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Abstract

Asynchronous action coordination presents a per-
vasive challenge in Multi-Agent Systems (MAS),
which can be represented as a Stackelberg game
(SG). However, the scalability of existing Multi-
Agent Reinforcement Learning (MARL) methods
based on SG is severely restricted by network
architectures or environmental settings. To ad-
dress this issue, we propose the Stackelberg Deci-
sion Transformer (STEER). It efficiently manages
decision-making processes by incorporating the
hierarchical decision structure of SG, the mod-
eling capability of autoregressive sequence mod-
els, and the exploratory learning methodology of
MARL. Our approach exhibits broad applicability
across diverse task types and environmental con-
figurations in MAS. Experimental results demon-
strate both the convergence of our method towards
Stackelberg equilibrium strategies and its superi-
ority over strong baselines in complex scenarios.

1. Introduction
In multi-agent systems (MAS), agents must not only maxi-
mize their individual rewards by interacting with the envi-
ronment, but also dynamically coordinate with other agents
to achieve the optimal collective strategy (Lu & Yan, 2020).
Multi-agent reinforcement learning (MARL) has emerged
as a promising approach to tackle this task effectively, but it
also poses significant challenges (Shen et al., 2022). Exist-
ing prevalent methods for MARL primarily focus on fully
cooperative tasks and assume synchronous actions among
all agents (Rashid et al., 2018; Yu et al., 2021). However,
when considering mixed tasks, which are more generalized

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy
of Sciences 3SenseTime Research 4School of Computer Science
and Technology, Shandong University. Correspondence to: Lijuan
Li <lijuan.li@ia.ac.cn>, Zhiwei Xu <diligencexu@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

and widely applicable, self-interested agents with private
rewards are involved in both cooperative and competitive
dynamics. Moreover, in real-world scenarios, the decision-
making process of agents is frequently influenced by the
actions taken by other agents at the same time (Ruan et al.,
2022). As a result, these methods exhibit limitations in ef-
fectively handling complex interactions among agents and
encounter difficulties even in simple coordination scenar-
ios (Xu et al., 2023).

Game theory provides an effective conceptual framework
for addressing interactions among agents, thereby offers
a promising avenue to address the challenges associated
with mixed tasks and asynchronous action coordination (Hu
& Wellman, 2003). Notably, Stackelberg game (SG) ex-
plicitly models the sequential asynchronous action coordi-
nation among agents. It entails agents making decisions
in a prescribed sequence, with leaders committing to their
actions and followers discovering the optimal response to
leaders’ decisions. AQL (Könönen, 2004), BiRL (Zhang
et al., 2020), and STEP (Zhang et al., 2023b) are designed to
acquire Stackelberg equilibrium (SE) strategies via MARL.
However, they typically impose stringent requirements on
the network structure and environment, thereby constraining
their scalability:

(1) All methods are restricted to environments with shared
states, allowing followers to infer the actions of leaders
based on the same inputs. However, this significantly
limits their applicability in scenarios where agents have
private observations.

(2) As a heterogeneous policy learning approach, all meth-
ods update the policies of each agent in a sequential
manner, resulting in significant learning cost.

Recent advances in autoregressive sequence models derived
from natural language processing (NLP) (Radford et al.,
2019) have facilitated the development of novel reinforce-
ment learning (RL) applications (Chen et al., 2021; Janner
et al., 2021). In this paper, our central insight lies in the
seamless alignment between the hierarchical decision-
making structure of SG and the modeling approach of
autoregressive sequence models. Building upon this, we
propose a novel approach that utilizes sequence models to
address the aforementioned challenges.
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Specifically, we first introduce a heuristic Stackelberg deci-
sion mechanism. Through the construction of the decision
form of SG and the utilization of RL techniques, the con-
vergence of the SE strategy is achieved in a natural manner.
Furthermore, as our core contribution, we formally intro-
duce the Stackelberg Decision Transformer (STEER). It
incorporates a dual Transformer architecture comprising an
Inner Transformer Block (ITB) and an Outer Transformer
Block (OTB). With respect to challenge (1), ITB enables
us to effectively manage tasks in a variety of environment
configurations. The OTB further facilitates autoregressive
fitting of policy and value functions for each agent. As for
challenge (2), the Transformer architecture enables parallel
updates of all agents’ policies during the training phase,
thereby reducing the computational costs that are previously
imposed by SG based RL methods. Finally, we also put
forth a viable scheme for extending its application to decen-
tralized execution systems.

We employ widely recognized benchmarks to evaluate the
effectiveness of the proposed STEER. Experimental results
demonstrate its SE policy learning capability in both single-
step and multi-step matrix games. Moreover, it exhibits
superior performance and applicability compared to baseline
approaches in complex scenarios.

2. Related Work
MARL. MARL aims to learn an optimal joint strategy that
maximizes collective return (Zhang et al., 2023a). In this
context, learning heterogeneous strategies for agents aligns
better with intuition compared to parameter sharing meth-
ods, particularly in scenarios with self-interested or hetero-
geneous agents. Asynchronous Actor-Critic (Xiao et al.,
2022) framework enables agents to execute temporally-
extended actions, making it applicable to scenarios where
the execution time of actions may vary. Seraj et al. present
a hierarchical coordination framework for addressing joint
perception-action tasks in composite robot teams composed
of perceptual agents and action agents, which aligns more
closely with hierarchical RL methods. HAPPO (Kuba et al.,
2022) and A2PO (Wang et al., 2023) optimize the policy
of each agent through a sequence update scheme. How-
ever, these approaches suffer from higher learning costs and
longer training time. Although MAT (Wen et al., 2022)
can somewhat alleviate these issues, the advantage decom-
position theorem on which all of these methods rely only
applies to fully-cooperative scenarios, limiting their ability
to handle diverse types of tasks. In situations where agents
have private rewards, defining the joint advantage value be-
comes challenging, and evaluating the quality of the joint
policy becomes difficult. In this paper, we aim to develop a
universal approach for learning heterogeneous strategies in
both fully-cooperative and diverse mixed scenarios.

SG Based MARL. Our research endeavors to address the
prevalent challenge of asynchronous action coordination in
MAS, with a particular emphasis on hierarchical coordina-
tion and SG structure among agents. Given the superiority
of SE over Nash equilibrium (NE) in terms of existence,
determinacy, and Pareto optimality (Başar & Olsder, 1998;
Zhang et al., 2020), recent studies have delved into the ap-
plication of SE in MARL. Gerstgrasser & Parkes propose
the use of multi-task and meta-learning techniques to learn
solutions for the SE in two-player games. He et al. employ
a three-stage SG framework to achieve clustering federated
learning for heterogeneous UAV swarms. Similar to Nash
Q-learning (Hu & Wellman, 2003), AQL (Könönen, 2004)
updates the Q-value function in an asymmetric setting by
calculating the SE of the stage game at each iteration. BiRL
(Zhang et al., 2020) proposes a two-player MARL method,
utilizing a DQN-based (Mnih et al., 2013) learner for the
leader and a DDPG-based (Lowe et al., 2017) learner for the
follower. To enforce the SE policy, both the leader and fol-
lower need to store each other’s model. STEP (Zhang et al.,
2023b) leverages hypernetworks (von Oswald et al., 2020)
to facilitate the execution of heterogeneous SE policies, with
followers inferring the actions of leaders to determine their
response policies. However, these methods utilize intricate
network structures and follow the presupposition that all
agents share global state, which narrows the scope of their
applicability.

Transformer in RL. Recently, researchers have increased
their focus on applying autoregressive sequence mod-
els (Vaswani et al., 2017) to MARL . UPdet (Hu et al.,
2021) concentrates on representation learning, with Trans-
former processing relationships between various entities in
observations and matching them with subsets of the action
space. MAT (Wen et al., 2022) incorporates Transformer
and employs the advantage decomposition theorem to solve
fully cooperative tasks while anticipating convergence to NE
policies. However, it adopts the standard encoder-decoder
structure without further optimization for MARL. MADT
(Meng et al., 2021) employs Transformer to introduce the
MAS field to the offline pre-training and online fine-tuning
paradigm. Our approach utilizes Transformer to enable
agents to cognize environmental states and the decision
factors involved in SG framework.

3. Preliminaries
Markov Game. Markov game (MG) provides a power-
ful framework for modeling multi-agent decision-making
problems in a stochastic environment. It is defined by the
tuple Γ ≜ ⟨I,S, {Ai}i∈I ,P, {ri}i∈I , γ⟩, where I repre-
sents the set of all agents with |I| = n, and s ∈ S represents
the environmental state. ai ∈ Ai is the action of agent i and
the joint action space is A =

∏n
i=1 Ai. P : S ×A → Ω(S)
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Figure 1. Top: Illustration of the heuristic Stackelberg decision
mechanism. Followers interact with the environment based on
joint actions with leaders, while leaders instruct followers as con-
stituents of the environment. Bottom: Schematic representation of
Stackelberg sequential decision-making.

represents the state transition function of the environment,
where Ω(X) denotes the set of probability distributions over
X . ri : S ×A → R is the reward function of agent i and γ
is the discount factor. At time step t, each agent i executes
its policy πi : S → Ω(Ai) based on state st. The envi-
ronment transitions to a new state st+1 ∼ P (st+1 | st,at)
after receiving the joint action at = (a1t , ..., a

n
t ) and assigns

private rewards ri(st,at) for each agent. The joint policy is
represented by π (st) =

∏n
i=1 π

i(st). The transition func-
tion and the joint strategy determine the state’s marginal
distribution ρπ at each time step. Within this framework,
each agent aims to maximize its own discounted cumulative
return Ri(τ) =

∑T
t=0 γ

tri(st,at) over a trajectory τ of
length T . According to Bellman Equation, the action value
function of agent i in MG can be written as:

Qi
π(s, a

i) = Es∼ρ,a∼π

[ ∞∑
t=0

γt · rit(st,at) | s0 = s

]
. (1)

The state value function is V i
π(s) =

∑
ai∈Ai πi(ai|s) ·

Qi
π(s, a

i). In certain environmental settings, agents may
have access to localized observations {Oi}i∈I that are spe-
cific to each agent. Additionally, when r1 = · · · = rn, the
task is considered a fully-cooperative task, otherwise, it is
referred to as a mixed task.

Stackelberg Game. The Stackelberg game (SG)
(Von Stackelberg, 2010) is a well-established game-theoretic
framework that models the hierarchical decision-making
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Figure 2. Multi-step matrix game: Coordination. Only actions that
yield non-zero rewards are permitted prior to the terminal state.

structure where some agents have priorities over others.
Typically, such structure consists of leaders, who are su-
perior agents capable of committing to their actions prior
to other agents, and followers, who are inferior agents that
must respond to the leaders’ decisions. Leaders make de-
cisions based on the assumption that followers will always
react optimally to their actions. As an illustration, consider
two agents whose leader and follower policies are denoted
by π = (π1, π2). This can be formulated as a bi-level
optimization problem:

max
π1∈Π1

{J 1(π1, π2)|π2 ∈ arg max
π2′∈Π2

J 2(π1, π2′)},

max
π2∈Π2

J 2(π1, π2),
(2)

where Π represents policy space and J i
(
π1, π2

)
=

Es∼ρ,a∼π

[∑
t=0 γ

trit
(
s, a1t , a

2
t

)]
is the objective function

of agent i. SE strategy corresponds to the optimal solution
of this bi-level optimization problem.

4. Heuristic Stackelberg Decision Mechanism
In the context of multi-agent SG, we allocate each agent
i to an individual priority level hi and H = {h1, ..., hn}
is a prioritized permutation of agents. For simplicity, it is
assumed that the priorities of the agents are assigned based
on their agent ID, i.e., hi = i. In this setting, we extend the
bi-level optimization problem in Equation (2), leading to
the derivation of an n-level optimization problem:

max
πi∈Πi

{J i(π1:i−1, πi)|πj ∈ arg max
πj′∈Πj

J j(π1:j−1, πj′)}, (3)

max
πj∈Πj

J j(π1:j−1, πj), (4)

where i ∈ [1 : n] and j ∈ [i + 1, n]. Drawing inspiration
from the heuristic algorithm for bi-level optimization (Liu
et al., 2021a; Sinha et al., 2017), we propose an RL-based
heuristic Stackelberg decision mechanism (SDM) for this
problem as shown in Figure 1. In SDM, each agent as-
sumes the role of a follower to higher-level agents while
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t)}i∈I in an autoregressive manner according to their priority level. Right: Decentralized policy

learning based on knowledge distillation.

simultaneously acting as a leader to lower-level agents. For
followers, these inferior agents receive decision information
from superior agents during both the execution and train-
ing procedures. The policy gradients of the agents are then
updated in the direction of the optimal response to leaders,
yielding an approximation of the solution to the inner op-
timization problem posed by Equation (4). On the other
hand, for leaders, these superior agents interact with the
environment and perceive the reaction of the inferior agents.
When updating their policies, leaders consider followers
as part of the surrounding environment and maximize their
own private rewards, resulting in an approximate solution
to the outer optimization problem in Equation (3).

Under SDM, agents strive to maximize their individual re-
turns based on known conditions, which alignes with the
objective of RL. Through iterative interaction and trial-and-
error with the environment, they ultimately converge to the
SE policies. Formally, agent i executes policy based on
sub-game state sit = (st, a

1
t , ..., a

n
t ), and the corresponding

action value function is denoted as:

Qi
π(s,a

1:i−1, ai) = Es∼ρ,a∼π

[∑∞

t=0
γt · rh

i

t (st,at) |

s0 = s,a1:i
0 = a1:i

]
.

(5)

We also have the state value function: V i
π(s,a

1:i−1) =∑
ai∈Ai πi(ai|s,a1:i−1)·Qi

π(s,a
1:i−1, ai). The advantage

function is represented as:

Ai
π(s,a

1:i−1, ai) = Qi
π(s,a

1:i−1, ai)− V i
π(s,a

1:i−1). (6)

Introducing SDM provides several advantages for resolving
coordination problems as opposed to assuming that agents

act simultaneously. For better illustration, we consider a
simple two-agent three-action multi-step matrix game as
shown in Figure 2. In this game, agents must make a choice
between actions (a11, a

2
1) and (a13, a

2
3) at the initial state and

repeat the same joint action until they coordinate at the termi-
nal state to receive the final reward. Incorrect choices lead to
game termination, necessitating a restart from the beginning.
Despite the game’s simplicity, successful decision-making
requires full cooperation and coordination between agents
to ensure the maximum total return.

When making decisions using SDM, in the initial state, if
agent 1 chooses action a11 or a13, the optimal strategy for
agent 2 is uniquely determined as a21 or a23. As illustrated
in Figure 1, the hierarchical decision-making process in
SDM is similar to a depth-first search tree. The ideal space
for the follower to act is narrowed down when the leaders
commits to their actions. This constraint reduces the risk of
both players pursuing disparate optimal strategies (a11, a

2
3)

or (a13, a
2
1) in the initial state, which may result in game

failure. Secondly, from a game theory perspective, all three
joint-actions (a11, a

2
3), (a

1
2, a

2
2), (a

1
3, a

2
1) are NE points in the

final state, wherein neither player can increase its payoff by
changing its own strategy. However, only point (a13, a

2
1) is

the unique SE point, which results in the highest average
payoff for both players. SDM facilitates the identification
of the SE point naturally. The detailed process for finding
the SE point can be found in Appendix D.

5. Stackelberg Decision Transformer
In this section, we develop a dual Transformer architecture
called Stackelberg Decision Transformer (STEER), which
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combines SDM and autoregressive sequence models. Specif-
ically, as illustrated in Figure 3, STEER employs the Inner
and Outer Transformer Blocks. The Inner Transformer
Block (ITB) is tasked with processing state information
across different environmental configurations, while the
Outer Causal Transformer Block (OTB) handles decision in-
formation in an autoregressive manner for subsequent fitting
of policy and value functions.

Inner Transformer Block. ITB consists of n + 1 to-
kens, where agents’ observation vectors {oit}i∈I are ini-
tially mapped to embeddings {eit}i∈I as the last n tokens.
Regarding the first token:

• If additional global state information st is accessible,
the state embedding e0t is utilized as the first token.

• If only local observation information is available, an
extra learnable embedding e0t is applied as the first
token, similar to the class token in ViT (Dosovitskiy
et al., 2020).

Consequently, the input to ITB is represented as el0,t =
[e0t , e

1
t , ..., e

n
t ] +Epos, where Epos represents the position

embedding. Using multi-head self-attention (MHSA), mul-
tilayer perceptron (MLP) and layer normalization (LN), we
can write the j-th block of ITB as:

e′
ℓj ,t =MHSA(LN(eℓj−1,t)) + eℓj−1,t, (7)

eℓj ,t =MLP(LN(e′
ℓj ,t)) + e′

ℓj ,t. (8)

Assuming a total of L blocks, the output of ITB can be
written as:

Y ITB
t = MLP(eL,t) = [s0t , x

1
t , ..., x

n
t ]. (9)

Here, s0t is the global game state embedding, which is en-
coded by the output of the first token at the last block.
{xi

t}i∈I represents agent-specific state embedding for all
agents (Chen et al., 2022). ITB offers a flexible and adapt-
able methodology for handling various environmental state
configurations. It facilitates the production of precise ab-
stract representations of game scenarios.

Outer Transformer Block. In OTB, s0t functions as the
abstract representation of the global state. Together with
the actions {ait}i∈I taken by each prioritized level agent,
it constitutes the input sequence z0,t = [s0t , a

1
t , ..., a

n−1
t ]

with the length of n. The input of the first block in OTB can
be expressed as zl0,t = MLP(z0,t) +Epos. Subsequently,
OTB utilizes masked multi-head self-attention (MMHSA) to
generate decision information in an autoregressive manner.
Similar to ITB, this process is summarized as:

z′
ℓj ,t =MMHSA(LN(zℓj−1,t)) + zℓj−1,t, (10)

zℓj ,t =MLP(LN(z′
ℓj ,t)) + z′

ℓj ,t, (11)

Y OTB
t =MLP(zL,t). (12)

OTB plays a critical role in SE strategy learning by effec-
tively managing the process of sequential asynchronous
action coordination through autoregressive generation of
decision information for each agent.

Actor and Critic Heads. By combining the current state in-
formation of each agent with decision information from lead-
ers, the current sub-game state embedding can be created
and denoted as {sit}i∈I = Y ITB

t [1 : n]+Y OTB
t [0 : n−1].

This embedding is then forwarded to the Critic head (CH)
and Actor head (AH) to recursively approximate the value
and policy functions of agents:

V i
t (s

i
t) = V i

t (st, a
1:i−1
t ) = CH(sit), (13)

ai
t ∼ πi

t(s
i
t) = AH(st, a

1:i−1
t ). (14)

Training Paradigm. Our approach is trained through end-
to-end RL. Given the advantages of policy-based methods
in addressing continuous control tasks and mixed tasks,
it is appropriate to employ Proximal Policy Optimization
(PPO) (Schulman et al., 2017) as the underlying algorithm.
Assuming that the Transformer blocks (serve as both the
policy and value networks), Actor head and Critic head are
parameterized by ω, θ, ϕ, respectively, the policy network
needs to maximize the clipping objective function:

L(θ, ω) =Et,i[min(riθ,ωÂ
i
π, clip(r

i
θ,ω, 1± ϵ)Âi

π)+

ηS(πi
θ,ω(s, a

1:i−1))],
(15)

where riθ,ω =
πi
θ,ω(ai|s,a1:i−1)

πi
θold,ωold

(ai|s,a1:i−1)
, ϵ is the clipping ratio,

Âi
π serves as an estimation of the advantage value in Equa-

tion (6), S(·) is the Shannon entropy and η is its coefficient.
Furthermore, the value network is updated through the min-
imization of empirical Bellman TD-error:

L(ϕ, ω) =Et,i[max((V i
ϕ,ω

(
si
)
−Ri)2, (clip(V i

ϕ,ω(s
i),

V i
ϕold,ωold

(
si
)
± ε)−Ri)2)],

(16)
where ε is the clipping ratio and Ri is the discounted cumu-
lative return.

It is worth noting that the process of action generation in
the execution phase differs from that in the training phase.
Specifically, during the execution phase, actions are gener-
ated autoregressively. In contrast, during the training phase,
the joint action sequence of the agents is captured and stored
in the replay buffer. This enables parallel computation and
updating, leading to significantly increased training speed
compared to other SG based learning techniques.

Scalability for Decentralized Execution Systems. The in-
herent properties of the Transformer architecture constrain
its applicability of decentralized execution. Accordingly,
STEER is employed as a centralized approach. To further
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Table 1. Comparison of environment configurations in different scenarios.

Environment 1-step Matrix Game n-step Matrix Game Multi-Agent MuJoCo Google Research Football Highway On-Ramp Merging
Penalty Mixing Cooperation Coordination (MA-MuJoCo) (GRF) (HORM)

Complete Collaboration ✔ ✘ ✔ ✘ ✔ ✔ ✘
Incomplete Collaboration ✘ ✔ ✘ ✔ ✘ ✘ ✔

Continuous Control ✘ ✘ ✘ ✘ ✔ ✘ ✘
Discrete Control ✔ ✔ ✔ ✔ ✘ ✔ ✔

Partial Observation ✘ ✘ ✘ ✘ ✔ ✘ ✘
Global State Sharing ✘ ✘ ✘ ✘ ✔ ✘ ✔
Individual Global State ✘ ✘ ✔ ✔ ✘ ✔ ✘
Constant State ✔ ✔ ✘ ✘ ✘ ✘ ✘
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Figure 4. Matrix game scenarios. (a) Mixing. (b) Penalty (k <= 0). (c) Multi-step matrix game: Cooperation. Additionally, Multi-step
matrix game: Coordination is also evaluated, which can be found in Figure 2.

broaden its applicability, we introduce an additional knowl-
edge distillation module (Gou et al., 2021) and devise a
student network comprised of MLP that receives local ob-
servations and outputs corresponding actions (see Figure 3).
After the convergence of the STEER, we align the outputs
of each student network with those of STEER, facilitating
the learning of decentralized SE strategies by the student
network. Specifically, we choose Logarithmic Root Mean
Squared Error and add Shannon entropy loss:

Lstu =

√√√√ 1

m

m∑
k=1

(
log(πstu(āk | ok))− log(πSTEER(āk | sk)

)2
− ηS (πstu(a | ok)) ,

(17)

where āk = argmaxa πSTEER(a | sk) and m denotes the
size of the replay buffer. It ensures that the student selects
the STEER action with the same probability. The learning
difficulty is reduced when focusing on the learning of the
optimal action probabilities instead of fitting the complete
policy distribution. The increase of Shannon entropy, on
the other hand, prevents the student policy distribution from
exhibiting another peak outside of the optimal action. It
disperses the excess probability mass across sub-optimal
actions, thereby ensuring the maximum probability is allo-
cated to the action endorsed by the teacher network.

6. Evaluation
In this section, a comprehensive evaluation and analysis of
the proposed STEER method is presented to validate several
key aspects. These aspects encompass: (1) the method’s
capacity to identify SE solutions, (2) its adaptability to di-
verse environmental configurations, (3) the computational

overhead of the algorithm, (4) the effectiveness of the de-
centralized execution scheme, (5) the functionality of each
module and (6) the significance of agent priority allocation.

6.1. Experimental Settings

Evaluation Environments. We assess STEER’s ability to
converge to SE solutions in both single-step and multi-step
matrix game scenarios, as shown in Figure 4. Moreover, we
investigate the performance of STEER in complex scenarios
encompassing Multi-Agent MuJoCo (MA-MuJoCo) (Peng
et al., 2021), Google Research Football (GRF) (Kurach et al.,
2020) and Highway On-Ramp Merging (HORM) (Zhang
et al., 2023b). As depicted in Table 1, these benchmarks
encompass nearly all types of task scenarios, including fully
cooperative and mixed tasks, continuous and discrete con-
trol tasks, as well as tasks involving shared state and indi-
vidual observations. Appendix B contains more thorough
descriptions of these environments.

Baseline Algorithms. We compare STEER to various
advanced and comparable policy-based MARL methods,
including MAPPO (Yu et al., 2021), which is one of the
most famous baselines in MARL, HAPPO (Kuba et al.,
2022), which is specifically designed for heterogeneous pol-
icy learning, MAT (Wen et al., 2022), which is built upon
Transformer architecture, and STEP (Zhang et al., 2023b),
which is based on SG.

6.2. Finding SE Solutions

Main Results. The results in matrix game scenarios are
able to offer an intuitive demonstration of whether algo-
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` STEER MATSTEP MAPPOHAPPO

Figure 5. The average return of the two agents. A single standard deviation over trials is shaded.

Table 2. The percentage that converges to the optimal strategy in
matrix game scenarios over 100 trials. STEER demonstrates the
most stable convergence outcomes.

Penalty

k=0 k=-100 k=-1000 Mixing Coordination Cooperation

STEER 100% 100% 72% 100% 95% 96%
STEP 100% 93% 44% 100% 94% 90%
MAT 100% 0% 0% 0% 46% 5%

HAPPO 100% 0% 0% 28% 6% 19%
MAPPO 95% 0% 0% 63% 14% 65%

rithms converge to their corresponding equilibrium strate-
gies. As shown in Figure 5, STEER outperforms other
methods in all scenarios. Table 2 also demonstrates that
STEER consistently converges to SE solutions with the
highest probability across all scenes. For instance, in the
Penalty scenario, any deviation from the optimal strategy
by an agent results in severe punishment for the other agent
who has made the correct decision. As the penalty term
k increases, it becomes increasingly difficult for agents to
learn the optimal strategy. Therefore, only action a2 remains
uninfluenced by penalty terms, and all methods, converge
to the sub-optimal NE (a12, a

2
2) with a 100% probability

when k < 0 except for STEP and STEER. In addition, these
methods fail to converge to stable results in other scenarios.

Method Comparison. While STEP is designed to learn SE
strategies and demonstrates excellent performance in matrix
game scenarios, STEER exhibits superiority over it in terms
of network expressive capacity. For example, STEER main-
tains its effectiveness even when subjected to extreme values
such as k = −1000 in the Penalty scenario. This distinction
becomes particularly evident in the results showed in the
subsequent analysis of complex scenarios. Moreover, de-
spite MAT employing a similar sequential decision structure,
it fails to generate optimal outcomes. This can be attributed
to MAT solely relying on agents’ local observation data

instead of considering the sub-game state when approximat-
ing the value function. Consequently, this approach lead to
erroneous guidance for actor updates, ultimately resulting in
poor outcomes. In addition, all methods except STEER and
STEP are ineffectual when agents possess private rewards
and must coordinate their actions.

6.3. Performance in Complex Scenarios

Figure 6 illustrates the experimental results of all methods
across 3 tasks and 9 scenarios. It can be seen that STEER
demonstrates advantages over existing state-of-the-art meth-
ods across all scenarios, achieving higher sample efficiency
(faster convergence speed) and improved final performance.
These results highlight the superiority and adaptability of
STEER in confronting complex scenarios.

Adaptability to Diverse Environmental Configurations.
The three testing tasks are characterized by distinct state
and reward configurations. From the perspective of the
state, most methods are typically designed for specific en-
vironmental setups. For instance, MAT utilizes a stan-
dard encoder-decoder structure, yielding promising out-
comes in independent observable environments (GRF &
MA-Mujoco). Nevertheless, it faces challenges in shared-
state environments (HORM), where the encoder’s outputs
may exhibit similarities and be employed as query values in
the decoder. This has a significant negative impact on the
self-attention mechanism. Conversely, STEP and HAPPO
are better suited for global state sharing environments. In
contrast, STEER effectively handles all these types of tasks.

From the perspective of the reward, STEER exhibits optimal
performance in both fully cooperative tasks and mixed tasks.
In HORM, for example, one must first observe whether
the vehicles on the main road are slowing down before
deciding whether to merge into the lane. Each agent wishes
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` STEER STEPMAT MAPPOHAPPO

Figure 6. The evaluation performance on GRF (top), MA-MuJoCo (middle) and HORM (bottom). Error bars are a 95% confidence
interval across 5 runs.

Figure 7. The wall clock time required for 10 million training steps.

to pass through the intersection as quickly as possible while
avoiding collisions, and they receive individual rewards
from the environment. In such mixed tasks, the introduction
of SDM is imperative, as agents must possess the ability to
perceive other agents in order to make optimal decisions.
Therefore, STEER achieves the best performance.

Computational Overhead. As a heterogeneous strategy
learning approach, SG-based methods require sequentially
updating the policy of each agent, often resulting in ex-
tended training time, which becomes unacceptable as the
number of agents increases. However, the Transformer
architecture in STEER enables parallel training, thereby
achieving superior performance within significantly reduced

Figure 8. Performance comparison for different model architec-
tures to explore the functionality of each component.

training time. As illustrated in Figure 7, while the actual
training time is influenced by various factors, it is evident
that STEER exhibits a significant advantage, particularly
when the number of agents is larger.

Performance of Decentralized Execution. We verify the
effectiveness of our decentralized execution scheme on GRF
experiments and conduct 5 runs in each of three scenarios.
Table 3 clearly demonstrates that the student networks have
achieved a performance level that closely approximates that
of STEER. Interestingly, in some cases, the performance
of the student networks can even marginally surpass that
of STEER, which is acceptable considering the inconsis-
tency between their policy distributions and the uncertainty
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Table 3. Performance of decentralized execution in GRF. The values in parentheses correspond to a single standard deviation over trials.
academy_pass_and_shoot_with_keeper academy_3_vs_1_with_keeper academy_counterattack_easy

STEER 0.9339(0.0358) 0.9636(0.0375) 0.9176(0.0815)
Decentralized Student Network 0.9426(0.0143) 0.9417(0.0203) 0.9025(0.0190)

Figure 9. The evaluation performance of STEER in GRF with three
priority order.

of neural networks. In conclusion, decentralized execution
realized via knowledge distillation ensures maintained algo-
rithmic performance.

6.4. Ablation Studies

In order to further investigate the functionality of each mod-
ule, we perform ablation experiments. This involves replac-
ing the ITB with a simple MLP (replace_ITB_with_MLP),
using a Recurrent Neural Network to replace the OTB
(replace_OTB_with_GRU), and fitting the value and pol-
icy functions directly with the output from either the ITB
(STEER_ITB) or the OTB (STEER_OTB).

Functionality of Each Module. The ITB and OTB mod-
ules are respectively charged with processing state infor-
mation and leaders’ decision information, thereby jointly
comprising an abstract representation of the current sub-
game state. The experimental results, as shown in Figure 8,
indicate that each module plays an indispensable role in
facilitating the performance of the algorithm. In matrix
game scenarios, the state configuration is simple, but it de-
mands high perception of decision information. As a result,
replace_ITB_with_MLP seems to result in marginal per-
formance differences and replace_OTB_with_GRU yields
poor performance. In contrast, when dealing with MA-
MuJoCo, where agents have partial observability and
require heightened perception of state information, re-
place_ITB_with_MLP leads to a significant decline in per-
formance compared to replace_OTB_with_GRU. Moreover,
relying solely on ITB (STEER_ITB) for decision-making in
matrix game scenarios is equivalent to neglecting the SG
structure, while exclusively relying on OTB (STEER_OTB)
for decision-making in complex scenarios implies agents
lacking adequate perception of the current environment.
Both approaches lead to poor performance.

Priority Allocation. We assess the performance of STEER
in scenarios using three distinct priority arrangements. The
results shown in Figure 9 indicate that the predefined or-
dering has minimal impact on the experimental outcomes.
However, it is conceivable that the optimal priority arrange-
ment may vary across different time steps. Consequently,
we assert that adaptive priority determination in the decision-
making process will be a promising direction.

7. Conclusion
Our core insight is that the hierarchical decision-making
structure of SG aligns perfectly with the modeling approach
of autoregressive sequence models. Building upon this, we
introduce the Stackelberg Decision Transformer method to
solve the SE strategies for coordination tasks in MARL.
Compared to previous work, our approach offers a more
systematic and scholarly foundation for investigating the
intricacies of MARL, as well as a more comprehensive
training paradigm. Additionally, our method is more flexible
in handling different environmental configurations, making
it more applicable and scalable across different scenarios. To
the best of our knowledge, we are the first to propose using
an autoregressive sequence model to solve SE. We firmly
believe that our method has broad potential for applications
in the MARL community.
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A. Implementation Details
A.1. Pseudo Code of STEER

Algorithm 1 Stackelberg Decision Transformer
Hyperparameters: Learning rate α, batch size B, number of episodes K, length of episode L, number of agents n.
Initialize: Inner and outer Transformer blocks parameters ω0, actor head parameters θ0, critic head parameters ϕ0, replay
buffer B.

1: for episode k = 1 to K do
2: for time step t = 1 to T do
3: Rank agents by priority ID
4: Collect a sequence of environmental state information and generate representation sequence [s0t , x

1
t , ..., x

n
t ] by

feeding it to the inner transformer block (ITB).
5: for agent i = 1 to N do
6: Input s0t , a

1
t , ..., a

i−1
t to the outer transformer block (OTB)

7: Add the outputs of ITB and OTB to generate sub-game state sit.
8: Sample action ait according to the actor head ait ∼ πi

t(s
i
t; θt, ωt).

9: Calculate state value vit = V i
t (s

i
t;ϕt, ωt).

10: end for
11: Execution the joint action at = {a1t , a2t , . . . , ant }, obtain reward rt and state st.
12: end for
13: Push transitions {(st,at, rt, st+1)}t∈T into B.
14: Sample a random minibatch of M transitions from B.
15: Compute advantage estimate Â via GAE.
16: Parallel generation policy πθ,ω.
17: Update actor by maximizing objective function in Eq 15.
18: Update critic by minimizing the loss in Eq 16.
19: end for

B. Environment details
The adaptability to a wide range of environmental configurations constitutes a significant contribution of our approach.
The meticulously constructed ITB structure employed in our methodology facilitates the handling of a diverse set of state
information, encompassing tasks with partially observable or globally shared states. Furthermore, the utilization of a
policy-based approach empowers us to effectively address both continuous and discrete control tasks. Simultaneously, the
employment of the SG-based modeling form enables the processing of both complete and incomplete collaboration tasks.

B.1. Google Research Football

Google Research Football (GRF) aims to establish a benchmark for artificial intelligence (AI) in football. The objective is to
develop a trustworthy and standardized evaluation framework for football game. This environment, which is based on a
football game and a physics engine, requires agents to act swiftly and implement cutting-edge cooperative techniques. In a
multi-agent environment, each agent controls one team member who learns fundamental skills and team coordination in
order to overcome the opposition’s defense and score goals. In our experiments, each agent independently observes the
global environment and shares a global reward.

B.2. Multi-Agent MuJoCo

Multi-Agent MuJoCo (MA-MuJoCo) is a software platform designed for simulating and controlling multiple interacting
physical agents. This platform allows multiple agents to control separate joints to operate a single robot. As an advanced
version of MuJoCo, it is capable of examining the behavior and interactions of multiple agents in a complex environment.
Furthermore, it can be used to test and create multi-agent control algorithms that can handle the increased scale and
complexity by simulating a variety of physical phenomena. In this study, we utilized Ant 8x1, HalfCheetah 6x1, and
Walker 6x1 scenarios to compare STEER with other baselines. The objective is to actuate each joint of the robot to move
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forward steadily. The state is composed of the locations, velocities, and accelerations of each joint, while the action is the
intended torque to be applied to each joint. Additionally, all agents receive shared rewards as a fully cooperative task. We
employed two commonly used environmental configurations: all agents sharing a global state and each agent possessing an
independent local observation and providing a centralized global state interface. Figure 6 illustrates the optimal performance
of all methods under both state configurations.

B.3. Highway On-Ramp Merging

Highway on-ramp merging (HORM) is a challenging task that involves merging on-ramps while accommodating both
manual and automated driving conditions. This is considered one of the most difficult tasks of automatic driving. As shown
in Figure, on-ramp cars must merge into the through lane without accidents. Ideally, vehicles on the main road should
adjust their speed to provide sufficient space for the vehicles on the entrance ramp to merge safely. Similarly, vehicles on
the entrance ramp should enter the main road quickly while adjusting their speed and ensuring safety. The vehicles can
perform optional actions such as left and right turns, constant-speed cruising, acceleration, and deceleration. Each vehicle
has the ability to monitor the horizontal and vertical coordinates and speed of all other vehicles. HORM is an environment
where each intelligent agent possesses a private reward and shares a global state. In this context, the performance of MAT is
unsatisfactory.

(a) Google Research Footbal (b) Multi-Agent MuJoCo (c) Highway On-Ramp Merging

Figure 10. Examples of the three experimental platforms.

C. Additional Experimental Results
C.1. Finding SE Solutions

Table 4. The average return of different methods in matrix games. The values in parentheses correspond to a single standard deviation
over 100 trials. STEER demonstrates superior performance to other methods.

Penalty

k=0 k=-100 k=-1000 Mixing Coordination Cooperation

STEER 10.0(0) 10.0(0) 8.0(3.39) 2.5(0) 26.0(2.42) 12.88(0.58)
STEP 10.0(0) 9.44(2.04) 5.52(3.97) 2.5(0) 25.9(2.37) 12.69(0.89)
MAT 10.0(0) 2.0(0) 2.0(0) -2.68(0.25) 21.32(4.94) 10.15(0.65)

HAPPO 10.0(0) 2.0(0) 2.0(0) -0.74(2.33) 17.62(2.94) 10.57(1.18)
MAPPO 9.90(0.43) 2.0(0) 2.0(0) 0.72(2.33) 19.17(4.05) 11.95(1.43)

C.2. Ablation Study

We show more ablation experiments in Figure 11. The primary function of ITB resides in its capacity for game state
abstraction, employing an encoder structure that enables each agent to selectively attend to the state information of other
agents, thereby facilitating more effective learning of state representations. In matrix game scenarios, agents receive a
consistent state, whereas in GRF, agents receive individual global state observations. We posit that MLP’s capabilities in
these scenarios are adequate for achieving game abstraction functionality. Consequently, replace_ITB_with_MLP appears to
yield marginal disparities in performance when compared to STEER. However, in MA-MuJoCo, where agents exhibit partial
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observability, replace_ITB_with_MLP leads to a notable decline in performance. Correspondingly, replacing or deleting the
OTB module can also cause performance degradation.

Figure 11. Performance comparison for different model architectures to explore the indispensability of each component.

C.3. Additional Experiments on Knowledge Distillation

As shown in Section 5, although our method is centralized, we provide a Knowledge Distillation solution for extending it to
decentralized execution systems. We verify the effectiveness of this method on matrix game experiments and conducted 100
tests for each scenario. As shown in Table 5, the student network replicates 100% of STEER’s performance in all matrix
game scenarios.

Table 5. Performance comparison between STEER and student networks in Matrix games. The values in parentheses correspond to a
single standard deviation over trials.

Penalty

k=0 k=-100 k=-1000 Mixing Coordination Cooperation

STEER 10.0(0.00) 10.0(0.00) 7.84(3.55) 2.5(0.00) 12.97(0.30) 25.65(3.23)
Decentralized Sudent Network 10.0(0.00) 10.0(0.00) 7.84(3.55) 2.5(0.00) 12.97(0.30) 25.65(3.23)

C.4. Performance in Different Environment Configurations

Figure 12. Comparing the final performance with different environment configurations.

In MA-MuJoCo, we investigate two environment configurations: one in which agents receive shared global state (state), and
the other in which agents receive both independent local observations and global state (obs). The evaluation results of all
methods across both configurations are presented in Figure 12. All baselines result in significant performance degradation
after departing from their original settings. MAPPO and MAT, for instance, are designed for environments that entail local
observation, with MAPPO’s performance being severely impacted when all agents receive shared global states due to its
parameter sharing. MAT employs an encoder to process state information and outputs it as the decoder’s query value. The
operation of the attention mechanism is also impacted by the inputs of the shared state. In contrast, STEER outperforms all
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other methods in both configurations of the environment by processing environmental information flexibly based on the
specific setting and maximizing the efficacy of state representation learning - a capability absent in other methods.

D. Details of Toy Example
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Figure 13. Multi-step matrix game: Coordination. Only actions with non-zero rewards are permissible before reaching the terminal state.

Incorporating social norms or game structures into MARL is an effective approach to enhance collective intelligence. Under
the Stackelberg decision mechanism, we assume that agent a1 is the leader and agent a2 is the follower. At the initial state,
there are two optimal strategies, where the follower’s unique optimal response is determined as a21 or a23 when the leader
chooses a1 or a3, respectively. Similarly, at the final state, when a1 commits to action a11, the optimal response for a2 is a23;
when a1 commits to action a12, the optimal response for a2 is a22; when a1 commits to action a13, the optimal response for a2

is a21. In these three cases, a1 receives a reward of 5, 10, or 20, respectively, leading to the optimal strategy for a1 to be
action a13. Therefore, the Stackelberg equilibrium solution is (a13, a

2
1).

E. Additional discussion
E.1. Sequential Decision Making in Communication Mechanisms

Communication is an essential method to facilitate coordination. In MARL, research efforts pertaining to communication
mechanisms have also explored similar sequence-based decision-making methods. SeqComm (Ding et al., 2022) and IS-LFF
(Liu et al., 2021b) specifically concentrate on devising communication mechanism within the Leader-Follower framework.
In contrast, our approach centers on acquiring SE strategies by incorporating the Stackelberg Decision Mechanism and
autoregressive sequence models, resulting in the development of a centralized STEER method. Therefore, we conducted
further investigations into the amalgamation of SG or Transformer with MARL.

E.2. Asynchronous Action Coordination and Simultaneous Decision-Making

In this paper, we employ an asynchronous action coordination approach based on the Stackelberg Game framework.
We believe that asynchronous action coordination is an improvement over methods that presume agents make decisions
simultaneously. The mainstream approach for modeling multi-agent decision-making tasks is to use Markov Game. However,
this assumption of agents making decisions simultaneously appears counterintuitive. It results in agents relying only on
trained tacit actions and not modifying their strategies based on information from their teammates or opponents. This
approach resembles a prisoner’s dilemma. By comparison, we propose using Stackelberg Game for modeling. Unless it is
explicitly required that intelligent agents in MAS cannot obtain each other’s actions (such as prisoner’s dilemma settings), in
almost all scenarios that allow centralized training, we can learn asynchronous action coordination strategies. Actually, two
distinct categories of decision-making methods correspond to normal-form game and extensive-form game in game theory.
In the HORM scenario, for example, agents can develop better response strategies by perceiving other agents’ actions
besides observing the current state.

In our proposed method, the follower is engaged in a conditional optimization problem wherein it acquires its own response
strategy by leveraging the present state and decision information from leaders, with the aim of maximizing individual
gains (Equation 2). This mechanism is effectively implemented through an autoregressive OTB framework. Following
the fulfillment of the specified conditions, the optimization problem undergoes training via RL to acquire an approximate
solution. That’s to say, we successfully accomplish a integration of the optimization problem, the autoregressive sequence
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model, as well as the RL method.

E.3. Stackelberg Decision Demonstration

Follower: Deceleration
Observation: Leader Acceleration

Decision: I need to slow down and 
give way to avoid collisions.

Leader: acceleration
Decision: The follower will performs 
the optimal response, I just need to 
accelerate through.

Leader

Follower

LeaderFollower

Leader

Follower

forward movements

shoot

Figure 14. Stackelberg hierarchical coordination behavior demonstration.

In Figure 1, we present the decision form of the Stackelberg decision mechanism, which employs a hierarchical decision
structure resembling a depth-first search tree. This structure simplifies the search space of child nodes considerably. In
real-world scenarios, this form of decision-making is prevalent and intuitive. Specifically, in HORM, before deciding to
merge into a lane, one must first assess whether the vehicles on the main road are decelerating. For a clearer presentation, as
shown in Figure 14, we graphically represent the coordinated behavior of agents through the utilization of the Stackelberg
decision mechanism in our experimental scenarios.

F. Experiments Details
F.1. Computing Infrastructure and Overhead

Our experiments are carried out on Nvidia GeForce RTX 3090 graphicscards and Intel(R) Xeon(R) Platinum 8280 CPU.
Although we employ ITB and OTB, we limit the number of blocks per Transformer structure to one or two. Furthermore,
the attention weight is shared by all agents, resulting in a not significant overhead. When compared to prior researches, the
models of STEER and MAT exhibit nearly identical sizes. Moreover, leveraging the benefits of Transformer, we are able to
train all agents’ strategies in parallel, leading to significantly faster training for STEER relative to STEP and HPPO. Notably,
the training time for STEP and HPPO becomes prohibitively long when the number of agents becomes excessive.

F.2. Hyper-parameter Settings for Experiments

The implementations of baseline methods adhere to their official repositories, wherein default parameters are maintained
during training. The detailed hyperparameter settings for STEER can be found in the Table 6- 9.

Table 6. Hyperparameter settings for Google Reasearch Football.

hyperparameter value hyperparameter value hyperparameter value hyperparameter value

actor lr 7e-4 num blocks 1 batch size 4000 gamma 0.99
critic lr 5e-4 num head 1 rollout threads 10 gain 0.01
ppo epochs 15 stacked frames 1 episode length 400 training threads 16
ppo clip 0.2 hidden layer dim 64 num mini-batch 1 max grad norm 0.5
entropy coef 0.01 optim eps 1e-5 training steps 5e6 optimizer Adam
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Table 7. Hyperparameter settings for Multi-Agent MuJoCo.

hyperparameter value hyperparameter value hyperparameter value hyperparameter value

actor lr 5e-5 num blocks 2 batch size 4000 gamma 0.99
critic lr 5e-5 num head 1 rollout threads 40 gain 0.01
ppo epochs 10 stacked frames 1 episode length 100 training threads 16
ppo clip 0.05 hidden layer dim 64 num mini-batch 40 max grad norm 0.5
entropy coef 1e-3 optim eps 1e-5 training steps 1e7 optimizer Adam

Table 8. Hyperparameter settings for Highway On-Ramp Merging.

hyperparameter value hyperparameter value hyperparameter value hyperparameter value

actor lr 5e-4 num blocks 1 batch size 4000 gamma 0.99
critic lr 5e-4 num head 1 rollout threads 20 gain 0.01
ppo epochs 5 stacked frames 1 episode length 200 training threads 16
ppo clip 0.05 hidden layer dim 64 num mini-batch 1 max grad norm 0.5
entropy coef 0.01 optim eps 1e-5 training steps 5e5 optimizer Adam

Table 9. Hyperparameter settings for single-step/multi-step matrix games.
hyperparameter value hyperparameter value hyperparameter value hyperparameter value

actor lr 5e-4 num blocks 1 batch size 100/1000 gamma 0.99
critic lr 5e-3 num head 1 rollout threads 4/10 gain 0.01
ppo epochs 5 stacked frames 1 episode length 25/100 training threads 8
ppo clip 0.05 hidden layer dim 64 num mini-batch 1 max grad norm 0.5
entropy coef 0.05 optim eps 1e-5 training steps 1e4/2e5 optimizer Adam
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