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Abstract
The maximum entropy encoding framework
provides a unified perspective for many non-
contrastive learning methods like SimSiam, Bar-
low Twins, and MEC. Inspired by this framework,
we introduce Matrix-SSL, a novel approach that
leverages matrix information theory to interpret
the maximum entropy encoding loss as matrix
uniformity loss. Furthermore, Matrix-SSL en-
hances the maximum entropy encoding method by
seamlessly incorporating matrix alignment loss,
directly aligning covariance matrices in different
branches. Experimental results reveal that Matrix-
SSL outperforms state-of-the-art methods on the
ImageNet dataset under linear evaluation settings
and on MS-COCO for transfer learning tasks.
Specifically, when performing transfer learning
tasks on MS-COCO, our method outperforms pre-
vious SOTA methods such as MoCo v2 and BYOL
up to 3.3% with only 400 epochs compared to 800
epochs pre-training. We also try to introduce rep-
resentation learning into the language modeling
regime by fine-tuning a 7B model using matrix
cross-entropy loss, with a margin of 3.1% on the
GSM8K dataset over the standard cross-entropy
loss.

1. Introduction
Contrastive learning methods (Chen et al., 2020a; He et al.,
2020) focus on aligning similar objects closely while dis-
tancing dissimilar ones. This approach, grounded in in-
tuitive principles, has led to deep and interesting insights.
For example, SimCLR has been proved to perform spectral
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clustering on similarity graph (Tan et al., 2023b; HaoChen
et al., 2021), and Wang & Isola (2020) highlight two critical
aspects of contrastive loss: alignment and uniformity.

Alignment loss ensures similar objects are closely mapped,
whereas uniformity loss promotes a uniformly distributed
output feature space that preserves the maximum informa-
tion. Remarkably, many existing contrastive methods (Wu
et al., 2018; He et al., 2020; Logeswaran & Lee, 2018; Tian
et al., 2020a; Hjelm et al., 2018; Bachman et al., 2019;
Chen et al., 2020a) can be viewed as specific implementa-
tions of these two loss types, a perspective that simplifies
understanding their core mechanisms.

Simultaneously, there is growing interest in non-contrastive
learning methods that do not use negative samples, such as
BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021),
Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al.,
2021), etc. Among these, Liu et al. (2022) presented an
interesting theoretical framework called maximum entropy
encoding, which proposes to maximize the following loss
between the two feature matrices Z1,Z2 computed from
different augmentations from the same input:

LMEC = −µ log det
(
Id + λZ1Z

⊤
2

)
.

Although it may not be immediately obvious, the above
loss encourages maximum entropy encoding for the fea-
ture embeddings, which is similar to the uniformity loss in
contrastive learning methods. It turns out that this formula-
tion naturally encompasses loss functions of several other
non-contrastive methods like SimSiam, Barlow Twins, and
the resulting algorithm MEC surpasses previous methods
in performance (Liu et al., 2022) (element-wise alignment
losses such as ∥z1−z2∥2 used in BYOL can be seen as low-
order Taylor expansion terms in this MEC loss). However,
a comparison of contrastive and non-contrastive methods
reveals some differences:

Learning Method Loss Function

Contrastive Learning Uniformity + Alignment
Non-contrastive Learning Uniformity

This observation naturally propels us towards a broader,
more explorative query:
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Figure 1. Illustration of the Matrix-SSL architecture. The diagram begins with the image input layer, followed by data augmentations and
feature extraction, leading to the formation of covariance matrices (Z1Z

⊤
1 and Z2Z

⊤
2 ).

Could there exist a more encompassing
framework that harmonizes the virtues of

both contrastive and non-contrastive
learning methods?

In this paper, we affirmatively address this question, present-
ing a method that not only integrates but also enhances the
advantages of both contrastive and non-contrastive learning
paradigms.

The existing maximum entropy encoding framework, how-
ever, does not explicitly differentiate between feature matri-
ces from different branches, hindering its integration with
alignment loss. To bridge this gap, we introduce matrix
information theory. By extending classical concepts like en-
tropy, Kullback–Leibler (KL) divergence, and cross-entropy
to matrix analogs, we offer a richer representation of asso-
ciated loss functions. Notably, we find that methods like
SimSiam, BYOL, Barlow Twins, and MEC can be reinter-
preted as utilizing matrix cross-entropy (MCE)-based loss
functions, a connection previously unexplored (see Theo-
rem 4.1).

Our proposed algorithm, Matrix-SSL, incorporates matrix
alignment loss into non-contrastive methods, leading to
improvements in empirical performance. This dual focus
provides additional information and a richer signal for repre-
sentation learning. Matrix-SSL includes Matrix-Uniformity
and Matrix-Alignment loss components. Matrix-Uniformity
aligns the cross-covariance matrix of feature matrices Z1

and Z2 with the identity matrix Id, while Matrix-Alignment
focuses on aligning their auto-covariance matrices (see Fig-
ure 1). As a by-product, we observe the closed-form re-
lationship between effective rank and matrix KL, which
indicates that effective rank can be a powerful metric for
measuring performance for various machine learning meth-
ods (see Section 3.4).

In experimental evaluations, our method Matrix-SSL outper-

forms state-of-the-art methods (SimCLR, BYOL, SimSiam,
Barlow Twins, VICReg, etc.) on ImageNet datasets, es-
pecially under linear evaluation settings, our method uses
only 100 epochs pre-training can outperform SimCLR 100
epochs pre-training by 4.6%. For transfer learning tasks
such as COCO detection and COCO instance segmenta-
tion, our method outperforms previous SOTA methods such
as MoCo v2 and BYOL up to 3% with only 400 epochs
compared to 800 epochs pre-training.

We further introduce representation learning into the lan-
guage modeling regime and use the matrix cross-entropy
loss to fine-tune large language models, achieving SOTA
results on the GSM8K dataset for mathematical reasoning
with a margin of 3.1% over standard cross-entropy loss.

In summary, our contributions can be listed as three-fold:

• We prove the equivalence of MEC loss and matrix uni-
formity loss (up to constant terms and factors) in non-
contrastive learning, and the closed-form relationship
between effective rank and matrix KL.

• We provide a unified perspective of uniformity loss plus
alignment loss for both contrastive and non-contrastive
learning methods.

• We empirically verify our method under various tasks
including linear evaluation on image classification tasks,
transfer learning on object detection and instance seg-
mentation tasks, and large language model fine-tuning
for mathematical reasoning tasks.

2. Related Work
Contrastive and non-contrastive SSL approaches. Con-
trastive and non-contrastive self-supervised learning meth-
ods learn representations based on diverse views or aug-
mentations of inputs, without using human-annotated la-
bels (Chen et al., 2020a; Hjelm et al., 2018; Wu et al., 2018;
Tian et al., 2019; Chen & He, 2021; Gao et al., 2021; Bach-
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man et al., 2019; Oord et al., 2018; Ye et al., 2019; Henaff,
2020; Misra & Maaten, 2020; Caron et al., 2020; HaoChen
et al., 2021; Caron et al., 2021; Li et al., 2021; Zbontar
et al., 2021; Tsai et al., 2021b; Bardes et al., 2021; Tian
et al., 2020b; Robinson et al., 2021). Such representations
can be used for various downstream tasks with remarkable
performance.

Theoretical understanding of self-supervised learning.
The empirical success of contrastive learning has triggered
a surge of theoretical explorations into the contrastive
loss (Arora et al., 2019; HaoChen et al., 2021; 2022; Tosh
et al., 2020; 2021; Lee et al., 2020; Wang et al., 2022;
Nozawa & Sato, 2021; Huang et al., 2021; Tian, 2022; Hu
et al., 2022; Tan et al., 2023b). Wang & Isola (2020) shed
light on the optimal solutions of the InfoNCE loss, decom-
posing it as alignment term and uniformity term, contribut-
ing to a deeper comprehension of self-supervised learning.
In HaoChen et al. (2021); Shen et al. (2022); Wang et al.
(2022); Tan et al. (2023b), self-supervised learning methods
are examined from a spectral graph perspective. Zimmer-
mann et al. (2021) provides a compelling probabilistic view
of contrastive learning, suggesting that it can be seen as
an inversion of the data-generating process, which assumes
that the ground-truth marginal distribution of the latents of
the generative process is uniform.

Various theoretical studies have also investigated non-
contrastive methods for self-supervised learning (Wen & Li,
2022; Tian et al., 2021; Garrido et al., 2022; Balestriero &
LeCun, 2022; Tsai et al., 2021b; Pokle et al., 2022; Tao et al.,
2022; Lee et al., 2021). Garrido et al. (2022) establishes
the duality between contrastive and non-contrastive meth-
ods. Balestriero & LeCun (2022) reveal the connections
between variants of SimCLR, Barlow Twins, and VICReg
to ISOMAP, Canonical Correlation Analysis, and Laplacian
Eigenmaps, respectively.

Tan et al. (2023a) also use matrix information theory to an-
alyze non-contrastive methods, but they focus on applying
α-order mutual information to characterize the loss func-
tions of Barlow Twins and spectral contrastive learning, and
extend the analysis to MAE. By contrast, our paper focuses
on incorporating alignment loss into the maximum entropy
encoding framework.

Neural collapse and dimensional collapse. Papyan et al.
(2020) describe the intriguing phenomenon of Neural Col-
lapse (NC), which manifests when training a classification
network with cross-entropy loss. This phenomenon can be
summarized that all the features of a single class converge
to the mean of these features. In addition, the class-means
form a simplex equiangular tight frame (ETF). Zhuo et al.
(2023) advocate for a comprehensive theoretical understand-
ing of non-contrastive learning through the mechanism of
rank differential.

3. Background
Self-supervised learning (SSL) aims to learn meaningful
representations from unlabeled data {xi}ni=1, which can be
used to enhance performance in various downstream tasks.
Prominent SSL methods (architectures) like SimCLR, Sim-
Siam, BYOL, Barlow Twins, and VICReg, employ 2-view
augmentations: an online network fθ and a target network
fϕ. Given a mini-batch {xi}Bi=1, each data point xi is aug-
mented using a random transformation T from a predefined
set τ to obtain x′

i = T (xi). These original and augmented
data points are processed through the respective networks
to generate feature representations zi1 and zi2, both residing
in Rd. The resulting matrices Z1 and Z2 ∈ Rd×B form the
basis for the training loss L(Z1,Z2), which varies based on
the learning paradigm—contrastive or non-contrastive.

3.1. Contrastive Learning

The idea of contrastive learning is to make the representation
of similar objects align and dissimilar objects apart. One
of the widely adopted losses in contrastive learning is the
InfoNCE (Oord et al., 2018) loss, where we use cosine
similarity sim(u,v) = u⊤v/(∥u∥2∥v∥2):

LContrastive(Z1,Z2) =∑
i

− log
exp

(
sim

(
Zi

1,Z
i
2

)
/τ

)∑
(p,k)̸=(1,i) exp

(
sim

(
Zi

1,Z
k
p

)
/τ

) .
Wang & Isola (2020) showed that when the sample size
B goes to infinity, LContrastive can be decomposed into two
parts. The first part is minimized if and only if Z is perfectly
aligned (alignment loss), while if perfectly uniform encoders
exist, they form the exact minimizers of the second part
(uniformity loss).

3.2. Non-contrastive Learning

Given a matrix Z, the total coding rate (TCR) (Cover, 1999;
Ma et al., 2007) is given by:

LTCR(Z) =
1

2
log det

(
Id +

d

Bϵ2
ZZ⊤

)
. (1)

Here (d+B)LTCR(Z) captures the minimal number of bits
for encoding Z up to ϵ distortion (Cover, 1999; Ma et al.,
2007).

For the non-contrastive learning setting, we hope to maxi-
mize the total coding rate for the feature embeddings. Given
that both the online and target networks are approximations
of the feature map f , we can use the cross-covariance be-
tween Z1 and Z2 to approximate ZZ⊤, resulting in the
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maximal entropy coding (MEC) loss (Liu et al., 2022):

LMEC = −µ log det

(
Id +

d

Bϵ2
Z1Z

⊤
2

)
= −µ tr

(
log

(
Id +

d

Bϵ2
Z1Z

⊤
2

))
.

(2)

As discussed in (Liu et al., 2022), MEC loss is a natu-
ral and general loss that subsumes many non-contrastive
learning methods, including SimSiam (Gao et al., 2021),
BYOL (Grill et al., 2020), Barlow Twins (Zbontar et al.,
2021), and VICReg (Bardes et al., 2021).

3.3. Matrix Information-Theoretic Quantities

Unlike Shannon entropy for random variables, the definition
of matrix entropy is not necessarily unique. Specifically,
within the domain of quantum information theory, matrix
entropy is typically confined to positive semi-definite Her-
mitian matrices that possess a unit trace. However, our
paper aims to extend this definition by incorporating posi-
tive semi-definite matrices that are not constrained by unit
trace prerequisites, because the matrices may have various
traces during optimization.

Definition 3.1 (Matrix entropy for positive semi-definite
matrices). For a positive semi-definite matrix A ∈ Rn×n,
the matrix entropy is defined as:

ME(A) = − tr(A logA) + tr(A)

= −
∑
i

λi log λi +
∑
i

λi.

where log denotes the principal matrix logarithm (Higham,
2008), and λi denote the eigenvalues of matrix A. For
zero eigenvalues, we define log(0) := 0. Our proposed
matrix entropy generalizes the definition of von Neumann
entropy (von Neumann, 1932; Witten, 2020), which is re-
stricted to positive semi-definite matrices with unit trace.

Definition 3.2 (Matrix KL divergence for positive semi-defi-
nite matrices (Amari, 2014)). For two positive semi-definite
matrices P,Q ∈ Rn×n, the matrix KL divergence is defined
as:

MKL(P||Q) = tr(P logP−P logQ−P+Q). (3)

This definition of matrix KL divergence generalizes the def-
inition of quantum (von Neumann) KL divergence (relative
entropy) (von Neumann, 1932; Witten, 2020; Bach, 2022).

Similar to classical cross-entropy based on Shannon infor-
mation theory, we introduce the matrix cross-entropy as
below:

Definition 3.3 (Matrix Cross-Entropy (MCE) for positive
semi-definite matrices). For two positive semi-definite ma-
trices P,Q ∈ Rn×n, the matrix cross-entropy is defined

as:
MCE(P,Q) = MKL(P||Q) +ME(P)

= tr(−P logQ+Q).
(4)

Lemma 3.4. For any non-zero matrix A ∈ Rm×n, AA⊤

is positive semi-definite.

If not specified, we present proofs in the Appendix A. We
employ matrix KL divergence and matrix cross-entropy
(MCE) as canonical metrics for comparing positive semi-
definite matrices since they have strong minimization proper-
ties, just like the classical KL divergence and cross-entropy
in Shannon information theory (MKL and MCE are also
asymmetric just like the classical ones).
Proposition 3.5 (Minimization property of matrix KL di-
vergence). For two positive semi-definite matrices P,Q ∈
Rn×n, the matrix Q that minimizes this divergence when P
is fixed and Q varies over all positive semi-definite matrices
is P itself, i.e.,

argminQ≻0 MKL(P||Q) = P. (5)

Proposition 3.6 (Minimization property of matrix cross-en-
tropy). Let P,Q ∈ Rn×n be positive semi-definite matrices.
Then, the matrix Q that minimizes the matrix cross-entropy
MCE(P,Q) when P is fixed and Q varies over all positive
semi-definite matrices is P itself, i.e.,

argminQ≻0 MCE(P,Q) = P. (6)

Illustrative example. Consider a batch size B = 2 with
two augmentation views. Let the representation matrices
be Z1 = [a1,b1] ∈ R2×2 for the first view, and Z2 =
[a2,b2] ∈ R2×2 for the second view. Suppose a1 = (1, 0)⊤

and a2 = (0.8, 0.6)⊤.

Consider two cases:

1. b1 = (0, 1)⊤ and b2 = (0.6, 0.8)⊤.

2. b1 = (0.6, 0.8)⊤ and b2 = (0, 1)⊤.

In both cases, the typical alignment loss (e.g., BYOL-type
MSE loss, ∥a1 − a2∥2 + ∥b1 − b2∥2) yields a value of
0.8. However, analyzing the covariance matrices Z1Z

⊤
1 and

Z2Z
⊤
2 reveals more information:

• For Case 1:

Z1Z
⊤
1 =

[
1 0
0 1

]
, Z2Z

⊤
2 =

[
1 0.96

0.96 1

]
Here MKL(Z1Z

⊤
1 ∥Z2Z

⊤
2 ) = 2.55.

• For Case 2:

Z1Z
⊤
1 =

[
1.36 0.48
0.48 0.64

]
, Z2Z

⊤
2 =

[
0.64 0.48
0.48 1.36

]
Here MKL(Z1Z

⊤
1 ∥Z2Z

⊤
2 ) = 0.60.
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Matrix information theory, suitable for handling covariance
and Gram matrices, allows us to capture these nuanced
differences, enabling a more comprehensive understanding
of the data representations. Aligning the matrices Z1Z

⊤
1

and Z2Z
⊤
2 is beneficial because it can reveal richer training

signals beyond the typical vector alignment loss. Even
when the vector alignment loss (e.g., BYOL-type MSE loss)
yields the same value, the matrix alignment loss, measured
by the matrix KL divergence MKL(Z1Z

⊤
1 ||Z2Z

⊤
2 ), can

vary significantly between different cases. This variation
provides additional insights into the structural alignment
of the representations, ensuring that the learned features
capture more detailed and discriminative information about
the underlying data distribution.

3.4. Effective Rank

Roy & Vetterli (2007) introduced the concept of effective
rank, which provides a real-valued extension of the classical
rank.
Definition 3.7 (Effective rank (Roy & Vetterli, 2007)).
The effective rank of a non-all-zero A ∈ Cn×n, denoted
erank(A), is defined as

erank(A) ≜ exp {H(p1, p2, . . . , pn)} , (7)

where pi = σi∑n
k=1 σk

, {σi|i = 1, · · · , n} are the singu-
lar values of A, and H is the Shannon entropy defined as
H(p1, p2, . . . , pn) = −

∑n
i=1 pi log pi, with the conven-

tion that 0 log 0 ≜ 0.

4. On TCR and Matrix KL Divergence
As we mentioned previously, there are two interesting ques-
tions about TCR. First, it is not immediately obvious why
it is similar to the uniformity loss in contrastive learning.
Secondly, one cannot easily integrate matrix alignment loss
to directly align the feature covariance matrices in its for-
mulation. In this section, we try to address both problems
by building the connection between TCR and MCE/MKL.

Given a batch of B data points {xi}Bi=1, and their l2 nor-
malized representations Z = [f(x1), · · · ,f(xB)] ∈ Rd×B .
We design the following loss function to pursue uniformity,
resulting in the following λ-regularized (λ ≥ 0) Uniformity-
MCE loss, which is well-defined due to Lemma 3.4:

MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
, (8)

This MCE-based uniformity loss definition captures the dis-
tance of regularized covariance matrix ZZ⊤ to the regular-
ized (scaled) identity matrix and We intentionally introduce
the additional regularizer λ ≥ 0 here, because we can prove
the closed-form relationship between TCR and MCE/MKL
for specific λ > 0, as follows.

Theorem 4.1 (Main Theorem). Given a batch of B data
points {xi}Bi=1, and their l2 normalized representations
Z = [f(x1), · · · ,f(xB)] ∈ Rd×B . Assume that λ = ϵ2

d >
0 for ϵ, d in TCR loss (1). Then,

MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
=(1 + dλ) (− log λ+ 1 + 2LTCR(Z)) , (9)

MKL

(
1

d
Id + λId

∣∣∣∣ ∣∣∣∣ 1

B
ZZ⊤ + λId

)
=(1 + dλ)

(
log

1 + dλ

λd
+ 2LTCR(Z)

)
. (10)

Theorem 4.1 shows a deep connection between TCR and
MCE/MKL. Indeed, every TCR loss can be transformed
into an MCE/MKL loss of the regularized covariance ma-
trix to the scaled identity matrix (but not vice-versa since
MCE/MKL has two operands while TCR has only one, and
MCE/MKL can also be used for matrix alignment loss in-
troduced in Section 5.1).

Proof sketch, see the full proof in Appendix A.

Proof. For notational simplicity, let

LUMCE ≜ MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
(11)

Using the definition of MCE, we get:

MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
= tr

(
−
(
1

d
Id + λId

)
log

(
1

B
ZZ⊤ + λId

))
+ tr

(
1

B
ZZ⊤ + λId

)
,

Now, let us divide and multiply by λ of the term
− log

(
1
BZZ⊤ + λId

)
:

− log

(
1

B
ZZ⊤ +

ϵ2

d
Id

)
= − log

(
λ

(
1

λB
ZZ⊤ + Id

))
,

Upon substitution and simplification, we get:

LUMCE = −(1 + dλ) log λ+ 2(1 + dλ)LTCR + 1 + dλ

= (1 + dλ) (− log λ+ 1 + 2LTCR) .

This matches the expression given in the proposi-
tion for LUMCE. The other part of the theorem on
MKL

(
1
dId + λId

∣∣ ∣∣ 1
BZZ⊤ + λId

)
can be proved simi-

larly.

5



Matrix Information Theory for Self-Supervised Learning

From Proposition 3.5, Proposition 3.6, and Theorem 4.1, we
have the following theorem.
Theorem 4.2 (Minimization property of TCR loss). Given
a batch of B data points {xi}Bi=1, and their l2-normalized
representations Z = [f(x1), · · · ,f(xB)] ∈ Rd×B , the
global and unique minimizer under the constraint ∥zi∥22 =
1, for i ∈ {1, 2, · · · , B} of TCR loss is 1

BZZ⊤ = 1
dId.

In other words, the covariance matrix that minimizes the
TCR loss is the (scaled) identity matrix.

5. Matrix Uniformity and Alignment
Based on the discussions in Section 4, we know that TCR
loss can be replaced (up to constant terms and factors) by
the MCE loss of the (regularized) covariance matrix to the
scaled identity matrix. However, if we directly use the
covariance matrix of Z, the optimization process might be
sub-optimal, as Z is not empirically aligned to have zero
mean. Fortunately, the next theorem states that even if we
center the covariance matrix, it will still be aligned with the
scaled identity matrix at the maximal effective rank and unit
trace.
Theorem 5.1. Let x be a random vector with a distribution
supported on the unit hypersphere Sd−1. If the centered
covariance matrix of x, denoted by C(x), has the maximal
possible effective rank d and a trace of at least one, then the
expected value of x will be zero, and C(x) will equal 1

dId.

To achieve matrix information-theoretic uniformity, we
propose the following MCE-based uniformity loss, where
C(Z1,Z2) =

1
BZ1HBZ

⊤
2 (where HB = IB − 1

B1B1B
⊤)

represents the centered sample covariance matrix for sim-
plicity:

LMatrix-Uniformity(Z1,Z2) = MCE

(
1

d
Id,C (Z1,Z2)

)
.

(12)

The next lemma states why HB is the correct centering
matrix to use.
Lemma 5.2. Let Z1,Z2 ∈ Rd×B where d is the dimen-
sionality of the data and B is the number of samples. The
cross-covariance matrix C(Z1,Z2) can be expressed as:

C (Z1,Z2) =
1

B
Z1HBZ

⊤
2 ,

where HB = IB − 1
B1B1B

⊤ is the centering matrix.

For ease of optimization, a regularization term λId may
be added to this cross-covariance matrix to ensure it is
non-singular. This adjustment aligns with TCR and MEC
methods, differing mainly in mean normalization. An al-
ternative approach is the auto-covariance uniformity loss∑

i MCE
(
1
dId,C (Zi,Zi)

)
, which is left for future explo-

ration.

5.1. Matrix-SSL: Uniformity and Alignment

To directly pursue the alignment of representations in self-
supervised learning, we propose the following loss function
using the first-order alignment loss plus the matrix cross-
entropy (MCE) between two covariance matrices:

LMatrix-Alignment(Z1,Z2) = − tr (C(Z1,Z2))+

γ ·MCE(C(Z1,Z1),C(Z2,Z2)) .
(13)

Discussion. When the stop-gradient technique (Gao et al.,
2021) is utilized on the target branch Z1, optimizing the
MCE alignment loss is the same as optimizing the matrix KL
divergence, since MCE(P,Q) = MKL(P||Q) +ME(P).
We think this can partially answer the effectiveness of stop-
gradient (details can be found in Appendix B).

As we have presented an improved loss for uniformity be-
fore, now generalizing Wang & Isola (2020)’s understanding
of contrastive learning, we propose the matrix information-
theoretic uniformity and alignment framework to improve
self-supervised learning:

LMatrix-SSL = LMatrix-Uniformity + LMatrix-Alignment. (14)

6. Effective Rank and Dimensional Collapse
Zhuo et al. (2023) find an intriguing phenomenon that dur-
ing the optimization course of self-supervised learning, the
effective rank of the (empirical) feature covariance matrix
consistently increases. This phenomenon can be analyzed
with the following proposition.
Proposition 6.1. Matrix KL divergence of the covariance
matrix to the uniform distribution 1

dId has the following
equality with connection to effective rank.

erank

(
1

B
ZZ⊤

)
=

d

exp
(
MKL

(
1
BZZ⊤ || 1

dId
))

= exp (VNE(
1

B
ZZ⊤)).

(15)

Proposition 6.1 captures the closed-form relationship among
effective rank and matrix information-theoretic quantities.
Note the batch auto-correlation matrix is a positive semi-
definite matrix with all of its diagonal 1. As we have men-
tioned earlier, many dimension-contrastive losses can be
understood from the matrix information-theoretic unifor-
mity viewpoint. As such, during training the matrix KL
divergence (MCE) minimizes, thus 1

BZZ⊤ is anticipated
to progressively align more with 1

dId. By the fact that 1
dId

achieves the maximal possible (matrix) entropy, the rank-
increasing phenomenon (Zhuo et al., 2023) can be well un-
derstood. Thus we may treat the effective rank as an exact
metric to measure the extent of the dimensional collapse.

Feature representations acquired through a deep neural
network employing a cross-entropy (CE) loss optimized
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by stochastic gradient descent, are capable of attaining
zero loss (Du et al., 2018) with arbitrary label assign-
ments (Zhang et al., 2021). A phenomenon known as neural
collapse (NC) (Papyan et al., 2020) is observed when train-
ing of the neural network continues beyond zero loss with
CE. Based on this, we propose to use effective rank as a
unified tool to investigate the difference between supervised,
contrastive, and non-contrastive methods, more details can
be found in Appendix D.

7. Experiments
7.1. Experimental Setup

Experiment details. In this section, we implement our pro-
posed Matrix-SSL method for self-supervised learning tasks
on ImageNet (Deng et al., 2009) dataset1. We use precisely
the same data augmentation protocols and hyperparameters
as previous baselines such as BYOL (Grill et al., 2020), Sim-
Siam (Chen & He, 2021) and MEC (Liu et al., 2022), etc.
We augment each image twice to get two different views
during each training iteration. Similar to MEC (Liu et al.,
2022), we select one branch of the Siamese network as the
online network and the other branch as the target network,
updating the parameters using the exponential moving aver-
age method instead of loss backward. The pseudo-code for
Matrix-SSL is shown as Algorithm 1.

Model architectures. We use ResNet50 (He et al., 2015)
without the last linear layer as the backbone encoder, whose
output feature dimension is 2048. Then we use a three-
layer MLP with BN(Batch Normalization) (Ioffe & Szegedy,
2015) and ReLU (Nair & Hinton, 2010) as the projector
after the encoder, and the projector maintains the feature
dimension to be 2048 through three layers. For the online
network, we apply an extra two-layer MLP with BN (Ioffe
& Szegedy, 2015) and ReLU (Nair & Hinton, 2010) with
hidden dimension 512 and output dimension 2048.

Data augmentations. Our augmentation protocol con-
sists of random cropping, color jittering, color dropping
(grayscale), left-right flipping, Gaussian blurring, and polar-
ization.

Optimization and hyperparameters. For pre-training, we
use SGD optimizer with 2048 batch size, 10−5 weight decay,
0.9 momentum, and 4.0 base learning rate, which is sched-
uled by cosine decay learning rate scheduler (Loshchilov &
Hutter, 2016), to optimize the online network over training
process. For the momentum used for the exponential mov-
ing average process, it is set to be 0.996 to 1 scheduled by
another cosine scheduler. As for linear evaluation, we use
LARS optimizer (You et al., 2017) with 4096 batch size, 0.9

1The code is available at https://github.com/
yifanzhang-pro/Matrix-SSL.

momentum, no weight decay, and 0.03 base learning rate
scheduled by cosine decay learning rate scheduler, to train
the linear layer over 100 epochs, and report the performance
of last epoch.

Algorithm 1: PyTorch-style Pseudo-code for
Matrix-SSL
# f: encoder network
# B: batch size
# LMatrix-Uniformity: Matrix-Uniformity
loss
# LMatrix-Alignment: Matrix-Alignment loss
# γ: weight ratio used in alignment
loss
for X in loader:

# augment a batch of B images in X
X1, X2 = aug(X), aug(X)

# calculate l2 normalized
embeddings

Z1, Z2 = f(X1), f(X2)

# calculate uniformity and
alignment loss
uniformity loss =
LMatrix-Uniformity(Z1,Z2)
alignment loss =
LMatrix-Alignment(γ)(Z1,Z2)

# calculate loss
loss = uniformity loss +
alignment loss

# optimization step
loss.backward()
optimizer.step()

7.2. Evaluation Results

Linear evaluation. We follow the standard linear evalua-
tion protocol (Chen et al., 2020a; Grill et al., 2020; Chen
& He, 2021). We freeze the parameters of the backbone
encoder and then connect a linear classification layer after it,
and train the linear layer in the supervised setting. During
training, each image is augmented by random cropping, re-
sizing to 224×224, and random horizontal flipping. At test
time, each image is resized to 256×256 and center cropped
to 224× 224.

The Linear evaluation of the Top-1 accuracy result when
pre-trained with 100, 200, and 400 epochs on ImageNet
(Deng et al., 2009) dataset was shown in Table 1. Notice
that we use ResNet50 backbone as default for a fair compar-
ison. Matrix-SSL consistently outperforms baselines across
various pre-training epochs.

Transfer learning. Following the common protocol of pre-
vious works (Chen et al., 2020b; Chen & He, 2021; Liu
et al., 2022), we finetune the pre-trained models on MS-
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Table 1. Linear evaluation results (Top-1 accuracy) on ImageNet
dataset with different pre-training epochs using ResNet50 back-
bone. Bold means the best, underline means the second.

Method Pre-training Epochs

100 200 400

SimCLR 66.5 68.3 69.8
MoCo v2 67.4 69.9 71.0

BYOL 66.5 70.6 73.2
SwAV 66.5 69.1 70.7

SimSiam 68.1 70.0 70.8
Barlow Twins 67.3 70.2 71.8

VICReg 68.6 − −
MEC 70.6 71.9 73.5

Matrix-SSL (Ours) 71.1 72.3 73.6

COCO (Lin et al., 2014) object detection and instance seg-
mentation tasks. Table 2 and Table 3 summarize experiment
results of baseline models and Matrix-SSL. The experi-
ment showed that Matrix-SSL consistently outperformed
the baselines. It is worth mentioning that Matrix-SSL was
only pre-trained for 400 epochs, but it already performed
better than all the baselines pre-trained for 800 epochs. For
a fair comparison, we employ a standard 2-view augmen-
tation for all methods, more augmentation views such as
2 + 6 views used in SwAV (Caron et al., 2020), 2 + 2 views
used in I-VNE+ (Kim et al., 2023), and 200 views used in
EMP-SSL (Tong et al., 2023) would lead to superior perfor-
mance and have been theoretically justified (Allen-Zhu &
Li, 2020).

Table 2. Transfer learning on object detection tasks. We fine-
tune models pre-trained on ImageNet, with the same experiment
settings as SimSiam and MEC for a fair comparison.

Method AP50 AP AP75

SimCLR 57.7 37.9 40.9
MoCo v2 58.9 39.3 42.5

BYOL 57.8 37.9 40.9
SwAV 58.6 38.4 41.3

Barlow Twins 59.0 39.2 42.5
SimSiam 59.3 39.2 42.1
VICReg - 40.0 -

MEC 59.8 39.8 43.2

Matrix-SSL (Ours) 60.8 41.0 44.2

Semi-supervised learning. In semi-supervised learning
tasks, we noticed that SwAV (Caron et al., 2020), Bar-
lowTwins (Zbontar et al., 2021), and MEC (Liu et al., 2022)
all chose different experiment settings and hyperparameters
for this task. For a fair comparison, we directly used the
same evaluation protocol as MEC and conducted a com-
parison with semi-supervised learning following 100-epoch

Table 3. Transfer learning on instance segmentation tasks. Em-
ploying a similar setup as in the detection tasks, we finetune models
pre-trained on ImageNet. Bold means the best, underline means
the second.

Method APmask
50 APmask APmask

75

SimCLR 54.6 33.3 35.3
MoCo v2 55.8 34.4 36.5

BYOL 54.3 33.2 35.0
SwAV 55.2 33.8 35.9

Barlow Twins 56.0 34.3 36.5
SimSiam 56.0 34.4 36.7
VICReg - - 36.7

MEC 56.3 34.7 36.8

Matrix-SSL (ours) 57.5 35.6 38.0

pre-training against MEC, since MEC has the best perfor-
mance in all the baselines on the semi-supervised task. From
Table 4, we found that we achieved a significant improve-
ment over MEC in 1% semi-supervised learning, and we
are comparable to MEC in the 10% task.

Table 4. Results on semi-supervised learning tasks.

Method 1% Acc@1 1% Acc@5 10% Acc@1 10% Acc@5

MEC 44.442 71.430 63.918 86.270
Matrix-SSL 45.158 71.848 63.940 86.172

7.3. Ablation Studies

Alignment loss ratio. We first investigate the impact of
different alignment loss ratios (i.e., the γ in Eqn. 14) on
performance. We chose the 100-epoch pre-training task
for the ablations, and the results are summarized in Table
5. Interestingly, setting γ = 1 achieves the best linear
evaluation performance, so we set the ratio to 1 as the default.

Table 5. Ablations on linear probing (%) with various γ.

γ 0 0.3 0.5 0.6 1 1.3 1.5

Acc. 70.6 70.7 71.0 70.9 71.1 70.8 70.8

Taylor expansion order. We investigat the effect of the
Taylor expansion order of matrix logarithm implementation
(which is well-defined according to Theorem A.1) on linear
evaluation tasks, We keep most of the settings unchanged,
except the Taylor expansion order. The results are sum-
marized in Table 6. As shown in the table, we found that
Matrix-SSL performs best when the Taylor expansion order
is 4 in this setting, so we chose 4 as the default parameter.
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Table 6. Results of different Taylor expansion orders for linear
evaluation results.

Taylor expansion order 3 4 5

Top-1 accuracy 70.9 71.1 71.0

8. Matrix Cross-Entropy for Large Language
Models

We further introduce representation learning into the lan-
guage modeling regime and use the matrix cross-entropy
loss to fine-tune large language models by considering how
to incorporate the information within feature representations
in designing the loss functions.

The main intuition behind our method is that the similarity
among the representation vector of different words (tokens)
can be utilized to address the synonym phenomenon and
polysemous phenomenon within natural language. For
example, “Let ’s think step by step” should be similar to
“Let us think step by step”. The classical cross-entropy loss
hasn’t captured this intricate part.

Consider the target distribution p given by the training cor-
pus (which is typically one-hot) and the output distribution
q given by the output of the language model. Suppose we
have l2 normalized representation vectors ei ∈ Rd (column
vectors) for tokens vi, i ∈ [n], where n is the vocabulary
size. One could use LM head embeddings, word embed-
dings, or any other representation vectors of the models.
In our experiments, we use the LM head embeddings as
default.

For auto-regressive LLMs with tokens k ∈ {1, 2, · · · ,K},
we define positive semi-definite matrices P ∈ Rd×d and
Q ∈ Rd×d as below:

P(k) =
∑
i

(
p
(k)
i · eie⊤i

)
, Q(k) =

∑
j

(
q
(k)
j · eje⊤j

)
.

Then we define the following loss as our objective (since
tr
(
Q(k)

)
are constant):

LMatrix-LLM =
∑
k

CE(p(k),q(k)) +
∑
k

MCE(P(k),Q(k))

= −
∑
k

∑
i

p
(k)
i log q

(k)
i −

∑
k

tr(P(k) logQ(k)).

(16)

8.1. Experiments on Fine-Tuning LLMs

Training Pipeline. We use Llemma-7B (Azerbayev et al.,
2023) as the base model, which is continued pre-trained
on the Proof-Pile-2 dataset (Paster et al., 2023) using the
CodeLLaMA model (Touvron et al., 2023). We then use
LMatrix-LLM to fine-tune it on the MetaMath dataset (Yu et al.,
2023).

Table 7. Performance comparison of various models on
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021)
dataset. MM denotes instruction fine-tuned with the MetaMathQA
dataset (Yu et al., 2023).

Model Meth. GSM8K (%) MATH (%)
Minerva 8B CE 16.2 14.1
Minerva 62B CE 52.4 27.6
Minerva 540B CE 58.8 33.6
WizardMath 7B RL 54.9 10.7
WizardMath 13B RL 63.9 14.0
WizardMath 70B RL 81.6 22.7
LLaMA2 70B CE 56.8 13.5
MetaMath 7B CE 66.5 19.8
Llemma 7B CE 36.4 18.0
Llemma-MM 7B CE 69.2 30.0

Llemma-MM 7B LMatrix-LLM 72.3 (+3.1) 30.2 (+0.2)

Experimental Results. We evaluated the performance
of different models on the mathematical reasoning dataset
GSM8K (Cobbe et al., 2021) and MATH dataset (Hendrycks
et al., 2021), using different loss functions and training
methods. The results are shown in Table 7. We compared
our results against baseline methods, including Minerva
(Lewkowycz et al., 2022), WizardMath (Luo et al., 2023),
and Llemma (Azerbayev et al., 2023) fine-tuned with Meta-
Math (Yu et al., 2023) dataset using classical cross-entropy
(CE).

9. Conclusion
In this paper, we provide a matrix information-theoretic
perspective for understanding and improving self-supervised
learning methods. We are confident that our perspective
will not only offer a refined and alternative comprehension
of self-supervised learning methods but will also act as a
catalyst for the design of increasingly robust and effective
algorithms in the future.
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A. Appendix for Proofs
Proof of Lemma 3.4.

Proof. Consider any non-zero matrix A ∈ Rm×n. We want to show that AA⊤ is positive semi-definite.

Recall that a matrix B is positive semi-definite if for all vectors x ∈ Rm, it holds that x⊤Bx ≥ 0. We will apply this
definition to AA⊤.

Consider any vector x ∈ Rm. We compute x⊤(AA⊤)x as follows:

x⊤(AA⊤)x = (x⊤A)(A⊤x)

= ∥A⊤x∥2.

The last equality holds because the expression (x⊤A)(A⊤x) represents the squared norm of the vector A⊤x.

Since the squared norm of any vector is always non-negative, ∥A⊤x∥2 ≥ 0 for any x ∈ Rm.

Therefore, x⊤(AA⊤)x ≥ 0 for all x ∈ Rm, which means that AA⊤ is positive semi-definite.

This completes the proof.

Proof of Proposition 3.5.

Proof. We consider the matrix KL divergence MKL(P||Q) for positive semi-definite matrices P,Q ∈ Rn×n. Our goal is
to show that this function attains its minimum when Q = P.

First, we calculate the gradient of MKL(P||Q) with respect to Q. Utilizing the properties of the matrix logarithm and trace,
we find

∇Q MKL(P||Q) = −PQ−1 + I,

where I is the identity matrix.

Setting this gradient to zero, we obtain the condition for stationary points:

−PQ−1 + I = 0 =⇒ PQ−1 = I.

Multiplying both sides of this equation by Q yields Q = P, indicating that Q = P is a stationary point of the function.

To confirm that Q = P is indeed a minimum, we examine the second-order conditions. The Hessian of MKL(P||Q),
computed as

∇2
Q MKL(P||Q) = PQ−2,

is positive semi-definite. This is because for any non-zero matrix X ∈ Rn×n, the expression

X⊤(PQ−2)X

is non-negative, given that both P and Q−2 are positive semi-definite. Therefore, MKL(P||Q) is convex in Q.

Given the convexity of the function and the identification of a stationary point at Q = P, we can conclude that this point is
indeed the global minimum of the function over the domain of positive semi-definite matrices.

Hence, we conclude that
argminQ≻0 MKL(P||Q) = P,

thereby completing the proof.

Proof of Proposition 3.6.

Proof. The matrix cross-entropy between two positive semi-definite matrices P and Q is defined as:

MCE(P,Q) = tr(−P logQ+Q).
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To find the matrix Q that minimizes MCE(P,Q), we compute the derivative of MCE with respect to Q. The derivative of
the matrix cross-entropy is given by:

∂MCE

∂Q
= −PQ−1 + I,

where we utilized the matrix calculus result that the derivative of logQ with respect to Q is Q−1.

Setting this derivative to zero for optimality, we get:

−PQ−1 + I = 0 =⇒ PQ−1 = I.

Multiplying both sides by Q, we obtain:
P = Q.

To confirm that Q = P is indeed a minimum, we examine the second-order conditions, the proof is similar to Proof A for
Proposition 3.5. Therefore, we conclude that the matrix Q minimizing the matrix cross-entropy MCE(P,Q) is P itself, i.e.,

argminQ≻0 MCE(P,Q) = P.

This completes the proof.

Proof of Theorem 4.1.

Proof. First, begin with LUMCE :

LUMCE = MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
,

Using the definition of MCE, we get:

LUMCE = tr

(
−
(
1

d
Id + λId

)
log

(
1

B
ZZ⊤ + λId

)
+

1

B
ZZ⊤ + λId

)
,

Now, let us divide and multiply by λ of the term − log
(
1
BZZ⊤ + λId

)
:

− log

(
1

B
ZZ⊤ +

ϵ2

d
Id

)
= − log

(
λ

(
1

λB
ZZ⊤ + Id

))
,

Now, factor out λ:

− log

(
λ

(
1

λB
ZZ⊤ + Id

))
= − log(λ)Id − log

(
1

λB
ZZ⊤ + Id

)
,

Since LTCR = 1
2 log det

(
Id +

d
Bϵ2ZZ

⊤), we can rewrite this term in the form of LTCR.

tr

(
− log

(
1

λB
ZZ⊤ + Id

))
= tr

(
− log

(
Id +

d

Bϵ2
ZZ⊤

))
= 2LTCR,

Upon substitution, it becomes:

LUMCE = − tr

((
1

d
Id + λId

)
(log(λ)Id)

)
+ 2(1 + dλ)LTCR + tr

(
1

B
ZZ⊤ + λId

)
,

Simplifying, we get:
LUMCE = −(1 + dλ) log λ+ 2(1 + dλ)LTCR + 1 + dλ

= (1 + dλ) (− log λ+ 1 + 2LTCR) .
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This matches the expression given in the proposition for LUMCE.

For LUMKL, Using the definition of Matrix KL divergence, we have:

LUMKL = MKL

(
1

d
Id + λId

∣∣∣∣ ∣∣∣∣ 1

B
ZZ⊤ + λId

)
,

= MCE

(
1

d
Id + λId,

1

B
ZZ⊤ + λId

)
+ tr (P logP−P) ,

where P denotes 1
dId + λId.

Now, we simplify tr (P logP−P). We know that P = 1
dId + λId =

(
1
d + λ

)
Id.

Since P is a diagonal matrix with all diagonal entries being 1
d + λ, its matrix logarithm logP will also be a diagonal matrix

with all diagonal entries being log
(
1
d + λ

)
.

Thus, tr (P logP−P) can be simplified as follows:

tr (P logP−P) = tr

((
1

d
+ λ

)
Id

(
log

(
1

d
+ λ

)
Id

)
−
(
1

d
+ λ

)
Id

)
,

Since the diagonal matrix Id has d ones along its diagonal, the trace operation essentially multiplies each term by d.
Therefore, we can write:

tr(P logP−P) = d

((
1

d
+ λ

)
log

(
1

d
+ λ

)
−

(
1

d
+ λ

))
,

Further simplifying, we get:

tr(P logP−P) = d

(
1

d
+ λ

)
log

(
1

d
+ λ

)
− d

(
1

d
+ λ

)
= (1 + dλ)(log(1 + dλ)− log d− 1),

Now, we can rewrite LUMKL using this result:

LUMKL = LUMCE + tr (P logP−P)

= LUMCE + (1 + dλ)(log(1 + dλ)− log d− 1)

= −(1 + dλ) log λ+ 2(1 + dλ)LTCR + 1 + dλ+ (1 + dλ)(log(1 + dλ)− log d− 1)

= −(1 + dλ) log λ+ 2(1 + dλ)LTCR + (1 + dλ) log(1 + dλ)− (1 + dλ) log d

= (1 + dλ)(− log λ+ 2LTCR + log(1 + dλ)− log d)

= (1 + dλ)(log
1 + dλ

λd
+ 2LTCR).

This equation represents LUMKL in terms of LTCR and other constants d, λ, and B, thus fulfilling the proposition.

Proof of Theorem 4.2.

Proof. Here we present an alternative proof without resorting to other literature. To prove the theorem, we examine the
form of the TCR loss:

LTCR = −1

2
log det

(
Id +

d

Bϵ2
ZZ⊤

)
,

where Z = [f(x1), · · · ,f(xB)] ∈ Rd×B .

We note that ZZ⊤ is a positive semi-definite matrix, as it is the product of a matrix and its transpose. Hence, all its
eigenvalues are non-negative. Let these eigenvalues be denoted by λ1, λ2, . . . , λd.

16



Matrix Information Theory for Self-Supervised Learning

The determinant of Id + d
Bϵ2ZZ

⊤ can then be expressed as the product of its eigenvalues:

det

(
Id +

d

Bϵ2
ZZ⊤

)
=

d∏
i=1

(1 +
d

Bϵ2
λi).

Since logarithm is a monotonically increasing function, minimizing LTCR is equivalent to maximizing the product of
(1 + d

Bϵ2λi) terms.

Applying the arithmetic mean-geometric mean inequality, we find that the product of the eigenvalues (and thus the
determinant) is maximized when all eigenvalues are equal, i.e., λi =

B
d for all i. Therefore, the matrix that maximizes this

determinant under the given constraints is one where all eigenvalues are B
d .

Hence, the global and unique minimizer of the TCR loss under the constraint ∥zi∥22 = 1 is achieved when 1
BZZ⊤ has

eigenvalues equal to 1
d , which corresponds to 1

BZZ⊤ = 1
dId.

Proof of Theorem 5.1.

Proof. Based on the definition of effective rank presented in Section 3.4, a maximal effective rank of d implies that the
covariance matrix has d non-negligible eigenvalues.

Let x = [x1, x2, . . . , xd]
⊤ be a random vector on Sd−1. The covariance matrix C(x) of x is defined as E[xx⊤]−E[x]E[x]⊤.

The trace of C(x), which is the sum of its eigenvalues, must be at least 1. Given the maximal effective rank d, each of these
d eigenvalues must be equal (denote this common value as λ), resulting in C(x) = λId.

From above, we find that E[xx⊤] = λId. Noticing that tr(C(x)) = 1− ∥E[x]∥2 ≤ 1 and the trace at least 1 assumption,
the trace of this matrix, which is dλ, must be equal to 1, implying λ = 1

d .

Thus, we conclude that if the covariance matrix of x has the maximal possible effective rank of d and its trace is at least one,
then the expected value of x is zero, and the covariance matrix C(x) is 1

dId.

Proof of Lemma 5.2.

Proof. To prove the lemma, we first apply the centering matrix HB to Z1 and Z2 as follows:

Z̄1 = Z1HB ,

Z̄2 = Z2HB .

These equations remove the mean of each row, effectively centering the data.

The cross-covariance matrix for the centered data Z̄1 and Z̄2 is then given by:

C(Z̄1, Z̄2) =
1

B
Z̄1Z̄

⊤
2 .

Substituting the expressions for Z̄1 and Z̄2, we get:

C (Z1,Z2) =
1

B
(Z1HB)(Z2HB)

⊤.

Because HB is symmetric (HB = H⊤
B) and idempotent (H2

B = HB), this expression simplifies to:

C (Z1,Z2) =
1

B
Z1HBZ

⊤
2 ,

completing the proof.
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Proof of Proposition 6.1. Recall the definition of Matrix KL divergence:

MKL(P ||Q) = tr(P logP−P logQ−P+Q),

Substitute P = 1
BZZ⊤ and Q = 1

dId into this:

MKL

(
1

B
ZZ⊤

∣∣∣∣ ∣∣∣∣ 1dId
)

= tr

(
1

B
ZZ⊤ log

(
1

B
ZZ⊤

)
− 1

B
ZZ⊤ log

(
1

d
Id

)
− 1

B
ZZ⊤ +

1

d
Id

)
= tr

(
1

B
ZZ⊤ log

(
1

B
ZZ⊤

)
+

log d

B
ZZ⊤ − 1

B
ZZ⊤ +

1

d
Id

)
= −VNE

(
1

B
ZZ⊤

)
+

log d

B
tr(ZZ⊤)− 1

B
tr(ZZ⊤) +

1

d
tr(Id)

= −VNE

(
1

B
ZZ⊤

)
+ log d− 1 +

d

d

= −VNE

(
1

B
ZZ⊤

)
+ log d,

From this, we conclude that:

VNE

(
1

B
ZZ⊤

)
= −KL

(
1

B
ZZ⊤ || 1

d
Id

)
+ log d.

ME

(
1

B
ZZ⊤

)
= VNE

(
1

B
ZZ⊤

)
+ tr

(
1

B
ZZ⊤

)
= VNE

(
1

B
ZZ⊤

)
+ 1.

The effective rank is defined as:

erank(A) = exp {H(p1, p2, . . . , pn)},

If we substitute A = 1
BZZ⊤ and given that VNE

(
1
BZZ⊤) is the entropy of the eigenvalue distribution of 1

BZZ⊤, then we
could directly relate erank

(
1
BZZ⊤) and VNE

(
1
BZZ⊤):

erank

(
1

B
ZZ⊤

)
= exp

{
VNE

(
1

B
ZZ⊤

)}
= exp

{
ME

(
1

B
ZZ⊤

)
− 1

}
.

Finally, we have

erank

(
1

B
ZZ⊤

)
= exp

(
log d−MKL

(
1

B
ZZ⊤

∣∣∣∣ ∣∣∣∣ 1dId
))

=
d

exp
(
MKL

(
1
BZZ⊤ || 1

dId
))

Theorem A.1 (Taylor series expansion (Hall, 2013)). The function

logA =

∞∑
m=1

(−1)m+1 (A− I)m

m
,

is defined and continuous on the set of all n× n complex matrices A with ∥A− I∥ < 1. For all A with ∥A− I∥ < 1,

elogA = A.

For all X with ∥X∥F < log 2,
∥∥eX − I

∥∥ < 1 and

log eX = X.
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B. Details on Experiments
B.1. More on Loss Functions

Now we take a closer look at the loss function:

LMatrix-SSL = LMatrix-Uniformity + LMatrix-Alignment(γ)

= MCE

(
1

d
Id,C (Z1,Z2)

)
− tr (C (Z1,Z2)) + γ ·MCE(C(Z1,Z1),C(Z2,Z2))

= − tr

((
1

d
Id

)
log (C (Z1,Z2))

)
− γ · tr (C(Z1,Z1) log (C(Z2,Z2))) + γ · tr (C(Z2,Z2)) + Const.

(17)

Employing matrix KL divergence. As we previously introduced in Section 7, applying the stop gradient technique
to the first branch Z1, as utilized in SimSiam (Hua, 2021), renders the third term ME(C(Z1,Z1)) a constant in the
Matrix-Alignment-KL loss, as delineated in Equation 18.

LMatrix-Alignment-KL = − tr (C(Z1,Z2)) + γ ·MKL(C(Z1,Z1)||C(Z2,Z2))

= − tr (C (Z1,Z2)) + γ ·MCE(C(Z1,Z1),C(Z2,Z2))− γ ·ME(C(Z1,Z1)).
(18)

LMatrix-SSL-KL = LMatrix-Uniformity-KL + LMatrix-Alignment-KL(γ)

= MKL

(
1

d
Id||C (Z1,Z2)

)
− tr (C (Z1,Z2)) + γ ·MKL(C(Z1,Z1)||C(Z2,Z2))

= MKL

(
1

d
Id||C (Z1,Z2)

)
− tr (C (Z1,Z2)) + γ ·MCE(C(Z1,Z1),C(Z2,Z2))− γ ·ME(C(Z1,Z1))

= MCE

(
1

d
Id,C (Z1,Z2)

)
−ME

(
1

d
Id

)
− tr (C (Z1,Z2))

+ γ ·MCE(C(Z1,Z1),C(Z2,Z2))− γ ·ME(C(Z1,Z1))

= − tr

((
1

d
Id

)
log (C (Z1,Z2))

)
+ tr (C (Z1,Z2)) + Const. − tr (C (Z1,Z2))

− γ · tr (C(Z1,Z1) log (C(Z2,Z2))) + γ · tr (C(Z2,Z2))− γ ·ME(C(Z1,Z1))

= − tr

((
1

d
Id

)
log (C (Z1,Z2))

)
− γ · tr (C(Z1,Z1) log (C(Z2,Z2)))

+ γ · tr (C(Z2,Z2)) + γ ·ME(C(Z1,Z1)) + Const.
(

Stop Gradient on Z1
===========⇒

)
= − tr

((
1

d
Id

)
log (C (Z1,Z2))

)
− γ · tr (C(Z1,Z1) log (C(Z2,Z2))) + γ · tr (C(Z2,Z2)) + Const.

(19)

From Equation 17 and 19, we find that they are essentially the same loss function when the stop gradient is performed.

C. Neural Collapse and Dimensional Collapse
Feature representations acquired through a deep neural network employing a cross-entropy (CE) loss optimized by stochastic
gradient descent, are capable of attaining zero loss (Du et al., 2018) with arbitrary label assignments (Zhang et al., 2021). A
phenomenon which known as neural collapse (NC) (Papyan et al., 2020) is observed when training of the neural network
continues beyond zero loss with CE. Galanti et al. (2021) demonstrate that the NC phenomenon can facilitate some transfer
learning tasks. However, potential concerns associated with neural collapse exist, as Ma et al. (2023) posit that the total
within-class features collapse may not be ideal for fine-grained classification tasks.

The NC phenomenon embodies the following characteristics (Zhu et al., 2021):

• Variability collapse: The intra-class variability of the final layer’s features collapse to zero, signifying that all the
features of a single class concentrate on the mean of these features for each class respectively.
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• Convergence to Simplex ETF: Once centered at their global mean, the class-means are simultaneously linearly separable
and maximally distant on a hypersphere. This results in the class-means forming a simplex equiangular tight frame
(ETF), a symmetrical structure determined by a set of points on a hypersphere that is maximally distant and equiangular
to each other.

• Convergence to self-duality: The linear classifiers, existing in the dual vector space of the class-means, converge to
their respective class-mean and also construct a simplex ETF.

• Simplification to Nearest Class-Center (NCC): The linear classifiers behaviors similarly to the nearest class-mean
decision rule.

Here we present the definition of standard K-Simplex ETF and general K-Simplex ETF (Papyan et al., 2020).

Definition C.1 (K-Simplex ETF). A standard Simplex ETF is characterized as a set of points in RK , defined by the columns
of

M =

√
K

K − 1

(
IK − 1

K
1K1⊤

K

)
,

where IK ∈ RK×K is the identity matrix, and 1K ∈ RK represents a all-one vector. Consequently, we also obtain

M⊤M = MM⊤ =
K

K − 1

(
IK − 1

K
1K1⊤

K

)
.

Definition C.2 (General K-Simplex ETF). A general Simplex ETF is characterized as a set of points in RK , defined by the
columns of

M̃ = αUM,

where α ∈ R+ is a scale factor, and U ∈ Rp×K (p ≥ K) is a partial orthogonal matrix U⊤U = I.

Zhu et al. (2021) further studied the problem using an unconstrained feature model that separates the topmost layers from
the classifier of the neural network. They established that the conventional cross-entropy loss with weight decay presents
a benign global landscape, where the only global minimizers are the Simplex ETFs and all other critical points are strict
saddles exhibiting negative curvature directions.

The study was later extended (Zhou et al., 2022), demonstrating through a global solution and landscape analysis that a
wide range of loss functions, including commonly used label smoothing (LS) and focal loss (FL), display Neural Collapse.
Therefore, all pertinent losses (i.e., CE, LS, FL, MSE) yield comparable features on training data.

D. Measuring Dimensional Collapse

(a) SimCLR (b) BYOL (c) Barlow Twins (d) SimSiam (collapsed w/o stop
gradient)

Figure 2. Visualization of feature representation for images in 5 different classes from CIFAR-100 dataset via t-SNE of various self-
supervised learning methods. We find that SimCLR has larger inter-class variability than others, as the clusters seem more separable. For
illustration, we also introduce a collapsed representation via SimSiam without stop gradient operation.

Papyan et al. (2020) discuss the fascinating occurrence of neural collapse during the training of a supervised neural network
utilizing cross-entropy loss for classification tasks that result in an intra-class collapse. Contrastive learning has effects of
dimensional collapse due to its spectral clustering nature (Tan et al., 2023b). As dimension-contrastive learning can be seen
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as pursuing uniformity, we are also interested in discovering the relationship between dimension-contrastive learning and
dimensional collapse.

Figure 2 illustrates that the non-contrastive method, Barlow Twins, exhibits greater intra-class variability than the contrastive
method, SimCLR. However, for larger samples and classes (e.g., Figure 4 in Appendix C), this observation is qualitative
explicit. To quantify this observation, we propose the introduction of metrics involving class-specific information to quantify
dimensional collapse. These measures may enhance our understanding of the differences among supervised learning,
contrastive, and non-contrastive SSL.

Assuming a total of K classes and n labeled samples {xi, yi}ni=1, denote the number of samples in each class c as nc, i.e.,
nc = |{i | yi = c}|. We define the intra-class effective rank and inter-class effective rank as follows.

Definition D.1 (Intra-class effective rank). Denote the class-mean vector of each class c as µc =
1
nc

∑
yi=c

f(xi), and denote

C(f(x) | y)) = 1
ny

∑
yi=y

(f(xi)− µy)(f(xi)− µy)
⊤. We define intra-class effective rank (intra-class erank) as

erankintra-class ≜
1

K

∑
y∈[K]

erank(C(f(x) | y))), (20)

which can be viewed as an empirical approximation of Ey∈[K] [erank(C(f(x) | y))], where x is drawn from pdata.

Definition D.2 (Inter-class effective rank). Denote global mean of representation as µG = 1
n

∑
i∈[n] f(xi), then we define

inter-class effective rank (inter-class erank) as the effective rank of the covariance matrix of all C class-mean vectors,

erankinter-class ≜ erank[
1

K

∑
i∈[K]

(µi − µG)(µi − µG)
⊤]. (21)

When class are balanced, intra-class erank is approximately erank(Cy∈[K](E[f(x) | y])), where x is drawn from pdata.

Remark. These two metrics can be interpreted as an effective rank factorization of the two terms in the total covariance
theorem.

(a) Intra-class erank on test
dataset

(b) Inter-class erank on test
dataset

Figure 3. Intra-class effective rank and inter-class effective rank. It is
obvious that intra-class effective rank continues to grow for BYOL
or Barlow Twins, but not for SimCLR.

From illustrative examples shown in Figure 3, we observe
that SimCLR, as a contrastive method, exhibits a consis-
tent decrease in intra-class effective rank during training.
This empirical evidence corroborates the spectral cluster-
ing interpretation of contrastive learning. On the contrary,
non-contrastive methods like BYOL and Barlow Twins,
owing to the inherent property of kernel-uniformity loss
(and its low-order Taylor approximations) tending towards
a uniform distribution, exhibit larger intra-class effective
ranks that continue to increase during training. Regarding
the inter-class effective rank, a metric for global class-
means effective rank, all three methods show a consistent
increase.

We now present some theoretical properties of effective rank and its connections to an equiangular tight frame (ETF). The
following theorem suggests that a larger effective rank of the Gram matrix is beneficial for expressiveness.

Theorem D.3 (Maximize effective rank forms a equiangular tight frame (ETF)). For K vectors zi (1 ≤ i ≤ K), each lying
on Sd−1. Assuming the latent dimension d satisfies d ≥ K and the mean of zi is 0, denote Z = [z1, · · · , zK ]. If the Gram
matrix Z⊤Z has an effective rank of K − 1, it implies the existence of an equiangular tight frame (ETF) in the orthonormal
span of zi. Conversely, the Gram matrix of any ETF has an effective rank of K − 1.

Proof. Since the mean vector is 0, the Gram matrix can have an effective rank of at most K − 1. By Property 1 in (Roy &
Vetterli, 2007), we deduce that the Gram matrix Z⊤Z has K − 1 equal eigenvalues and one eigenvalue equal to 0.
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The trace of the Gram matrix equals K because zi lies on Sd−1. Hence, the Gram matrix has K − 1 equal eigenvalues of
K

K−1 and one eigenvalue of 0. Therefore, the Gram matrix shares the same eigenvalues (spectrum) as K
K−1HK , where HK

is the centering matrix IK − 1
K1K1K

⊤.

Given the orthonormal standard form, there exists an orthonormal matrix Q ∈ RK×K such that Q⊤(Z⊤Z)Q = K
K−1HK .

According to Lemma 11 in Papyan et al. (2020), ZQ constitutes an ETF. As ZQ directly represents the orthonormal span of
Z’s column space, the conclusion follows.

Gram matrix plays a key role in connecting our metric with Section 6, i.e., understanding the rank-increasing phenomenon.

Theorem D.4. The effective rank of the total sample Gram matrix can be effectively estimated by batch.

Proof. Note scaling does not change effective rank. Change the order of Z⊤Z to ZZ⊤, then can rewrite self-correlation as
the empirical estimation of expected self-correlation by samples in a batch. This explains the estimation given by Zhuo et al.
(2023).

Interestingly, the following theorem connects our metrics with the Gram matrix.

Theorem D.5. Assuming the dataset is class-balanced and the global mean is 0, then the effective rank of the covariance
matrix of all K class-mean vectors is exactly the same as the effective rank of the Gram matrix.

Proof. As ZZ⊤ and Z⊤Z have the same non-zero eigenvalues, thus having the same effective rank.

D.1. Experiments on Dimensional Collapse

(a) SimCLR (b) BYOL (c) Barlow Twins (d) SimSiam (collapsed w/o stop
gradient)

Figure 4. Visualization of feature representation for images in 10 different classes from CIFAR-100 dataset via t-SNE of various self-
supervised learning methods. We find that in many categories, it is difficult to distinguish between two non-contrastive methods (BYOL,
Barlow Twins) and contrastive method (SimCLR) by t-SNE.

We measure dimensional collapse on various self-supervised learning methods, including SimCLR (Chen et al., 2020a),
BYOL (Grill et al., 2020), Barlow Twins (Zbontar et al., 2021) and SimSiam (Chen & He, 2021) with or without stop
gradient. We reproduce the above methods on the self-supervised learning task of CIFAR100 (Krizhevsky et al., 2009)
dataset, using the open source implementations (Tsai et al., 2021a; Hua, 2021) of the above methods tuned for CIFAR.
After pre-training, we use the saved checkpoints to evaluate the results of these methods on different metrics.

We calculate the intra-class and inter-class effective rank directly by definition, while for MCE, we shuffle the testing dataset,
import the data with 512 batch size, and finally output the average metrics of all batches.

We perform t-SNE (van der Maaten & Hinton, 2008) visualization on the last checkpoint of each method with the help
of scikit-learn (Pedregosa et al., 2011). We use the default t-SNE (van der Maaten & Hinton, 2008) parameter of scikit-
learn (Pedregosa et al., 2011) and select the first 5 or 10 categories from 100 categories in CIFAR-100 (Krizhevsky et al.,
2009) for visualization.
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