, B. Ts2vec: Towards universal representation of
time series. In AAAI Conference on Artificial Intelligence
(AAAI), 2022.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In AAAI Conference
on Artificial Intelligence (AAAI), 2023.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., and
Eickhoff, C. A transformer-based framework for mul-
tivariate time series representation learning. In ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (KDD), 2021.

Zhang, X., Zhao, Z., Tsiligkaridis, T., and Zitnik, M. Self-
supervised contrastive pre-training for time series via
time-frequency consistency. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022.

Zhang, Y. and Yan, J. Crossformer: Transformer utilizing
cross-dimension dependency for multivariate time series

forecasting. In International Conference on Learning
Representations (ICLR), 2023.

Zhao, H., Wang, Y., Duan, J., Huang, C., Cao, D., Tong, Y.,
Xu, B., Bai, J., Tong, J., and Zhang, Q. Multivariate time-
series anomaly detection via graph attention network. In
IEEE International Conference on Data Mining (ICDM),
2020.

Zhou, B., Liu, S., Hooi, B., Cheng, X., and Ye, J. Beatgan:
Anomalous rhythm detection using adversarially gener-
ated time series. In International Joint Conference on
Artificial Intelligence (IJCAI), 2019.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In AAAI Con-
ference on Artificial Intelligence (AAAI), 2021.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and Jin,
R. Fedformer: Frequency enhanced decomposed trans-
former for long-term series forecasting. In International
Conference on Machine Learning (ICML), 2022.

Zhou, T., Niu, P., Wang, X., Sun, L., and Jin, R. One fits
all: Power general time series analysis by pretrained LM.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023.

12

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

A. Details of Experiments
A.1. Datasets

We conduct experiments on the following eight datasets following Wu et al. (2023); Yang et al. (2023):

1) ETTm1 records 7 crucial indicators of an electricity transformer, including high useful load and oil temperature, etc.
Data points are recorded every 15 minutes and the entire dataset covers a period of two years. We use data from the
first 20 months and split it into train/valid/test sets with a ratio of 0.6:0.2:0.2.

2) Weather records 21 meteorological indicators in Beutenberg, including air temperature and dewpoint, etc. Data points
are recorded every 10 minutes and the entire dataset covers the whole 2020 year. Train/valid/test sets are split by a ratio
of 0.7:0.1,0.2.

3) Electricity records hourly electricity consumption (in kW) of 321 clients from 2012 to 2014. Train/valid/test sets are
split by a ratio of 0.7:0.1,0.2.

4) Traffic contains San Francisco Bay area freeways’ road occupancy rates measured by 862 sensors from 2016.07 to
2018.06. Data points are recorded every hour and train/valid/test sets are split by a ratio of 0.7:0.1,0.2.

5) SMD records 38 indicators of a server machine from a large Internet company, including CPU load, network usage, etc.
The entire dataset covers a period of 5 weeks.

6) PSM records 25 indicators of application server nodes at eBay, including CPU and memory utilization, etc. The
training set covers 13 weeks, followed by 8 weeks for testing.

7) SWaT records indicators measured by 51 sensors of a modern industrial control system.

8) GECCO records 9 indicators about the drinking-water quality, including PH value and amount of chlorine dioxide, etc.
Data points are recorded every minute.

The first four datasets are often used in forecasting and imputation tasks and our train/val/test splits are the same as Wu et al.
(2021); Nie et al. (2023). The last four datasets are often used in anomaly detection tasks. Each of them is originally divided
into two parts for training and testing. Only testing parts are labeled with ground truth anomaly annotations. Following Wu
et al. (2023), we further split the original training set by a ratio of 0.8:0.2 for our training and validation. Table 4 shows the
statistical characteristics of each dataset.

The first 7 datasets are publicly available at https://github.com/thuml/Time-Series-Library and GECCO
is available at https://github.com/DAMO-DI-ML/KDD2023-DCdetector.

Table 4: Statistical characteristics of datasets used in experiments.

Dataset Channels Train Timestamps Valid Timestamps Test Timestamps Field

ETTm1 7 34,560 11,520 11,520 electricity transformer indicators
Weather 21 36,887 5,270 10,539 meteorological weather indicators

Electricity 321 18,412 2,632 5,260 electricity consumption
Traffic 862 12,280 1,756 3,508 road occupancy rates
SMD 38 566,724 141,681 708,420 server machine indicators
PSM 25 105,984 26,497 87,841 application server indicators
SWaT 51 396,000 99,000 449,919 industrial control system indicators

GECCO 9 55,408 13,852 69,261 drinking-water quality

A.2. General-purpose and Pre-training Baselines

General-purpose Baseline We select TimesNet (Wu et al., 2023) as the general-purpose baseline. TimesNet discovers
multiple periods of MTS by Fast Fourier Transform and then transforms time series into a set of 2D tensors according to
these periods. These 2D tensors are processed by inception blocks for feature extraction. TimesNet conducts multiple tasks
by changing the output layer and training criterion. The source code is available at https://github.com/thuml/
Time-Series-Library.

13

https://github.com/thuml/Time-Series-Library
https://github.com/DAMO-DI-ML/KDD2023-DCdetector
https://github.com/thuml/Time-Series-Library
https://github.com/thuml/Time-Series-Library

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Pre-training Baselines We select the following 2 pre-training methods for comparison:

1) TS2Vec (Yue et al., 2022) is a contrastive learning based pre-training method for MTS. It uses timestamp masking and
random cropping to generate contexts and representations at the same timestamp in two contexts are viewed as positive
pairs for contrastive learning. Max pooling is used to perform hierarchical contrastive learning at multiple scales. The
source code is available at https://github.com/yuezhihan/ts2vec.

2) SimMTM (Dong et al., 2023) is a mask-reconstruction based pre-training method for MTS. It reconstructs the original
time series with multiple masked series with different masks. A contrastive-style manifold constraint is further used to
learn series-wise representation. The source code is available at https://github.com/thuml/SimMTM.

A.3. Experiments for Forecasting

Task-specific Baselines We select the following 4 task-specific baselines for forecasting:

1) PatchTST (Nie et al., 2023) is the current SOTA for MTS forecasting. It divides the input MTS into patches
and uses a Transformer encoder with channel independence to process these patches. The encoder output is then
flattened and linearly projected to desired lengths for final forecasting. The source code is available at https:
//github.com/yuqinie98/PatchTST.

2) DLinear (Zeng et al., 2023) is a light-weight MTS forecaster. It decomposes input MTS into trend and season
components and applies a linear model on each component respectively. The source code is available at https:
//github.com/cure-lab/LTSF-Linear.

3) Crossformer (Zhang & Yan, 2023) is a Transformer that explicitly captures cross-channel dependency for MTS
forecasting. It divides MTS into patches like PatchTST and proposes a two-stage attention mechanism to capture both
temporal and cross-channel dependency. A hierarchical encoder-decoder is constructed for forecasting. The source
code is available at https://github.com/Thinklab-SJTU/Crossformer.

4) FEDformer (Zhou et al., 2022) is a Transformer that uses seasonal-trend decomposition with frequency-enhanced
blocks to capture temporal dependency for MTS forecasting. The source code is available at https://github.
com/MAZiqing/FEDformer.

Setup We use the common protocol for MTS forecasting (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2023): train/val/test
sets are normalized with the mean and standard deviation of the training set. On ETTm1, Weather, Electricity and Traffic,
we forecast the future Lf = {96, 192, 337, 720} steps with the default past window length set to 336. Considering that
FEDformer and TimesNet may prefer a shorter past window, we select past lengths from {96, 192, 336, 720} via grid search
for these two methods. On datasets containing anomaly points, i.e. SMD, PSM, SWaT and GECCO, we forecast the future
Lf = {50, 100, 150, 200} steps with the default past window length set to 400. Similarly, past lengths for FEDformer and
TimesNet are chosen from {50, 100, 200, 400} via grid search. All experiments are repeated 3 times and the averaged Mean
Square Error (mSE) and Mean Absolute Error (mAE) are reported.

A.4. Experiments for Imputation

Task-specific Baselines We select the following 4 task-specific baselines for Imputation:

1) SAITS (Du et al., 2023) is a self-attention-based method for MTS imputation. The model is optimized via two joint tasks:
1) missing series imputation to fill the missing values and 2) observed series reconstruction to help the model converge
to the distribution of the dataset. The source code is available at https://github.com/WenjieDu/SAITS.

2) GRIN (Cini et al., 2022) proposes an encoder-decoder that utilizes RNN and GNN for MTS imputation. It
uses a bidirectional architecture to process the input MTS. Furthermore, a two-stage imputation process is de-
vised, where the first stage utilizes the features extracted GNN, followed by the second stage utilizing represen-
tations from RNN to refine the first-stage imputation. The source code is available at https://github.com/
Graph-Machine-Learning-Group/grin.

14

https://github.com/yuezhihan/ts2vec
https://github.com/thuml/SimMTM
https://github.com/yuqinie98/PatchTST
https://github.com/yuqinie98/PatchTST
https://github.com/cure-lab/LTSF-Linear
https://github.com/cure-lab/LTSF-Linear
https://github.com/Thinklab-SJTU/Crossformer
https://github.com/MAZiqing/FEDformer
https://github.com/MAZiqing/FEDformer
https://github.com/WenjieDu/SAITS
https://github.com/Graph-Machine-Learning-Group/grin
https://github.com/Graph-Machine-Learning-Group/grin

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

3) LI (Linear Interpolation) is a traditional method for MTS imputation which fills the missing values by constructing a
linear curve between adjacent observed data points. We use its Pandas implementation, which is available at https:
//pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html.

4) SI (Spline Interpolation) is a traditional method for MTS imputation which fills the missing values with piece-
wise low-degree polynomial curves rather than a single, high-degree polynomial curve. We also use its Pandas
implementation, which is available at https://pandas.pydata.org/docs/reference/api/pandas.
DataFrame.interpolate.html.

Setup Considering that point-wise missing is easy to solve with traditional interpolation methods and missing patterns in
the real world are often structured and appear consecutively (Tashiro et al., 2021), we conduct experiments on block-wise
imputation: we set the observed window length for imputation to Limp = 600 for all 8 datasets. On each dataset, we evaluate
imputation performance at 4 different missing range levels: {0% ∼ 12.5%, 12.5% ∼ 25%, 25% ∼ 37.5%, 37.5% ∼ 50%}.
To generate an instance with block-wise missing, we first sample a mask ratio from the corresponding range level for each
channel. Subsequently, a randomly sampled consecutive block of this ratio is masked in each channel. Similar to forecasting,
all experiments are repeated 3 times and the averaged Mean Square Error (mSE) and Mean Absolute Error (mAE) are
reported.

A.5. Experiments for Anomaly Detection

Task-specific Baselines We select the following 4 task-specific baselines for Anomaly Detection:

1) DCdetector (Yang et al., 2023) is a contrastive representation-based attention model for MTS anomaly detection.
The motivation is that it is easier to learn shared patterns among different views of normal points than abnormal
ones. Thus, DCdetector learns permutation invariant representations and uses the representation discrepancy be-
tween two views as the anomaly score. The source code is available at https://github.com/DAMO-DI-ML/
KDD2023-DCdetector.

2) AnomalyTrans (Xu et al., 2022) is an association discrepancy-based Transformer for MTS anomaly detection. The
motivation is that it is difficult for abnormal points to build nontrivial associations with the whole series. Therefore, the
discrepancy between the learned attention distribution and an adjacent-concentrated Gaussian distribution is used as
the anomaly score. The source code is available at https://github.com/thuml/Anomaly-Transformer.

3) iForest (Isolation Forest) (Liu et al., 2012) is a traditional algorithm for anomaly detection. The main idea is that
anomalies can be isolated more easily than normal points. By employing a tree-based structure with random feature
selection and splits, anomalies tend to be isolated with shorter paths. Anomaly score is defined as the depth of the leaf
containing this point, which is equivalent to the number of splittings required to isolate it. To adapt iForest for time
series, we fold multiple adjacent timestamps around a center point to form a sample following Ma & Perkins (2003).
We use the sklearn implementation of iForest, which is available at https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.IsolationForest.html.

4) OCSVM (One-Class Support Vector Machine) (Schölkopf et al., 2001) is a traditional algorithm for anomaly
detection. It constructs a hyperplane that encapsulates the majority normal data points in a high-dimensional space.
Samples lying outside this hyperplane are considered potential anomalies and signed distance to the hyperplane
is used as the anomaly score. Similar to iForest, we fold adjacent timestamps to adapt OCSVM to time series
and use the sklearn implementation, which is available at https://scikit-learn.org/stable/modules/
generated/sklearn.svm.OneClassSVM.html.

Setup We use the common protocol for MTS anomaly detection (Xu et al., 2022; Wu et al., 2023; Yang et al., 2023):
models undergoes unsupervised learning on training and validation sets. The testing sets are divided into non-overlapped
sub-series of length 100 for metric evaluation. All experiments are repeated 3 times and the averaged metrics are reported.

We evaluate two anomaly detection metrics: F1-score and Average Precision (AP) (Manning, 2009). F1-score is a
commonly used metric for MTS anomaly detection (Xu et al., 2022; Wu et al., 2023; Yang et al., 2023) and it needs a
threshold to transform anomaly scores into labels. Following Yang et al. (2023), the threshold is chosen by ensuring that δ
fraction of points in training and validation sets surpass the specified threshold. Then, the selected threshold is used to label

15

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
https://github.com/DAMO-DI-ML/KDD2023-DCdetector
https://github.com/DAMO-DI-ML/KDD2023-DCdetector
https://github.com/thuml/Anomaly-Transformer
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

the testing set. δ is set to 0.5% for SMD, 1% for PSM and SWaT, 2% for GECCO. Considering anomaly scores of different
methods have different physical meanings and the F1-score is sensitive to the threshold selection process, we also evaluate
AP as a more comprehensive metric. To evaluate AP, we threshold at every possible value and get M precision-recall pairs
{(Pi, Ri)}Mi=1,∀j : Rj ≤ Rj+1, and AP is computed as AP =

∑M
i=2(Ri −Ri−1)Pi. Note that the selected threshold for

F1-score corresponds to a single pair in {(Pi, Ri)}Mi=1.

The widely-used segment adjustment strategy (Shen et al., 2020; Xu et al., 2022; Yang et al., 2023; Wu et al., 2023) is used
for F1-score and AP evaluation: if a single timestamp within a contiguous anomaly segment is accurately detected, the
entire anomalies within that same segment are also deemed correctly identified. This strategy relies on the fact that, in time
series analysis, human operators often prioritize the overall anomaly segment rather than the point-wise anomaly. Hence,
triggering an alert at any point within a contiguous anomaly segment is deemed acceptable.

A.6. Implementation Details

Pre-training For all datasets, the encoder consists of 4 standard Transformer layers and the decoder consists of 1
standard Transformer layer. The dimension of hidden state dmodel is set to 256 and the head number of multi-head
attention is set to 4. For ETTm1, Weather, Electricity and Traffic, we set patch size, min and max patch number to
P = 12, Nmin = 20, Nmax = 200; for datasets containing anomaly points, i.e. SMD, PSM, SWaT and GECCO, we set
P = 10, Nmin = 5, Nmax = 100.

As for parameter optimization, the mask ratio is set to α = 0.5. The batch size is set to 256. Adam optimizer with a constant
learning rate of 1e-4 is used for optimization. The maximum training step is set to 500,000. The model undergoes validation
every 5,000 steps on the validation set, and if the validation loss fails to decrease over 10 consecutive validations, the
pre-training process is terminated early. The model with the lowest validation loss is retained.

Fine-tuning For all 3 downstream tasks on all 8 datasets, we insert one TC layer between the frozen encoder and decoder
for fine-tuning. dmodel and the head number are the same as pre-training. Adam optimizer with a constant learning rate is
used for optimization. The learning rate is set to 1e-5 for forecasting and anomaly detection and 5e-4 for imputation. The
maximum training epoch is set to 20. If the validation loss fails to decrease over 3 consecutive validations, the training
process is stopped early. The hyper-parameter r in Equation 9 for graph construction is set as r = min(10, ⌈0.5C⌉), i.e.
r = 4 for ETTm1, r = 5 for GECCO and r = 10 for all other 6 datasets.

All deep learning methods, including our UP2ME, are implemented in PyTorch and run on 2 NVIDIA GeForce RTX 3090
GPUs with 24GB memory.

B. Full Results
Due to the space limitation in the main text, we place the full results of Section 3.1 here. mSE/mAE evaluation of forecasting
on different prediction lengths is shown in Table 5; mSE/mAE evaluation of imputation on different missing levels is shown
in Table 6; Precision, recall, F1-score and AP evaluation of anomaly detection is shown in Table 7.

16

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Table 5: Full mSE/mAE evaluation of forecasting. The prediction length Lf is set to {96, 192, 336, 720} for the first four
datasets and {50, 100, 150, 200} for the last four. Bold/underline indicates the best/second. Our method is marked in gray.
OOM indicates out-of-memory.

Methods Task-Specific General Pre-Training

PatchTST DLinear Crossformer FEDformer TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

Metric mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE

E
T

T
m

1

96 0.290 0.340 0.299 0.343 0.322 0.387 0.377 0.422 0.329 0.367 0.673 0.566 0.292 0.349 0.292 0.330 0.287 0.334
192 0.330 0.369 0.335 0.365 0.391 0.422 0.403 0.438 0.382 0.400 0.732 0.623 0.329 0.373 0.337 0.359 0.323 0.361
336 0.369 0.394 0.370 0.386 0.452 0.472 0.447 0.457 0.415 0.422 0.823 0.681 0.364 0.393 0.378 0.383 0.351 0.381
720 0.422 0.426 0.427 0.423 0.607 0.562 0.480 0.472 0.444 0.443 0.917 0.735 0.414 0.422 0.435 0.418 0.405 0.419

Avg 0.353 0.382 0.358 0.379 0.443 0.461 0.427 0.447 0.393 0.408 0.787 0.651 0.350 0.384 0.360 0.372 0.341 0.374

W
ea

th
er

96 0.150 0.198 0.174 0.234 0.154 0.227 0.231 0.322 0.163 0.217 0.179 0.262 0.158 0.211 0.180 0.222 0.144 0.192
192 0.195 0.241 0.216 0.274 0.198 0.270 0.283 0.353 0.212 0.259 0.225 0.305 0.200 0.249 0.231 0.265 0.187 0.237
336 0.250 0.284 0.261 0.312 0.276 0.338 0.340 0.383 0.269 0.304 0.282 0.349 0.249 0.286 0.289 0.306 0.237 0.277
720 0.319 0.334 0.326 0.367 0.329 0.362 0.389 0.404 0.344 0.353 0.360 0.403 0.319 0.336 0.366 0.360 0.316 0.331

Avg 0.228 0.264 0.244 0.297 0.239 0.299 0.311 0.365 0.247 0.283 0.261 0.330 0.232 0.270 0.266 0.288 0.221 0.260

E
le

ct
ri

ci
ty

96 0.130 0.223 0.141 0.238 0.156 0.264 0.211 0.326 0.165 0.269 0.366 0.446

OOM

0.130 0.220 0.123 0.214
192 0.149 0.241 0.155 0.252 0.184 0.292 0.226 0.339 0.185 0.286 0.370 0.447 0.149 0.238 0.143 0.233
336 0.166 0.260 0.170 0.269 0.213 0.312 0.243 0.354 0.197 0.299 0.379 0.452 0.169 0.257 0.160 0.250
720 0.210 0.299 0.205 0.302 0.268 0.356 0.276 0.378 0.227 0.320 0.394 0.458 0.213 0.293 0.193 0.282

Avg 0.164 0.255 0.168 0.265 0.205 0.306 0.239 0.349 0.194 0.293 0.377 0.451 OOM 0.165 0.252 0.155 0.245

Tr
af

fic

96 0.365 0.250 0.413 0.288 0.485 0.273 0.629 0.402 0.588 0.315 0.942 0.563

OOM

0.369 0.241 0.358 0.235
192 0.383 0.258 0.425 0.293 0.506 0.282 0.635 0.397 0.614 0.327 0.940 0.558 0.392 0.251 0.382 0.249
336 0.396 0.264 0.439 0.301 0.538 0.300 0.669 0.419 0.631 0.338 0.959 0.563 0.404 0.257 0.393 0.254
720 0.435 0.287 0.468 0.319 0.583 0.315 0.698 0.432 0.655 0.348 1.051 0.592 0.439 0.278 0.426 0.274

Avg 0.395 0.265 0.436 0.300 0.528 0.292 0.658 0.413 0.622 0.332 0.973 0.569 OOM 0.401 0.257 0.390 0.253

SM
D

50 0.843 0.140 0.916 0.158 0.863 0.140 0.948 0.206 1.012 0.156 1.236 0.404 0.836 0.152 0.837 0.150 0.818 0.132
100 0.880 0.165 0.971 0.189 0.901 0.165 0.999 0.227 0.961 0.186 1.270 0.418 0.876 0.177 0.899 0.189 0.858 0.160
150 0.911 0.185 1.020 0.214 0.943 0.212 1.044 0.247 0.996 0.201 1.312 0.437 0.913 0.199 0.958 0.221 0.890 0.181
200 0.940 0.205 1.059 0.236 0.991 0.223 1.088 0.266 1.012 0.208 1.338 0.448 0.949 0.219 1.003 0.243 0.923 0.201

Avg 0.893 0.174 0.992 0.199 0.925 0.185 1.020 0.236 0.995 0.188 1.289 0.427 0.894 0.187 0.924 0.201 0.872 0.169

PS
M

50 0.196 0.241 0.198 0.258 0.261 0.273 0.221 0.265 0.197 0.244 0.512 0.501 0.213 0.260 0.378 0.379 0.191 0.237
100 0.274 0.293 0.271 0.316 0.353 0.323 0.292 0.314 0.267 0.293 0.658 0.567 0.281 0.306 0.575 0.490 0.261 0.283
150 0.337 0.334 0.354 0.371 0.411 0.365 0.361 0.351 0.336 0.333 0.753 0.609 0.348 0.347 0.687 0.545 0.325 0.323
200 0.403 0.374 0.433 0.418 0.482 0.399 0.432 0.390 0.406 0.373 0.825 0.641 0.418 0.387 0.766 0.583 0.385 0.359

Avg 0.303 0.310 0.314 0.341 0.377 0.326 0.326 0.330 0.301 0.311 0.687 0.580 0.315 0.325 0.602 0.499 0.290 0.300

SW
aT

50 0.132 0.043 0.196 0.102 0.156 0.082 0.163 0.078 0.139 0.040 11.366 1.525 0.170 0.064 0.168 0.056 0.123 0.040
100 0.198 0.060 0.298 0.149 0.211 0.102 0.244 0.100 0.204 0.058 9.835 1.504 0.230 0.080 0.274 0.087 0.186 0.056
150 0.247 0.075 0.422 0.198 0.261 0.115 0.300 0.110 0.260 0.072 9.547 1.566 0.275 0.094 0.331 0.105 0.243 0.070
200 0.290 0.087 0.499 0.224 0.319 0.141 0.345 0.124 0.301 0.084 9.581 1.644 0.318 0.107 0.395 0.123 0.285 0.082

Avg 0.217 0.066 0.354 0.168 0.237 0.110 0.263 0.103 0.226 0.063 10.082 1.559 0.248 0.138 0.292 0.093 0.210 0.062

G
E

C
C

O

50 1.380 0.259 1.449 0.338 2.241 0.531 1.619 0.317 1.443 0.247 2.071 0.665 1.404 0.270 1.288 0.263 1.225 0.232
100 1.572 0.308 1.712 0.464 2.564 0.622 1.769 0.357 1.607 0.302 2.395 0.747 1.585 0.322 1.450 0.322 1.394 0.287
150 1.812 0.348 1.796 0.506 2.900 0.724 1.776 0.413 1.671 0.339 2.624 0.811 1.683 0.352 1.531 0.352 1.489 0.326
200 1.860 0.374 1.853 0.522 2.845 0.751 1.778 0.446 1.902 0.367 2.787 0.862 1.788 0.380 1.635 0.376 1.543 0.353

Avg 1.656 0.322 1.703 0.457 2.637 0.657 1.735 0.383 1.655 0.314 2.469 0.771 1.615 0.331 1.476 0.328 1.413 0.299

17

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Table 6: Full mSE/mAE evaluation of imputation. Missing ratios are set into 4 levels: {0% ∼ 12.5%, 12.5% ∼ 25%, 25% ∼
37.5%, 37.5% ∼ 50%}. Bold/underline indicates the best/second. Our method is marked in gray. OOM indicates out-of-
memory.

Methods Task-Specific General Pre-Training

SAITS GRIN LI SI TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

Metric mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE mSE mAE

E
T

T
m

1

0% ∼ 12.5% 0.090 0.186 0.286 0.385 0.606 0.454 2.138 1.086 0.094 0.201 0.142 0.249 0.262 0.338 0.213 0.277 0.060 0.158
12.5% ∼ 25% 0.131 0.227 0.538 0.534 0.971 0.599 2.072 1.067 0.146 0.250 0.254 0.349 0.323 0.374 0.264 0.311 0.098 0.198
25% ∼ 37.5% 0.236 0.314 0.526 0.518 1.028 0.622 2.015 1.051 0.194 0.288 0.311 0.384 0.349 0.395 0.295 0.332 0.146 0.239
37.5% ∼ 50% 0.349 0.385 0.620 0.545 1.042 0.631 1.959 1.036 0.256 0.327 0.393 0.432 0.377 0.414 0.328 0.352 0.209 0.288

Avg 0.201 0.278 0.492 0.496 0.912 0.577 2.046 1.060 0.172 0.266 0.275 0.353 0.328 0.380 0.275 0.318 0.128 0.221

W
ea

th
er

0% ∼ 12.5% 0.067 0.115 0.243 0.322 0.111 0.124 1.043 0.750 0.085 0.141 0.082 0.147 0.127 0.184 0.102 0.135 0.055 0.081
12.5% ∼ 25% 0.094 0.151 0.224 0.306 0.178 0.199 1.026 0.744 0.093 0.142 0.110 0.186 0.142 0.197 0.136 0.180 0.067 0.093
25% ∼ 37.5% 0.116 0.180 0.157 0.239 0.198 0.222 1.006 0.738 0.121 0.174 0.139 0.221 0.168 0.224 0.165 0.211 0.086 0.116
37.5% ∼ 50% 0.134 0.194 0.304 0.359 0.228 0.248 0.989 0.732 0.154 0.206 0.168 0.249 0.248 0.304 0.195 0.238 0.108 0.141

Avg 0.103 0.160 0.232 0.306 0.179 0.198 1.016 0.741 0.113 0.166 0.125 0.201 0.171 0.228 0.150 0.191 0.079 0.108

E
le

ct
ri

ci
ty

0% ∼ 12.5% 0.206 0.317 0.320 0.413 1.230 0.832 1.896 1.101 0.134 0.252 0.224 0.324

OOM

0.085 0.181 0.080 0.174
12.5% ∼ 25% 0.208 0.316 0.263 0.368 1.285 0.864 1.805 1.072 0.136 0.253 0.223 0.321 0.102 0.199 0.091 0.187
25% ∼ 37.5% 0.212 0.318 0.179 0.292 1.298 0.872 1.713 1.044 0.141 0.257 0.227 0.322 0.114 0.211 0.102 0.199
37.5% ∼ 50% 0.220 0.324 0.493 0.524 1.294 0.872 1.622 1.017 0.149 0.265 0.235 0.328 0.128 0.224 0.114 0.211

Avg 0.211 0.319 0.313 0.399 1.277 0.860 1.759 1.058 0.140 0.256 0.227 0.324 OOM 0.107 0.204 0.097 0.193

Tr
af

fic

0% ∼ 12.5% 0.565 0.309 0.482 0.275 2.183 0.974 2.888 1.140 0.492 0.271 0.553 0.300

OOM

0.307 0.209 0.228 0.173
12.5% ∼ 25% 0.567 0.307 0.499 0.282 2.276 1.000 2.759 1.109 0.505 0.273 0.551 0.296 0.334 0.221 0.274 0.189
25% ∼ 37.5% 0.573 0.310 0.504 0.290 2.287 1.004 2.631 1.076 0.513 0.277 0.558 0.297 0.346 0.227 0.315 0.206
37.5% ∼ 50% 0.586 0.317 0.551 0.319 2.269 1.000 2.504 1.044 0.521 0.283 0.572 0.301 0.366 0.237 0.358 0.219

Avg 0.573 0.311 0.509 0.291 2.253 0.994 2.696 1.092 0.508 0.276 0.559 0.299 OOM 0.338 0.223 0.294 0.197

SM
D

0% ∼ 12.5% 0.790 0.167 1.038 0.281 1.194 0.138 3.328 0.878 0.845 0.155 1.147 0.331 0.812 0.127 0.694 0.120 0.729 0.083
12.5% ∼ 25% 0.850 0.207 1.252 0.426 1.270 0.157 3.226 0.873 0.844 0.164 1.183 0.360 0.828 0.151 0.864 0.150 0.733 0.092
25% ∼ 37.5% 0.893 0.221 1.366 0.463 1.372 0.174 3.180 0.868 0.884 0.184 1.241 0.386 0.847 0.163 0.877 0.182 0.768 0.111
37.5% ∼ 50% 0.928 0.234 0.938 0.215 1.319 0.199 3.127 0.864 0.934 0.210 1.296 0.412 0.882 0.179 0.921 0.212 0.796 0.128

Avg 0.865 0.207 1.148 0.346 1.289 0.167 3.215 0.870 0.877 0.178 1.217 0.372 0.842 0.155 0.839 0.166 0.756 0.103

PS
M

0% ∼ 12.5% 0.543 0.419 0.422 0.308 0.171 0.210 3.083 1.147 0.255 0.298 1.463 0.716 0.152 0.215 0.171 0.220 0.103 0.164
12.5% ∼ 25% 0.568 0.432 0.493 0.351 0.210 0.244 3.043 1.136 0.276 0.313 1.481 0.725 0.203 0.255 0.279 0.305 0.116 0.173
25% ∼ 37.5% 0.615 0.458 1.656 0.818 0.257 0.273 3.001 1.126 0.312 0.337 1.507 0.738 0.254 0.290 0.405 0.380 0.155 0.208
37.5% ∼ 50% 0.677 0.490 0.712 0.469 0.290 0.301 2.975 1.119 0.365 0.371 1.536 0.753 0.293 0.318 0.504 0.433 0.205 0.245

Avg 0.601 0.450 0.821 0.486 0.232 0.257 3.026 1.132 0.302 0.330 1.497 0.733 0.225 0.269 0.340 0.334 0.144 0.197

SW
aT

0% ∼ 12.5% 2.660 0.694 4.981 0.773 0.105 0.031 13.606 1.569 0.191 0.091 6.313 1.386 0.083 0.048 0.086 0.035 0.065 0.031
12.5% ∼ 25% 2.750 0.714 6.088 0.873 0.172 0.049 13.592 1.566 0.218 0.095 6.146 1.263 0.139 0.061 0.167 0.056 0.109 0.041
25% ∼ 37.5% 2.975 0.764 6.615 0.916 0.217 0.064 13.571 1.563 0.255 0.106 6.112 1.227 0.185 0.073 0.228 0.074 0.141 0.048
37.5% ∼ 50% 3.332 0.845 6.876 0.927 0.249 0.074 13.545 1.559 0.298 0.116 5.794 1.152 0.215 0.081 0.287 0.094 0.171 0.059

Avg 2.929 0.754 6.140 0.872 0.186 0.055 13.579 1.564 0.240 0.102 6.091 1.257 0.155 0.066 0.192 0.064 0.121 0.045

G
E

C
C

O

0% ∼ 12.5% 3.564 1.088 5.954 1.369 1.132 0.173 11.913 2.077 1.761 0.398 6.101 1.397 1.453 0.275 1.136 0.196 1.438 0.256
12.5% ∼ 25% 4.107 1.217 5.618 1.329 1.670 0.235 11.750 2.071 1.692 0.406 6.057 1.430 1.395 0.294 1.055 0.282 1.321 0.266
25% ∼ 37.5% 3.765 1.119 4.548 1.155 1.767 0.277 11.609 2.045 1.825 0.418 6.072 1.393 1.597 0.331 1.735 0.343 1.524 0.301
37.5% ∼ 50% 3.875 1.142 4.246 1.010 1.969 0.313 11.608 2.061 1.835 0.427 6.029 1.385 1.616 0.356 1.693 0.375 1.590 0.339

Avg 3.828 1.142 5.091 1.216 1.634 0.250 11.720 2.063 1.778 0.412 6.065 1.401 1.515 0.314 1.405 0.299 1.468 0.290

18

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

Table 7: Precision (P), Recall (R), F1-score, Average Precision (AP) evaluation of anomaly detection. Bold/underline
indicates the best/second. Our method is marked in gray.

Methods Task-Specific General Pre-Training

DCdetector AnomalyTrans iForest OCSVM TimesNet TS2Vec SimMTM UP2ME(IR) UP2ME(FT)

SM
D

P 87.21 88.21 38.80 87.87 80.71 65.12 80.61 80.22 82.85
R 79.49 93.92 93.94 54.44 85.63 86.02 85.56 85.32 83.78
F1 84.40 90.98 54.92 67.23 83.09 74.13 83.01 82.69 83.31
AP 82.75 93.49 80.65 73.42 90.59 87.79 93.91 93.90 93.58

PS
M

P 97.21 97.32 96.22 99.00 99.16 84.82 99.27 98.94 99.02
R 97.79 97.41 86.00 76.85 83.28 90.24 88.14 93.33 95.38
F1 97.50 97.37 90.82 86.53 90.53 87.44 93.37 96.05 97.16
AP 98.73 98.80 96.61 96.86 99.70 96.48 99.73 99.75 99.76

SW
aT

P 93.28 90.49 23.20 47.63 89.12 15.27 91.18 92.06 91.98
R 100.00 100.00 95.86 87.18 92.60 92.42 87.47 93.74 95.81
F1 96.52 95.01 37.36 61.61 90.83 26.20 89.29 92.89 93.85
AP 99.57 98.92 91.46 88.55 97.37 82.12 97.38 97.83 98.07

G
E

C
C

O P 22.40 24.92 20.09 93.33 52.44 10.73 72.19 41.67 50.57
R 54.25 55.75 38.36 36.44 41.68 38.36 35.20 84.93 84.93
F1 31.71 34.45 26.37 52.41 46.45 16.77 47.32 55.91 63.39
AP 31.87 48.54 38.92 62.08 68.53 37.76 63.30 65.47 65.09

19

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

C. Additional Experiments about Computational Overhead
Ablation of Channel Decoupling in Pre-training. Figure 5 shows the memory occupancy and time cost of pre-training
with and without channel decoupling against the number of channels C. We can see that without channel decoupling, both
memory occupancy and time cost increase linearly w.r.t C and the pre-training process encounters the out-of-memory
(OOM) problem on one NVIDIA Quadro RTX 8000 GPU with 48GB memory when C > 300, even with a small batch size
8. Incontrast, with channel decoupling, the memory occupancy and time cost are irrelative to C, enabling UP2ME to scale
effectively to high-dimensional datasets, such as Electricity (C = 321) and Traffic (C = 862).

10 30 50 100 300 500 1000
Number of Channels

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
em

or
y

Oc
cu

pa
nc

y
(G

B)

3.088

6.128

18.282

1.995 1.996 1.996 1.997 1.998
0.660

1.995
1.874
1.995

W/o Channel Decoupling
Channel Decoupling

(a)

10 30 50 100 300 500 1000
Number of Channels

0

100

200

300

400

500

600

Sp
ee

d
(s

/1
,0

00
 b

at
ch

es
)

105.81

201.80

570.47

70.34 70.56 70.13 69.81 70.44
38.27

69.97
66.29
70.55

W/o Channel Decoupling
Channel Decoupling

(b)

Figure 5: Efficieny evaluation of channel decoupling in pre-training. (a) Pre-training memory occupancy with and without
channel decoupling against the number of channels C on synthetic datasets with different numbers of channels. (b) Pre-
training time cost with and without channel decoupling against the number of channels. Experiments are conducted on a
single NVIDIA Quadro RTX 8000 GPU with 48GB memory. The batch size is set to 256 for channel decoupling and 8 for
without channel decoupling. The x-axis is in the log scale.

Hyper-parameter r in Graph Construction of Fine-tuning. Figure 6 illustrates the memory occupancy of fine-tuning
against hyper-parameter r in graph construction. The memory occupancy increases rapidly when r > 10, reaching the OOM
scenario when r > 20. This underscores the challenge of employing fully connected graphs for high-dimensional datasets
and emphasizes the necessity of our sparse graph construction.

1 5 7 10 15 20
r

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

M
em

or
y

Oc
cu

pa
nc

y
(G

B)

21.219 21.219
22.059

24.589

32.154

38.083

Figure 6: Fine-tuning memory occupancy against hyper-parameter r in graph construction on Electricity (C = 321).

20

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

D. Visualization
D.1. Mask-Reconstruction

Figure 7 shows some mask-reconstruction cases using UP2ME. The pre-trained UP2ME can leverage complex temporal
dependency to reconstruct time series of different lengths from different channels.

E
T

T
m

1

0 100 200 300
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
Channel 7 of ETTm1

unmasked series
masked series
reconstruction

0 100 200 300 400 500 600

−4

−3

−2

−1

0

1

Channel 1 of ETTm1

unmasked series
masked series
reconstruction

0 200 400 600 800 1000 1200

−1

0

1

2

Channel 4 of ETTm1

unmasked series
masked series
reconstruction

0 500 1000 1500 2000 2500
−2

−1

0

1

2

Channel 5 of ETTm1

unmasked series
masked series
reconstruction

E
le

ct
ri

ci
ty

0 50 100 150 200 250 300

−1

0

1

2

3

Channel 78 of Electricity
unmasked series
masked series
reconstruction

0 100 200 300 400 500 600

−1.0

−0.5

0.0

0.5

1.0

1.5

Channel 296 of Electricity
unmasked series
masked series
reconstruction

0 200 400 600 800 1000
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Channel 37 of Electricity
unmasked series
masked series
reconstruction

SM
D

0 50 100 150 200 250 300
0.88600

0.88625

0.88650

0.88675

0.88700

0.88725

0.88750

0.88775

0.88800
Channel 30 of SMD

unmasked series
masked series
reconstruction

0 100 200 300 400 500 600

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Channel 4 of SMD
unmasked series
masked series
reconstruction

0 200 400 600 800 1000

−0.59

−0.58

−0.57

−0.56

Channel 3 of SMD
unmasked series
masked series
reconstruction

G
E

C
C

O

0 50 100 150 200

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Channel 2 of GECCO

unmasked series
masked series
reconstruction

0 50 100 150 200 250 300

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Channel 3 of GECCO
unmasked series
masked series
reconstruction

0 100 200 300 400

−0.2

0.0

0.2

0.4

0.6

Channel 9 of GECCO
unmasked series
masked series
reconstruction

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Channel 7 of GECCO
unmasked series
masked series
reconstruction

Figure 7: Mask-reconstruction cases using UP2ME. Every two rows represent the same dataset. The orange/red/blue curves
stand for the unmasked/masked/reconstructed series. Cases of different channels with different lengths on the same dataset
are generated by the same pre-trained model.

21

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

D.2. Forecasting

Figure 8 shows the forecasting cases of three channels in the ETTm1 dataset. For channels #1 and #2, all methods
successfully predict the periodic pattern. For channel #7, PatchTST, TimesNet and SimMTM fail to predict the additional
increasing trend. And predictions of our UP2ME(IR) and UP2ME(FT) are closer to the ground truth compared with DLinear.

Pa
tc

hT
ST

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2 past ground truth forecast

0 100 200 300 400 500 600
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

0 100 200 300 400 500 600
−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

D
L

in
ea

r

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

past ground truth forecast

0 100 200 300 400 500 600
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

0 100 200 300 400 500 600
−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

Ti
m

es
N

et

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2 past ground truth forecast

0 100 200 300 400 500 600
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

0 100 200 300 400 500 600
−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

Si
m

M
T

M

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

past ground truth forecast

0 100 200 300 400 500 600
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

0 100 200 300 400 500 600
−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

U
P2

M
E

(I
R

)

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2 past ground truth forecast

0 100 200 300 400 500 600
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

0 100 200 300 400 500 600
−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

U
P2

M
E

(F
T

)

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2 past ground truth forecast

(a) Channel #1
0 100 200 300 400 500 600

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
past ground truth forecast

(b) Channel #2
0 100 200 300 400 500 600

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0 past ground truth forecast

(c) Channel #7

Figure 8: Forecasting cases for 3 channels in the ETTm1 dataset. The prediction length is set to 336; all methods except
TimesNet utilize the past 336 points for forecasting, while TimesNet employs the past 96 points, as experiments indicate its
preference for a shorter window for improved results. The orange/red/blue curves represent past/future/predicted time series.
Each row corresponds to one method, and each column corresponds to one channel.

22

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

D.3. Imputation

Figure 9 shows the imputation cases of three channels in the Weather dataset. Our UP2ME(IR) rivals the most competitive
task-specific models. Additionally, UP2ME(FT) achieves remarkably faithful imputation compared to the ground truth.
Moreover, the outputs of our UP2ME are more continuous with less oscillation.

SA
IT

S

0 100 200 300 400 500 600

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

0 100 200 300 400 500 600
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

0 100 200 300 400 500 600

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

G
R

IN

0 100 200 300 400 500 600

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

0 100 200 300 400 500 600
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

0 100 200 300 400 500 600

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

Ti
m

es
N

et

0 100 200 300 400 500 600
1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

0 100 200 300 400 500 600
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

0 100 200 300 400 500 600

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

Si
m

M
T

M

0 100 200 300 400 500 600

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

0 100 200 300 400 500 600
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

0 100 200 300 400 500 600
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

U
P2

M
E

(I
R

)

0 100 200 300 400 500 600

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

0 100 200 300 400 500 600
0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

0 100 200 300 400 500 600
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

U
P2

M
E

(F
T

)

0 100 200 300 400 500 600

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4 observed ground truth imputed

(a) Channel #7
0 100 200 300 400 500 600

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

(b) Channel #10
0 100 200 300 400 500 600

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25 observed ground truth imputed

(c) Channel #16

Figure 9: Imputation cases for 3 channels in the Weather dataset. The observed window length is set to 600, with the missing
ratio of 12.5% ∼ 25%. The orange/red/blue curves represent observed/ground-truth/imputed series. Each row corresponds
to one method, and each column corresponds to one channel.

23

UP2ME: a General-purpose Framework for Multivariate Time Series Analysis

D.4. Anomaly Detection

Figure 10 illustrates anomaly detection cases on the GECCO dataset. While DCdetector fails to identify the abnormal
segment, AnomalyTrans detects two points within the segment. TimesNet, SimMTM, and UP2ME(IR) recognize anomalies
at the end of the abnormal segment. After fine-tuning, UP2ME(FT) successfully identifies the entire abnormal segment.

Input

0 20 40 60 80 100

0.772

0.774

0.776

0.778

0.780
channel #1

0 20 40 60 80 100

0.772

0.774

0.776

0.778

0.780
channel #1

0 20 40 60 80 100

0.772

0.774

0.776

0.778

0.780
channel #1

0 20 40 60 80 100

0.880

0.900

0.920

0.940

0.960

0.980 channel #3

0 20 40 60 80 100

0.880

0.900

0.920

0.940

0.960

0.980 channel #3

0 20 40 60 80 100

0.880

0.900

0.920

0.940

0.960

0.980 channel #3

0 20 40 60 80 100

0.310

0.315

0.320

0.325

0.330

0.335

0.340

0.345 channel #8

0 20 40 60 80 100

0.310

0.315

0.320

0.325

0.330

0.335

0.340

0.345 channel #8

0 20 40 60 80 100

0.310

0.315

0.320

0.325

0.330

0.335

0.340

0.345 channel #8

Anomaly Score

0 20 40 60 80 100
0.000

0.200

0.400

0.600

0.800

1.000 DCdetector

0 20 40 60 80 100
0.000

0.100

0.200

0.300

0.400

0.500

0.600 TimesNet

0 20 40 60 80 100
0.000

0.200

0.400

0.600

0.800

1.000 UP2ME(IR)

0 20 40 60 80 100
0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140 AnomalyTrans

0 20 40 60 80 100
0.000

0.050

0.100

0.150

0.200

0.250 SimMTM

0 20 40 60 80 100
0.000

0.200

0.400

0.600

0.800
UP2ME(FT)

Figure 10: Anomaly detection cases on the GECCO dataset. The first three rows illustrate three channels of the input
instance, with each row corresponding to one channel. Input values are repeated three times along the column axis to align
with the anomaly scores below for better visualization. Ground truth anomaly timestamps are highlighted in red. The last
two rows display anomaly scores generated by different methods.

24

