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Abstract

Aligning image pairs captured by different sen-
sors or those undergoing significant appearance
changes is crucial for various computer vision
and robotics applications. Existing approaches
cope with this problem via either Sparse feature
Matching (SM) or Dense direct Alignment (DA)
paradigms. Sparse methods are efficient but lack
accuracy in textureless scenes, while dense ones
are more accurate in all scenes but demand for
good initialization. In this paper, we propose
SDME, a Sparse-to-Dense Multimodal feature
Extractor based on a novel multi-task network
that simultaneously predicts SM and DA features
for robust multimodal image registration. We pro-
pose the sparse-to-dense registration paradigm:
we first perform initial registration via SM and
then refine the result via DA. By using the well-
designed SDME, the sparse-to-dense approach
combines the merits from both SM and DA. Ex-
tensive experiments on MSCOCO, GoogleEarth,
VIS-NIR and VIS-IR-drone datasets demonstrate
that our method achieves remarkable performance
on multimodal cases. Furthermore, our approach
exhibits robust generalization capabilities, en-
abling the fine-tuning of models initially trained
on single-modal datasets for use with smaller mul-
timodal datasets. Our code is available at https:
//github.com/KN-Zhang/SDME.

1. Introduction
Pixel-wise alignment of multimodal images is of essen-
tial importance in computer vision (Ma et al., 2021; Lu
et al., 2023), robotics (Cadena et al., 2016; Nguyen et al.,
2020), remote sensing (Audebert et al., 2018; Gómez-Chova
et al., 2015), medical imaging (Collignon et al., 1995), and
many others. For example, a SLAM system is likely to be

1Electronic Information School, Wuhan University, Wuhan,
China. Correspondence to: Jiayi Ma <jyma2010@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Sparse-only Dense-only Sparse-to-dense (ours)

Ground truth

Sparse matching

Dense alignment

Figure 1. Visualization of homography estimation on three mul-
timodal image pairs when sparse matching (sparse-only), dense
alignment (dense-only), and our sparse-to-dense strategies are
used. All operations are performed with our learned features. Each
image pair is composed of an input image II (the larger one) and
a template image IT (the smaller one). Green, blue and yellow
polygons denote the positions of IT on II with the homography
given by ground truth, sparse matching and dense alignment.

equipped with a RGB and an infrared camera to work at
night; a drone needs to navigate based on the satellite maps
and instant photos. Aligning these images suffers from
multimodal color representations along with appearance
changes. So the challenge of multimodal image registration
not only lies in the large motion variations between image
pairs, but also how to deal with the modality difference.

In this paper, we aim to estimate homography to align image
pairs under the flat world assumptions (Goforth & Lucey,
2019; Zhao et al., 2021). Most approaches in this field can
be categorized into two classes: Sparse feature Matching
(SM) and Direct Alignment (DA). SM consists of three sep-
arate phases: keypoint detection, description and matching.
Then homography is recovered from the sparse matches.
This pipeline is very efficient and can deal with large mo-
tion variations since it only considers sparse keypoints with
viewpoint-invariant descriptors (Revaud et al., 2019; Xue
et al., 2023). However, as the sparse-only case shown in
Fig. 1, such sparsity introduces robust issue under a tex-
tureless scene. DA regards homography as an optimization
variable and finds the optimal solution by minimizing geo-
metric (Schonberger & Frahm, 2016), photometric (Engel
et al., 2014) or feature-metric (Tang & Tan, 2018; Zhao
et al., 2021; Sarlin et al., 2021; Zhang et al., 2023) errors
over all pixels. This minimization consists of aggregating
the matching costs over all image pixels iteratively, so it is
more accurate yet computationally more demanding than
the SM counterparts. Moreover, it is easily trapped in local
minima with an inappropriate initialization, as depicted in
the dense-only case in Fig. 1.
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We propose to combine SM and DA paradigms to perform
multimodal image registration in a Sparse-to-Dense (S2D)
manner, i.e., we first conduct SM, and the estimation results
from this step serve as the initialization for DA. In order to
do this, two key issues should be carefully investigated: i)
difference between different modalities, and ii) difference
between SM and DA registration. We use advanced con-
trastive learning that has shown great promise in multimodal
data (Xu et al., 2023; Xing et al., 2023) for the first issue.
Turning to the latter, a natural question emerges: can we
use the same features for both SM and DA successively?
Unfortunately, it is not feasible since features for SM are
required to be locally discriminative for reliable matches,
while those for DA are designed to be locally smooth with
regard to image pixels to widen the convergence basin.

Given that two kinds of features need to be extracted in the
S2D pipeline, we introduce multi-task learning (MTL) to
save memory and inference speed. In other words, we treat
learning features for SM and DA as two tasks and design a
unified network with sharing and task-specific parameters
to predict them. Prior works have shown that MTL allows
better performance than learning each task independently
since it favours the exchange of complementary signals
across tasks (Guo et al., 2020; Bansal et al., 2023). But
it struggles with learning all tasks equally (Standley et al.,
2020; Wang et al., 2023). Therefore, to enjoy the merit of
MTL and prevent it from being dominated by one of the
tasks, especially two competing ones, we employ an off-the-
shelf multiple gradient descent algorithm (Sener & Koltun,
2018) for training. Besides, we propose mutual guidance
of different tasks to boost task interaction, leading to more
robust features. As Fig. 1 shows, features for DA highlight
invariant structures between different modalities, which can
help keypoint learning in SM. Meanwhile, keypoints in
SM reveal which locations in the image are more reliable,
helping weight the feature-metric loss in DA to steer the
optimization direction.

In summary, we present the following contributions:

- We propose an S2D strategy for multimodal image
registration. It combines the advantages of SM and DA
paradigms, at the same time allowing high efficiency
and high accuracy even under large motion variations.

- We propose an MTL network termed as Sparse-to-
Dense Multimodal feature Extractor (SDME) to pre-
dicts SM and DA features. During training, we intro-
duce a variant of the multiple gradient descent method
to balance the conflict objectives of the two tasks, and
design mutual guidance to enhance task interaction.

- Extensive experiments show that our method outper-
forms the state-of-the-art competitors on multimodal
datasets and exhibits robust generalization abilities.

2. Related Work
Either homography or other transformation such as affine
and 6-DoF camera pose can be parametrized in some forms,
followed by being estimated in the feature-based or direct
paradigm. Thus we mainly make a brief literature review of
these two paradigms, not limited to homography estimation.

Feature-based. Methods belonging to this pipeline pro-
ceed by i) detecting and describing keypoints, ii) matching
based on the similarity between descriptors, and iii) esti-
mating transformation via RANSAC (Fischler & Bolles,
1981) or its variants (Chum et al., 2003; Barath et al., 2020).
The used feature extractor affects the final results a lot,
which has transformed from the handcrafted SIFT (Lowe,
2004), ORB (Rublee et al., 2011) to the deep learning-based
D2 (Dusmanu et al., 2019), R2D2 (Revaud et al., 2019),
ASLFeat (Luo et al., 2020), and SFD2 (Xue et al., 2023).
Although these learning-based ones have shown superiority
over the handcrafted counterparts when dealing with ex-
treme viewpoint and illumination changes, they are trained
on correspondences with single modality. This is not the
case for multimodal images since correspondences between
different modalities may have a completely different look.
To address this issue, some feature extractors (Xiang et al.,
2018; Li et al., 2018; Deng & Ma, 2023) are later designed
specifically for multimodal data. In this work, we learn in-
variant structures between different modalities and use them
to guide how to learn a robust feature extractor for SM.

Direct. This paradigm aims at minimizing some costs
over all image pixels via the Gauss-Newton or Levenberg-
Marquardt algorithm (Nocedal & Wright, 1999). Specifi-
cally, the geometric cost that minimizes re-projection errors
is the golden standard for structure-from-motion in the last
two decades, but its performance is limited by its using
single image information (Schonberger & Frahm, 2016)
(i.e., image corners, blobs). The photometric cost tries
to minimize pixel intensity difference of aligned pixels,
which is easily affected by illumination changes and has
a narrow convergence due to its high non-convexity (En-
gel et al., 2014). Recently, training models that can mini-
mize feature-metric errors across different views have shown
great promise (Chang et al., 2017; Tang & Tan, 2018; Sarlin
et al., 2021). These approaches have wide convergence and
are robust against appearance changes. However, they are
not efficient because the used features are usually of high
dimension which leads to a large computational burden dur-
ing optimization. DeepLK (Zhao et al., 2021) addresses
this by designing a single-channel feature map. During
DA, it first constructs a feature pyramid with three unshared
networks and then optimizes the homography in a coarse-
to-fine manner. Although this single-channel feature map
improves optimization efficiency, its convergence is limited
and highly dependent on initialization conditions. In this
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work, we learn features for DA based on DeepLK, and solve
the initialization problem via SM.

Deep Homography Estimation. As this work focuses
on homography estimation, some deep approaches that do
not belong to any of the two paradigms need to be men-
tioned. They use a single or cascade VGG-style network
to directly or iteratively output homography parametrized
by eight independent parameters or the locations of four
image corners (DeTone et al., 2016; Le et al., 2020; Cao
et al., 2022).

Multi-task Learning. MTL aims to improve the average
performance of multiple target tasks from training together.
Hard parameter sharing is the most common setting in MTL.
It means a subset of the parameters is shared between tasks
while other parameters are task-specific. However, among
tasks with incompatible objectives, improper design of net-
works or training losses easily leads to imbalance task-wise
performance (Sener & Koltun, 2018; Standley et al., 2020;
Wang et al., 2023). This is because task gradients may inter-
fere and multiple summed losses may make the optimization
landscape more difficult. This issue also exists in our work.
We use (Sener & Koltun, 2018) to dynamically modify the
gradient direction for mitigating conflict.

3. Method
Given an input image II and a template image IT , we aim to
achieve pixel-wise alignment by estimating the underlying 8-
DoF homography between them. It can be denoted as x̂I =
Hx̂T , where x̂I and x̂T are homogeneous coordinates of the
pixels in II and IT , H is a non-singular 3× 3 homography
matrix to be estimated.

3.1. Sparse-to-dense Image Registration Pipeline

To combine the advantages of SM and DA, we propose a
sparse-to-dense (S2D) strategy. It first estimates H0 via SM,
which is then regarded as initialization and refined by DA.

SM. In this step, a set of keypoints together with their cor-
responding descriptors are first extracted from II and IT .
Then a putative set is built based on the descriptor similarity
with a mutually nearest neighbor standard. Afterwards, H0

is estimated by a robust estimator such as RANSAC.

DA. We vectorize H and normalize it such that the last
element is equal to one. Then homography is represented by
the first eight elements, denoted as p ∈ R8. Let XT ,XI ∈
RH×W×C denote the features of IT and II , respectively.
The goal of DA is to find a more accurate homography by
iteratively minimizing a feature-metric projection error:

E(p)=
∑

i∥ri∥22, where ri=XT [i]−XI [W (i;p)], (1)

where i is a pixel in IT , W (·;p) : R2 → R2 is the warp

function parametrized by p and [·] is a lookup with sub-pixel
interpolation. Following (Chang et al., 2017; Zhao et al.,
2021), we use Inverse Compositional Lucas-Kanade (IC-
LK) to improve the efficiency of optimization. Specifically,
we optimize Eq. (1) from p0, which is given by H0. Then
in the k-th iteration, pk is updated to pk + (∆p)−1 with

Ji =
∂ri
∂p

=
∂XT [i]

∂i

∂i

∂p
∈ RC×8,Gi = JT

i Ji ∈ R8×8,

∆p =
(∑

iGi

)−1(∑
iJ

T
i ri

)
. (2)

More details of Eqs. (1)-(2) are provided in Appendix A.

What We Want to Do. We aim to learn Sparse-to-Dense
Multimodal feature Extractor (SDME) for our S2D strategy.
Specifically, the extracted keypoints and descriptors should
be robust to modality differences to enable SM to provide
good initialization. Meanwhile, the feature X used in DA
should help the objective function in Eq. (1) converge better,
regardless its highly non-linear nature. We design SDME
in an MTL manner, with the goal of reducing parameters,
enhancing efficiency, and simultaneously improving the
robustness of features through task interaction.

Network Design. For SM, R2D2 (Revaud et al., 2019) pro-
poses a 9-layer lightweight network which is dominated by
the dilation convolution for cheap runtime and momery cost.
We follow them and split the network into two branches
starting from the 5-th layer to build our multi-task network,
which is shown in Fig. 2.

3.2. Learning Features for Sparse Matching (Task 1)

Features for SM are output from the sparse branch and we
denote them as SDME-S. In this branch, two tensors are
predicted for an image of size H ×W . The first one is a 3D
tensor D ∈ RH×W×128 that corresponds to per-pixel local
descriptor. The second one is a heatmap S ∈ [0, 1]H×W that
indicates sparse yet repeatable keypoint locations. SDME-S
is composed of a keypoint and its corresponding descriptor.

Modality-invariant Transformer Block (MITB). Inspired
by (Weinzaepfel et al., 2022), we apply the attention
mechanism between descriptors and a set of learnable
modality-invariant elements to enlarge the receptive field
of descriptors in D in an efficient way. Specifically, let
D̂ ∈ R128×HW denote the flattened D and A ∈ R128×M

denote M learnable elements, then the queries, keys and
values in the attention operation can be calculated by:

Q = WQA,K = WKD̂,V = WVD̂, (3)

where WQ ∈ Rdq×128,WK ∈ Rdk×128,WV ∈ Rdv×128

indicate learned linear transformations without bias, and we
set dq = dk = dv = 128. In this way, A can be updated by

A = V · Softmax
(
KTQ

)
. (4)

3



Sparse-to-dense Multimodal Image Registration via Multi-Task Learning

Heatmap 𝐒
32, 3x3

C
o

n
v

B
N

R
eL

U

32, 3x3 64, 3x3

64, 3x3 

dilation

Sparse-to-Dense Multimodal feature Extractor (SDME)

Image

Task 1, sparse branch

Task 2, dense branch

Shared encoder

128, 3x3 

dilation

128, 3x3 

dilation

128, 2x2 

dilation

128, 2x2 

dilation

128, 2x2 

dilation

128, 3x3 

dilation

128, 3x3 

dilation

128, 2x2 

dilation

128, 2x2 

dilation

128, 2x2 

dilation

𝐅𝑑

Descriptor 𝐃
Q

V

K

Modality-invariant element 𝐀…

…
Flattened 𝐅𝑠

MITB

Updated 𝐀𝜎
Score

𝑅

Matrix 

multiplication
Add 𝜎 Softmax 𝑅 Reshape

Flatten

𝐅𝑠
𝑙2-norm

Conv1x1,

softmax

Feature map 𝐗𝐗𝑖𝑗

Single-channel feature map constructor

max rowsum 𝐁 +min rowsum 𝐁trace(𝐁)
Features in a 3x3 patch,

centered at 𝐅𝑑(i, j)
3x3 covariance 

matrix 𝐁

Figure 2. The architecture of the proposed sparse-to-dense multimodal feature extractor. We provide the number and size of convolution
kernels. MITB refers to the modality-invariant transformer block. The single-channel feature map constructor transforms features of
dimensions H ×W × 128 into a final size of H ×W .

The updated A has interacted with all descriptors in D, thus
based on it the contextual descriptors can be acquired by

D̂ = D̂+AP, where P = AT D̂. (5)

Each element in A is a function of all local features in D,
thus it further enlarges the receptive field of D. To make
M elements in A attend different areas in the images, the
following loss is adopted:

Lattn =
1

M(M − 1)

M∑
i=1

M∑
j=1,j ̸=i

⟨Ai,Aj⟩
∥Ai∥2∥Aj∥2

, (6)

where ⟨·, ·⟩ is an operation for the inner product and ∥ · ∥2
refers to L2-normalization.

Discriminative Descriptors. Descriptors in D are expected
to be as discriminative as possible to make feature matching
reliable. To this end, we maximize the Average-Precision
(AP) metric for all local descriptors in D. We start by ran-
domly sampling N points in the first image and identifying
their corresponding descriptors in D as queries, denoted as
{di}Ni=1. Then each point is mapped to the second image ac-
cording to Hgt, centered on which some points are sampled
within different radius neighborhoods and their correspond-
ing descriptors are identified as positive and negative sam-
ples, i.e., {d+

ij}
Np

j=1 and {d−
ij}

Nn
j=1. Besides, we randomly

sample some points in the second image and regard their
descriptors {d∗

ij}
Nn
j=1 as distractors to further strengthen the

robustness of local descriptors. We calculate the similarity
scores among di and all other samples and obtain a dif-
ferentiable approximation of AP ranking loss, denoted as
ÃP (He et al., 2018). Then we minimize

LAP =
∑

i 1− ÃP (di) (7)

to ensure that local descriptors are accurate enough for SM.

Repeatable Keypoints. Good keypoints should be with
high repeatability, which means their positions should be
invariant to natural image transformations such as viewpoint
or illumination changes. We follow Lcosim and Lpeaky pro-
posed in R2D2 to achieve this goal. Concretely, Lcosim

aims to enforce heatmaps of two images to have high simi-
larity in corresponding local patches, while Lpeaky tries to
maximize the local peakness of the heatmap within each
patch. More details can be found in Appendix B.

3.3. Learning Features for Dense Alignment (Task 2)

For an image of size H × W , the dense branch will first
output Fd of size H×W×128. Directly using Fd for Eq. (2)
results in O(1283) time complexity for the calculation of
G−1

i . To reduce the complexity, we follow (Zhao et al.,
2021) and regard Fd as W ·H vectors of 128-dimension, and
cast each vector as the center and calculate the covariance
matrix in its 3× 3 patch. Then for each covariance matrix,
a value is computed by taking the ratio of the sum between
the maximum and minimum row sums to the trace of the
matrix. This process is depicted in Fig. 2 and it builds a
single-channel feature map X ∈ RH×W for each image
by traversing all vectors in Fd. We denote X as SDME-
D and use it for the following DA. In this case, the time
complexity decreases from O(1283) to O(1). To guarantee
Eq. (1) converge better during DA, we follow Lconv1 and
Lconv2 proposed in (Zhao et al., 2021) to learn X. More
details can be referred to Appendix C.

Besides, a modality consistency loss Lmc is introduced to
build connection between different modalities:

Lmc =
∑

i ∥XT [i]−XI [W (i;p)]∥22 , (8)

where p is the ground truth.
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Figure 3. Four correspondences & modality-invariant structures of
a multimodal pair with different plant conditions.

3.4. Training Strategy: Mutual Guidance and
Multi-task Learning

We have introduced how to learn SDME-S and SDME-D
separately. In the following, we will explore the interaction
of the two tasks for better performance.

Task 2 Guides Task 1. Given that the same object can be
displayed in vastly different forms in multimodal scenarios
(Fig. 3), demanding a high likelihood of detecting keypoints
in such areas can lead to challenges in descriptor learning
and consequently hinder the performance of SM. According
to (Zhao et al., 2021), features learned by Lconv1 and Lconv2

can spontaneously recognize invariant structures between
different modalities. So we use SDME-D (denoted as X) to
guide the learning of the heatmap S in Task 1. We design
the following loss to achieve this goal:

Lguide =
∥∥S− Softmax

(
Relu(λ)(1− X̃)

)∥∥
2
, (9)

where X̃ ∈ [0, 1] is the normalized X, λ is a learnable
parameter that eliminates scale difference between S and
X. In this way, modality-invariant structures, such as cor-
ners and edges, will exhibit higher detection scores in S
compared to other ambiguous areas.

Task 1 Guides Task 2. The heatmap S learned by our
sparse branch reveals reliable and prominent structures in
the image, which can help steer the optimization in DA
towards the correct result. To achieve this goal, we weight
the objective function in Eq. (1) with S, such that:

E(p) =
∑

iwi∥ri∥22, (10)

where wi = ST [i] · SI [W (i;p)] ∈ [0, 1]. Notably, wi

tends to 1 if the pixel is of high repeatability in both IT and
II , otherwise 0 if it locates at ambiguous areas which will
impair the optimization. Then Eq. (2) turns to:

Ji=
∂ri
∂p

=
∂XT [i]

∂i

∂i

∂p
∈ RC×8,Gi=wiJ

T
i Ji ∈ R8×8,

∆p =
(∑

iGi

)−1(∑
iwiJ

T
i ri

)
. (11)

Multi-task Learning. We denote parameters in the
shared encoder as θsh, while parameters in task-specific
decoders as θs (Task 1) and θd (Task 2), respectively.
Then the loss in the sparse branch can be denoted

Sparse-only Dense-only

min = 19.2 min = 33.6

Δ ΔΔ Δ

Figure 4. Left: only the sparse branch is trained. Right: only the
dense branch is trained. Keeping the other six parameters in the
homography matrix fixed, we perturb the translation vector with
(∆tx,∆ty) in two directions around the ground truth and calculate
the feature-metric residual by replacing X in Eq. (1) with D and
Fd shown in Fig. 2.

as Ls(θsh, θs) = ws1Lattn + ws2Lap + ws3Lcosim +
ws4Lpeaky + ws5Lguide, while that in the dense branch is
Ld(θsh, θd) = wd1Lconv1 +wd2Lconv2 +wd3Lmc. These
losses are summarized in Appendixes B and C.

Generally, the network can be learned by optimizing a
weighted combination, i.e., αLs + βLd, where α and β
are weights to balance the emphasis between the two tasks.
However, it is difficult to determine the optimal weights
manually as the following interferences exist in the training
of SM and DA features.

First, SM features need larger receptive fields than DA fea-
tures. Because in SM, each pixel in one image needs to find
a match among all pixels in the second one. Instead, in DA,
each pixel in one image only needs to find a match within a
local window centered at the initial matched point identified
by SM in the other image.

Second, feature-metric residuals in SM and DA are differ-
ent. As shown in Fig. 4 , two images are totally aligned
when ∆tx = ∆tx = 0. In this case, the sparse branch ex-
hibits smaller feature residuals than the dense branch. When
(∆tx,∆ty) deviates from the origin, the feature residuals
change rapidly for the sparse-only case, while the dense-
only case changes smoothly. This can be attributed to the
fact that the sparse branch is trained with contrastive learn-
ing (LAP in Eq. (7)), where negative samples are found
within a small radius from the positive samples. This en-
sures the accuracy of SM. In contrast, features emanating
from the dense branch are subject to broader constraints due
to the wide convergence required by Lconv1 and Lconv2.

To avoid negative transfer (Standley et al., 2020) caused
by the competing training objectives analyzed above, we
use Multiple Gradient Descent Algorithm - Upper Bound
(MGDA-UB) (Sener & Koltun, 2018) to find a descent di-
rection that improves both tasks, resulting in a solution θ
that can achieve a trade-off between the two feature spaces.
Concretely, the task-specific parameters θs and θd are up-
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Figure 5. The process of how weights of different tasks are dynam-
ically modulated to update the shared parameters θsh.

dated by θs− η∇θsLs(θsh, θs) and θd− η∇θdLd(θsh, θd),
respectively, with η being the learning rate. Regarding θsh,
its procedure of updating is shown in Fig. 5. Given an
input, we pass it through the shared encoder and regard
the resulting output (with gradients detached) as the rep-
resentation z. Then z is fed into task-specific branches,
giving rise to Ls and Ld, respectively, which are then back-
propagated to compute ∇zLs(θsh, θs) and ∇zLd(θsh, θd).
These two gradients are subsequently employed in the
Frank-Wolfe solver (Jaggi, 2013) to determine ws and
wd. Then θsh is updated by θsh − ηws∇θshLs(θsh, θs)−
ηwd∇θshLd(θsh, θd).

4. Experiments
4.1. Experimental Setup

Datasets. We conduct experiments on four datasets, in-
cluding MSCOCO (Lin et al., 2014), GoogleEarth (Zhao
et al., 2021), VIS-NIR (Brown & Süsstrunk, 2011) and
VIS-IR-drone (Sun et al., 2022). Specifically, GoogleEarth
displays different traffic and plant conditions due to the time
of the satellite image capture. VIS-NIR involves RGB and
near-infrared images while VIS-IR-drone involves RGB and
infrared images, the modality differences of which mainly
occur in color representations. All these three datasets pro-
vide aligned multimodal image pairs. Regarding MSCOCO,
it is a widely used unimodal dataset and we generate aligned
image pairs by naive replication.

We refer to (Chang et al., 2017; Zhao et al., 2021) to generate
training and test data by randomly sampling a homography
between an aligned image pair. Concretely, we first resize
an aligned image pair to 192× 192 and regard one of it as
the input image. Then on the other image, we randomly
choose four points in four 64× 64 boxes at the corner and
warp the chosen area to 128 × 128 as the template image.
We show some examples in Fig. 6 and the green polygons
denote where the four corners of the template should be
on the input. Overall, we split the training and test sets
of MSCOCO and GoogleEarth according to (Zhao et al.,
2021), which results in around 30000/6000 and 8000/1000
training/test samples. Regarding VIS-NIR and VIR-IR-
drone, we first partition the aligned image pairs in a 7:3 ratio
for training and test data generation. Then random sampling
is performed 5 times, which results in around 7600/1300 and

GoogleEarth VIS-NIR VIS-IR-droneMSCOCO

Figure 6. Top: template image. Bottom: input image.

8000/1600 training/test samples, respectively. Besides, to
test the ability to cope with large deformation, we generate
two subsets consisting of approximately 600 images from
MSCOCO and VIS-NIR and denote them as MSCOCO∗

and VIS-NIR∗, respectively.

Training. All the experiments are conducted on a single
TITAN RTX. We train with AdamW with an initial learning
rate of 1e−4, a weight decay of 5e−4, and a batch size of 8
image pairs. We train 100 epochs and use CosineAnnealing
to schedule the learning rate. In the sparse branch, we
calculate LAP by sampling positive samples within a radius
of 3 pixels and negative ones between a radius of 5 and
7 pixels. The patch size is set to 16 to calculate Lcosim

and Lpeaky. The total loss in this branch is set to LAP +
5Lcosim + Lpeaky + 0.008Lguide, while that in the dense
branch is Lconv1 + Lconv2 + Lmc. During training, the
multi-objective optimization algorithm MGDA-UB is used
to update the parameters of the network.

Inference. Given a pair of unaligned images IT , II , we use
our feature extractor to extract their heatmaps ST ,SI and
descriptors DT ,DI in the sparse branch, along with the fea-
ture maps XT ,XI in the dense branch, all in one forward
propagation. Then for each image, we find local maxima
in S as keypoints and gather the corresponding descriptors
from D and regard a keypoint along with a descriptor con-
stitute a feature. A shortlist of the best 1000 features are
kept in terms of the score ranking in S. Our SM starts by
building a putative set based on the descriptor similarity
with a mutually nearest neighbor (MNN) standard, followed
by MAGSAC++ (Barath et al., 2020) with the reprojection
threshold set to 1 pixel and the maximum iteration number
to 10K. Then the output of SM is regarded as the input of
DA, where the maximum iteration number is set to 15.

Evaluation Metric. We use the same evaluation metrics as
in recent works. Pixel Error (PE) is the average L2 distance
between the 4 ground-truth perturbation points and the 4
output point location predictions from an algorithm.

4.2. State-of-the-art Comparison

We classify the state-of-the-art methods into deep-based
(DHN (DeTone et al., 2016), MHN (Le et al., 2020),
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Table 1. Comparative results on MSCOCO, MSCOCO∗, VIS-NIR, VIS-NIR∗, GoogleEarth and VIS-IR-drone. PE<1 is the percentage
of testing image pairs that satisfy PE<1, and so on. APE means the Average PE of all testing image pairs. Success rate (SR) is the
percentage of the testing image pairs whose predicted PEs are smaller than the initial ones. PE< 0.5, ..., 20 and APE are only calculated
on the success cases. Bold means first and underline means second.

Dataset Method PE<0.5 ↑ PE<1 ↑ PE<3 ↑ PE<5 ↑ PE<10 ↑ PE<20 ↑ APE ↓ SR ↑

M
SC

O
C

O
&

M
SC

O
C

O
∗

Sparse

SIFT 62.79 / 0.22 88.39 / 3.79 98.26 / 40.53 99.29 / 63.03 99.65 / 82.63 99.95 / 93.54 0.63 / 6.36 99.69 / 74.96
R2D2 8.96 / 0.00 45.36 / 6.93 92.72 / 81.25 97.98 / 93.07 99.67 / 96.79 99.91 / 97.80 1.42 / 2.96 99.75 / 98.83
SFD2 0.13 / 0.00 4.95 / 0.00 57.74 / 13.32 82.77 / 47.39 96.69 / 86.85 99.67 / 97.30 3.42 / 6.57 99.59 / 99.00

ReDFeat 82.82 / 57.19 97.13 / 92.14 99.71 / 98.32 99.81 / 98.99 99.95 / 99.85 100.00 / 100.00 0.38 / 0.63 99.65 / 99.58

Dense DeepLK 82.59 / 79.76 89.92 / 90.31 93.28 / 95.07 94.45 / 95.92 96.55 / 97.11 99.09 / 98.81 1.02 / 1.02 96.67 / 98.16
PRISE 95.50 / 92.39 97.71 / 96.11 98.72 / 97.12 98.97 / 97.29 99.41 / 97.63 99.79 / 99.49 0.28 / 0.56 99.18 / 98.83

Deep
DHN 0.00 / 0.00 0.00 / 0.00 1.25 / 0.00 12.34 / 0.00 66.21 / 6.01 98.62 / 87.98 8.99 / 15.50 99.90 / 99.83
MHN 32.10 / 0.50 70.14 / 5.84 92.79 / 36.39 96.06 / 64.61 98.44 / 90.32 99.73 / 98.33 1.27 / 5.01 99.97 / 100.00
IHN 93.31 / 89.64 97.14 / 95.65 98.26 / 97.49 98.76 / 97.66 99.45 / 98.49 99.84 / 99.16 0.37 / 0.65 99.93 / 100.00

Ours 70.85 / 63.42 91.44 / 90.60 98.67 / 98.15 99.38 / 98.82 99.78 / 99.32 99.93 / 99.32 0.53 / 0.80 99.71 / 99.49

V
IS

-N
IR

&
V

IS
-N

IR
∗

Sparse

SIFT 23.31 / 0.00 54.38 / 5.39 86.86 / 31.95 93.14 / 45.23 97.19 / 66.39 99.58 / 82.99 1.77 / 10.39 93.22 / 38.56
R2D2 3.27 / 0.00 25.84 / 1.51 81.57 / 55.56 94.14 / 79.62 98.04 / 93.26 99.76 / 96.63 2.17 / 4.49 98.69 / 95.04
SFD2 0.00 / 0.00 1.74 / 0.00 37.09 / 7.11 63.22 24.40 91.81 / 68.98 98.96 / 89.93 4.91 / 9.97 96.99 / 94.40

ReDFeat 9.04 / 6.57 48.65 / 44.71 88.34 / 85.51 95.27 / 93.39 97.79 / 95.35 99.06 / 97.65 1.78 / 2.33 99.84 / 94.53

Dense DeepLK 3.17 / 0.28 16.53 / 14.05 56.73 / 64.19 66.81 / 79.34 75.19 / 88.71 91.05 / 93.66 6.39 / 4.97 68.02 / 58.08
PRISE 0.92 / 0.17 10.22 / 5.34 54.93 / 44.38 68.75 / 58.46 77.46 / 65.77 91.17 / 77.71 6.25 / 10.0 66.28 / 89.76

Deep
DHN 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.53 / 0.00 13.41 / 1.60 64.79 / 52.48 17.83 / 20.41 80.82 / 100.00
MHN 0.00 / 0.00 0.07 / 0.16 3.85 / 2.40 8.63 / 6.88 25.12 / 24.96 79.98 / 66.72 13.33 / 16.65 87.33 / 99.52
IHN 12.09 / 7.68 51.15 / 46.24 91.91 / 91.68 97.38 / 95.72 99.53 / 97.68 99.92 / 99.84 1.39 / 2.19 99.84 / 99.26

Ours 21.49 / 12.42 60.78 / 51.45 93.14 / 93.87 97.99 / 95.96 99.92 / 98.54 100.00 / 99.19 1.21 / 1.58 100.00 / 99.20

G
oo

gl
eE

ar
th

Sparse

SIFT 1.73 17.40 72.38 86.45 95.48 99.73 2.84 88.59
R2D2 0.12 10.68 75.17 92.51 98.81 99.76 2.50 99.05
SFD2 0.12 0.48 31.07 65.41 91.77 99.03 4.93 97.29

ReDFeat 7.61 44.86 92.78 96.69 99.05 99.51 1.82 99.52

Dense DeepLK 0.37 12.55 73.43 88.31 94.59 99.14 3.04 95.65
PRISE 8.5 45.55 85.50 90.13 93.42 98.41 2.49 96.58

Deep
DHN 0.00 0.00 0.00 0.61 21.05 92.41 13.45 96.12
MHN 0.00 0.00 0.60 8.29 57.57 96.75 10.05 97.88
IHN 10.23 55.05 92.58 97.00 99.05 99.73 1.82 100.00

Ours 8.00 49.52 93.05 97.64 99.53 99.88 1.38 100.00

V
IS

-I
R

-d
ro

ne

Sparse

SIFT 0.00 5.01 47.19 66.67 86.62 97.37 5.14 49.97
R2D2 0.00 1.63 44.31 69.08 92.54 98.95 4.54 91.34
SFD2 0.00 0.06 13.32 43.55 84.69 98.32 6.57 96.35

ReDFeat 0.00 9.19 66.68 83.40 97.75 99.75 3.02 98.20

Dense DeepLK 0.00 3.19 54.06 77.88 91.44 97.75 4.31 95.52
PRISE 0.06 4.27 56.21 78.01 91.08 98.24 4.23 95.04

Deep
DHN 0.00 0.00 0.00 0.09 7.57 75.44 16.63 67.82
MHN 0.00 0.00 0.00 1.48 31.03 92.91 12.60 96.78
IHN 0.12 5.97 66.12 84.66 98.28 99.88 3.00 99.64

Ours 0.17 10.34 68.49 87.87 99.58 100.00 2.75 99.88

Table 2. Runtime and model size analysis of each method. All methods are tested on VIS-IR-drone. The runtime of sparse methods and
ours (SM) calculates the total runtime of feature extraction + MNN + MAGSAC++.

Sparse Dense Deep Ours
SIFT R2D2 SFD2 ReDFeat DeepLK PRISE DHN MHN IHN SM DA Total

Parameters (M) - 0.49 4.04 1.13 33.94 33.94 10.99 32.97 1.71 - - 1.07
Runtime (ms) 20.19 50.56 72.86 69.26 191.58 204.67 11.09 35.91 44.94 29.72 34.64 66.37

IHN (Cao et al., 2022)), sparse-based (SIFT (Lowe, 2004),
R2D2 (Revaud et al., 2019), SFD2 (Xue et al., 2023), ReD-
Feat (Deng & Ma, 2023)) and dense-based (DeepLK (Zhao
et al., 2021), PRISE (Zhang et al., 2023)) ones for com-
parison. Deep-based ones are those predicting homogra-
phy matrices or four corner points via networks directly.
Sparse-based approaches follow the pipeline of feature ex-
traction + MNN + MAGSAC++, with the keypoint number
and MAGSAC++ details consistent with ours. Dense-based

methods optimize homography matrices via DA. We use the
pretrained models of R2D21 and SFD22 and fine-tune them
on our datasets for evaluation. Other methods are trained
from scratch for evaluation. Following the original papers,
DeepLK and PRISE are initialized by MHN.

Comparative results are reported in Table 1 and Table 2

1https://github.com/naver/r2d2/blob/master/models/r2d2 WAF N16.pt
2https://github.com/feixue94/sfd2
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Table 3. Comparison with state-of-the-art matchers. We report results of APE↓ (SR%↑), best in bold. ∗ in the first column means we use
the corresponding dataset to fine-tune the pre-trained model.

MSCOCO MSCOCO∗ VIS-NIR VIS-NIR∗ GoogleEarth VIS-IR-drone
SuperPoint+SuperGlue 1.31 (99.87%) 2.06 (99.83%) 1.26 (99.84%) 2.71 (99.68%) 1.77 (99.52%) 2.84 (99.40%)
RedFeat+SuperGlue∗ 0.68 (99.68%) 6.75 (100%) 1.69 (99.84%) 2.05 (99.33%) 2.04 (100%) 3.63 (100%)

LoFTR∗ 1.16 (97.83%) 4.38 (96.82%) 3.36 (94.60%) 7.15 (94.08%) 3.68 (97.52) 11.39 (53.55%)
Ours 0.53 (99.71%) 0.80 (99.49%) 1.21 (100%) 1.58 (99.20%) 1.38 (100%) 2.75 (99.88%)

Table 4. Ablation study. We use αLs+βLd with α=β=0.5 to
optimize network when training jointly w/o MGDA-UB.

Model Description APE ↓
GoogleEarth VIS-IR-drone

A Baseline 2.56 3.45
B + MITB 2.45 3.37
C + MGDA-UB 1.78 3.03
D + Mutual guidance 1.38 2.75

and visualization results are provided in Appendix D. Over-
all, our method achieves comparable performance to the
state-of-the-art on the MSCOCO dataset, while consistently
outperforming them across the remaining three multimodal
datasets, and showcasing robustness against substantial de-
formations. More specifically, we observe that: i) Deep-
based methods including DHN and MHN lack accuracy due
to the neglect of the geometric constraint. Although IHN
performs comparable with our method in most cases, its per-
formance drops greatly when the deformation becomes large
while ours changes little. ii) Our novel S2D pipeline yields
lower APEs, i.e., higher accuracy, than the sparse-only and
dense-only methods in most cases. This demonstrates the
superiority of our S2D pipeline, i.e., SM serves as a robust
initialization for DA, with DA subsequently refining the
outcomes from SM. iii) Our model comprises 1.07M param-
eters and the S2D pipeline operates within 100 ms, which
strikes a balance between accuracy and efficiency.

We also compare with state-of-the-art matchers including
SuperPoint (DeTone et al., 2018)+SuperGlue (Sarlin et al.,
2020), RedFeat+SuperGlue and LoFTR (Sun et al., 2021),
and results are shown in Table 3. We use the official outdoor
model for SuperPoint+SuperGlue3, and fine-tune Super-
Glue with our trained RedFeat for RedFeat+SuperGlue∗.
As the official outdoor model of LoFTR4 nearly fails on our
datasets, we only report the results of the fine-tuned model.
It can be seen that although our method only involves the
simplest matcher (i.e., MNN), it still outperforms the sophis-
ticated GNN- or Transformer-based matchers. This occurs
as matchers merely offer an initial setup with limited accu-
racy, and the substantial enhancement in accuracy is derived
from DA in our case.

3https://github.com/magicleap/SuperGluePretrainedNetwork
4https://github.com/zju3dv/LoFTR

Table 5. APEs w.r.t. different weight combinations of the sparse
and dense branches when MITB, MGDA-UB and mutual guidance
are not involved. DA results of the same dataset are initialized by
the same SM results.

Weight setting APE ↓

α (sparse) β (dense) VIS-IR-drone GoogleEarth
SM DA SM DA

0.1 0.9 5.74 2.76 4.26 1.92
0.5 0.5 4.28 2.87 3.92 2.01
0.9 0.1 3.50 2.92 3.22 2.14

4.3. Ablation Study on GoogleEarth and VIS-IR-drone

We ablate the proposed components (i.e., MITB, MGDA-
UB and mutual guidance) in this work to show their effec-
tiveness. Results are reported in Table 4.

MITB. We observed that MITB can bring a slight perfor-
mance improvement since it enhances descriptors with a
broader global receptive field.

MGDA-UB. Compared model B with model C in Table 4,
we find that MGDA-UB can improve the performance
by 27% and 10% on GoogleEarth and VIS-IR-drone, re-
spectively. To further demonstrate the effectiveness of
MGDA-UB, we additionally train three models without
MITB, MGDA-UB and Mutual guidance, and set α and β
to (0.1, 0.9), (0.5, 0.5) and (0.9, 0.1), respectively, to test
different weight combinations. Results can be found in Ta-
ble 5. Note that for DA, we use the same initialization for
the three settings in order to only test the performance of the
dense branch. It can be seen that larger weight of one branch
will impair the performance of the other branch, and it is
an expensive operation to search the optimal combination.
MGDA-UB addresses this issue by dynamically determin-
ing the weights according to the gradient information and
learning a trade-off between the two conflict tasks.

Mutual Guidance. Table 4 shows that mutual guidance can
also contribute to the performance and we intend to explore
how SM and DA are exactly guided. We employ models C
and D, as outlined in Table 4, for evaluation. We measure the
features predicting by our sparse branch in terms of Mean
Matching Accuracy (MMA), i.e., the ratio of matches with
a reprojection error below a threshold, from 1 to 10 pixels,
and averaged across all image pairs. Results are reported
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𝐗 𝐗 𝐗 𝐗𝐒 𝐒 𝐒 𝐒w/ mutual guidance w/ mutual guidancew/o mutual guidance w/o mutual guidance

Figure 7. Left: MMA w.r.t. 10 pixel thresholds. Right: Visualization of single-channel feature maps in dense branch (X) and heatmaps in
sparse branch (S) of two images from VIS-IR-drone (top two) and GoogleEarth (bottom two), when mutual guidance is or is not adopted.

Table 6. Performance of DA w/ and w/o SM guidance.

Method DA APE ↓
VIS-IR-drone GoogleEarth

w/ mutual guidance 2.75 1.38
w/o mutual guidance 2.96 1.52

in the left column in Fig. 7. The introduction of the mutual
guidance strategy leads to a significant performance boost,
with our features achieving the highest level of performance.
As shown in the red boxes in Fig. 7, this phenomenon can
be attributed to the modality-invariant structures highlighted
by the dense branch, which effectively guide the detection
of keypoints across these structures. As a result, the overall
robustness of the features is greatly enhanced. Regarding
DA, we use the same initialization and the results when the
mutual guidance is adopted or not are reported in Table 6.
It is evident that incorporating information from the sparse
branch into the DA objective function steers the optimiza-
tion towards more accurate outcomes.

5. Generalization Analysis
We first conduct cross-dataset evaluation of our method,
with results listed in Table 7. It is shown that our method
generalizes well to unseen datasets. Then we perform fine-
tuning with small datasets and results are shown in Ta-
ble 8. Specifically, we start from the pre-trained model
of MSCOCO and fine-tune it using only 10% of the original
training data from other datasets. It shows performance is
improved after fine-tuning on small datasets. This further
shows the practicability of our method, since in practice
single-modal datasets are easier to acquire than the multi-
modal ones. So in practice, we can first pre-train our model

Table 7. Cross-dataset results of APE↓ (SR%↑). Best in bold.

Train
Test

MSCOCO VIS-NIR GoogleEarth VIS-IR-drone

MSCOCO 0.53 (99.71%) 1.86 (94.60%) 1.87 (98.94%) 4.06 (88%)
VIS-NIR 0.87 (99.51%) 1.21 (100%) 2.04 (98.11%) 3.28 (98.62%)

GoogleEarth 1.23 (99.15%) 2.67 (92.21%) 1.38 (100%) 4.34 (89.61%)
VIS-IR-drone 1.40 (99.08%) 2.23 (97.14%) 2.46 (97.88%) 2.75 (99.88%)

Table 8. Fine-tuning results of APE↓ (SR%↑). Pre-trained refers
to the model trained on MSCOCO.

VIS-NIR GoogleEarth VIS-IR-drone
Pre-trained 1.86 (94.60%) 1.87 (98.94%) 4.06 (88%)
Fine-tune 1.35 (99.61%) 1.49 (100%) 3.18 (99.64%)

Ours 1.21 (100%) 1.38 (100%) 2.75 (99.88%)

on a large-scale single-modal dataset and then fine-tune it
on the small multi-modal dataset.

6. Conclusion
In this work, we propose to combine the advantages of
sparse matching (SM) and direct alignment (DA) to perform
multimodal image registration in a sparse-to-dense (S2D)
manner. For this end, we design a multi-task network termed
as sparse-to-dense multimodal feature extractor (SDME) to
predict features for SM and DA. During training, we employ
the Multiple Gradient Descent Algorithm (MGDA) to strike
a balance between tasks, while introducing mutual guidance
to enhance interaction between them. Experiments vali-
date the effectiveness of the mutual guidance and MGDA
strategies. Our S2D strategy based on SDME outperforms
state-of-the-art methods, demonstrating superior efficiency
and maintaining high performance even in scenes with ex-
tremely large deformation.
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A. Inverse Compositional Lucas-Kanade (IC-LK)
During direct alignment (DA), we aim to minimize the feature-metric residual between two unaligned images to refine
the homography between them. As illustrated in the original paper, let p ∈ R8 denote the homography of 8-DoF, and
XT ,XI ∈ RH×W×C denote the features of IT , II ∈ RH×W , then the highly non-linear objective that we aim to optimize
during DA is given by:

min
p

E(p) =
∑
i

∥∥XT [i]−XI [W (i;p)]
∥∥2
2
, (A1)

where i is a pixel in IT , W (·;p) : R2 → R2 is the warp function parametrized by p, and [·] is a lookup with sub-pixel
interpolation. The Lucas-Kanade algorithm iteratively solves for the warp parameters pk+1 = pk +∆p. At every iteration
k, the warp increment ∆p is obtained by linearizing:

min
∆p

∑
i

∥∥XT [i]−XI [W (i;pk +∆p)]
∥∥2
2
, (A2)

with the first order Taylor expansion being:

min
∆p

∑
i

∥∥∥∥XT [i]−XI [W (i;pk)]−
∂XI [W (i;pk)]

∂p
∆p

∥∥∥∥2
2

. (A3)

Since XI [W (i;pk)] changes with pk, ∂XI [W (i;pk)]
∂p needs to be recomputed in each iteration. IC-LK (Baker & Matthews,

2004) addresses this issue by solving for the warp parameters ∆p to make pk+1 = pk + (∆p)−1, i.e., it applys ∆p on IT
instead of II . Thus Eq. (A2) turns into:

min
∆p

∑
i

∥∥XT [W (i; ∆p)]−XI [W (i;pk)]
∥∥2
2
. (A4)

Correspondingly, the Taylor expansion in Eq. (A3) turns into:

min
∆p

∑
i

∥∥∥∥XT [i]−
∂XT [W (i;0)]

∂p
∆p−XI [W (i;pk)]

∥∥∥∥2
2

. (A5)

In this case, ∂XT [W (i;0)]
∂p is independent on pk and can be pre-computed, resulting in a more efficient algorithm.

Afterwards, we expand the contents within ∥·∥22 in Eq. (A5) and calculate the derivative of the unfolded equation w.r.t. ∆p.
Making the derivative equal to 0, we acquire

∆p =
(∑

i

JT
i Ji

)−1 ∑
i

JT
i ri,

Ji =
∂XT [W (i;0)]

∂p
=

∂XT [W (i;0)]

∂i

∂i

∂p
∈ RC×8,

ri = XT [i]−XI [W (i;pk)] ∈ RC . (A6)

B. Loss in The Sparse Branch
The total loss in this branch is set to LAP + 5Lcosim + Lpeaky + 0.008Lguide, where LAP in Eq. (7) is a metric loss
for descriptor learning, Lguide in Eq. (9) aims to guide keypoints towards distribution over modality-invariant structures.
Lcosim and Lpeaky are referred to R2D2 (Revaud et al., 2019) and we introduce them in the following.

Lcosim facilitates the detection of highly repeatable keypoints, thereby ensuring their positions remain invariant to common
natural image transformations, including changes in viewpoint and illumination. We denote the heatmaps of II and IT as
SI and ST , respectively. Then ST is transformed to S

′

T based on the known Hgt. A set of N ×N overlapping patches
P = {p} can be obtained by traversing all pixel locations of S

′

T . Since S
′

T aligns with SI , keypoints with high repeatability
can be learned by making all local maxima in S

′

T correspond to the ones in SI , i.e., minimizing Lcosim:

Lcosim = 1− 1

|P|
∑
p∈P

cosim
(
S

′

T [p],SI [p]
)
. (A7)
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Here cosim(·, ·) refers to the cosine similarity, S
′

T [p] ∈ RN2

denotes the flattened N ×N patch p extracted from S
′

T , and
likewise for SI [p].

Lpeaky is introduced on both S
′

T and SI to maximize the local peakiness of the heatmap:

Lpeaky = 1− 1

|P|
∑
p∈P

(
max
(i,j)∈p

Sij −mean
(i,j)∈p

Sij

)
. (A8)

Implementation. we set the patch size to 16 when calculating Lcosim and Lpeak.

C. Loss in The Dense Branch
The total loss in this branch is set to Lconv1 + Lconv2 + Lmc, where Lmc is introduced in Eq. (8) to bridge the gap between
different modalities. The terms Lconv1 and Lconv2 aim to shape the optimization landscape around the ground truth of
Eq. (A1) for better convergence (Zhao et al., 2021).

Firstly, Eq. (A1) is expected to achieve the local minimum at ground truth p. For this, Condition 1 is proposed:

∀(p+∆p) ∈ Θ, E(p+∆p)− E(p) ≥ g(p+∆p)− g(p), (A9)

where Θ is a small region around p, the supportive convex function g(p) = ∥p − p∥22 =
∑8

i=1(pi − pi)
2 can achieve

minimum at p. This condition guarantees that E(p) is the local minimum and the gradient of E(p) is larger than that of
g(p) at p. Then, Eq. (A9) can be transformed to:

Lconv1 = − 1

M

M∑
m=1

minimum

(
0, E(p+∆pm)− E(p)−

8∑
i=1

(∆pm
i )2

)
, (A10)

where ∆pm is the m-th sampled random noise, ∆pm
i is the i-th variable of ∆pm, and M times are sampled for each

training batch.

Secondly, we hope that E(p) in Eq. (A1) has a steep directional derivative (∇v) in Θ, which introduces Condition 2:

∀p ∈ Θ,∇vE(p) ≥ ∇vg(p), (A11)

where ∇vE(p) can be calculated by E(p+∆p) and E(p+λ∆p) with λ ∈ (0, 1), and likewise for ∇vg(p). This condition
guarantees that E(p) has a smooth surface around p without other minima. Then, Eq. (A11) can be transformed to:

Lconv2 = − 1

M

M∑
m=1

minimum

(
0, E(p+∆pm)− E(p+ λ∆pm)− (1− λ2)

8∑
i=1

(∆pm
i )2

)
. (A12)

Implementation. We sample 4 small perturbations, i.e., M = 4, around p to simulate the small region Θ, and λ is set by
multiplying p with a factor randomly sampled within [−0.083, 0.083].

D. Visualization
We show some visualization results of image registration in Fig. A1 and Fig. A2. It can be observed that our method yields
satisfying results in single-modal, multimodal and large deformation cases.
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Figure A1. Visualization results of different methods on two image pairs from MSCOCO, VIS-NIR, GoogleEarth and VIS-IR-drone,
respectively. Yellow: ground truth positions of the four corners of the template image (smaller one) on the input image (larger one). Blue:
the predicted results.
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Figure A2. Visualization results of different methods on two datasets with large deformation, i.e., MSCOCO∗ and VIS-NIR∗. Yellow:
ground truth positions of the four corners of the template image (smaller one) on the input image (larger one). Blue: the predicted results.
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