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Abstract
Developing policies that can adapt to non-
stationary environments is essential for real-world
reinforcement learning applications. Neverthe-
less, learning such adaptable policies in offline
settings, with only a limited set of pre-collected
trajectories, presents significant challenges. A
key difficulty arises because the limited offline
data makes it hard for the context encoder to dif-
ferentiate between changes in the environment
dynamics and shifts in the behavior policy, of-
ten leading to context misassociations. To ad-
dress this issue, we introduce a novel approach
called Debiased Offline Representation learning
for fast online Adaptation (DORA). DORA in-
corporates an information bottleneck principle
that maximizes mutual information between the
dynamics encoding and the environmental data,
while minimizing mutual information between
the dynamics encoding and the actions of the be-
havior policy. We present a practical implemen-
tation of DORA, leveraging tractable bounds of
the information bottleneck principle. Our experi-
mental evaluation across six benchmark MuJoCo
tasks with variable parameters demonstrates that
DORA not only achieves a more precise dynam-
ics encoding but also significantly outperforms
existing baselines in terms of performance.

1. Introduction
In Reinforcement Learning (RL), the agent attempts to find
an optimal policy that maximizes the cumulative reward
obtained from the environment (Sutton & Barto, 2018).
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However, online RL training typically requires millions of
interaction steps (Kaiser et al., 2020; Wu & Zhang, 2023),
posing a risk to safety and cost constraints in real-world
scenarios (Garcıa & Fernández, 2015). Different from on-
line RL, offline RL (Fujimoto et al., 2019; Wu et al., 2019;
Kumar et al., 2020; Ran et al., 2023) aims to learn an opti-
mal policy, exclusively from datasets pre-collected by cer-
tain behavior policies, without further interactions with the
environment. Showing great promise in turning datasets
into powerful decision-making machines, offline RL has
attracted wide attention recently (Levine et al., 2020).

Previous offline RL methods commonly assume that the
learned policy will be deployed to environments with sta-
tionary dynamics (Kumar et al., 2020), while unavoidable
perturbations in real world will lead to non-stationary dy-
namics (Choi, 2000). For example, the friction coefficient of
the ground changes frequently when a robotic vacuum walks
on the floor covered by different surfaces. Policies trained
for stationary dynamics will be unable to deal with non-
stationary ones since the optimal behaviors depend on the
certain dynamic. Nevertheless, training an adaptable policy
from offline datasets for online adaptation in non-stationary
dynamics is overlooked in current RL studies. In this paper,
we focus on the setting where the environment dynamics,
such as gravity or damping of the controlled robot, change
unpredictably within an episode.

Offline Meta Reinforcement Learning (OMRL), which
trains a generalizable meta policy from a multi-task dataset
generated in different dynamics, offers a potential solution
to handle non-stationary dynamics. Among existing OMRL
methods, the gradient-based approaches (Lin et al., 2022b)
may not be ideal solutions, as extra gradient updates are
likely to cause drastic performance degradation due to the in-
stability of policy gradient methods (Haarnoja et al., 2018).
In comparison, context-based OMRL methods (Yuan & Lu,
2022; Li et al., 2021) extract task-discriminative information
from trajectories by learning a context encoder. However,
these methods still face severe challenges when encounter-
ing non-stationary dynamics. Firstly, the representations
from the learned encoder may exhibit a biased correlation
with the data-collecting behavior policy (Yuan & Lu, 2022).
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As a consequence, it will fail to correctly identify the en-
vironment dynamics when the learned policy, instead of
the behavior policy, is used to collect context during online
adaptation. Secondly, existing OMRL methods generally
require collecting short trajectories before evaluation during
meta-testing phrase (Li et al., 2021), which is not allowed in
non-stationary dynamics because the changes of dynamics
are unknown to the agent.

To tackle the aforementioned issues, we propose DORA
(abbreviation of Debiased Offline Representation learning
for fast online Adaptation). DORA employs a context en-
coder that uses the most recent state-action pairs to infer the
current dynamics. In order to learn a debiased task represen-
tation, we respectively derive a lower bound to maximize
the mutual information between the dynamics encoding and
environmental data, and an upper bound to minimize mutual
information between the dynamics encoding and the actions
of the behavior policy, following the Information Bottleneck
(IB) principle. Specifically, the lower bound is derived to
urge the encoder to capture the task-relevant information us-
ing InfoNCE (Oord et al., 2018). And the upper bound is for
debiasing representations from behavior policy, formalized
as the Kullback-Leibler (KL) divergence between the rep-
resentations with and without behavior policy information
of each timestep. The contextual policy is then trained by
an offline RL algorithm, such as CQL (Kumar et al., 2020).
Experiment results on six MuJoCo tasks with three different
changing parameters demonstrate that DORA remarkably
outperforms existing OMRL baselines. Additionally, we
illustrate that the learned encoder can swiftly identify and
adapt to frequent changes in environment dynamics. We
summarize our main contributions as below:

• We propose an offline representation learning method
for non-stationary dynamics, which enables fast adap-
tation to tasks with frequent dynamics changes.

• We derive a novel objective for offline meta learning,
which trains the encoder to reduce the interference of
the behavior policy to correctly identify dynamics.

• Experimentally, our method achieves better perfor-
mance in unseen dynamics on-the-fly without pre-
collecting trajectories, compared with baselines.

2. Preliminaries
Reinforcement Learning We consider the infinite-
horizon Markov Decision Process (MDP) (Sutton &
Barto, 2018), which can be formulated as a tuple M =
⟨S,A, P, r, d0, γ⟩. Here, S and A represent the state space
and action space, respectively. Let ∆X be the set of probabil-
ity measures over any space X . We use P : S×A → ∆S to
denote the environment transition function, or equivalently,

dynamics1. r : S × A → R is the reward function. d0
denotes the distribution of initial states. γ ∈ [0, 1) is the
discount factor. The discounted cumulative reward starting
from time step t is defined as Gt =

∑∞
k=0 γ

kr (st+k, at+k),
where G0 is known as return. The policy π : S → ∆A
specifies a distribution over the action space A, given
any state s ∈ S. RL aims to find an optimal policy π∗

which maximizes the expected return JM (π), i.e., π∗ ∈
argmaxπ JM (π) := E[G0]. When executing the policy
π(a|s) starting from st, the value function can be formu-
lated as V π(s) = Eπ [G0|s0 = s]. Similarly, The action
value function is Qπ(s, a) = Eπ [G0 | s0 = s, a0 = a].

Context-based OMRL OMRL combines offline RL (Ku-
mar et al., 2020) and meta RL (Rakelly et al., 2019), aiming
to learn a meta policy from offline datasets collected from
multiple tasks. The goal of OMRL is to learn a meta pol-
icy πθ with θ denoting the learnable parameters, which
can generalize to unseen tasks not appearing in the train-
ing dataset. The N tasks for meta trainingM = {Mi}Ni=1

are sampled from the same task distribution Ptrain. We
assume that all tasks share the same state space and ac-
tion space, with the only difference lying in dynamics. For
each task Mi, we have an offline dataset Di of trajectories
collected by an unknown behavior policy πbi . For simplic-
ity, we may omit the subscript i. In this paper, we use
τt−H:t = {at−H , st−H+1 . . . , at−1, st} to denote a short
offline trajectory of length H for dynamics identification.
During OMRL training, the meta policy πθ is trained on
all the offline datasets. In the testing phase, the agent en-
counters unseen tasks over Ptest, and the meta policy needs
to generalize to these tasks with limited interactions. As
mentioned before, the objective of OMRL is to maximize
the expected return in any task sampled from Ptest, i.e.,

max
θ

J(πθ) := EM∼Ptest
[JM (πθ)] . (1)

Context-based OMRL utilizes an encoder pϕ, where ϕ is
the learnable parameters, to output a m-dimensional task
representation z ∈ Rm. In experiments shown in Section 5,
we set m = 2. The task representation could be regarded as
auxiliary information to help the offline policy πθ to iden-
tify the current testing task. For clarity, we use πθ(a|s, z),
V π(s, z), Qπ(s, a, z) thereafter to respectively denote the
meta policy, meta value function, and meta action value func-
tion which takes the task representation z as an additional
input. Compared with the online context-based encoder,
the offline-trained encoder is more susceptible to behavior
policies due to the limited state and action space coverage of
the datasets, which is detrimental in context-based OMRL.

1In this paper, we use “transition function” and “dynamics”
interchangeably.
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Figure 1. The DORA framework. The encoder utilizes recent state-action pairs to maintain a set of representations {z1, · · · , zH} and zH

updates the moving average task encodings {z̄i}Ni=1. All these representations are then used to optimize the encoder. The contextual
policy is trained through offline RL on the datasets, where each transition is labeled with its representation by the learned encoder.

Information Bottleneck In information theory, the IB
concept involves extracting essential information by con-
straining the information flow, thereby finding a delicate
equilibrium between preserving target-related information
and achieving efficient compression (Tishby et al., 2000).
This problem can be framed as the minimization of mutual
information I between the source random variable X and
its representation X̂ for efficient compression, alongside
the maximization of mutual information between X̂ and
the target Y to retain target-related information (Tishby &
Zaslavsky, 2015). The pursuit of an optimal X̂ is cast as the
following maximization problem:

maxX̂I(X̂;Y )− βI(X; X̂). (2)

Here, I(X̂;Y ) =
∫ ∫

p(x̂, y) log
(

p(x̂,y)
p(x̂)p(y)

)
dx̂ dy, where

p(x̂, y) is the joint probability density function, and p(x̂)
and p(y) are marginal probability density functions. The
hyper-parameter β represents the tradeoff between compres-
sion and fitting. IB enables the context encoder to learn
abstract and high-level representations, which helps to im-
prove the generalization ability of the meta policy on unseen
tasks (Sohn et al., 2015; Chen et al., 2018).

3. Method
In this section, we present the DORA framework, which
learns a dynamics-sensitive trajectory encoder that mitigates
biases from the behavior policy and effectively adapts to
non-stationary dynamics. In Section 3.1, we adhere to the in-
formation bottleneck principle to formulate the objective for
offline meta-encoder learning. Subsequently, in Section 3.2
and Section 3.3, we convert IB into two tractable losses.
Section 3.4 elaborates on the proposed DORA framework
(see Figure 1) including its implementation details.

3.1. From IB to Debiased Representations

Due to the fact that the offline dataset, generated by fixed
behavior policies, exhibits limited coverage of the state and
action space, the encoder tends to inaccurately treat the
behavior policy as a prominent feature for task identifica-
tion. Such a predicament can result in the decline of the
performance of the contextual policy, given its dependency
on the encoder’s responsiveness to shifts in environmental
dynamics. Thus it is crucial for the encoder to discern tasks
based on the dynamics rather than the behavior policy.

We follow the IB principle to tackle this issue. Specifically,
our approach involves maximizing the mutual information
between representations and tasks to encapsulate dynamics-
relevant information, while simultaneously minimizing the
mutual information between representations and actions
of behavior policies to alleviate biases stemming from the
behavior policy πb. Given a training task M ∼ Ptrain and
the offline trajectory τ collected on M with trajectory length
H , this idea can be formulated as:

maxϕI(z;M)− βI(z; a), (3)

where z ∼ pϕ(·|τ), a ∼ πb(·|s) and s ∈ S.

3.2. Contrastive Dynamics Representation Learning

The first term in Equation (3), I(z;M), is used for the
learned representation to effectively encapsulate dynamics-
relevant information. Since directly optimizing I(z;M)
is intractable, we derive a lower bound of it as shown in
Theorem 3.1, which formulates the problem of maximizing
I(z;M) as a contrastive learning objective. By training
the encoder to distinguish between positive and negative
samples, the encoder acquires the capability to generate rep-
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resentations that correctly embed the dynamics information.

Theorem 3.1. Denote a set of N tasks asM, in which each
task Mi is sampled from the same training task distribution
Ptrain. Let random variables M ∈M, τ be a trajectory col-
lected in M , z ∼ pϕ(·|τ), and p(z) be the prior distribution
of z, then we have

I(z;M) ≥ EM,τ,z

log pϕ(z|τ)
p(z)∑

Mi∈M
pϕ(z|τ i)
p(z)

+ logN,

where τ i is a trajectory collected in task Mi, zi ∼ pϕ(·|τ i),
and i ∈ {1, 2, · · · , N}.

Due to space limitations, we defer the proof of The-
orem 3.1 to Appendix A.1. In practice, to approxi-
mate pϕ(z|τ)/p(z), we choose the radius basis function
S(zi, zj) = exp(−||zi − zj ||2/r), which measures the sim-
ilarity between the two representations zi and zj (Mnih &
Teh, 2012). More details about this approximation can be
found in Appendix A.2. Here, r is a hyper-parameter. We
then obtain the distortion loss LDist as follows:

LDist(ϕ) = −
∑

Mi∈M,
τ i∈Di

[
log

(
S (zi, z̄i)∑N
j=1 S (zi, z̄j)

)]
, (4)

where zi is encoded by the encoder pϕ from trajectory τ i. z̄i
denotes the average task representation for task i, updated
by z̄i ← λzi + (1 − λ)z̄i, where λ ∈ (0, 1) is a hyper-
parameter. Intuitively, by grouping trajectories from the
same task while distinguishing those from different tasks,
the distortion loss will help the encoder to extract dynamics-
relevant information.

3.3. Debiasing Representation from Behavior Policy

Ideally, the learned representation should be minimally in-
fluenced by the behavior policy. Hence, as shown in the
second term in Equation (3), we minimize the mutual in-
formation I(z; a) between representations and actions of
behavior policy. However, it is intractable to precisely cal-
culate I(z; a). We thus consider deriving an upper bound of
it. Firstly, we have the following theorem.

Theorem 3.2. Given a training task M ∈M, a trajectory
τ collected in M , and z ∼ pϕ(·|τ), we have

I(z; a) ⩽ Ea [DKL [p (· | a) ∥t(·)]] , (5)

where t(z) is an arbitrary distribution over Rm and DKL is
the Kullback-Leibler divergence (Kullback & Leibler, 1951).

The proof of Theorem 3.2 is deferred to Appendix A.1. To
convert Equation (5) into a tractable optimization objective,
we choose pϕ(·|τ1:t−1) to be the prior distribution t(z) at t−

Algorithm 1 DORA Training

Input: context encoder pϕ, offline datasets {Di}Ni=1,
short trajectory length H , batch size U , contextual policy
πθ, contextual action function Qψ , learning rate α
// Context Encoder Training
for step = 1, 2, · · · do

for u = 1 to U do
Randomly sample a task i ∈ {1, 2, · · · , N}
Sample a trajectory τu with length H from Di ran-
domly

end for
Let B1 = {τu}Uu=1

Infer representation zu from τu with pϕ, ∀τu ∈ B1
Update the moving average task representation {z̄i}Ni=1

Get encoder loss LDORA(ϕ) from Equation (7)
Update encoder pϕ with ϕ← ϕ− α∇ϕLDORA(ϕ)

end for
// Policy Training
for step = 1, 2, · · · do

Randomly get a minibatch B2 = {τu}Uu=1

Infer representation zu from τu with pϕ, ∀τu ∈ B2
Augment the states of minibatch B2 with {zu}Uu=1

Update πθ and Qψ with CQL (Kumar et al., 2020)
using {zu}Uu=1 on B2

end for

1 in practice. Since τ1:t has two additional terms (at−1 and
st) compared with τ1:t−1, we surprisingly find that p(·|a)
in Equation (5) can be cast to pϕ(·|τ1:t). This is because
at−1 generated by πb(·|st−1) carries the information of
the behavior policy. Besides, st, which is sampled from
P (·|st−1, at−1), is independent of the behavior policy. We
thus get the following debias loss LDebias:

LDebias(ϕ) =
∑

Mi∈M,
τ i
1:H∈Di,

t∈{2,··· ,H}

DKL

[
pϕ(·|τ i1:t)∥pϕ(·|τ i1:t−1)

]
,

(6)

For task Mi, we can get a trajectory segment τ1:H with
length H given a full trajectory randomly sampled from Di.

3.4. A Practical Implementation

We take the Recurrent Neural Network (RNN) as the back-
bone of the encoder (Cho et al., 2014). The encoder re-
ceives a historical sequence of state-action pairs to gen-
erate the representation. By restricting the length of the
RNN, we can adjust the amount of historical trajectory
information retained in the encoder (Luo et al., 2022),
which is helpful when the dynamic changes. Specifically,
let H be the history length, then the representation at
step t is denoted as zti ∼ pϕ(·|τt−H:t), where τt−H:t =
{at−H , st−H+1, . . . , at−1, st}. If the history length is less
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than H , we will use the zero padding trick (Cho et al., 2014).
The overall architecture is shown in Figure 1.

During the meta-training process, the encoder pϕ is updated
using the following loss:

LDORA(ϕ) = LDist(ϕ) + βLDebias(ϕ). (7)

After the encoder is trained to convergence, we train the
meta policy via CQL (Kumar et al., 2020). During meta-
testing, the encoder infers the task representation z based on
the trajectories collected up to date. At each step, the current
representation z and state s are together input into the meta
policy, yielding a policy adapted to the current dynamics.
Different from existing approaches (Yuan & Lu, 2022; Li
et al., 2021), our approach does not require to pre-collect
trajectories before policy evaluation, which achieves fast
online adaptation on-the-fly. To sum up, the pseudocodes
of training and testing are illustrated in Algorithm 1 and
Appendix B, respectively. We release the code at Github2.

4. Related Work
In this section, we introduce works related to our framework.
Section 4.1 provides an overview of related works in offline
RL. Section 4.2 shows how online RL methods handle non-
stationary dynamics. Finally, Section 4.3 delves into the
realm of OMRL, exploring relevant research and focusing
on the challenges and strategies in this domain.

4.1. Offline RL

Offline RL learns policies from the dataset generated by
certain behavior policies without online interaction with
the environment, which helps avoid the safety concerns of
online RL. The key challenge of offline RL lies in the distri-
bution shift problem (Levine et al., 2020), thus algorithms
in this domain typically impose constraints on the training
policy to keep it close to the behavior policy. Many model-
free approaches (Fujimoto et al., 2019; Wu et al., 2019;
Kumar et al., 2020; Ghosh et al., 2022; Ran et al., 2023) in-
troduce regularization terms by considering the divergence
between the learned policy and the behavior policy to con-
strain policy deviation. CQL (Kumar et al., 2020) directly
learns a conservative action value function to alleviate the
overestimation problem. Model-based methods (Yu et al.,
2020; Kidambi et al., 2020; Yu et al., 2021; Swazinna et al.,
2022; Jia et al., 2024a) pre-train an environment model from
the dataset, then use the model to generate out-of-dataset
predictions for state-action transitions.

4.2. RL in Non-stationary Dynamics

To overcome the unavoidable perturbations in real world,
recent years have seen an increasing number of research

2https://github.com/Xinyuz26/DORA

into RL in non-stationary dynamics, including continual
RL and meta RL methods. Continual learning approaches
aim to enable agents to continuously learn when faced with
unseen tasks and avoid forgetting old tasks (Khetarpal et al.,
2022). Policy consolidation (Kaplanis et al., 2019) inte-
grates the policy network with a cascade of hidden networks
and uses history to regularize the current policy to handle
changing dynamics. The meta learning methods (Nagabandi
et al., 2019), including gradient-based methods and context-
based methods, adapt to new tasks quickly by leveraging
experience from training tasks. Specifically, gradient-based
meta RL methods (Finn et al., 2017) update the policy with
gradients in the testing tasks, which are not suitable for
non-stationary dynamics since real-world tasks may not al-
low for extra updates of the gradient. Context-based meta
RL infers task-relevant information by learning a context
encoder. In these methods, PEARL (Rakelly et al., 2019)
employs variational inference to learn a context encoder.
ESCP (Luo et al., 2022) utilizes an RNN-based context en-
coder to rapidly perceive changes in dynamics, enabling fast
adaptation to new environments.

However, both continual RL and online context-based RL
methods require online interactions, which are infeasible in
the offline setting. As far as we know, there is currently no
method capable of learning an effective adaptive policy in
non-stationary dynamics in the paradigm of offline RL.

4.3. OMRL

OMRL extends meta RL to the paradigm of offline set-
ting, aiming to generalize from experience of training tasks
and facilitate efficient adaptation to unseen testing tasks.
Gradient-based OMRL methods (Lin et al., 2022b) require
a few interactions to adapt to unseen tasks, but the costly on-
line gradient updates may not be allowed in the real world.
In comparison, context-based OMRL methods employ a
context encoder for task inference, showing potential for
faster adaptation. FOCAL (Li et al., 2021) uses distance
metric learning loss to distinguish different tasks. Recently,
the transformer-based approaches (Xu et al., 2022; Lin et al.,
2022a) leverage Transformer networks for autoregressive
training on blended offline data from multiple tasks, and
construct policy by planning or setting return-to-go. As
mentioned in our work, another key challenge for OMRL
is that the encoder is required to accurately identify envi-
ronment dynamics while debiasing representations from
behavior policy. To alleviate this problem, CORRO (Yuan &
Lu, 2022) employs contrastive learning to train context en-
coders and trains dynamic models to generate new samples.
Nonetheless, these works still suffer from the entanglement
of task dynamics and behavior policy experimentally. Be-
sides, existing works need to pre-collect trajectories before
evaluation in meta-testing phase (Gao et al., 2023; Zhou
et al., 2024; Jia et al., 2024b), which are not able to handle
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Table 1. Performance on the MuJoCo tasks in stationary dynamics. Top: Average normalized return ± standard deviation over 5 random
seeds in testing tasks with IID dynamics. Bottom: Average normalized return ± standard deviation over 5 random seeds in testing tasks
with OOD dynamics.

Environment Offline ESCP FOCAL CORRO Prompt-DT DORA (Ours)

Cheetah-gravity 78.22 ± 21.13 51.99 ± 10.44 56.70 ± 15.48 49.59 ± 18.44 86.31 ± 16.45
Pendulum-gravity 96.55 ± 17.24 74.95 ± 12.55 76.82 ± 11.39 34.71 ± 15.95 100.08 ± 0.01

Walker-gravity 52.82 ± 21.01 17.22 ± 12.05 44.49 ± 24.67 26.09 ± 4.38 66.87 ± 21.64
Hopper-gravity 78.70 ± 19.17 34.10 ± 11.12 76.73 ± 14.19 42.44 ± 22.19 74.68 ± 17.34

Cheetah-dof 93.90 ± 24.49 39.36 ± 9.27 53.80 ± 13.90 43.99 ± 16.23 97.85 ± 12.30
Cheetah-torso 56.21 ± 12.37 39.35 ± 6.33 51.93 ± 16.22 45.30 ± 5.60 61.60 ± 1.19

Environment Offline ESCP FOCAL CORRO Prompt-DT DORA (Ours)

Cheetah-gravity 64.30 ± 24.69 42.84 ± 12.14 38.72 ± 14.78 30.19 ± 7.74 70.05 ± 17.02
Pendulum-gravity 86.02 ± 12.26 29.53 ± 14.41 57.21 ± 18.36 20.89 ± 10.99 98.09 ± 13.95

Walker-gravity 35.64 ± 20.12 12.69 ± 7.08 29.02 ± 19.60 18.91 ± 11.78 43.33 ± 14.21
Hopper-gravity 71.96 ± 24.40 12.96 ± 4.63 16.70 ± 7.73 33.52 ± 10.82 71.52 ± 21.37

Cheetah-dof 73.60 ± 22.73 27.36 ± 12.27 43.08 ± 16.09 30.77 ± 10.46 77.48 ± 12.25
Cheetah-torso 56.50 ± 11.65 38.13 ± 6.50 50.89 ± 6.69 34.04 ± 4.83 61.57 ± 1.34

Table 2. Average normalized return ± standard deviation on the MuJoCo tasks in non-stationary dynamics over 5 random seeds.

Environment Offline ESCP FOCAL CORRO Prompt-DT DORA (Ours)

Cheetah-gravity 65.42 ± 6.54 49.96 ± 6.41 54.08 ± 8.54 23.52 ± 7.75 71.61 ± 7.56
Pendulum-gravity 85.92 ± 16.37 8.66 ± 5.42 69.66 ± 14.80 11.36 ± 5.86 97.11 ± 16.91

Walker-gravity 27.34 ± 10.75 17.91 ± 10.76 33.62 ± 14.86 14.49 ± 2.81 40.46 ± 19.04
Hopper-gravity 54.29 ± 25.39 21.09 ± 7.99 53.26 ± 20.36 15.91 ± 10.13 49.74 ± 23.74

Cheetah-dof 80.72 ± 8.49 37.27 ± 13.76 52.41 ± 13.99 20.24 ± 12.66 91.83 ± 10.57
Cheetah-torso 53.99 ± 16.09 42.23 ± 15.01 45.58 ± 15.98 33.79 ± 10.51 60.13 ± 13.65

changing dynamics since the changes are unknown to the
agent. From the information bottleneck perspective, we
tackle these problems by developing a novel model-free
framework that efficiently debiases the representations from
the behavior policy and swiftly adapts to non-stationary
dynamics.

5. Experiments
In this section, we conduct the experiments to answer the
following questions:

• How does the learned encoder and contextual policy of
DORA perform in unseen tasks of in-distribution (IID)
and out-of-distribution (OOD) dynamics?

• How well does DORA identify and adapt to online
non-stationary dynamics?

• Are the learned representations of DORA debiased
from the behavior policy?

In Section 5.1, we introduce the environments and baselines.
In Section 5.2, we compare the performance of different
algorithms in IID, OOD, and non-stationary dynamics. In

Section 5.3 and Section 5.4, we visualize the representations
in IID dynamics and study the encoder’s sensitivity to non-
stationary dynamics. In Section 5.5, we study whether the
learned representations are debiased from behavior policy.
In Section 5.6, we ablate multiple design choices in the
encoder training process.

5.1. Environments and Baselines

Task Description. We choose MuJoCo tasks for exper-
iments, including HalfCheetah-v3, Walker2d-v3,
Hopper-v3, and InvertedDoublePendulum-v2,
which are common benchmarks in offline RL (Todorov et al.,
2012).

Changing Dynamics. In order to generate different non-
stationary dynamics, we change the physical parameters
of the environments, namely gravity, dof-damping,
and torso-mass. In IID dynamics, the parameter is uni-
formly sampled from the same distribution used for sam-
pling training tasks. In OOD dynamics, the parameter is uni-
formly sampled from a distribution of the 20% range outside
the IID dynamics. The parameter of non-stationary dynam-
ics is sampled from the union of IID and OOD dynamics and
changes every 50 timesteps. For convenience, we will ab-
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(d) Offline ESCP

Figure 2. Representation visualization in Cheetah-gravity
tasks with IID dynamics. The points are the (projected) repre-
sentations in a 2D latent space, with the color indicating the real
parameters of dynamics.

breviate the experimental tasks as Cheetah-gravity,
Pendulum-gravity, Walker-gravity, Hopper-
gravity, Cheetah-dof, and Cheetah-torso.

Offline Data Collection. For each training dataset, we use
SAC (Haarnoja et al., 2018) to train a policy for each train-
ing task independently to make sure the behavior policies
are different in every single-task dataset. The offline dataset
is then collected from the replay buffer. We gather 200,000
transitions for each single-task dataset, except for the tasks
of Pendulum-gravity, which comprises 40,000 transi-
tions.

Baselines: We compare DORA with 4 baselines. CORRO
(Yuan & Lu, 2022), FOCAL (Li et al., 2021), and Prompt-
DT (Xu et al., 2022) are prominent OMRL baselines in
recent years. ESCP (Luo et al., 2022) is an online meta RL
approach that effectively adapts to sudden changes. In order
to operate this algorithm in the offline setting, we develop
the offline ESCP as a baseline.

For all baselines and our method, a history trajectory of
length 8 is used to infer task representations. The debiased
loss weight β of our method is adjusted for different tasks.
More details about the environments, offline datasets, and
baselines in our experiments can be found in Appendix C.

5.2. Performance

We conduct experiments in IID, OOD, and non-stationary
dynamics to compare the normalized return of the meta
CQL policies learned with encoders from different algo-
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1.0
Cheetah-dof
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0.0

1.0
Cheetah-gravity
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Timesteps
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-0.5

0.0

0.5

Real DORA_x DORA_y ESCP_x ESCP_y

Figure 3. Representation tracking in a single trajectory in non-
stationary dynamics. Real represents the normalized real parame-
ters of unseen dynamics, DORA x and DORA y are the coordinates
of the DORA’s representations in the 2D latent space, and the
same applies to offline ESCP. Left: In Cheetah-dof. Right: In
Cheetah-gravity.

rithms. During testing, all algorithms are not permitted
to pre-collect trajectories on new tasks, which means the
encoder has to use short history trajectories generated by
contextual policy to infer representations. As shown in Ta-
ble 1, DORA outperforms the baselines in 5 of the total 6
MuJoCo tasks in both IID and OOD dynamics. Although
offline ESCP performs better in Hopper-gravity, its
performance suffers from a significant drop of 8.6% from
IID to OOD tests, while the drop of DORA is 4.2%. The
poor performance of Prompt-DT reveals that the transformer
struggles to unleash its fitting and generalization capabilities
in the absence of a well-defined prompt. DORA also excels
at handling non-stationary dynamics, and its lead in most
of the non-stationary environments is stronger than that in
stationary environments, as illustrated in Table 2. These re-
sults suggest that DORA is effective in dealing with unseen
non-stationary dynamics. As all baselines share the same
contextual policies, it can thus be inferred that our encoder
is more sensitive to the environment dynamics.

5.3. Representations in IID Dynamics

In this section, we compare the latent representations
of DORA with other context-based OMRL baselines in
Cheetah-gravity with IID dynamics, which are visu-
alized in Figure 2. The representations of DORA and offline
ESCP are encoded into two-dimensional vectors, while the
representations of CORRO and FOCAL are encoded into
higher dimensions and projected into 2D space via t-SNE
(Van der Maaten & Hinton, 2008), following the approach
used in the original paper. For each algorithm, we sample
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Figure 4. Visualization on task representations generated with
2 different context-collection policies in 5 unseen dynamics.
Points of different shapes represent different policies. Left: In
Cheetah-gravity. Right: In Cheetah-dof.

200 short trajectories from the tasks with IID dynamics.
The color of the encodings represents the real value of the
changing dynamics parameter, and the color bar is on the
right of each sub-figure correspondingly. The visualization
results suggest that DORA’s representations appear as a
straight line with parameters of dynamics gradually increas-
ing or decreasing from one end to the other. In contrast,
representations of CORRO and FOCAL are much more
cluttered. Notably, although ESCP extracts linear-shape
representations in the online setting, the offline ESCP fails
to achieve the same effect. The shape of representations
indicates that DORA’s encoder extracts more informative
encodings and distinguishes the dynamics better than other
baselines. We also visualize the encodings in OOD dynam-
ics in Appendix D, which indicates DORA’s representations
can be extended to unseen OOD dynamics.

5.4. Representation Tracking in Changing Dynamics

In order to study the encoder’s sensitivity to changing dy-
namics, we track the changes of representations during the
adaptation in part of a single trajectory, which is shown
in Figure 3. Real represents the normalized real parame-
ters of unseen dynamics, x and y are the coordinates of the
representations in the two-dimensional latent space. The
environment dynamics change every 50 timesteps. It is evi-
dent to find that DORA’s encoding promptly follows almost
every sudden change of dynamics, while offline ESCP gen-
erates few responses. As illustrated by these experimental
results, DORA’s encoder infers robust representations and
responds to non-stationary dynamics swiftly and precisely.

5.5. Debiased Representation Visualization

In this part, we study whether the learned representations are
debiased from behavior policy. We first randomly choose
the datasets of training tasks and train a Behavior Cloning
(BC, Ross & Bagnell (2010)) policy using each chosen
dataset. Then these trained BC policies are used to roll out
trajectories of H timesteps in different unseen IID and OOD

Cheetah-gravity Cheetah-dof Pendulum-gravity0

20

40

60

80

100
DORA
W/o Debias loss

(a) Ablation on debias loss

Cheetah-gravity cheetah-dof Pendulum-gravity50

60

70

80

90

100

110

120
Length = 8
Length = 4
Length = 16

(b) Ablation on history length

Figure 5. Ablation studies: Average normalized return of DORA
on 3 environments over 5 random seeds. The error bar stands for
the standard deviation. Left: DORA with and without the debias
loss. Right: RNN history lengths of 4, 8, and 16.

dynamics. Subsequently, we adopt DORA’s encoder to gen-
erate representations with these short trajectories, which
are visualized in Figure 4. The experimental results show
that representations inferred from trajectories generated by
different policies still cluster together in the same task dy-
namics. Moreover, in comparison with the results of DORA
in Figure 2, these representations are encoded to similar
coordinates according to the real parameter of dynamics in
Figure 4. These results powerfully demonstrate that DORA
learns a dynamic-sensitive encoder, which takes the envi-
ronment dynamics rather than behavior policy as a feature
to generate debiased representations.

5.6. Ablation Studies

We first conduct ablation experiments to study the inter-
dependence of the distortion loss and the debias loss. In
Figure 5a, the ablation experiments in 3 randomly chosen
environments show that the debias loss significantly im-
proves DORA. Notably, DORA can not converge without
the distortion loss, so this ablated version is not included in
the bar chart. Besides, to assess the impact of RNN history
length on DORA’s performance, we compared instances
with RNN lengths of 4, 8, and 16. The experimental results
in Figure 5b demonstrate that DORA is not sensitive to the
RNN history length. Additionally, we conducted sensitivity
tests on the hyper-parameter β in Appendix F.2.

6. Summary
In this paper, we consider the online adaptation issue in
non-stationary dynamics from a fully offline perspective.
We propose a novel offline representation learning frame-
work DORA, in which the context encoder can efficiently
identify changes in task dynamics and the meta policy is ca-
pable of rapidly adapting to online non-stationary dynamics.
We follow the information bottleneck principle to formal-
ize the offline representation learning problem. To conquer
this problem, we derive a lower bound for the encoder to
capture task-relevant information and an upper bound to
debias the representation from behavior policy. We com-
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pare DORA with other OMRL baselines in environments
of IID, OOD, and non-stationary dynamics. Experimental
results show that DORA debiases the representation from
behavior policy and exhibits better performance compared
with baselines. Considering that our method is a model free
approach, DORA did not augment the offline dataset. In our
future work, we hope to expand DORA into a model-based
framework to achieve data efficient representation learning.

Impact Statement
Our work focuses on offline representation learning. We
anticipate that its societal impact lies in advancing the field
of machine learning. As our work primarily involves the-
oretical advancements and algorithmic innovations, we do
not foresee specific ethical or safety concerns associated
with our contributions. The potential societal impact of our
work lies in fostering more efficient and adaptable offline
RL policies, which can benefit various applications across
industries. We believe that the implications of our research
align with well-established ethical standards in the field of
machine learning.
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A. Proofs and Explanations
A.1. Proof of Theorems

Theorem 3.1. Denote a set of N tasks asM, in which each task Mi is sampled from the same training task distribution
Ptrain. Let random variables M ∈M, τ be a trajectory collected in M , z ∼ pϕ(·|τ), and p(z) be the prior distribution of
z, then we have

I(z;M) ≥ EM,τ,z

log pϕ(z|τ)
p(z)∑

Mi∈M
pϕ(z|τ i)
p(z)

+ logN,

where τ i is a trajectory collected in task Mi, zi ∼ pϕ(·|τ i), and i ∈ {1, 2, · · · , N}.

Proof. We follow the proof of Yuan & Lu (2022), as follows:

I(z;M) = EM,z

[
log

p(M | z)
p(M)

]
(a)
= EM,z

[
logEτ

[
pϕ(z | τ)
p(z)

]]
≥ EM,zEτ

[
log

pϕ(z | τ)
p(z)

]
= EM,τ,z

[
log

pϕ(z | τ)
p(z)

]
= −EM,τ,z

[
log

(
p (z)

pϕ (z | τ)
N

)]
+ logN

(b)

≥ −EM,τ,z

[
log

(
1 +

p (z)

pϕ (z | τ)
(N − 1)

)]
+ logN

= −EM,τ,z

[
log

(
1 +

p (z)

pϕ (z | τ)
(N − 1) E

Mi∈M\{M}
[
pϕ
(
z | τ i

)
p (z)

]

)]
+ logN

≈ −EM,τ,z

log
1 +

p (z)

pϕ (z | τ)
∑

Mi∈M\{M}

pϕ
(
z | τ i

)
p (z)

+ logN

= EM,τ,z

log
 pϕ(z|τ)

p(z)

pϕ(z|τ)
p(z) +

∑
Mi∈M\{M}

pϕ(z|τ i)
p(z)

+ logN

= EM,τ,z

log
 pϕ(z|τ)

p(z)∑N
j=1

pϕ(z|τ i)
p(z)

+ logN.

Here,M\{M} is a set of tasks inM except the task M . The equality at (a) is derived from the following expression:

p(z |M)

p(z)
=

∫
p(τ |M)p(z | τ,M)

p(z)
dτ =

∫
p(τ)pϕ(z | τ)

p(z)
dτ = Eτ

[
pϕ(z | τ)
p(z)

]
.
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The inequality at (b) can be proved as follows:

Eτ,z
[
log

(
1 +

p(z)

p(z | τ)
(N − 1)

)]
− Eτ,z

[
log

(
p(z)

p(z | τ)
N

)]
= Eτ,z

[
log

(
1

N
· p(z | τ)

p(z)
+

N − 1

N
· 1
)]

(c)

⩾ Eτ,z
[
1

N
log

p(z | τ)
p(z)

+
N − 1

N
log 1

]
=

1

N
Eτ,z

[
log

p(z | τ)
p(z)

]
=

1

N
I(z; τ)

⩾ 0

The inequality at (c) is derived from Jensen’s Inequality. Thus, the proof is completed.

Theorem 3.2. Given a training task M ∈M, a trajectory τ collected in M , and z ∼ pϕ(·|τ), we have

I(z; a) ⩽ Ea [DKL [p (· | a) ∥t(·)]] , (5)

where t(z) is an arbitrary distribution over Rm and DKL is the Kullback-Leibler divergence (Kullback & Leibler, 1951).

Proof.

I(z; a) =

∫ ∫
p (z, a) log

p (z | a)
p(z)

dzda

=

∫ ∫
p (z, a) log p (z | a) dzda−

∫
p(z) log p(z)dz

(d)

⩽
∫ ∫

p (z, a) log p (z | a) dzda−
∫

p(z) log t(z)dz

=

∫ ∫
p (a) p (z | a) log p (z | a)

t(z)
dzda

= Ea
[∫

p (z | a) log p (z | a)
t(z)

dz

]
= Ea [DKL [p (· | a) ∥t(·)]] .

The inequality at (d) is derived from DKL [p(·)∥t(·)] ≥ 0.

A.2. Explanations of the Approximation in Distortion Loss

In this section, we further explain the reason for the approximation of p(z|τ)/p(z) by S(z, z̄) = exp(−||z − z̄||2/r). From
Bayesian theory, we know that the bigger p(z|τ)p(z) is, the more likely z correlates with τ . In practice, it may be intractable to
get the marginal probability p(z). Thus, inspired by InfoNCE, we learn a positive real score function S(z, τ) to approximate
p(z|τ)
p(z) . Given N trajectories τ1, τ2, · · · , τN sampled from N different dynamics respectively, Theorem 3.1 tells us that, to

maximize I(z;M), the encoder is required to predict the context z with τi as input and z must have the least correlation with
all τj , where j ∈ {1, 2, · · · , i− 1, i+ 1, · · · , N}. This gives us an intuition that S(z, τ) should measure the similarity of z
and τ . Practically, we implement S with a Gaussian kernel function (though there can be more choices, such as the cosine
similarity used by InfoNCE). Moreover, since τ has an indefinite length, it is difficult to directly calculate the similarity of z
and τ . Therefore, in our implementation, we turn to calculate the similarity between z and z̄, where z̄ is the moving average
of all the contexts from the dynamics in which we collect τ .

B. DORA Testing
The pseudocodes of the testing phase of DORA is illustrated in Algorithm 2.
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Algorithm 2 DORA Test

Input: testing tasks {M test
i }Ni=1, pre-trained context encoder pϕ, pre-trained contextual policy πθ(s, z), episode length

Ts
for each task Mi ∈ {M test

i }Ni=1 do
Initialize a history trajectory τ of fixed length H with zeros
Get the initial state s0 of Mi, append (s0, 0) to τ
for t = 0 to Ts do

Infer zt from τ with pϕ
Get action a ∼ πθ(s, z

t)
Step in the environment and get the next state s′

s← s′

Append (s, a) to τ
end for

end for

C. Experiments Details
C.1. Task Description

We choose several MuJoCo tasks for experiments, including HalfCheetah-v3, Walker2d-v3, Hopper-v3,
and InvertedDoublePendulum-v2, which are common benchmarks in offline RL (Todorov et al., 2012). In
HalfCheetah, Walker2d, and Hopper, agents with several degrees of freedom need to learn to move forward
as fast as possible. InvertedDoublePendulum originates from the classical control problem Cartpole, in which
the agent needs to push the cart left and right to balance the pole on top of the bottom pole.

C.2. Environment Details

In this section, we provide detailed information about the dynamic-changing environments.

Gravity: Gravity is a global parameter in MuJoCo, which mainly affects the agent’s fall speed and vertical pressure.
The dynamic is sampled by multiplying the default gravity g0 with 1.5µ, µ ∼ U [−a, a], where a = 1.5, 1.8 for IID and
non-stationary dynamics, respectively. We uniformly sample µ from U [−1.8,−1.5] ∪ [1.5, 1.8] for OOD dynamics.

Dof-Damping: Dof-damping refers to the damping value matrix applied to all degrees of freedom of the agent, serving
as linear resistance proportional to velocity. The dynamics are sampled by multiplying the default damping matrix A0 with
1.5µ, µ ∼ U [−a, a], where a = 1.5, 1.8 for IID and non-stationary dynamics, respectively. We uniformly sample µ from
U [−1.8,−1.5] ∪ [1.5, 1.8] for OOD dynamics.

Torso-mass: Torsoz-mass is the mass of the agent’s torso. The dynamic is sampled by multiplying the default mass of
torso m0 with 1.5µ, µ ∼ U [−a, a], where a = 1.5, 1.8 for IID and non-stationary dynamics, respectively. We uniformly
sample µ from U [−1.8,−1.5] ∪ [1.5, 1.8] for OOD dynamics.

Besides, each environment contains 10 tasks for training and 10 tasks for testing for both IID, OOD, and non-stationary
dynamics.

C.3. Details of the Offline Dataset

Maximum and Minimum Returns of Offline Datasets. In Table 3, we explicitly provide the maximum and minimum
returns of offline datasets, which are used to calculate the normalized return in the policy evaluation. Specifically, the
evaluation return x for a particular is normalized using the formula x−xmin

xmax−xmin
× 100, where xmax and xmin denote the

corresponding maximum and minimum returns of each dataset, respectively.

C.4. Introduction of Baselines

We compare DORA with 4 baselines which are listed below.

CORRO. CORRO (Yuan & Lu, 2022) designs a bi-level task encoder where the transition encoder is optimized by
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Table 3. Maximum and minimum returns of offline datasets.

Cheetah-gravity Cheetah-dof Cheetah-torso mass Hopper-gravity Walker-graavity Pendulum-gravity

Maximum 9218.48 8703.55 10060.59 3536.97 4630.10 9351.94
Minimal -460.33 -613.09 -479.86 -1.22 -110.50 26.71

Table 4. Configurations and hyper-parameters used in offline encoder training.

Configurations Cheetah-gravity Cheetah-dof Cheetah-torso Hopper-gravity Walker-gravity Pendulum-gravity

Debias loss weight 0.2 1.0 1.0 0.2 1.0 1.0
Distortion loss weight 1.0 1.0 1.0 1.0 1.0 1.0

History length 8 8 8 8 8 8
Latent space dim 2 2 2 2 2 2

Batch size 256 256 256 256 256 256
Learning rate 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Training steps 2× 106 2× 106 2× 106 2× 106 2× 106 4× 105

Radius of radius
basis function 200 200 200 200 200 200

contrastive task learning and the aggregator encoder gathers all representations. CORRO uses generative modeling and
reward randomization to generate negative pairs for contrastive learning. In our setting, the reward function remains the
same across tasks thus we adopt the approach of generative modeling to compare.

FOCAL. FOCAL (Li et al., 2021) uses distance metric loss to learn a deterministic contextual encoder, which is also under
the paradigm of contrastive learning. Additionally, FOCAL combines BRAC (Wu et al., 2019) to constrain the bootstrapping
error.

Prompt-DT. Prompt-DT (Xu et al., 2022) employs the Decision Transformer (Chen et al., 2021; Gao et al., 2024) to tackle
OMRL tasks. It utilizes a short segment of task trajectory containing task-specific information as the prompt input, guiding
the transformer to model trajectories from different tasks. For each task dataset, we select the top 5 trajectories with the
highest cumulative returns to construct the task prompt. The remaining trajectories are then used for training.

Offline ESCP. ESCP (Luo et al., 2022) is an online meta RL approach that proposes variance minimization and relational
matrix determinant maximization in optimizing the encoder to adapt to environment sudden changes. In order to fairly
compare ESCP with other algorithms in offline settings, we develop an offline version of ESCP, denoted as offline ESCP. In
this variant, online interaction process with the environment is not allowed. Instead, the agent has to sample trajectories
from the offline dataset.

C.5. Configurations

The details of the important configurations and hyper-parameters used to produce the experimental results in this paper are
listed in Table 4. Regarding the encoder model, we utilized a linear layer with 128 hidden units, a GRU network with 64
hidden units, and a linear layer with 64 hidden units for parameterization. The encoder’s output is scaled using a Tanh
function.

D. Representation Visualization of DORA
We present the representation visualization figures of other 5 MuJoCo tasks in Figure 6. With the color indicating the
real parameters of dynamics, we find that the data points are sorted sequentially based on the real values of the varying
parameters, which shows that the task representations capture the information of different task dynamics.

Moreover, we visualize the encodings of DORA in Cheetah-gravity with OOD dynamics, shown in Figure 7. It is
evident to find that the representations in OOD dynamics (Figure 7a) are situated at both ends of the encodings in IID
dynamics (Figure 7b). Such visualization results indicate that DORA learns generalizable representations, which can be
extended to unseen OOD dynamics.
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(e) Hopper-gravity

Figure 6. Representation visualization of DORA in other 5 MuJoCo tasks.
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Figure 7. Representation visulization in Cheetah-gravity. Left: In OOD dynamics. Right: In IID dynamics.

E. Experiments in the Setting of OMRL
In the general OMRL setting, the algorithms are permitted to use a certain policy to collect context before evaluation. We
compare the performance of DODA and other baselines in such a setting and the results are shown in Figure 8. Benefiting
from the effective task representations, DORA still exhibits a remarkable performance and outperforms the baselines in 5 of
the total 6 MuJoCo tasks.

F. Further Ablation Studies
F.1. Ablation Studies on the Losses

To visually illustrate the impact of the distortion loss and debias loss in DORA, we take the visualization results on
Cheetah-gravity as an example. Figure 9a shows that the encoder can not extract informative representations without
distortion loss. In addition, without the debias loss, representations inferred from tasks of similar dynamics no longer exhibit
correlations as shown in Figure 9b.

F.2. Ablation Studies on β

We conducted sensitivity tests on the hyper-parameter β on 3 MuJoCo tasks in Figure 9c, and the results indicate that
excessively large or small values of β lead to a decline in policy performance. Although in Pendulum-gravity, the
case with β = 0.2 shows better average performance, the policy performance sharply drops when β = 0 (Figure 5a). These
experimental results, on the one hand, demonstrate that when β is too small, the encoder struggles to debias representations
from the behavior policy. On the other hand, when β is too large, the diminishing effect of the distortion loss during the
optimization process leads to a decrease in policy performance.

F.3. Performance with Less Offline Data Available

We conducted experiments to test the performance of DORA under the conditions of halving the size of each single-task
dataset (i.e. 105 transitions per single-task dataset) and find DORA still outperforms the other baselines in Table 5.

Table 5. Performance with less offline data available on Cheetah-gravity in non-stationary dynamics.

FOCAL CORRO Prompt-DT Offline ESCP DORA

Half Datastes 47.43 ± 4.24 51.93 ± 4.84 32.85 ± 7.66 51.75 ± 4.36 66.28 ± 7.85
Full Datasets 49.96 ± 6.41 54.08 ± 8.54 23.52 ± 7.75 65.42 ± 6.54 71.61 ± 7.56
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Figure 8. Test returns of DORA against the baselines in IID dynamics in the general OMRL setting. During meta-testing, a pre-collected
context can be utilized to infer task representations before evaluation.

Besides, we conducted experiments of varying the number of training tasks to 5, 8, and 10. The experimental results are
shown in Table 6. We observe that as the number of tasks decreases, the performance of all algorithms declines. This is
because fewer training tasks can affect the algorithms’ generalization performance in non-stationary dynamics.

Table 6. Performance with less traning tasks on Cheetah-gravity in non-stationary dynamics.

Number of Traning Tasks 5 8 10

DORA’s Performance 54.92 ± 17.71 65.48 ± 10.58 71.61 ± 7.56

F.4. Ablation Studies on Offline RL Algorithms

Besides CQL, we train the contextual policy of DORA with different offline RL algorithms, including a model-based method
COMBO (Yu et al., 2021) and a model-free method EDAC (An et al., 2021). The results are shown in Table 7.

Although DORA (CQL) is not the best performing among several versions, we use CQL as the general offline RL algorithm
in our framework for 2 reasons. Firstly, CQL is well-known and widely applied in offline RL. Secondly, this algorithm is
relatively simple and easy to implement. Thus, we can easily compare the performance of various baselines upon it.

Table 7. Performance with different offline RL algorithms in non-stationary dynamics.

DORA (CQL) DORA (EDAC) DORA (COMBO)

cheetah-gravity 71.61 ± 7.56 73.58 ± 5.44 69.16 ± 7.36
cheetah-dof 91.83 ± 10.57 89.89 ± 5.85 93.04 ± 7.47

pendulum-gravity 97.11 ± 16.91 93.12 ± 15.35 100.08 ± 0.05
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Figure 9. Further ablation studies. Left: DORA without the distortion loss in Cheetah-gravity. Middle: DORA without debias loss
in Cheetah-gravity. Right: Average normalized return of DORA with β = 0.2, 1.0, and 10.0 over 5 random seeds. The error bar
stands for the standard deviation.

F.5. Performance with different changing rate of non-stationary dynamics

In order to test DORA’s performance with different changing rates of non-stationary dynamics, we change the physical
parameters of the environments every 10, 30, and 50 timesteps. The results in Table 8 indicate that DORA can adapt to
frequent changes in dynamics.

Table 8. Performance with Different Changing Rate of Non-stationary Dynamics.

Tasks \ Change per Step 10 30 50

cheetah-gravity 64.28 ± 4.01 66.62 ± 5.78 71.61 ± 7.56
cheetah-dof 85.09 ± 5.63 87.44 ± 6.48 91.83 ± 10.57

pendulum-gravity 96.89 ± 14.56 96.49 ± 12.44 97.11 ± 16.91
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