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Abstract
Binarized image super-resolution (SR) has at-
tracted much research attention due to its po-
tential to drastically reduce parameters and op-
erations. However, most binary SR works bina-
rize network weights directly, which hinders high-
frequency information extraction. Furthermore,
as a pixel-wise reconstruction task, binarization
often results in heavy representation content dis-
tortion. To address these issues, we propose a
flexible residual binarization (FRB) method for
image SR. We first propose a second-order resid-
ual binarization (SRB), to counter the informa-
tion loss caused by binarization. In addition to
the primary weight binarization, we also bina-
rize the reconstruction error, which is added as a
residual term in the prediction. Furthermore, to
narrow the representation content gap between
the binarized and full-precision networks, we
propose Distillation-guided Binarization Train-
ing (DBT). We uniformly align the contents of
different bit widths by constructing a normalized
attention form. Finally, we generalize our method
by applying our FRB to binarize convolution and
Transformer-based SR networks, resulting in two
binary baselines: FRBC and FRBT. We conduct
extensive experiments and comparisons with re-
cent leading binarization methods. Our proposed
baselines, FRBC and FRBT, achieve superior per-
formance both quantitatively and visually.

1. Introduction
Given a full-precision low-resolution (LR) input, single im-
age super-resolution (SR) aims to obtain its high-resolution
(HR) counterpart by reconstructing more details. Essentially,
image SR is ill-posed, as there exist multiple HR candi-
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Figure 1. Visual samples of image SR (×4) by lightweight image
SR methods. SRResNet (Ledig et al., 2017) is a full-precision (i.e.,
32-bit) model and is used as a backbone for binarization (i.e., 1-bit)
by BNN (Courbariaux et al., 2016), ReActNet (Liu et al., 2020),
and our FRBC. We also binarize SwinIR S (Liang et al., 2021)
and denote it as FRBT. We provide the parameter (i.e., Params
(K)) and operation numbers (i.e., Ops (G)). We set the input size as
3×320×180 for Ops calculation. Our FRBC and FRBT achieve
better visual reconstruction than other binary ones. Our results are
more faithful to that of the full-precision SRResNet.

dates for the same LR input. To address this problem, deep
convolutional neural networks (CNNs) and Transformers
have been investigated for high-quality reconstrutions (Dong
et al., 2014; Kim et al., 2016; Lim et al., 2017; Zhang & Pa-
tel, 2018; Zhang et al., 2018b; Liang et al., 2021). However,
most of them require extensive computational resources,
which are usually not friendly for resource-limited devices.
In those cases, neural network compression techniques are
eagerly needed to significantly reduce model complexity.

As one of the most promising network compression tech-
niques, binary neural networks (BNNs), where both the
network weights and activations are binarized (i.e., 1-bit bi-
narization), are usually chosen for model deployment (Mar-
tinez et al., 2020; Rastegari et al., 2016). Theoretically, BNN
enjoys 32× parameter compression ratio and up to 58×
computation operation reduction (Rastegari et al., 2016).
Such practical characteristics make BNN highly efficient
for embedded devices (Ding et al., 2019) and friendly for
memristor-based hardwares (Liu et al., 2020).

Despite the above-mentioned advantages of BNN, the se-
vere performance drop hinders it from being widely de-
ployed (Liu et al., 2020). Such a problem is particularly
critical in binarized image SR, where dense pixel-wise pre-
dictions are required and the feature size is usually very
large. The performance drop mainly comes from two parts:
weights and activations binarization. (1) The weights are bi-
narized from full-precision (i.e., 32-bit) to 1-bit, being hard
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to extract high-frequency information. Even though the ac-
tivations are full-precision, the SR output would still suffer
from heavy degradation (Ma et al., 2019). (2) Binarizing ac-
tivations (i.e., features) would directly lose high-frequency
information, which is the key component that image SR net-
works try to reconstruct. Moreover, after the computation
operations between binarized weights and activations, the
output would further lose pixel-wise detailed information
with high uncertainty, resulting in worse performance.

To address those issues, we propose a flexible residual bi-
narization (FRB) technique for binarized image SR. (1) To
tackle the first issue, we try to reduce the weight error with
our second-order residual binarization (SRB). Specifically,
we not only binarize the weights as a common practice,
we further binarize weight residuals between 1-bit and full-
precision weights. Such an SRB practice helps preserve net-
work weight representation capability more effectively than
direct binarization only. (2) Furthermore, to compensate the
pixel-wise information loss, we propose Distillation-guided
Binarization Training (DBT). Specifically, we try to transfer
full-precision knowledge to narrow the representation con-
tent gap between the binarized and full-precision networks.
A normalized attention form is built to uniformly align the
contents of different bit-widths.

We further generalize our FRB to different types of networks
and investigate its behaviors. Consequently, we apply our
FRB to binarize CNN and Transformer based SR networks
respectively, resulting in two binary baselines: FRBC and
FRBT. Surprisingly, as shown in Fig. 1, our proposed meth-
ods achieve promising results with comparable or much
smaller computational resources.

Our main contributions are summarized as follows:

• We propose a simple yet effective method Flexible
Residual Binarization (FRB) to accurately binarize
full-precision image SR networks during the training.

• We propose an effective second-order residual bina-
rization (SRB), which binarizes the image SR network
with its weight residuals. SRB enhances the repre-
sentation capacity of the binarized image SR network
significantly for pixel-wise reconstruction.

• We propose Distillation-guided Binarization Training
(DBT), which transfers full-precision knowledge to
the binarized model. Specifically, we build a normal-
ized attention form to uniformly align the contents of
different bit-widths (e.g., 32-bit and 1-bit).

• We employ our FRB to binarize CNN and Transformer
based SR networks respectively, resulting in two bi-
narized baselines: FRBC and FRBT. Our methods
achieve superior performance over SOTA binarized SR
methods quantitatively and visually.

2. Related Work
2.1. Lightweight Image SR
Lightweight image SR models have recently drawn more
and more attention because of their resource-friendly prop-
erties. Usually, researchers pursue lightweight networks
by architecture design, neural architecture search (NAS),
knowledge distillation (KD), and network pruning. Ahn et
al. constructed a cascading method upon a residual network
(CARN) (Ahn et al., 2018). Hui et al. proposed an in-
formation multi-distillation network (IMDN) (Hui et al.,
2019). Meantime, model compression methods have been
introduced for lightweight SR, too. Chu et al. intorduced
neural architecture search for image SR in FALSR (Chu
et al., 2019). Knowledge distillation was employed to train
lighter SR student networks (He et al., 2020; Lee et al.,
2020). Using pretrained SR models, Zhang et al. incor-
porated channel pruning into image SR through aligned
structured sparsity learning (ASSL) (Zhang et al., 2021b)
or structure-regularized pruning (SRP) (Zhang et al., 2022).
Such lightweight network designs and compression tech-
niques have achieved promising performance. They either
neglect the fine-grained parameter redundancy or consume
a considerable number of additional computations.

2.2. Model Quantization
There are two main types of quantization methods: Post-
Training Quantization (PTQ) and Quantization-Aware Train-
ing (QAT). PTQ has become increasingly popular due to its
ability to quantize models without the need for retraining,
resulting in numerous contributions in the field (Choukroun
et al., 2019; Jhunjhunwala et al., 2021; Hubara et al., 2021;
Li et al., 2021; Ding et al., 2022). However, this approach
only relies on limited expert knowledge and minimal GPU
resources to calibrate the model, which significantly restricts
its potential for achieving extreme low-bit quantization. For-
tunately, QAT provides us with the opportunity to utilize
the entire training pipeline to achieve aggressive low-bit
quantization, including 1-bit binarization, and demonstrates
promising performance (Martinez et al., 2020; Qin et al.,
2020; Liu et al., 2020; 2018; Zhou et al., 2016; Courbariaux
et al., 2016; Rastegari et al., 2016). Qin et al. proposed
low-bit quantization for image SR (Qin et al., 2023). This
approach allows for more comprehensive model optimiza-
tion, enabling the model to be trained to perform optimally
in the quantized domain. QAT is usually seen as a powerful
method for achieving extremely low-bit quantization.

Recent studies, including (Wang et al., 2020; Simons & Lee,
2019; Wang et al., 2022; Zhang et al., 2021a; Qin et al.,
2022), have demonstrated the effectiveness of 1-bit quanti-
zation, i.e., binarization, as a highly efficient form of net-
work quantization. This binarization technique compresses
networks to achieve extreme computational and storage ef-
ficiency by using 1-bit binarized parameters. Compared
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Figure 2. Overview of our Flexible Residual Binarization (FRB) for image SR networks. The upper (blue) is the Second-order Residual
Binarization, where the SR network weights are binarized in a residual manner. The lower (orange) is the Distillation-guided Binarization
Training that uniformly aligns the contents of different bit widths by constructing a normalized attention form.

to floating-point models, these quantized models signifi-
cantly reduce computation resources and save time, and are
hardware-friendly for edge devices.

2.3. Binary Neural Networks for Image SR
Existing SR networks on resource-constrained devices are
limited in usage by their high memory requirements and
computational overhead. One major challenge is the heavy
floating-point storage and operations. Thus room for com-
pression still exists from a bit-width perspective, which
gives a strong motivation for the study of 1-bit binarized SR
models (Xin et al., 2020; Jiang et al., 2021; Xia et al., 2023).
Xin et al. designed a bit-accumulation mechanism to bina-
rize full-precision SR networks (Xin et al., 2020). Xia et
al. proposed a basic binary convolution unit for binarized
image restoration (Xia et al., 2023). However, they mainly
work on binarization for CNNs and lack the investigation
about Transformer based binarized SR models.

3. Flexible Residual Binarization for Binarized
Image Super-Resolution

In this section, we first give an overview of binarization for
single image super-resolution (SR) and raise the existing
challenges of binarized (i.e., 1-bit) image SR networks. We
then introduce our proposed flexible residual binarization
(FRB) for image SR. Our FRB consists of two well-designed
components: Second-order Residual Binarization (SRB)
and Distillation-guided Binarization Training (DBT), which
are designed for recovering the representation capacity and

aligning the representation context, respectively. Afterward,
we show how to utilize FRB for image SR and optimize the
binary image SR network (Fig. 2). We finally give more
details about implementation.

3.1. Preliminaries: Binarization in SR

Here, we give a brief background to the important key com-
ponents in a general binarized image SR pipeline. Given
a full-precision (i.e., 32-bit) low-resolution (LR) image as
input ILR, the binary (i.e., 1-bit) super-resolution network
aims to obtain its full-precision high-resolution (HR) coun-
terpart ISR. We formulate such a binarized image SR pro-
cess with the neural network as follows

ISR = FBSR(ILR;Θ), (1)
where FBSR(·) denotes the binary super-resolution (BSR)
network with trainable parameters Θ. Specifically, we bi-
narize the image SR network FBSR(·) by the sign function,
which is a standard choice for the task. The forward opera-
tion is the standard sign function,

sign(x) =

{
1 if x ≥ 0

−1 otherwise
. (2)

Since this standard sign function is not continuous or differ-
entiable, its backward operation can hardly achieved directly.
Instead, the backward is replaced by the approximation,

∂ sign

∂x
=

{
1 if |x| ≤ 1

0 otherwise
. (3)

A floating-point precision weight matrix w can thus be
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Figure 3. An computation example of our Second-order Residual
Binarization (SRB). Our residual binarization allows the binarized
weight representation to retain accurate information, further restor-
ing the functionality of its full-precision counterpart compared
to vanilla binarization. And the activation directly uses the sign
function to binarize to avoid the extra burden during inference.

binarized with the sign function as,
Bw = α sign(w). (4)

A scaling factor α is introduced to retain the magnitude of
real-value weights. It is computed as

α =
1

n
w⊤sign(w) =

1

n
∥w∥1 . (5)

After binarizing the SR networks, the storage size and com-
putation can be significantly reduced due to the extremely
reduced bit-width and highly efficient bitwise XNOR and
bitcount operations (Rastegari et al., 2016). We then propose
two techniques to improve binarized networks.

3.2. Second-order Residual Binarization for Weight
Error Reduction

While binarization promises reduced storage and faster in-
ference, it substantially reduces the capacity of the original
weights. It causes serious challenges for binarized image
SR networks. This can be captured in the error caused by
binarizing the continuous weights in Eq. (4) as,

ϵ = w −Bw. (6)
The error ϵ represents the residual information that is lost
in the binarization operation. Intuitively, we want to reduce
this error. While this could be done by increasing the num-
ber of bits in the discrete representation, it does not allow
for the use of efficient binary network operations.

In this work, we propose a different approach to reducing
binarization errors. We perform a second-order binarization,
in order to retrieve information lost in the error Eq. (6). This
is performed by binarizing the error Eq. (6) and using it as a
residual correction term to approximate continuous weights.
Our binarization strategy is thus expressed as,

Bw1 = α1 sign(w) , α1 =
1

n
∥w∥1 , (7)

Bw2 = α2 sign(w −Bw1) , α2 =
1

n
∥w −Bw1∥1 .

(8)
We refer to Bw1 and Bw2 as the first and second order
binarization, respectively. Note that the scaling factors are
computed using the same formula Eq. (5).

In Eq. (7), the gradient estimation in the backward propa-
gation for the sign function approximately follows Eq. (3).
And for activation, the binarization operation follows the
sign binarizer in Liu et al. (2020). Taking the binarized
convolution unit as an example, the forward computation
process of our second-order residual binarization (SRB) is
expressed as,

o = sign(a)⊗Bw1 + sign(a)⊗Bw2, (9)
where the ⊗ is the bitwise convolution consisting of XNOR
and bitcount instructions (Arm, 2020; AMD, 2022). We
also give an example of our technique in Fig. 3.

Second-order residual binarization (SRB) preserves the rep-
resentation capability of weights better than direct binariza-
tion, while still being able to use bitwise instructions for
efficient computation. Moreover, residuals enhance the rep-
resentation capacity of binarized weights by making them
closer to the original values and more diverse in the output
space. Such a property can significantly boost the perfor-
mance of binarized image SR networks.

3.3. Distillation-guided Binarization Training

In addition to the decrease in network representation ca-
pacity, the high discretization of binarization also leads to
severe content distortion of representations.

On the other hand, since most image SR models are com-
posed block-by-block (Liang et al., 2021; Lim et al., 2017),
for image SR networks, the n-block FBSR(·) in Eq. (1) can
then be reformulated as,

ISR = FBSR(ILR;Θ) =

n∏
i=1

BlkBSRi
(ILR;Θ). (10)

Here, BlkBSRi
denotes the i-th inner block of the SR net-

work composed of several binarized computation units, in-
cluding binarized convolution and linear units. Correspond-
ingly, full-precision models and blocks is denoted as FSR(·)
and BlkSRi . Lastly,

∏
denotes the composition of blocks.

Based on the above formulation and illustrations, the block-
level (k-th block) representation distortion caused by bina-
rization can be expressed as,

Dk =

k∏
i=1

BlkSRi
(ILR;Θ)−

k∏
i=1

BlkBSRi
(ILR;Θ). (11)

To make the binarized SR model perform close to the full-
precision level, intuitively, we should reduce the distortion
Di of each block in the model.

Therefore, we propose Distillation-guided Binarization
Training (DBT) to align the representation content gap be-
tween binarized and full-precision SR networks (as Fig. 4).
Inspired by (Martinez et al., 2020), we construct a nor-
malized attention form for block-level representations to
uniformly stabilize the contents in networks of different bit-
widths. For example, the i-th block’s formed representation
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Figure 4. The computation flow of the loss function considering
DBT. During training, the training data is simultaneously fed into
the binarized SR network and its well-trained full-precision coun-
terpart, and LDBT is calculated according to the block-level in-
termediate representation (such as Eq. (13)). In the end, LDBT

participates in the calculation of the total loss and jointly optimizes
the binarized SR model with other loss items (LPIX in Eq. (14)).

in a binarized IR network can be formulated as

RBSRk
=

(∏k
i=1 BlkBSRi

(ILR;Θ)
)2∥∥∥∥(∏k

i=1 BlkBSRi
(ILR;Θ)

)2
∥∥∥∥
ℓ2

, (12)

where ∥ · ∥ℓ2 denotes the L2 normalization.

Then we distill full-precision representations to binarized
ones. We target to consistently push binarized presentations
to approach full-precision level representations:

minLDBT =

n∑
i=1

D̂i =

n∑
i=1

∥RSRi −RBSRi∥ℓ2 . (13)

Note that the binarized SR model and the full-precision
replica are a pair of natural teachers and students because
they have exactly the same architecture and significant dif-
ferences in computation/storage. We highlight that this fact
makes our DBT a flexible and architecture-generic tech-
nique, and the blockwise distillation implementation can
even be fine-grained to a single computing layer level to
suit various architectures. Such a property allows us to
practice our compression techniques on various CNN- and
Transformer-based image SR networks.

3.4. FRB for Image SR
Binarized Architectures. For FRB, our proposed SRB
technique is allowed to be flexibly applied to various com-
putational units in the SR architecture, such as convolutional
and linear units. Therefore, for the image SR architecture
using FRB, we apply SRB binarization to all computing
units in the body part, which is the most computationally
intensive. We maintain the full precision of the head and tail
parts. In addition, the ReLU function is replaced by PReLU
following Martinez et al. (2020).

Algorithm 1 Flexible Residual Binarization for Image SR

1: Input: Training dataset D, full-precision model FSR,
training iterations N ;

2: Output: The binarized model FBSR.
3: Define the binarized FBSR(·) model by binarizing com-

putation units of FSR by the SRB as Eq. (7);
4: for iteration i in [0, N) do
5: Feed data D in full-precision model FSR;
6: Feed data D in binarized model FBSR;
7: Calculate the loss following Eq. (13) and Eq. (14);
8: Optimize the binarized model FBSR;
9: end for

10: Return FBSR

SR Model Training. For the given training dataset D ={
IiLR, I

i
HR

}K

i=1
with K low-resolution inputs and their cor-

responding HR counterparts, the image SR model with our
proposed FRD is optimized by minimizing both the conven-
tional pixel-wise LPIX loss and LDBT distillation loss:

LPIX =
1

n

k∑
i=1

∥∥IiHR − IiSR
∥∥
ℓ1
,

Ltotal = LPIX + βLDBT,

(14)

where the β is a hyperparameter and is set as 1e-4 by default
in our FRB, and LDBT is in Eq. (13). Figure 4 also presents
the computation flow of our training loss. The whole algo-
rithm of our proposed flexible residual binarization for the
image SR model can be presented in Algorithm 1.

4. Experiments
4.1. Settings
Data. Following the common practice (Lim et al., 2017;
Zhang et al., 2018a), we adopt DIV2K (Timofte et al., 2017)
as the training data. Five benchmark datasets are used for
testing: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), B100 (Martin et al., 2001), Urban100 (Huang et al.,
2015), and Manga109 (Matsui et al., 2017).

Evaluation. To evaluate the reconstruction performance, we
calculate PSNR and SSIM (Wang et al., 2004) values on the
Y channel of the YCbCr space. For model complexity evalu-
ation, we follow (Rastegari et al., 2016) and report the model
size and operations of BNN. Specifically, we calculate the
BNN parameters via Params 1 = Params f/32, where
Params f is the full-precision counterpart parameters. We
calculate BNN operations via Ops 1 = Ops f/64, where
Ops f denotes operations of the full-precision counterpart.
Based on Params 1 and Ops 1, we further provide theo-
retical compression ratios for parameters and operations.

Proposed Binary Baselines. We apply our FRB to binarize
CNN and Transformer based image SR baselines. Specif-
ically, following BAM (Xin et al., 2020) and BTM (Jiang
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Method Scale Bits Set5 Set14 B100 Urban100 Manga109
(W/A) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 -/- 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRResNet ×2 32/32 38.00 0.9605 33.59 0.9171 32.19 0.8997 32.11 0.9282 38.56 0.9770
BNN ×2 1/1 32.25 0.9118 29.25 0.8406 28.68 0.8104 25.96 0.8088 29.16 0.9127
DoReFa ×2 1/1 36.76 0.9550 32.44 0.9072 31.31 0.8883 29.26 0.8945 35.81 0.9682
Bi-Real ×2 1/1 32.32 0.9123 29.47 0.8424 28.74 0.8111 26.35 0.8161 29.64 0.9167
IRNet ×2 1/1 37.27 0.9579 32.92 0.9115 31.76 0.8941 30.63 0.9122 36.77 0.9724
BAM ×2 1/1 37.21 0.9560 32.74 0.9100 31.60 0.8910 30.20 0.9060 N/A N/A
BTM ×2 1/1 37.22 0.9575 32.93 0.9118 31.77 0.8945 30.79 0.9146 36.76 0.9724
ReActNet ×2 1/1 37.26 0.9579 32.97 0.9124 31.81 0.8954 30.85 0.9156 36.92 0.9728
BBCU-L ×2 1/1 37.58 0.9590 33.18 0.9143 31.91 0.8962 31.12 0.9179 37.50 0.9746
FRBC (ours) ×2 1/1 37.71 0.9595 33.22 0.9141 31.95 0.8968 31.15 0.9184 37.90 0.9755
FRBC+ (ours) ×2 1/1 37.85 0.9600 33.32 0.9154 32.02 0.8977 31.29 0.9198 38.23 0.9762
Bicubic ×4 -/- 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRResNet ×4 32/32 32.16 0.8951 28.60 0.7822 27.58 0.7364 26.11 0.7870 30.46 0.9089
BNN ×4 1/1 27.56 0.7896 25.51 0.6820 25.54 0.6466 22.68 0.6352 24.19 0.7670
DoReFa ×4 1/1 30.33 0.8601 27.40 0.7526 26.83 0.7104 24.29 0.7175 27.00 0.8470
Bi-Real ×4 1/1 27.75 0.7935 25.79 0.6879 25.59 0.6478 22.91 0.6450 24.57 0.7752
IRNet ×4 1/1 31.38 0.8835 28.08 0.7679 27.24 0.7227 25.21 0.7536 28.97 0.8863
BAM ×4 1/1 31.24 0.8780 27.97 0.7650 27.15 0.7190 24.95 0.7450 N/A N/A
BTM ×4 1/1 31.43 0.8850 28.16 0.7706 27.29 0.7256 25.34 0.7605 29.19 0.8912
ReActNet ×4 1/1 31.54 0.8859 28.19 0.7705 27.31 0.7252 25.35 0.7603 29.25 0.8912
BBCU-L ×4 1/1 31.79 0.8905 28.38 0.7762 27.41 0.7303 25.62 0.7696 29.69 0.8992
FRBC (ours) ×4 1/1 31.83 0.8906 28.39 0.7763 27.41 0.7303 25.61 0.7693 29.71 0.8989
FRBC+ (ours) ×4 1/1 31.99 0.8927 28.48 0.7781 27.47 0.7319 25.73 0.7722 29.96 0.9018

Table 1. Quantitative results in CNN based binarized image SR methods. SRResNet is used as the full-precision backbone. Bits (W/A)
denote the bits of weights and activations. The best and second best results are colored with red and cyan.

et al., 2021), we use SRResNet (Ledig et al., 2017) as CNN
SR backbone, binarize its body part, and name this version
as FRBC. We further generalize our FRB to a lightweight
Transformer SR backbone, SwinIR S (Liang et al., 2021).
We binarize SwinIR S and name this version as FRBT. In
addition, we use self-ensemble (Lim et al., 2017) to further
enhance them and denote as FRBC+ and FRBT+.

Training Strategy. In the training phase, same as pre-
vious work (Lim et al., 2017; Zhang et al., 2018a; Xin
et al., 2020; Liang et al., 2021), we conduct data augmen-
tation (random rotation by 90◦, 180◦, 270◦ and horizontal
flip). We train the model for 300K iterations. Each train-
ing batch extracts 32 image patches, whose size is 64×64.
We utilize Adam optimizer (Kingma & Ba, 2015) (β1=0.9,
β2=0.999, and ϵ=10−8) during training. The initial learning
rate 2×10−4, which is reduced by half at the 250K-th itera-
tion. PyTorch (Paszke et al., 2017) is employed to conduct
all experiments with NVIDIA RTX A6000 GPUs.

4.2. Main Comparisons
For CNN-based image SR networks, we choose SRRes-
Net (Ledig et al., 2017) as the full-precision backbone. We
then adopt different binary methods: BNN (Courbariaux
et al., 2016), DoReFa (Zhou et al., 2016), Bi-Real (Liu
et al., 2018), IRNet (Qin et al., 2020), BAM (Xin et al.,
2020), BTM (Jiang et al., 2021), ReActNet (Liu et al., 2020),
BBCU-L (Xia et al., 2023), and our FRBC.

Quantitative Results. In Tab. 1, we provide Params, Ops,

PSNR, and SSIM comparisons with others. When using the
same CNN-based full-precision backbone SRResNet, our
FRBC achieves comparable or better PSNR/SSIM scores
with similar number of Params and Ops as others.

Generalize to Transformer. For Transformer-based image
SR networks, we choose the lightweight SwinIR S (Liang
et al., 2021) as the backbone. Due to the more challenging
case in Transformer binarization and the performance ob-
servation in CNN-based methods, we only apply our FRB
to binarize SwinIR S and name this version as FRBT. We
further provide quantitative results of our binarized Trans-
former baseline, FRBT. In Tab. 2, we can see FRBT reduces
the Params and Ops obviously. But the performance gap
between FRBT and SwinIR S is larger than that between
FRBC and SRResNet. It means that it is more challenging to
binarize Transformer-based image SR networks. However,
we investigate firstly the binary behavior in the image SR
Transformer. We open the way to further improve binariza-
tion performance and narrow the performance gap between
the binary and full-precision models.

Compression Ratio. In Tab. 3, we provide the compression
ratio and speedup in terms of Params and Ops respectively.
We quantize full-precision CNN- and Transformer-based
networks, SRResNet and SwinIR S, which are stored with
data type single precision floating point. Their model size
(i.e., Params) and operations (i.e., Ops) can be reduced con-
siderably. Following the practice in BBCU-L (Xin et al.,
2020), we only binarize the weights and activations in the
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Method Scale Bits Set5 Set14 B100 Urban100 Manga109
(W/A) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR S ×2 32/32 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
FRBT (ours) ×2 1/1 37.69 0.9594 33.24 0.9148 31.96 0.8968 31.13 0.9184 37.90 0.9753
FRBT+ (ours) ×2 1/1 37.82 0.9598 33.32 0.9156 32.02 0.8976 31.26 0.9197 38.23 0.9762
SwinIR S ×4 32/32 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
FRBT (ours) ×4 1/1 31.79 0.8896 28.35 0.7757 27.41 0.7306 25.55 0.7681 29.68 0.8988
FRBT+ (ours) ×4 1/1 31.92 0.8913 28.43 0.7774 27.47 0.7320 25.65 0.7704 29.92 0.9016

Table 2. Quantitative results in Transformer based binarized image SR methods. We use SwinIR S as the backbone. We find quantization
of Transformer models causes a significant quality loss. This is an interesting problem for future work.

Urban100: img 024 (×4)

HQ Bicubic BNN SRResNet SwinIR S

DoReFa Bi-Real ReActNet FRBC (ours) FRBT (ours)

Urban100: img 038 (×4)

HQ Bicubic BNN SRResNet SwinIR S

DoReFa Bi-Real ReActNet FRBC (ours) FRBT (ours)

Urban100: img 095 (×4)

HQ Bicubic BNN SRResNet SwinIR S

DoReFa Bi-Real ReActNet FRBC (ours) FRBT (ours)
Figure 5. Visual comparison (×4) with lightweight and binarized image SR networks on Urban100 dataset. SRResNet and SwinIR S are
full-precision and used as references. Our FRBC performs better than other binarized methods with the same backbone SRResNet.

Method Bits Params (K) Ops (G) Urban100
(W/A) (↓ Compr. Ratio) (↓ Compr. Ratio) PSNR SSIM

SRResNet 32 / 32 1367 (0%) 85.4 (0%) 32.11 0.9282
FRBC (ours) 1 / 1 225 (↓ 83.5%) 18.6 (↓ 78.2%) 31.00 0.9164
SwinIR S 32 / 32 910 (0%) 62.4 (0%) 32.76 0.9340
FRBT (ours) 1 / 1 95 (↓ 89.6%) 4.3 (↓ 93.1%) 31.02 0.9173

Table 3. Compression ratio of SRResNet and SwinIR S (×2). Bits
(W/A) denote the bit number of weights and activations. We set the
input size as 3×320×180 for Ops calculation. Our Transformer
baseline FRBT performs better than the CNN one FRBC with a
larger compression ratio. Performance drop is denoted as ‘↓ drop’.

body part module. But, we calculate the compression ratio
and speedup over the whole model. Our FRBC and FRBT
still achieve around 80% compression ratio. The reconstruc-
tion performance could drop, but binary quantization can
significantly save the model size and operations.

Visual Results. In Fig. 5, we provide visual results of
representative and recently leading methods with scale ×4 in
terms of some challenging cases. For each case, we compare

with several BNN methods, like BNN, DoReFa, Bi-Real,
and ReActNet. Our FRBC obtains obviously better results
than others on the same CNN-based SR backbone. On the
other hand, we further consider full-precision models (i.e.,
SRResNet and SwinIR S) and their corresponding binary
counterparts (i.e., FRBC and FRBT). Their visual difference
is small. These visual comparisons further demonstrate the
effectiveness of our FRBC and FRBT, which is consistent
with the observations in Tabs. 1 and 2.

4.3. Ablation Study
To demonstrate the effectiveness of our contributions, we
conduct ablation studies about second-order residual bina-
rization (SRB) and Distillation-guided Binarization Training
(DBT). To save training time and resources, we reduce the
input size to 48×48 and train 200K iterations. We use SR-
ResNet (Ledig et al., 2017) as the image SR backbone. We
use the well-known and basic binary method DoReFa (Zhou
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Method B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM

DoReFa 31.25 0.8873 29.15 0.8929 35.66 0.9676
SRB 31.77 0.8939 30.56 0.9113 37.51 0.9739
DBT 31.26 0.8873 29.18 0.8929 35.77 0.9678
FRB 31.83 0.8948 30.74 0.9138 37.64 0.9744

Table 4. Ablation study (×2) about our proposed Second-order
Residual Binarization (SRB), Distillation-guided Binarization
Training (DBT), and flexible residual binarization (FRB). The
SR backbone is SRResNet (Ledig et al., 2017).

et al., 2016) as a baseline. We then equip SRB or/and DBT
to SRResNet and binarize it. We report PSNR/SSIM values
on B100, Urban100, and Manga109 in Tab. 4.

Second-order Residual Binarization (SRB). As a vanilla
version of binary method, DoReFa (Zhou et al., 2016) has
shown the basic SR performance. We conduct second-order
residual binarization (SRB) for the weights in the compu-
tation unit. In Tab. 4, we can see our proposed SRB signif-
icantly boosts the performance of the binary network and
reduces the performance drop. Our SRB achieves around
0.4∼1.8 dB and 0.0066∼0.0184 in terms of PSNR and
SSIM. In image SR, residual learning or residual feature
usually extracts high-frequency information, which con-
tributes much to high-quality reconstruction. On the other
hand, feature size usually is very large or has an arbitrary
size, which consumes lots of computational resources. In-
stead, we turn to enhancing the representation capacity with
SRB. This performance gain from SRB over DoReFa indi-
cates that binarizing weights residually is an efficient way
to reduce the performance gap in binary SR models.

Distillation-guided Binarization Training (DBT). During
the image SR network training, there are still full-precision
weights for binarization. It is straightforward to utilize full-
precision information as guidance. As shown in Tab. 4, us-
ing DBT would only increase the performance by marginal
gains, except for Manga109 (i.e., 0.11 dB PSNR gain). Such
an observation gives us two thoughts. (1). Our proposed
DBT is effective in boosting the binary SR performance
independently. This is mainly because DBT leads to better
representation content alignment in the image SR process.
(2). Knowledge distillation can hardly achieve notable gains
without considering the specific property of image super-
resolution (SR). Then, we are inspired to jointly integrate
SRB and DBT together by aiming to reconstruct more high-
frequency information effectively.

Flexible Residual Binarization (FRB). When we jointly
train the SR network with reconstruction and distillation
losses, we reach flexible residual binarization (FRB). Con-
sidering the whole data lines in Tab. 4, we find that our
proposed FRB achieves even higher performance over the
vanilla binary baseline DoReFa (Zhou et al., 2016), resulting
in larger gains than those obtained by using SRB and DBT
separately. These observations demonstrate that our pro-

posed FRB can well extract more valuable information (e.g.,
structure and texture information) with residual binarized
weights and also transfer full-precision knowledge more or
less to the binary image SR network.

5. Discussions and Future Works
Theoretical vs. Practical Speedup. As demonstrated in
XNOR-Net (Rastegari et al., 2016), the Params and Ops
can be compressed tens of times compared to the original
full precision model. However, in practice, the real training
and/or inference time may not be accelerated accordingly.
Our FRB provides acceleration potential, which would also
need more efficient models and hardware implementations.

Efficient Model and Hardware Design. The real-valued
compact neural networks are still required and can further
compensate for the performance in binarized SR networks.
Such efficient models also need specific hardware design
(e.g. FPGA, ASIC, CPU, and GPU implementations).

More Flexible Compression. In our investigations, we also
find that binarization only is not enough for large image
models. Because the compression ratio upper bound of
binarization is limited. In this case, we believe a more flex-
ible compression technique is more desired. For example,
jointly compressing a large network by network pruning
(e.g., structured and unstructured pruning) and quantization
(e.g., binarization) simultaneously.

6. Conclusion
In this work, we propose a flexible residual binarization
(FRB) technique to dramatically reduce the parameters
and operations of full-precision (i.e., 32-bit) image super-
resolution (SR) networks. To extract more high-frequency
information for better image reconstruction, we propose
a second-order residual binarization (SRB). Our proposed
SRB binarizes (i.e., 1-bit) the residual weights, which has
been demonstrated to be pretty effective over binarizing
weights directly. At the same time, to make the binarized
image SR model perform closer to its full-precision coun-
terpart, we transfer full-precision knowledge to guide the
training of binary SR networks. Specifically, we propose
Distillation-guided Binarization Training (DBT), which uni-
formly aligns the contents of different bit-widths. We finally
apply our FRB to binarize both CNN- and transformer-
based SR methods, resulting in two binarized baselines:
FRBC and FRBT. We conduct extensive ablation studies
and main experiments to show the effectiveness of our pro-
posed components. Surprisingly, we find that our FRBT
obtains comparable or even better performance than FRBC
with much fewer Params and Ops. To this end, our pro-
posed FRB opens the way to compress BNNs with efficient
hardware, like FPGA, CPU, and GPU.
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