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Abstract

Fine-tuning the learnable prompt for a pre-trained
vision-language model (VLM), such as CLIP, has
demonstrated exceptional efficiency in adapting
to a broad range of downstream tasks. Exist-
ing prompt tuning methods for VLMs do not
distinguish spurious features introduced by bi-
ased training data from invariant features, and
employ a uniform alignment process when adapt-
ing to unseen target domains. This can impair
the cross-modal feature alignment when the test
data significantly deviate from the distribution
of the training data, resulting in a poor out-of-
distribution (OOD) generalization performance.
In this paper, we reveal that the prompt tuning
failure in such OOD scenarios can be attribute to
the undesired alignment between the textual and
the spurious feature. As a solution, we propose
CoOPood, a fine-grained prompt tuning method
that can discern the causal features and deliber-
ately align the text modality with the invariant fea-
ture. Specifically, we design two independent con-
trastive phases using two lightweight projection
layers during the alignment, each with different
objectives: 1) pulling the text embedding closer
to the invariant image embedding and 2) pushing
the text embedding away from the spurious image
embedding. We have illustrated that CoOPood
can serve as a general framework for VLMs and
can be seamlessly integrated with existing prompt
tuning methods. Extensive experiments on vari-
ous OOD datasets demonstrate the performance
superiority over state-of-the-art methods.
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Figure 1. Compared to existing methods. Different from the con-
ventional cross-modal alignment that may cause final prediction
to rely on spurious correlation, our proposed method provides an
invariant alignment to ensure more accurate prediction. The red
numbers denote the similarity among different features.

1. Introduction
Recently, pre-trained vision-language models (VLMs), e.g.,
CLIP, have demonstrated impressive zero-shot learning per-
formance in a wide range of downstream tasks (Radford
et al., 2021), including image classification (Singh et al.,
2022), object detection (Du et al., 2022; Gu et al., 2021; Li
et al., 2023), and vision-language answering (VQA) (Gar-
cia et al., 2020), etc. Different from traditional computer
vision models and natural language models that interpret
images or text in a unimodal manner, VLMs are capable of
comprehending both visual information and textual context
via a pair-wised cross-modal knowledge alignment in the
semantic space (Zhou et al., 2022b). Expressly, for any
new classification task, the VLM (e.g., CLIP) text-encoder
first encodes the manually designed textual prompt (e.g., “a
photo of a [CLASS].”), and then calculates the cosine
similarity between textual features and image features for
prediction. However, identifying appropriate manually de-
signed prompts is more art than science because it requires
both domain expertise and laborious prompt engineering.

To avoid the hand-crafted prompt design, some recent re-
search (e.g., CoOp (Zhou et al., 2022b; Yao et al., 2021))
have proposed prompt tuning to directly learn prompts using
training data from downstream tasks. By aligning images
and texts in a common feature space using contrastive loss
via learnable vectors, prompt tuning can adapt to unseen
target domains in a parameter-efficient way. Despite its po-
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tential, existing contrastive-based prompt tuning in VLMs
has not yet considered different types of vision features (i.e.,
spurious and invariant features) when training data are bi-
ased, i.e., imbalanced amount of data for different categories,
which further posts a question: when spurious features ex-
ists, does the alignment process still work well? It has been
well recognized that machine learning models are prone to
learning shortcuts that stem from spurious correlations (Mc-
Coy et al., 2019; Geirhos et al., 2020; Ming et al., 2022),
and their out-of-distribution (OOD) generalization ability
would be dramatically decreased when adapting to open-
world unseen test domains. Thus, currently prompt tuning
framework that heavily relies on uniform cross-modal align-
ment would inevitably fall into a undesired learning process,
i.e., bringing textual features closer to spurious features.

A naive solution is to simply apply conventional spurious
correlation mitigation methods (Bommasani et al., 2021;
Nam et al., 2020; 2022; Creager et al., 2021), e,g., using
two image encoders to decouple the spurious feature and
invariant features. However, they cannot work in practical
prompt tuning as parameters of both encoders are frozen.
Also, even when the text/image encoder can be updated, the
extensive computation overhead can be prohibitive in VLMs.
Worse more, the existence of spurious correlation bring new
challenges for the conventional contrastive learning-based
alignment framework: how to tackle the cross-modal in-
teraction among identified spurious features and textual
features requires further investigation. To tackle these is-
sues, in this paper, we propose CoOPood, a fine-grained
prompt tuning method that can discern the causal features
and properly align the two modalities during adaptation pro-
cess. Specifically, we divide the original alignment process
into two independent contrastive phases by two lightweight
projection layers with the following properties: 1) pulling
the text embedding closer to the invariant image embedding
and 2) pushing the text embedding away from the spurious
image embedding. Based on the above tuning framework,
the learnt prompts are automatically able to focus only on
the invariant features of OOD images, resulting in higher ro-
bustness in various downstream tasks (i.e., Figure 1(b)). We
show that our method can significantly improve the model
accuracy in an open-world setting when comparing with
the state-of-the-art baselines over widely used models and
downstream tasks (i.e., WaterBirds, CelebA, ImageNet-1K).
The contributions of the paper are summarized as follows.

• To the best of our knowledge, we are the first to explore
spurious correlation in prompt tuning, and explicitly
elucidate that the underlying cause of the performance
degradation reside in the cross-modal alignment phase.

• We design a brand-new decoupled prompt tuning
framework, that can effectively align the text modal-
ity with the invariant feature with two independent

contrastive learning processes.

• We conduct extensive experiments on three typical
OOD image classification tasks. The empirical evalua-
tion shows the superior performance of the proposed
CoOPood over the state-of-the-art approaches.

2. Related Work
2.1. Pre-trained Vision-Language Models

Pre-trained vision-language models (VLMs) have emerged
as a prominent trend to jointly learn text and image embed-
dings with large-scale image-text paired datasets (Jia et al.,
2021; Radford et al., 2021; Zhang et al., 2022b). A represen-
tative work is CLIP (Garcia et al., 2020), which aggregates
400 million image-text pairs from websites, facilitating the
vision-language representation learning using a contrastive
objective. During inference, the names of categories to be
recognized are filled into a properly designed prompt tem-
plate, such as “a photo of a [CLASS]”. Other VLMs,
like ALIGN (Jia et al., 2021) and LiT (Zhai et al., 2022) are
then proposed towards the same goal and can be extended
to more challenging visual recognition tasks (Liang et al.,
2022; Wang et al., 2022; Liang et al., 2023). To further
boost the performance of CLIP to downstream tasks, several
approaches focus on fine tuning the models in a parameter-
efficient manner, including CLIP-adapter (Gao et al., 2023)
and TIP-adapter (Zhang et al., 2021).

2.2. Prompt Tuning for Vision-Language Models

Instead of fine-tuning the entire model for downstream
tasks, prompt tuning serves as a promising paradigm in
both natural language processing (Kenton & Toutanova,
2019), and computer vision (Chen et al., 2020) via training
a learnable prompt with limited trainable parameters, e.g.,
“[v1, v2, · · · , vL, CLASS]”. As a pioneer work, CoOp (Zhou
et al., 2022b) applies prompt tuning to CLIP. By tuning the
prompt on a collection of few-shot training samples, CoOp
effectively improves CLIP’s performance on the correspond-
ing downstream tasks. Furthermore, CoCoOp (Zhou et al.,
2022a) is proposed as an enhancement of CoOp. Specifi-
cally, CoCoOp introduces a lightweight network to gener-
ates additional image-conditional context for each image
and combine it with the learnable prompt for improving gen-
eralization in unseen classes. MaPLe (Khattak et al., 2023)
tunes both the vision prompt and text prompt via a vision-
language coupling function to induce cross-modal synergy.
Besides that, another line of work focuses on using multiple
text prompts to achieve more fine-grained contrastive learn-
ing phases, i.e., PLOT (Chen et al., 2023), ProDA (Lu et al.,
2022), MVLPT (Shen et al., 2024), ProD (Ma et al., 2023).

In this paper, instead of designing better prompt architecture,
we aim to mitigate the negative impact of spurious correla-
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Figure 2. The framework of the decoupled prompt tuning for mitigating spurious correlation (CoOPood). We first use two simple
projection layers (e.g., one or two linear layer(s)) to automatically decouple the spurious feature from the output of image encoder. Then,
two independent contrastive learning process are designed to ensure unbiased alignment among image and text modality. Lu

ce is the
standard cross-entropy loss on invariant feature, Ls is the constraint to prevent unnecessary correlation between spurious feature and
corresponding text feature, Lc is a regularization term to guarantee the effectiveness of image feature decomposition.

tion derived from imbalanced training data on prompt tuning
to improve OOD generalization performance. Note that our
proposed CoOPood method is orthogonal with most prompt
tuning mechanisms.

2.3. Spurious Correlation under OOD Generalization

In practical open-world and complex scenarios, machine
learning models are shown to inevitably fall into the problem
of OOD generalization, where the new data have different
distributions with the training data (Liu et al., 2021). One
typical research topic in solving OOD generalization prob-
lem is to explore approaches to mitigate the spurious corre-
lation between class labels and spurious attributes (Sagawa
et al., 2019). For example, in Figure 1(a), a pre-trained
VLM (e.g., CoOp) has learned to use ‘tree’ to identify ‘bird
on tree’ since the concept of monkey and tree are often ap-
pear together in training dataset, instead of actually learning
the bird itself.

To mitigate the spurious correlation in learning process,
some early works rely on the predefined or manually an-
notated spurious correlations (Sagawa et al., 2019; Li &
Vasconcelos, 2019; Izmailov et al., 2022; Kirichenko et al.,
2023) to recover state-of-the-art performance on benchmark
spurious correlation problems by simply retraining the last
layer of the model on a small held-out dataset where the spu-
rious correlation does not hold, which may be expensive and
sometimes impractical. Thus, many of the existing works
assume that spurious correlation can be detected by a well-
trained empirical risk minimization (ERM) model (Zhang
et al., 2022a; Yang et al., 2023; Wei et al., 2023). Another
clever method is to add one additional model/encoder to dis-

entangle spurious features from imbalanced data (Luo et al.,
2022; Hu et al., 2022; Anonymous, 2024). In terms of miti-
gation mechanism, synthesizing minority samples/features
to balance the dataset is also widely utilized in removing
the spurious correlation (Yao et al., 2022; Han et al., 2022;
Liu et al., 2023; Kim et al., 2023; Wu et al., 2022).

2.4. Summary

When it comes to multi-modal models, spurious correlation
under OOD generalization problem still cannot be ignored.
Yang et al., (Yang et al., 2023; Shu et al., 2023) are the first
to consider a fine-tuning approach for mitigating spurious
correlations in multi-modal models, e.g., CLIP. However,
these studies all focus on updating the parameters of model
backbone, and mitigating spurious correlation in prompt
tuning has not been exploited. Moreover, the existence
of spurious correlation bring new challenges for the con-
ventional contrastive learning-based alignment framework:
how to tackle the cross-modal interaction among identified
spurious features and textual features to further enhance
the prompt tuning process? Inspired by the above obser-
vation, we are motivated to develop a novel prompt tuning
framework to achieve unbiased cross-modal alignment.

3. Methodology
In this section, we first introduce the preliminary in Sec-
tion 3.1. Then, in Section 3.2, we elaborate the proposed
CoOPood framework, which contains the image feature de-
composition phase and decoupled prompt tuning phase. The
detailed workflow of CoOPood is shown in Figure 2.
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3.1. Preliminary

Contrastive Language-Image Pre-training (CLIP).
CLIP (Garcia et al., 2020) is a typical dual-encoder archi-
tecture consisting of an image encoder that maps the image
input into a feature vector and a text encoder that does the
same for the text input. With the goal of aligning the image
feature space and text feature space by contrastive learning,
CLIP can acquire the zero-shot transfer ability to down-
stream tasks. We denote a CLIP model by M = {f, g},
with f and g being the image and text encoder, respectively.

In a downstream task, a hand-crafted prompt is fed into the
text encoder to synthesize a zero-shot linear classifier by
embedding the class names of the target dataset. We take
a image classification as an example, the “[CLASS]” token
can be first extended by a template, such as “a photo
of a [CLASS]”. Then, the sentence is treated as a prompt
and is encoded by the text encoder g to derive a weight
vector wc for class c, where c ∈ {1, · · · , C}, and C is the
total number of categories. Given a single test image xtest,
it is then fed into the image encoder f to generate image
embedding ztest. After that, the prediction probability is
computed by calculating the cosine similarity between the
image embedding and C text embeddings:

p(c|xtest) =
exp(sim(ztest,wc)/τ)∑C
j=1 exp(sim(ztest,wj)/τ)

, (1)

where τ denotes the temperature parameter, sim(·) denotes
the cosine similarity. Although Eq. (1) can be easily ap-
plied for zero-shot prediction, since CLIP employs a fixed
hand-crafted prompt (e.g., “a photo of a []”) to gen-
erate the textual embedding, the generability ability to the
downstream tasks are potentially restricted. To address the
above problem, Context Optimization (CoOp) (Zhou et al.,
2022b) has been proposed to automatically learn a set of con-
tinuous context vectors for generating task-related textual
embeddings.

Context Optimization (CoOp). Denote the learnable con-
text vector as v = [v1, v2, · · · , vL], with each vl, l ∈
{1, · · · , L} being a vector with the same dimension as word
embeddings (i.e., 512 for CLIP), and L is a hyperparame-
ter specifying the number of context tokens. Then the soft
prompt in CoOp can be represented as:

t = [v1, v2, · · · , vL,CLASS]. (2)

By forwarding the prompt for the c-th class, i.e., tc = [v, c],
into the text encoder g, we can obtain the textual class
embedding w̃c = g(tc). Let Dtrain = {(xi, yi)}Ni=1 be the
training dataset from the downstream task, where xi is the
i-th input data sample in space X , yi is the corresponding
label in Y = {1, 2, . . . , C}, N is the size of the dataset. For
all training data, CoOp calculates the probabilities of all

classes and minimizes the cross-entropy loss Lce to tune the
prompt. The problem can be formulated as:

t∗ = argmin
t

Lce, (3)

where Lce = −
N∑
i=1

yi log p(yi|xi), (4)

and p(yi|xi) =
exp(sim(zi,w̃yi

)/τ)∑C
j=1 exp(sim(zi,w̃j)/τ)

, zi = f(xi), w̃yi =

g(tyi) = g([v, yi]). Note that the parameters of image
encoder and the text encoder are frozen during the tuning
phase, and only the prompts are optimized. For large-scale
pre-trained models, prompt tuning is often more effective
and efficient than traditional finetuning methods such as
linear probing and full fine-tuning of all layers.

However, CoOp faces a challenge that the transfer perfor-
mance drops when spurious correlation exists in the tuning
phase, even under-performs the zero-shot CLIP, i.e., from
96.7% (ID) to 83.1% (OOD). We find that the reason behind
this is due to the current alignment pattern among image
and text modality, whose effectiveness lies in an implicit
assumption: the test data is in-distribution (ID) with respect
to its training data, and the image feature embeddings are
unbiased (i.e., no spurious correlation exits). Unfortunately,
above assumption may not always hold, especially for some
practical scenarios that data attributes have strong correla-
tion with their categories, e.g., misclassifying boats when
there is no water in the background. To address this issue,
we propose a novel and efficient prompt tuning framework,
called CoOPood, to provide an unbiased alignment strategy
between image and text modality.

3.2. Overview of CoOPood

Conventional prompt tuning framework aligns images and
texts in a common feature space by directly using the fea-
tures extracted from frozen encoders, imposing inaccurate
and even biased learning process. Instead, we propose to
decouple the features extracted by the vision encoder into
two parts: invariant features and spurious features. Then,
two independent contrastive learning processes are designed
to achieve unbiased cross-modal alignment.

Image Feature Decomposition. First, instead of roughly
adding an additional vision encoder with a large number
of parameters, we add two projection layers to decouple
the spurious features and invariant features from the output
of image encoder. In practice, these projection layers can
just be some linear layers. The two projection layers are
denoted by ϕ and ψ, respectively. Then, for a single image
xi, the output of ϕ and ψ can be regarded as invariant image
embedding and spurious image embedding as follows:

zi,u = ϕ(zi), zi,s = ψ(zi). (5)
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(a) (b)

Figure 3. The evolution of SCM in different scenarios. X and Y
denote the input and target space respectively. E is the indicator
of spurious correlation, which is usually the environment variable.
zu and zs denote the invariant and spurious features respectively.
Dotted arrows indicate unstable causal relations that can vary in
different environments. (a) SCM in traditional uni-modal learning;
(b) New SCM in our work, where t denotes the additional textual
feature that does not exit in traditional uni-modal learning.

To ensure ϕ and ψ can efficiently capture the corresponding
features, we theoretically analyze the image feature decom-
position problem by formulating structured causal models
(SCM) (Ahuja et al., 2021) to simulate the data generating
process in the downstream task. A valid SCM is depicted by
a directed acyclic graph where each node represents a ran-
dom variable and each edge describe a directed functional
relationship between the corresponding variables (Ahuja
et al., 2021).

When we study the prompt tuning in OOD setting, the addi-
tional textual modality need to be considered. The detailed
SCMs are show in Figure 3. According to the causal Markov
condition (Theorem 1.4.1) proved in (Pearl, 2009), we can
obtain following Lemma,

Lemma 1 (Conditional Independence). If the data gener-
ating mechanism of each VLM obeys the causal graph in
Figure 3, we have:

• zu ⊥ zs | Y , which means that the invariant features zs
are conditionally independent of the spurious features
zu given variable Y .

• zs ⊥ t | Y , which means that the spurious features
zs are conditionally independent of the text features t
given variable Y .

The above Lemma can be easily proved using the d-
separation criterion (Pearl, 2009), we omit it here and pro-
vide the detailed proof in the appendix A. Then, we can
utilize the first signature of conditional independence to
extract the spurious features. Specifically, we formulate
(zu ⊥ zs | Y ) as a regularization term Lc to minimize the
conditional mutual information (CMI) between the invariant
features and the spurious features,

Lc = I(zu; zs | Y ), (6)

where I(·) denotes the Shannon mutual information. In the
practical implementation, we adopt the metric used in (Jiang
& Veitch, 2022) to estimate the above conditional mutual
information, i.e.,

I(zu; zs | Y ) :=

∥∥∥∥ 1

N

N∑
i=1

zi,u
(

zi,s −
N∑

j=1

qij∑N
j=1 q

i
j

zj,s
)∥∥∥∥

1

,

where qij = 1 if and only if yj = yi; otherwise qij = 0.

Decoupled Prompt Tuning. After decoupling the spurious
image features and invariant image features, we design a
two-fold contrastive learning process to align two modalities
in an unbiased manner. The main idea is to pull the text em-
bedding closer to invariant image embedding while pushing
text embedding away from spurious image embedding.

Specifically, for the constrast process between invariant
image feature and text features, we continue to use the cross-
entropy loss as that in CoOP, which can be re-presented as,

Lu
ce = −

N∑
i=1

yi log pu(yi|xi), (7)

where pu(yi|xi) =
exp(sim(zi,u,w̃yi

)/τ)∑C
j=1 exp(sim(zi,u,w̃j)/τ)

. In terms of a

spurious image feature, the second signature of conditional
independence indicates that the one text embedding should
be tuned away far from its spurious image feature. There-
fore, we regularize the predictive distribution to be close to
a uniform distribution to prevent the model from classify-
ing the image into one of classes and thus destroy the its
discrimination ability on spurious feature, i.e.,

Ls =

N∑
i=1

ℓKL(ps(yi|xi) | p0), (8)

where ps(yi|xi) =
exp(sim(zi,s,w̃yi

)/τ)∑C
j=1 exp(sim(zi,s,w̃j)/τ)

, p0 = 1
C de-

notes a uniform distribution, and ℓKL is the Kullback-
Leibler (KL) divergence loss.

By combining all loss functions, the final objective function
is:

L = Lu
ce + αLs + βLc (9)

where α and β are used to balance the effect of different
terms.

4. Evaluation
4.1. Experimental Setup

Datasets. We evaluate the proposed CoOPood over three
datasets: Waterbirds (Sagawa et al., 2019), CelebA (Liu
et al., 2015), and ImageNet-1K (Russakovsky et al., 2015).
Waterbirds is a commonly used benchmark dataset for study-
ing spurious correlations. The task is to classify whether
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Table 1. Average and worst-group classification accuracy of compared methods on two backbones over three benchmark datasets. Worst
groups: waterbird on land for Waterbirds dataset; blond males for CelebA dataset; baby pacifier without baby for ImageNet-1K dataset.
Asterisk (∗) in ∗Group DRO and ∗Group CoOPood denotes that using group information during training.

ResNet-50 (%) ViT-B/32 (%)

#Method Waterbirds CelebA ImageNet Waterbirds CelebA ImageNet
Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

Pre-trained CLIP 68.35 42.21 83.32 67.78 67.15 36.08 64.53 40.34 85.13 69.44 75.25 50.51
CoOp 78.98 48.91 76.73 26.11 88.55 78.87 77.10 43.93 76.26 25.56 93.45 88.66
ERM 81.50 57.17 77.33 27.78 89.55 80.93 78.18 47.98 76.05 23.89 94.35 88.66
CoOPood 82.38 60.28 78.10 31.11 93.05 86.08 79.85 53.74 76.98 27.22 95.35 90.72
∗Group DRO 88.93 83.33 87.98 71.11 95.75 93.30 86.98 79.91 89.85 79.44 96.90 93.81
∗Group CoOPood 89.71 85.64 88.82 72.24 97.68 95.36 88.05 80.53 90.18 81.33 97.17 94.33

an image shows a landbird or a waterbird. The background
(land and water) from Places dataset (Zhou et al., 2017)
can be used as a spurious attribute for bird classification.
The groups correspond to images of landbirds on land back-
ground (G1), landbirds on water background (G2), water-
birds on land background (G3) and waterbirds on water
background (G4) with proportions 73.0%, 3.8%, 1.2%, and
22.0% of the data, respectively; the groupG3 is the minority
group. In the training set, landbirds appeared more often
on land backgrounds, while waterbirds appeared more often
on water backgrounds, so models fine-tuned on this dataset
tended to rely on backgrounds rather than birds. However,
in the testing set, both landbirds and waterbirds have the
same probability of appearing on a land background as on
a water background, which leads to a degradation of the
model’s performance.

Similar to Watebirds, CelebA is a hair color prediction
dataset, which also has 4 groups: non-blond females (G1),
non-blond males (G2), blond females (G3) and blond males
(G4) with proportions 3.9%, 73.9%, 21.1%, and 1.1% of the
data, respectively; the group G4 is the minority group, and
the gender serves as a spurious feature.

In ImageNet-1K dataset, there are some features spuriously
correlated with some categories (Singla et al., 2021). For ex-
ample, for Baby pacifier class, the spurious attribute is baby
face. Samples without babies in the image are susceptible
to being classified as water bottles rather than baby pacifier.
CLIP using ResNet-50 has a 98.2% classification accuracy
for samples with babies in the image, but only 36.1% for
samples without babies. We use the water bottle class and
the baby pacifier class in ImageNet-1K as the training set,
which has three groups: water bottles (G1), baby pacifier
without baby (G2), baby pacifier with baby (G3) with pro-
portions 73.9%, 5.2%, and 20.9% of the data, respectively;
the group G2 is the minority group. Note that since the
validation set for ImagenNet contains only 50 images per
class, we transferred a portion of the data from the original
training set to the test set.

Table 2. Performance comparison over three more complicated
OOD datasets: PACS, ImageNet-A and ImageNet-R, and two
regular datasets: Food101, Flower102.

Dataset
#Method Pret-trained

CLIP CoOp ERM CoOPood

PACS Avg. 90.75 91.28 91.33 91.98
Worst 79.42 80.92 79.37 81.15

ImageNet-A Avg. 21.69 37.50 56.07 56.45
ImageNet-R Avg. 55.98 63.72 64.16 64.58

Food101 Avg. 75.21 78.93 79.57 79.66
Flower102 Avg. 60.98 89.93 90.52 90.91

Baselines. We compare the performance of CoOPood
with the state-of-the-art methods. In addition to zero-shot
CLIP (Radford et al., 2021), we also include CoOp (Zhou
et al., 2022b), a widely adopted prompt tuning method,
which only minimize the contrastive loss Lu

ce; Empirical
Risk Mimimization (ERM), the standard technique for min-
imizing classification loss which also only minimize the
Lu
ce. Different from CoOp, under our model framework, the

ERM method will also use the invariant projection layer,
which is discussed in detail in the experimental Section 4.3;
Group DRO (Sagawa et al., 2019), which uses group infor-
mation on training set and adaptively increases the weight
of the worst-group examples during training. It should be
noted that Group DRO needs the group label of each training
sample, which is not necessary in other methods.

Implementation Details. In all experiments, we use the
publicly available CLIP model with the ResNet-50 (He et al.,
2016) and ViT-B/32 (Dosovitskiy et al., 2020) as the back-
bone model. The prompt used in all methods has 4 learn-
able tokens and initialized as the default one “a photo
of a”. When comparing the performance with baselines,
we optimize the prompts for 50 epochs with SGD opti-
mizer and a cosine decay learning rate scheduler, the ini-
tial learning rate is 0.002. The batch size of images is 32
on all datasets. For CoOPood, unless otherwise specified,
the value of hyper-parameters α and β are 1.0 and 2.0 for
CelebA and ImageNet-1K; 1.0 and 10.0 for Waterbirds.
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Figure 4. GradCAM explanations for different approaches based
on CLIP ResNet-50 for the Waterbirds dataset.

We do all experiments on a workstation with an RTX 4090
GPU, a 3.0-GHZ Intel Core i9-13900K CPU and 64GB of
RAM.

4.2. Performance Comparison

OOD Datasets with 2 Classes. First, we compare our
CoOPood with the baseline methods on 2 backbones over 3
benchmark datasets. The classification accuracy is listed in
Table 1. It should be noted that ∗Group DRO and ∗Group
CoOPood are trained with group information (i.e., the group
label for each training image). From the results in Table 1,
when there is no group information, it can be observed that
proposed CoOPood provides superior OOD generalization
performance than baselines on Waterbirds and baby paci-
fier of ImageNet-1K. Although the average classification
accuracy does not improve much, there is a significant per-
formance improvement on the worst-group classification
accuracy. For the CelebA, the worst-group accuracy does
not increase with our proposed decoupled prompt tuning,
while the pre-trained CLIP has the best performance. This
phenomenon is also confirmed by previous work (Mao et al.,
2022; Sagawa et al., 2019; Yang et al., 2023). They suggest
that this is partly due to the properties of the CelebA dataset

Figure 5. GradCAM explanations for different approaches based
on CLIP ResNet-50 for the ImageNet-1K dataset.

itself and partly related to the division of the training set.
Specifically, the number of training samples in the worst
group (i.e., G4, blond males) is too low, resulting in G4

having a low representation in the training data. Thus, when
the group information is introduced into the training (i.e.,
∗Group DRO and ∗Group CoOPood) and the loss weight of
the worst-group is increased, the representation of G4 will
also increase. There is a detailed discussion about the divi-
sion of CelebA Dataset’s training set in Appendix C. When
group information is available during training, our ∗Group
CoOPood not only outperforms the pre-trained CLIP on
CelebA, but also surpasses all baselines on all datasets, in-
cluding the ∗Group DRO.

OOD Datasets with More Classes. Considering that the
above comparisons over Waterbirds, CelebA and ImageNet-
1K dataset only involve two classes, we further conduct
experiments on other kinds of OOD datasets with more
classes, i.e., PCAS (Li et al., 2017) dataset with 7 class
and ImageNet variants like ImageNet-A (Hendrycks et al.,
2021b) and ImageNet-R (Hendrycks et al., 2021a) with
200 classes. We use the regular setting of those datasets.
For PACS, we adopt the “leave-one-domain-out” strategy
and the target domain with the lowest accuracy is the worst
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Table 3. Performance Comparison over more baselines.

ViT-L-14, Waterbirds (%)

#Method Average acc. Worst-group acc.

TextSpan 79.90 45.20
RobotShot 84.13 72.90
CoOPood 90.65 75.24
∗Group DRO 91.49 86.15
∗Group DFR 93.32 85.71
∗Group PDE 88.66 76.24
∗Group SDM 88.16 80.14
∗Group CoOPood 93.49 88.81

Table 4. The ablated components of compared methods.

#Method Ablated components

CoOPood None
CoOPood w/o Lc w/o Lc

CoOPood w/o Ls w/o Ls

ERM w/o Lc, Ls; ψ
CoOp w/o Lc, Ls; ψ, ϕ
CLIP w/o Lc, Ls; ψ, ϕ; soft prompt t

group. For ImageNet-A and ImageNet-R, because data from
different domains are mixed together, we can only calculate
average accuracy. The value of hyper-parameters α and β
are 1.0 and 2.0, other experimental settings are the same
as in Table 1. As shown in upper half of Table 2, we can
see that our proposed CoOPood method still has a good
performance than other baselines on PACS, ImageNet-A,
ImageNet-R dataset.

In-distribution Datasets. To verify that our proposed
CoOPood can also perform well on other regular datasets,
we then conduct new experiments on two regular datasets,
i.e., Food-101 (Bossard et al., 2014), Flower-102 (Nilsback
& Zisserman, 2008). Detailed results are shown in the
bottom half of Table 2. We can see that our method still
has a good performance on the normal data without spu-
rious features, demonstrating using the learned “invariant
image feature” will not hurt the model’s performance on
in-distribution data.

More Baselines on Vit-L-14. Apart from the already in-
cluded baselines on spurious correlation mitigation, i.e.,
ERM, ∗Group DRO, we select other five referenced methods
as additional baselines to further verify the effectiveness of
our proposed CoOPood from two perspectives: 1) traditional
spurious correlation mitigation methods, DFR (Kirichenko
et al., 2023), PDE (Deng et al., 2024); 2) CLIP-based
spurious correlation mitigation methods, i.e., SDM (Yang
et al., 2023), TextSpan (Gandelsman et al., 2024), and
Robothot (Adila et al., 2024). It is worth noting that we
do not include these baselines in Table 1 due to the non-
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Figure 6. Average and worst-group classification accuracy of com-
pared methods on ResNet-50 and Waterbirds dataset. w/o Lc and
w/o Ls means CoOPood does not apply the object function Lc and
Ls respectively.

repeatability of some methods, i.e., TextSpan, Robothot.
Among these five baselines, both DRF, PDE and SDM rely
on a group-balanced subset of training data to re-train the
last linear layer or prevent the learning of spurious features,
which assumes the group information is known. Therefore,
to guarantee a fair comparison, we extended DRF, PDE
and SDM to VLM and named them ∗Group DFR, ∗Group
PDE and ∗Group SDM, so as to compare it with ∗Group
CoOPood. In addition, since TextSpan and RoboShot are
training-free methods with the help of ChatGPT, we directly
use the results of these two papers on the premise of apply-
ing the same experimental settings, i.e., dataset, backbone
model. Then, we record the average model accuracy and
worst-group accuracy across four groups of Waterbirds us-
ing ViT-L-14 as the backbone. As shown in Table 3, We can
see that our method still has a good performance compared
to the state-of-the-art methods.

Visualization. Figure 4 and Figure 5 show the visual expla-
nation maps. We chose the waterbirds, baby pacifier class
from ImageNet-1K and ResNet-50 to observe the model’s
attention across different methods. The results show that
the pre-trained CLIP, CoOp, and ERM all have varying de-
grees of spurious correlation, i.e., a significant portion of the
model’s attention is not focused on the ground truth (the bird
and the pacifier). In contrast, our CoOPood significantly
mitigates the spurious correlation, and most of the model’s
attention is contained within the ground truth region.

4.3. Ablation Study

In this subsection, detailed analyses are shown to help un-
derstand the superiority of our proposed CoOPood method,
including the analysis on the objective function, analysis
on the sensitivity of hyper-parameters, and analysis on the
computational overhead. We also analyse the context length
and initialization of prompt, the division of training set of
CelebA dataset and the few-shot training set in Appendix.

Analysis on the Objective Function. To demonstrate the
effectiveness of our proposed CoOPood, we systematically
evaluate the performance when adopting different objective
functions on ResNet-50 and Waterbirds dataset. The ablated
components of compared methods are shown in Table 4.
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Figure 7. Analysis on the sensitivity of hyper-parameters α and β.

Figure 6 shows the quantitative analysis on different com-
ponents of CoOPood. First, we use pre-trained CLIP as the
basic baseline, which only use the fixed prompt “a photo
of a” to classify images without tuning. Secondly, CoOp
tunes the prompt only with the contrastive loss Lu

ce. Thirdly,
compare with CoOp, ERM adds an projection layer ϕ after
the image encoder, thus the contrastive loss Lu

ce applies on
the zu and text embedding. Note that there is no spurious
projection layer ψ and no Shannon mutual information loss
Lc in ERM, which means that the zu is just the output of
ϕ, does not represent the decoupled invariant features. It
can be observed that the accuracy has improved compared
to CoOp, which demonstrates the benefits of the projection
layer. This result is also mentioned in another work about
vision-language models (Gao et al., 2023). Then, Compared
to CoOPood, w/o Lc means does not apply the Shannon
mutual information loss Lc, and the performance is worse
than CoOPood. Finally, the case of using all objective func-
tions, i.e., the complete CoOPood, has the best performance,
which demonstrates that both the loss function Lc for de-
coupling the spurious feature and invariant feature, and Ls

for regulating the discrimination ability of spurious feature
can further improve the prompt tuning process.

Analysis on the Sensitivity of Hyper-parameters. To
explore the sensitivity of hyper-parameters α and β for
CoOPood, we conduct experiments with different values
of α and β on ResNet-50 and Waterbirds dataset. The de-
fault values of α and β are 1.0 and 2.0, respectively. Other
experimental settings are the same as Table 1. The results
are shown in Figure 7. For α, the larger value means the
greater effect of Ls. When α = 1.0, our proposed method
achieves the best worst-group performance on all five ac-
curacies and the performance does not degrade severely
with α changes. For β, the larger value means the greater
effect of Lc, namely, the invariant image embedding will
be pushed further away from spurious image embedding.
The results show that the proposed method achieves the best
worst-group accuracy when β = 10.0. It can be seen that
CoOPood is not sensitive to the choice of hyper-parameters
α and β in most cases. Results of CoOPood with differ-
ent hyper-parameters settings in Figure 7 still outperform
baselines in Table 1.

Analysis on the Computational Overhead. Table 5 shows

Table 5. Analysis in computational overhead among different meth-
ods. Params+ %CLIP and FLOPS+ %CoOp mean the percentage
of increased params and FLOPS to CLIP and CoOp, respectively.

#Method Params Params+ FLOPS FLOPS+
%CLIP %CoOp

CoOp 2048 0.004% 354.50G -
ERM 0.514M 1.05% 354.53G 0.01%
CoOPood 1.026M 2.10% 354.56G 0.02%

Table 6. Analysis on Compatibility and Plug-and-Play Functional-
ity of CoOPood.

ResNet-50 (%)

#Method Waterbirds CelebA
Avg. Worst Avg. Worst

CoCoOp 79.13 52.26 85.86 61.11
CoCoOp + CoOPood 82.16 60.97 87.98 70.64

the computational overhead of CoOPood in comparison with
CoOp and ERM. Although CoOPood utilizes two additional
projection layers, its overall params and Floating Point Oper-
ations (FLOPS) are only 2.10% and 0.02% higher than those
of CLIP and CoOp, respectively. Compared with the per-
formance improvement of OOD generalization, CoOPood
has an acceptable computational overhead in terms of the
number of parameters and FLOPS.

Analysis on Compatibility. Our proposed CoOPood breaks
the traditional cross-modal alignment pattern and achieves
an unbiased vision-language contrastive phase. Thus, it is
orthogonal to most prompt tuning mechanisms. We further
conduct experiments to demonstrate the compatibility and
plug-and-play functionality of CoOPood. Specifically, we
integrate the concept of CoOPood into CoCoOP to measure
the performance gain on different OOD datasets. The results
in the Table 6 show that the unbiased alignment phase in
CoOPood can provide a performance improvement of 2.1%
∼ 9.5%.

5. Conclusion
In this paper, we have investigated a novel decoupled prompt
tuning framework under the existence of spurious features,
CoOPood, to provide unbiased tuning phase among vi-
sion and text modality with high OOD generalization abil-
ity. Specifically, we divided the original alignment process
into two independent contrastive phases by introducing two
lightweight projection layers with different objectives: 1)
pulling the text embedding closer to the invariant image
embedding and 2) pushing the text embedding away from
the spurious image embedding. Extensive experiments have
been conducted over various models and datasets to verify
the effectiveness and superior performance of CoOPood.
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Impact Statement
Prompt tuning has been emerged as a promising paradigm
in both computer vision and natural language processing
by training a limited learnable vector with model param-
eter being fixed. Due to the complexity and dynamics of
current open-world (e.g., spurious correlation and out-of-
distribution data etc.), it is essential to investigate the effect
of spurious correlation and avoid its possible negative im-
pact on prompt tuning for future development. The proposed
CoOPood breaks the barriers of balanced data constraint,
improving the robustness of vision-language models in real-
world applications. This research has the potential to enable
multi-modal machine learning models to efficiently adapt to
various downstream real-world tasks.
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A. Proof of Lemma 1
In this section, we will provide the complete proofs of the Lemma 1 stated in the main content.

Lemma 1 (Conditional Independence). If the data generating mechanism of each VLM obeys the causal graph in Figure 3,
we have:

• zu ⊥ zs | Y , which means that the invariant features zs are conditionally independent of the spurious features zu given
variable Y .

• zs ⊥ t | Y , which means that the spurious features zs are conditionally independent of the text features t given variable
Y .

Proof. According to the causal Markov condition (Theorem 1.4.1) proved in (Pearl, 2009), we know that the variable zs
is independent of all its nondescendants, given its parents in the (Markov) causal graph. Since Y and E are the parent
variables of zs and zu is a nondescendant of zs, the first causal signature in Lemma 1 is guaranteed. Moreover, based on the
d−separation criterion in (Pearl, 2009), we can find that the variable Y d−separates zs from t in the right SCM of Figure 3.
Thus, we get the second causal signature in Lemma 1.

B. Analysis on the Context Length and Initialization of Prompt
To explore whether our CoOPood works equally well on prompts with different context lengths and initialization, we
repeat experiments on CLIP ResNet-50 and Waterbirds dataset by varying the context length from 4 to 16, and initializing
randomly. Other experimental settings are the same as in Table 1. The results are shown in Table 7, which indicates that
having more context tokens leads to a slight increase in accuracy on the worst-group. For the initialization, We find that
random initialization has little effect on the final accuracy. CoOpood still maintains advanced performance on different
context lengths and initialization.

Table 7. Analysis on the context length and initialization of prompt. Manual means that the prompt is initialized as “a photo of a”;
Random-4, 8, 16 means that the prompt is initialized randomly with length of 4, 8, 16.

#Method Manual Random-4 Random-8 Random-16
Avg. Worst Avg. Worst Avg. Worst Avg. Worst

CoOPood 82.38 60.28 82.56 58.93 83.57 62.54 83.17 63.48

To demonstrate the effectiveness of our proposed CoOPood with different lengths of prompt, we also conduct experiments
among different methods on a randomly initialized prompt with 16 context lengths. The results are shown in Table 8. It can
be seen that our CoOPood and ∗Group CoOPood still have the best average and worst-group accuracy.

Table 8. Analysis on the Context Length of Prompt among Different Methods. The prompt is initialized randomly with length of 16.
Asterisk (∗) in ∗Group DRO and ∗Group CoOPood denotes that using group information during training.

#Dataset CoOp ERM CoOPood ∗Group DRO ∗Group CoOPood
Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

Waterbirds 79.72 50.92 83.16 62.04 83.17 63.48 88.75 85.91 89.73 87.27

C. Analysis on the Division of Training Set of CelebA Dataset
In section 4.2, we discussed the reasons why other methods do not perform as well as pre-trained CLIP on the CelebA
dataset. We mentioned that the partitioning strategy of the training set was an important reason. Therefore, we re-divide the
training set of CelebA to give a higher percentage to the worst group. The new group proportions are 19.4%, 58.3%, 16.7%
and 5.6% for G1 to G4. Other experimental settings are the same as in Table 1. The experimental results are shown in the
Table 9. We find that when the proportion of the worst group is increased, the accuracies of CoOp, ERM and CoOPood are
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improved, which confirms our analysis. Meanwhile, our method outperforms ERM and CoOp regardless of the training set
division, which again proves the superiority of CoOPood.

Table 9. Analysis on the division of training set of CelebA dataset. Old division means the results from Table 1. In the New division, the
proportion of the worst group is increased from 1.1% to 5.6%.

#CelebA CLIP CoOp ERM CoOPood
Avg. Worst Avg. Worst Avg. Worst Avg. Worst

New division 83.32 67.78 86.26 63.34 88.03 73.82 88.94 76.17
Old division 83.32 67.78 76.73 26.11 77.33 27.78 78.10 31.11

D. Analysis on the Few-Shot Training Set
In this section, we explore the performance of different methods using a few-shot training set. Few-shot performance
verifies whether a method can work properly with extremely sparse training samples. In existing work on prompt tuning,
“x-shot” usually represents there are “x” data samples per class in the training set. However, in the OOD environment, the
existing division strategy may not be appropriate. Taking the Waterbirds dataset as an example, if a 16-shot training set
only represents 16 waterbirds and 16 landbirds, but we do not specify their backgrounds, then we will not know the specific
proportion of each group in the training set. Thus, in this section, we define “x-shot” to be the number of samples of the
worst group in the training set. We conduct experiments with 16-shot Waterbird dataset, and the proportion of each group is
consistent with Table 1. The value of hyper-parameters α and β are 1.0 and 2.0, other experimental settings are the same as
in Table 1. The results are shown in the Table 10. Compared to Table 1, the accuracy of all methods decreases, which is
consistent with the intuition that model performance will decrease under few-shot training settings. The performance of our
CoOPood still outperforms all baselines, which proves that our method is well adapted to the extremely sparse training set.

Table 10. Analysis on the few-shot training set. Full means the results from Table 1, which uses all training samples.

#Waterbirds CLIP CoOp ERM CoOPood ∗Group DRO ∗Group CoOPood
Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

16-shot 68.35 42.21 75.92 42.33 79.43 53.51 79.78 55.44 87.77 81.84 88.39 82.53
Full 68.35 42.21 78.98 48.91 81.50 57.17 82.38 60.28 88.93 83.33 89.71 85.64
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