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Abstract
Due to the high cost of training DNN models,
how to protect the intellectual property of DNN
models, especially when the models are deployed
to users’ devices, is becoming an important topic.
One practical solution is to use Trusted Execu-
tion Environments (TEEs) and researchers have
proposed various model obfuscation solutions to
make full use of the high-security guarantee of
TEEs and the high performance of collocated
GPUs. In this paper, we first identify a com-
mon vulnerability, namely the fragility of ran-
domness, that is shared by existing TEE-based
model obfuscation solutions. This vulnerability
benefits model-stealing attacks and allows the ad-
versary to recover about 97% of the secret model.
To improve the security of TEE-shielded DNN
models, we further propose a new model obfus-
cation approach GROUPCOVER, which uses suffi-
cient randomization and mutual covering obfus-
cation to protect model weights. Experimental re-
sults demonstrate that GROUPCOVER can achieve
a comparable security level as the upper-bound
(black-box protection), which is remarkably over
3× compared with existing solutions. Besides,
GROUPCOVER introduces 19% overhead and neg-
ligible accuracy loss compared to model unpro-
tected scheme.

1. Introduction
With the evolution of deep learning techniques, machine
learning as a service (MLaaS), especially DNN-based ser-
vices, has become an important paradigm. Given that cloud-
based MLaaS has large latency and high instability, manu-
facturers prefer to deploy model inference services to edge
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devices. These edge devices are usually equipped with high-
performance accelerators such as GPUs, NPUs (Tan & Cao,
2022), etc. Deploying DNN to edge devices is particularly
prevalent in applications like autonomous driving (Hu et al.,
2019) and Internet of Things (IoT) monitoring (Hameed
et al., 2022). However, putting model weights onto edge
devices introduces a new threat to model owners: the un-
trusted device owners may steal the intellectual property of
DNN models (Sun et al., 2021; 2023; Zhang et al., 2024).

Existing solutions to protect on-device DNN models can
be categorized into two types: cryptographic solutions (Al-
Rubaie & Chang, 2019) and Trusted Execution Environment
(TEE)-based (Sagar & Keke, 2021) solutions. Both solu-
tions can be augmented by GPUs. Among the two solutions,
the TEE-based approach is more practical for real-world
applications with high-performance requirements because
it introduces acceptable computational overhead is less than
10× (Tramer & Boneh, 2019) and no accuracy loss. On
the contrary, cryptographic solutions introduce significant
overhead (up to 1000× (Ng & Chow, 2021)) and may cause
an accuracy drop. In this paper, we aim to further improve
TEE-based solutions.

Specifically, we focus on the model obfuscation technique
that can utilize both the security of TEE and the high-
performance of GPUs. The motivation for this technique is
to securely offload the inference of computation-intensive
layers (e.g. linear and convolutional layers) from TEE to
GPUs. For each layer, given the computation operands (in-
puts and layer weights), TEE first obfuscates the operands
and sends the obfuscated operands to the GPU. GPU com-
putes the obfuscated layer output, sends the output back
to TEE, and TEE recovers the authentic layer output. In
this way, the untrusted world outside TEE (e.g. OS and
GPU) can not directly access valuable model weights and
the model secrets are protected. Existing obfuscation tech-
niques include minimal split (Zhou et al., 2023; Hou et al.,
2021), weight scale (Shen et al., 2022) and matrix permuta-
tion (Sun et al., 2023).

We analyze the security of existing model obfuscation tech-
niques and find a common drawback: the fragility of ran-
domness, which is reflected in the fixed obfuscation strategy
and preserving partial statistical features. Due to this draw-
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back, the adversary can recover secret model weights from
the obfuscated model. For insufficient randomness, the ex-
isting defenses can be divided into two types. The first type
of defense only modifies a fixed small amount of model
weights (Zhou et al., 2023; Hou et al., 2021). However,
this fixed modification approach can result in an extreme
distribution of weight, making it easy to identify abnormal
model weights. The second type sets the convolution ker-
nel as the atom obfuscation unit and employs lightweight
randomization (e.g. shuffle and scale) to obfuscate mod-
els. Nevertheless, convolution kernels of both secret and
public models have similar statistical distributions, making
obfuscated weights leak partial secrets.

As proof of concept attack, we evaluate the security of ex-
isting model obfuscation solutions under a practical threat
model. The adversary’s goal is to use statistical analysis
to disclose the model obfuscation mechanism and try to
recover the secret model. Following prior work (Zhang
et al., 2024), the adversary can access the public pre-trained
models and datasets. We find that for prior model obfus-
cation schemes (Zhou et al., 2023; Hou et al., 2021; Sun
et al., 2023; Shen et al., 2022), the adversary can recover
an average of 97% of the secret models’ functionality. The
attack performance is similar to the no-shield baseline.

To improve the security of model obfuscation solutions, we
further propose a new efficient defense scheme, GROUP-
COVER. GROUPCOVER consists of two insights: suffi-
cient randomization strategy and mutual covering obfus-
cation. Both of them aim to fully randomize the DNN’s
weight distribution so that the features between the original
model weights and obfuscated weights are indistinguish-
able. GROUPCOVER first reversely clusters the convolution
kernels and then selects a random linear combination of
kernels as obfuscation noise. Compared with prior model
obfuscation techniques, this approach introduces sufficient
randomness to prevent unusual distribution patterns while
introducing negligible overhead.

We evaluate the performance of GROUPCOVER with prior
model obfuscation techniques under the same adversary that
analyzes the statistical difference of model weights. Ex-
perimental results show that GROUPCOVER is 3× more
effective than other obfuscation schemes. GROUPCOVER
achieves a similar defense level as the security upper bound
(the black-box defense). As to the cost, compared with
model IP unprotected scheme, GROUPCOVER only intro-
duces less than 19% computational overhead and about
0.01% accuracy loss. Since preprocessing of GROUP-
COVER is lightweight and involves only addition and sub-
traction operations, GROUPCOVER is scalable to large CNN
models with different architectures.

The contributions of this paper are as follows:

• We reveal a key vulnerability, the fragility of random-
ness, in existing model obfuscation schemes. Under a
practical threat model, this vulnerability allows the at-
tacker to recover 97% of the obfuscated model weights
by carefully analyzing the statistical distribution of
model weights.

• To mitigate this security risk, we propose a new model
obfuscation scheme, GROUPCOVER, that uses suffi-
cient randomization and mutual covering obfuscation
to protect model IP.

• Experimental results and theoretical analysis demon-
strate that GROUPCOVER improves the defense ef-
fectiveness by 3× to the same security level of
upper-bound protection (black-box defense). Besides,
GROUPCOVER only introduces less than 19% compu-
tation overhead and negligible accuracy loss.

2. Related Work
2.1. Secure GPU-Outsourcing Inference Scheme

Privacy-preserving model inference is a rapidly emerging
area of research. Researchers aim to securely outsource
resource-intensive operations to untrusted hardware accel-
erators, aligning with industrial practices in the real world.
For example, (Ng & Chow, 2021) uses cryptographic meth-
ods to achieve secure inference on the CIFAR-100 dataset
using VGG16 in 0.4 seconds, with an accuracy rate of 73%.
(Yousefpour et al., 2021) uses differential privacy (DP) to
protect input data’s privacy. However, these approaches of-
ten result in a significant loss of accuracy and fail to balance
security and efficiency. Similarly, the TEE-shield approach,
represented by TEESlice (Zhang et al., 2024) which also
re-trains models, provides full model and privacy protec-
tion, but at an inference speed that is 4-6 times slower than
pure GPU implementations. Some hardware-assisted solu-
tions (Chakraborty et al., 2020; Alam et al., 2022) achieve
higher efficiency while protecting model IP, but they intro-
duce more attack surfaces compared to TEE-based schemes,

Table 1. Comparison of Secure Outsourcing Inference Scheme.
Acc., Eff., Sec. are acronym for accuracy, efficiency, and security.

Scheme Method Acc. Eff. Data Sec. Model Sec. Pre-cost

GForce MPC

Opacus DP

TEESlice TEE

HPNN HW

Ours TEE
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thereby reducing their security protection. The performance
of these work is presented in Table 1, where stands for
best.

2.2. TEE-shield Outsourcing Inference Scheme

TEE-based secure inference solutions achieve a better bal-
ance between security and efficiency. TEE provides a secure
enclave ensuring the trusted execution of remote programs.
Various TEE products, proposed and upgraded by different
hardware manufacturers, are now widely applied. In terms
of inference efficiency, the substantial computational over-
head within TEE demands GPU acceleration. However, as
GPUs fall outside the Trusted Computing Base (TCB), the
data transferred to GPU is untrustworthy. The key research
objective is to reconcile this conflict by securely offloading
data to GPU for intensive computation.

Slalom (Tramer & Boneh, 2019) is the first scheme to
use GPU acceleration for secure TEE-based inference. It
is observed that linear operations account for over 95%
of the model inference process, therefore offloading lin-
ear computations to GPU in a secure manner can signif-
icantly speed up inference. In a basic linear operation
of the form y = Wx + b, if the input to the GPU is
transformed as x′ → (x + r), the GPU output becomes
y′ = Wx′+ b = Wx+ b+Wr = y+Wr. Relying on the
security properties of one-time padding, both the input and
output of the GPU are masked. TEE only needs to compute
the noise Wr offline to safely use GPU power for the most
burdensome computations. Subsequently, Goten (Ng et al.,
2021) and Darknight explored other homomorphic trans-
formations, such as MPC, which enhance in either security
or functionality. However, the above schemes ignore the
privacy of model parameters, as models are still offloaded
to GPU in plaintext.

Table 2. On-device inference scheme using TEE shield and GPU
acceleration. Those in bold are the target of the attack.

Literature Obfuscation Strategy
Slalom, ICLR 19

(Tramer & Boneh, 2019)
Model IP unprotected

Darknight, MICRO 21
(Mo et al., 2020)

Model IP unprotected

Magnitude, TDSC 22
(Hou et al., 2021)

Obfuscate the largest weights

NNSplitter, ICML 23
(Zhou et al., 2023)

Modify minimum weights
by reinforcement learning

SOTER, ATC 22
(Shen et al., 2022)

Shuffle and scale weights

ShadowNet, S&P 23
(Sun et al., 2023)

Shuffle, scale and
add limited noise

2.3. TEE-shield Schemes Focus on Model IP Protection

To protect the model IP, researchers have improved these
frameworks by introducing model obfuscation techniques,
which are highlighted in bold in Table 2. By obfuscating the
model parameters offloaded to GPU, the inference accuracy
using the obfuscated model is significantly reduced. The
general idea of these approaches is to recover the correct
output using recovery parameters within TEE for model
inference. All of these schemes introduce adversaries exe-
cuting black-box attacks to assess the protection of model
parameters. Experiments with norm clipping and fine-tuning
attacks are also alternatively included. However, they miss
considering the security of the obfuscation strategy, lacking
this critical consideration in their design.

3. Evaluation of Existing Obfuscate Scheme
3.1. Threat Model

Adversary’s Goal. The sole goal of the adversary is to
steal model IP. For model parameters obfuscated and loaded
onto GPU, the adversary aims to reverse the obfuscation
and train an surrogate model under limited budgets. This
model, sharing the same architecture as the secret model,
seeks to achieve similar performance on the same tasks as
the secret model.

Adversary Capabilities. Firstly, similar to (Orekondy et al.,
2019), the adversary is allowed to perform limited correct
inferences which is around 50 queries per class. Then, the
adversary, acting as a high-level administrator, can access
all non-secure information, like GPU memory and PCIe
communication (Markettos et al., 2019). They also have
knowledge about the model’s task, architecture, and public
pre-trained parameters, enabling them to adaptively conduct
attacks. Finally, like similar approaches Table 2, we do not
encompass security challenges specific to TEEs, such as
side-channel attacks.

3.2. Privacy Leakage Analysis

Based on our observation, we identify a common issue with
existing obfuscation approach: the fragility of randomness,
which leads to model privacy leakage. We will delve into it
in the following section.

Schemes Modifying Minimal Weights. Schemes (Hou
et al., 2021; Zhou et al., 2023) are based on the empirical
understanding that in machine learning, larger weights have
a more significant impact on model predictions. Magnitude
following this principle, modifies the largest weights. It
replaces the top 1% of weights with random numbers, and
restores them within the TEE. NNSplitter comes with a sim-
ilar idea, but it obfuscates a minimal set of crucial weights,
about 0.002% of parameters, by employing reinforcement
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learning. The detailed method is shown in Appendix A.

These schemes attain effectiveness and stealthiness with
minimal modifications, but consistently show a post-
obfuscation trait: an anomalous distribution of large weight
parameters. Theoretically, this stems from the static, non-
random of the obfuscation method, driving the network’s
obfuscated outcome toward the ‘optimal’: predominantly
converting original weights into the largest ones. In our
replication of the NNSplitter across different settings, we ob-
serve a clustering of modified weights near 0.5max(wi), as
illustrated in the Figure 1. This distinct parameter anomaly
enable the identification of aberrant weight behavior. Iden-
tifying weights within this anomalous range highlights a
potential security risk in these schemes. By eliminating the
anomalous intervals, an intermediate model very similar to
the secret model can be obtained.

Inspiration 1. Fixed-strategy obfuscation results in dis-
tributional anomalies, making secret model recovery eas-
ier through strategy reversal. This indicates the necessity
of employing random strategy in obfuscation.

Figure 1. Weight distribution histogram of NNSplitter. The red
line indicates top = w/max(w) and the model accuracy acc.

Schemes to Completely Disrupt the Parameters. These
schemes (Shen et al., 2022; Sun et al., 2023) focus on in-
troducing minimal extra computation to thoroughly ran-
domize model parameter distribution. Let’s represent con-
volution filters as W = [w1, · · · , wn], where the convo-
lution kernel wi is the operational unit. Specifically, they
seek reversible homomorphic transformations fo such that
fo(W )x = fo(Wx) = fo(y). Thus, correct inputs y can
be recovered in TEE using fo−1. The obfuscation methods
of SOTER and ShadowNet are illustrated in Appendix B.

These schemes fundamentally adhere to the same encryp-
tion paradigm, employing scaling and shuffling techniques
on each convolution kernel wi. Note that the smallest opera-
tional unit is wi, which shows the atomicity of convolution
kernels. However, the effectiveness of scaling and shuf-
fling in truly randomizing model parameter distributions is
questionable. We select ImageNet (Deng et al., 2009) as
the publicly available pretrained model, with the settings
of the secret model displayed at the top of Figure 2. The
results show a high cosine similarity distance between pre-
trained and secret models, indicating a near-perfect match
in the shuffled convolution kernel indices across various net-

works. As depicted in Figure 2, the dimensionality-reduced
(Van der Maaten & Hinton, 2008) weights of both networks
are presented, with lines marking correct matches. Crucially,
most layers allowed tracing back to the original indices be-
fore shuffling using publicly available pretrained weights.

Inspiration 2. Efficiency dictates convolution kernels
as the atomic obfuscation units, while security neces-
sitates disrupting each kernel’s distribution. Therefore,
mutual covering kernels rather than individually alter-
ing them optimally balances security and efficiency.

Figure 2. The similarity between convolution filters of obfuscated
model and public model under t-SNE dimensionality reduction.

3.3. Attack Settings

To evaluate the security risks of prior schemes, we use three
datasets STL10 (S10), CIFAR10 (C10), CIFAR100 (C100)
and four model architectures AlexNet, ResNet18, ResNet50,
VGG16), aligning with previous studies. We assume models
trained on specific datasets as secret models. ImageNet is
chosen for similar tasks as the pretrained model, which is
accessible from internet as public models. We replicate
obfuscation methods from schemes NNSplitter (Zhou et al.,
2023), Magnitude (Hou et al., 2021), SOTER (Shen et al.,
2022) and ShadowNet (Sun et al., 2023) to generate the
obfuscated models locally. The detailed replication settings
are shown in Appendix C.

Training ①

Secret Models Surrogate Models

Obfuscation ② Partial Recovery Models

≈

Trusted World Adversary World

Similarity
Leakage

Similarity
Leakage

Strategy
Leakage
Strategy
Leakage

Obfuscated
Models

Public
Models

① ②

Reverse Exclude

Train from Query

Malicious
Entity

Figure 3. Attack pipeline.
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Table 3. The attack results on NNSplitter, Magnitude, SOTER, and ShadowNet, are contrasted with two comparative baselines, No-shield
and Black-box. The result acc1 → acc2 indicates the accuracy improvement attributed to the attack.

NNSplitter Magnitude SOTER ShadowNet No-shield Black-box Ours

AlexNet
C10 10.0%→81.4% 10.4%→70.3% 40.1%→74.2% 9.4%→58.1% 84.0% 17.1% 11.7%→17.3%

C100 1.3%→56.0% 2.0%→46.5% 5.1%→51.5% 0.9%→42.6% 56.3% 21.2% 1.0%→24.4%
S10 10.0%→75.5% 10.5%→55.4% 24.6%→55.1% 8.9%→59.4% 75.4% 32.1% 9.5%→43.6%

ResNet18
C10 10.0%→93.2% 10.5%→85.4% 37.5%→89.8% 11.1%→90.5% 94.5% 30.0% 10.7%→27.0%

C100 1.0%→76.7% 0.9%→77.0% 6.0%→76.1% 0.9%→77.0% 79.6% 25.0% 1.1%→18.6%
S10 10.0%→82.6% 10.4%→81.6% 18.5%→75.6% 9.0%→68.2% 83.1% 28.2% 9.2%→29.9%

ResNet50
C10 12.6%→91.2% 8.6%→85.4% 10.7%→89.8% 10.2%→90.9% 94.8% 24.9% 10.0%→26.5%

C100 1.9%→77.5% 1.0%→80.4% 9.6%→78.6% 1.0%→77.6% 82.3% 17.9% 1.0%→20.8%
S10 10.0%→85.2% 10.6%→85.0% 16.7%→78.2% 10.7%→78.4% 85.3% 26.0% 10.0%→30.3%

VGG16
C10 10.0%→90.8% 9.2%→86.2% 10.2%→87.9% 9.3%→89.1% 93.3% 39.8% 10.2%→31.2%

C100 7.4%→68.9% 1.2%→69.1% 5.4%→69.3% 1.2%→70.0% 73.4% 18.9% 0.8%→24.0%
S10 10.0%→90.5% 10.5%→89.2% 11.9%→82.2% 11.2%→84.2% 90.5% 32.7% 9.8%→28.4%

Average 3.09× 2.91× 2.90× 2.82× 3.16× 1.00× 1.03×

3.4. Attack Pipeline

We construct a comprehensive attack pipeline to evaluate
the security risks of current model obfuscation schemes to
validate the theoretical analysis of their privacy leakages.
Overall, our attack pipeline is depicted in Figure 3. We
train the victim secret models on public pretrained mod-
els, using the obfuscated models as targets for the attack.
The adversary first conducts adaptive statistical analysis to
deduce the obfuscation method, then attempts to reverse
the obfuscation. After roughly eliminating the randomness
introduced by obfuscation, the adversary trains the interme-
diate model by queries. Following the design of (Orekondy
et al., 2019), we allow the adversary an attack budget of 50
queries per class, using these 50 sample images and label
results to retrain the partial recovery model. For specific
datasets such as C100, the adversary has access to 5000
training images, which means we implies a considerable
computational budget for the adversary.

The key step in our attack pipeline is the reverse obfus-
cation based on theoretical analysis. For NNSplitter and
Magnitude, we locate the anomalous intervals using the
statistical analysis. By adaptively adjusting the range of
these intervals, we precisely identify the modified sections
and replace their parameters with those from the publicly
available pretrained model. For SOTER and ShadowNet,
we use cosine similarity to find the correct convolution ker-
nel indices. Based on the obtained indices, the convolution
kernels are arranged to reverse shuffle operation in obfusca-
tion appoach. Then we adaptively remeasure the size of the
kernels. In fact, it’s not necessary to restore the exact kernel
size. Using the corresponding kernel values from a public
model as a reference, we rescale the obfuscated weights to
intervals of 0.1 in the range [0, 1], aligning them closely
with the averages of the public model, thereby achieving
high attack accuracy.

3.5. Result Analysis

The attack outcomes are detailed in Table 3. The perfor-
mance against unprotected secret models, labeled as No-
shield, simultaneously reflects their inference accuracy. For
a baseline comparison, we integrate passive black-box at-
tacks (Orekondy et al., 2019). The original obfuscated
models’ inference accuracy is close to random guessing.
When introducing adversaries using our attack pipeline, the
obfuscated models are partially restored, with final attack
outcomes approaching the secret model’s output. The fi-
nal attack efficacy for the four types of schemes is 2.91×,
3.09×, 2.82×, and 2.9× that of the black-box baseline. No-
tably, for the minimally modifying NNSplitter scheme, few
abnormal weights are removed, resulting in the highest at-
tack quality at 97.8% of the no-shield accuracy. Conversely,
ShadowNet, which completely disrupts kernel scale and
arrangement, allow us to only roughly eliminate introduced
randomness based on existing privacy leak aspects, resulting
in a final attack effect at 91.8% of the original model.

Key observation. Pursuing optimal obfuscation creates
significant statistical anomalies. Preserving convolu-
tion kernels’ atomicity for efficiency allows reverse of
obfuscation through similarity with publicly available
model kernels. A thorough obfuscation approach must
be designed to address these security risks.

4. Our Proposed Scheme: GROUPCOVER

Aligned with prior research, our scheme is crafted to achieve
security, efficiency and scalability. These key aspects will
define our paper’s design objectives, guiding the detailed
development of our approach.
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Figure 4. The process of GROUPCOVER.

4.1. Overall Process

The GROUPCOVER framework consists of two phases: of-
fline preprocessing and online inference. As illustrated in
Figure 4, the offline preprocessing takes secret model as
input and randomly obfuscates its parameters without any
input knowledge or fixed strategy, resulting in an obfus-
cated model whose inference accuracy is close to random
guessing. The random numbers generated in this process
are strictly confined within the TEE and protected by its
security properties. During the online inference stage, the
GPU performs computations on the obfuscated model, and
the output is reconstructed in the TEE. This reconstruction
relies entirely on the fixed random numbers from the pre-
processing phase and the one-time padding generated for
each prediction.

Algorithm 1 Inverse Clustering Vectors
Input: a layer of convolution kernels for secret model V =
[w1, · · · , wn]; the group size g.
Output: the inverse clusters: group = [{w1

1, · · · , w1
g}, · · · ,

{wj
1, · · · , wj

g}, · · · , {w
n/g
1 , · · · , wn/g}].

Init cosine similarity matrix csm of dimension (n, n).
while g > 1 do
g = g % 2
for each wi,wj in V do

Compute cosine similarity for wi and wj

Assign the result to csm[i, j]
end for
Sort index by mean of csm columns to get indices
Initialize pairs and tmp lists
for each i in indices do

Find j s.t. minimize distance between (V [i], V [j])
Concatenate(group[i], group[j]), add to tmp list
Calculate mean(V [i], V [j]), add to pairs list
Set csm[i, :], csm[j, :], csm[i, :], csm[:, j] to be inf
Remove i, j in indices

end for
Update V with pairs list and group with tmp list

end while

4.2. Preprocessing Phase

Most linear operations can satisfy homomorphic proper-
ties within convolutional layers. We describe a convolu-

tional layer as Y = Conv(W,X), where Y and X repre-
sent the output and input of the layer. Meanwhile, W =
[w1, · · · , wn] where n is the size of the output channel. For
a multiplication and addition operation fo, the transformed
weights W satisfy Conv(fo(W ), X) = fo(Y ) = Y ′, and
in the TEE, using fo−1

(Y ′) restores the original output.

Followed the inspirations above, our goal is to disrupt the sta-
tistical distribution of atomic kernels cost-effectively, while
confining operations to the convolution kernel level. The
safest strategy would be random combination of all convolu-
tion kernels, equivalent to multiplying an n× n matrix with
the weight W . However, this approach entails an O(n3)
computational cost, impractical for efficiency-oriented in-
ference schemes. Therefore, we propose a cost-effective
obfuscation strategy that disguises individual atomic ker-
nel features. We begin with a reverse clustering algorithm,
grouping g vectors in W with the greatest cosine similar-
ity distance, followed by inter-kernel covering within these
clusters. This approach is intuitively motivated by the fact
that two points with the greatest cosine similarity distance
are easily distinguishable through statistical analysis. There-
fore, clustering and obfuscating using points with the most
disparate distributions can drive all kernels towards random
distribution.

Our reverse clustering algorithm is detailed in Algo-
rithm 1. Let the reverse clustering result for each convo-
lutional layer be denoted as group = [{w1

1, · · ·, w1
g}, · · ·,

{wi
1, · · ·, wi

g}, · · ·, {w
n/g
1 , · · ·, wn/g

g }]. Considering that out-
put channels are usually aligned with powers of two and rec-
ognizing that smaller groupings facilitate more effective ob-
fuscation, our scheme defaultly sets the grouping parameter
g = 4. For each group {wi

1, w
i
2, w

i
3, w

i
4}, we randomly se-

lect a transformation matrix composed of four linearly inde-
pendent vectors A = [a(1), · · · ,a(4)] to randomly combine
vectors within the cluster, where a(i) = {a(i)1 , · · · , a(i)4 }.
The obfuscated result for an individual convolution kernel is
w′

j
i = a(j)[wi

1, w
i
2, w

i
3, w

i
4]

T = a
(j)
1 wi

1+a
(j)
2 wi

2+a
(j)
3 wi

3+

a
(j)
4 wi

4. Similarly, other kernels within the same group cover
each other as [w′i

1 , w
′i
2 , w

′i
3 , w

′i
4 ]

T = A · [wi
1, w

i
2, w

i
3, w

i
4]

T .
For a layer’s weight matrix W , let index(wi

j) to be the in-
dex of wi

j in W . We replace the vector of index(wi
j) with

w′
j
i, and the final obfuscated model W ′ is the outcome of

vector-by-vector replacement.

Within each cluster group, the convolution kernels mutually
obfuscate each other’s statistical feature. We employ a
shuffle method, resulting in the obfuscated weight matrix
W ′ = PπW

′, where Pπ is an n×n matrix, with Pπ(i, j) =
1 if π(i) = j, and 0 otherwise.

We visualize the preprocess process in Figure 5, depicting a
t-SNE reduction (Van der Maaten & Hinton, 2008) of the
first layer convolution kernels to a two-dimensional plane.
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The red points represent the secret model, and the blue
points represent the public pretrained model. For clarity, we
focus on 16 kernels. The left subfigure shows grey lines
connecting kernels of matching indices, demonstrating their
similar distribution in both models. The farthest four kernels
are chosen through reverse clustering, as shown in middle
subfigure, where red lines indicate a cluster. After linear
combination and shuffling, the original indices become un-
recognisable, as shown in right subfigure. This disruption
completely obscures the statistical features of the kernels.

Figure 5. Visualisation of the pre-processing process.

4.3. Inference Phase

The main objective of online inference is to accurately recon-
struct outputs within the TEE. For this purpose, we divide
the entire inference process into several offload layers, each
bounded by a linear layer. The computationally intensive
linear operations are securely offloaded to the GPU, while
lighter non-linear and other operations are performed within
the TEE. Here, we expand the flow of a single offload layer.

For our linear obfuscation method fo, it satisfies Y ′ =
fo(Y ) = Conv(W ′, X). Specifically, for a cluster group
of four output channels, the corresponding output results
can be represented as Equation (1), where A is the restore
parameters generated in preprocessing phase.

y′i
1

y′i
2

y′i
3

y′i
4

 = Pπ


Conv(wi

1, X)
Conv(wi

2, X)
Conv(wi

3, X)
Conv(wi

4, X)

 = PπA


yi
1

yi
2

yi
3

yi
4

 (1)

It’s straightforward to deduce that fo−1([y′i1 , y
′i
2 , y

′i
3 , y

′i
4 ]

T )
= A−1P−1

π [yi1, y
i
2, y

i
3, y

i
4]

T . Similarly, for outputs of batch
size Y , fo−1

(Conv(W ′, X))=Y remains valid. For each
layer’s input X , the TEE masks it as X ′ = X + R,
where R is a one-time padding equal in size to X , and
the noise Conv(W ′, R) is precomputed offline. As GPU re-
ceives the obfuscated model W ′ and encrypted data X ′,
it performs the computationally heavy linear operation
Y ′ = Conv(W ′, X ′) = Conv(W ′, X) + Conv(W ′, R).
Upon receiving Y ′, the TEE first verifies its integrity us-
ing Freivalds’ algorithm as described in (Tramer & Boneh,
2019). The TEE then removes the mask Conv(W ′, R) and
applies fo−1 to revert Conv(W ′, X). This process ulti-
mately restores the correct output Y within the TEE. In

Table 4. The program process of GROUPCOVER.

Data: input X , secret weight W = [w1, · · · , wn], output Y
Operation: random permute Pπ , convolution Conv(W,X)

Preprocessing Phase:
Find inverse clusters V . For each group [w1, w2, w3, w4]

∈ V , w′
i =

∑4
1 a

i
jwj , where {ai} are linearly independent.

Shuffle weight matrix. Rearrange W into W ′ = PπW .
Generate noise offline. Compute M = Conv(W ′, R).

Inference Phase:
Mask input X ′ = X +R. For each R, M is available.
Offload Conv in GPU. Sends X ′ to GPU, receive the result
Y ′ = Conv(W ′, X ′) = fo(Y ) +M .
Restore output Y in TEE. Check the integrity and compute
Y = fo−1(Y ′ −M). Use Y to generate the next input.

summary, the program process of GROUPCOVER, including
both the preprocessing and inference phases, is presented in
Table 4.

5. Analysis and Experiments
5.1. Security Analysis

The core security threats faced in GPU-accelerated TEE-
based inference schemes are twofold, which are from ob-
fuscation approach and offload data in each queries. For
the former, we assess GROUPCOVER using the same attack
outlined in Section 3, and use statistical analysis to illustrate
why GROUPCOVER possesses superior security properties.
For the latter, we illustrate the robustness of the random
numbers our approach relies on.

Close to Black-box. With regard to the paramount aspect of
security, we evaluated the protective capabilities of GROUP-
COVER on the same attack pipeline. The attack results,
presented in Table 3, show that our scheme’s effectiveness
against these attacks is around 3× of other schemes, which
is close to the black-box baseline. Furthermore, to thor-
oughly discuss the security resilience of GROUPCOVER and
black-box defense schemes, we conducted attack experi-
ments under varying budgets (10, 25, 50, 150, 200, 250,
300 per class). In the same CIFAR100 task, there were no
significant differences in the performance of GROUPCOVER
and black-box defense schemes across different networks,
as shown as Figure 6. Utilizing the Wilcoxon signed-rank
test (Wilcoxon, 1992), we find the confidence level of the
difference statistic between the two types of schemes to be
p = 0.10. Statistically, this implies that there is no sig-
nificant difference between GROUPCOVER and black-box
defense schemes.
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Figure 6. Attack defense performance under different budgets be-
tween Black-box scheme and GROUPCOVER.
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Figure 7. The minimum coefficient of variability in each small
interval and similarity rate of convolution kernels between public
models and obfuscated models.

No Anomalous Intervals Detected. In machine learning
training, distribution density function of weights is generally
smooth (Tsuchida et al., 2018). However, clipping methods
such as those used in NNSplitter can produce discrete distri-
butions within small intervals. To quantify the dispersion at
each small interval, we use the coefficient of variability (CV)
, which indicates the degree of data dispersion. Compared
with the minimum CV results of our scheme and NNSplitter
in the left of Figure 7, extremely low CV values indicate
that data clusters at a fixed value. This empirical evidence
suggests that NNSplitter exhibits dimensional disparities
with public models, allowing identification and exclusion of
abnormally intervals by norm clipping. In contrast, GROUP-
COVER maintains consistency in the smallest interval values
with public models, thus avoiding similar privacy leakage.

Low Similarity Rate. To verify that we have successfully
obscured the statistical distribution of the atomic kernel, we
use the same reverse methodology as in our attack pipeline
to assess the security of the obfuscated model. Specifically,
the convolution kernels are extracted from each layer of
the obfuscated model. Their cosine similarity with corre-
sponding parameters in the public model is computed to
restore the indices prior to shuffling. For our scheme, the
similarity match threshold is relaxed to include hits within
the same cluster group. The right subfigure of Figure 7
shows the results from the first ten rounds under different
network architectures. It is clear that SOTER’s obfuscation
results could be easily reversed due to the preservation of
the atomic kernels’ distribution. In contrast, our scheme ef-
fectively mask the distribution of atomic kernels by covering
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Figure 8. Inference time overhead for each layer under AlexNet.
The solid line represents the cost of the representative scheme,
while the shadows represent the distribution across all queries.

the most dissimilar convolution kernels. The success rate
of adversaries using the public model to find the original
groupings is lower than random guessing.

Completely Obscured by Random. During the inference
process, data within the untrusted GPU, specifically W ′

and X ′ for each linear layer, is not TEE protected. We
establish that statistical methods cannot reverse our obfus-
cation, which means GPU adversaries being limited to infer
W from Y = Conv(W,x) and X . For limited queries
Q, we use a random quantity Q × size(X) in each layer
for masking, equal to one-time padding, and its security
is theoretically absolute with the seed stored in the secure
TEE. This provides masking randomness for unlimited de-
vice queries that is equivalent to GPU-TEE communication,
adheres to TEE encryption principles, and protects against
GPU adversaries inferring model parameters.

5.2. Efficiency

The key challenge in the implementation was bridging com-
munication between the TEE and the GPU, as the TEE
theoretically does not trust the device. Our solution was to
establish communication between the 8-core trusted VM and
the RTX3070 through network interface, utilizing Torch’s
distributed RPC framework to manage the inference logic.
We validate the efficiency of GROUPCOVER from two per-
spectives: performance in each layer and overall throughput,
and details of configuration are given in Appendix D.

Offload Overhead. To illustrate the differences in effi-
ciency overhead, we present the layer-by-layer offload costs
under AlexNet in Figure 8. Since the inverse homomorphic
operation of GROUPCOVER, like Slalom, is O(n) in com-
putational complexity, our performance overhead is largely
consistent with Slalom. For example, in the middle con-
volutional layers, the overhead of GROUPCOVER differs
from Slalom by only 0.27ms, while Darknight is 1.19ms
higher. Overall, GROUPCOVER achieve model IP protection
without introducing excessive overhead.
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Table 5. Throughput(samples/sec) comparison and performance
analysis. ”No Sec.” refers to execution entirely on the GPU.

Dataset
No Sec. Slalom GroupCover

Thp. Thp. Thp. CPU GPU Transfer

C100 15118 5556 4465 0.47s 0.23s 1.54s
C10 15147 5670 4437 0.46s 0.23s 1.56s
S10 9241 4383 3699 0.56s 0.21s 1.39s

Average 2.53x 1x 0.81x 22.6% 10.1% 67.3%

Throughput. For confirmation that our conclusions are
efficient, we perform throughput tests on different datasets
and present the results in Table 5. In the same experimen-
tal environment, we test entirely GPU inference without
TEE participation, the no-shield Slalom scheme, and our
GROUPCOVER. In AlexNet model, our throughput achieves
32% of the pure GPU inference, with a loss of less than
19% compared to Slalom. This demonstrates that on edge
devices, our scheme can fully exploit the capabilities of the
accelerator, meeting real-time inference requirements while
providing additional protection for model parameters.

Performance Analysis. We evaluated the inference perfor-
mance on the entire test dataset, as shown in Table 5. Note
that the transfer time includes only the communication time
from the TEE to the GPU via the network interface. Dur-
ing inference, our GROUPCOVER incurs significantly more
data transmission, resulting in substantial overheads that
account for 67.3% of the execution time. Additionally, extra
memory copying and data transfer introduce further compu-
tational overhead to the CPU. Employing a more efficient
communication method between the TEE and GPU would
substantially improve the throughput of GROUPCOVER.

5.3. Scalability

Our obfuscation scheme is designed for adaptive use within
GPU-accelerated TEE-based inference frameworks. Main-
taining prediction accuracy is crucial, so retraining or fine-
tuning the secret model is generally unacceptable, with
minimal loss in accuracy during online inference. Due to
TEE’s need for periodic destruction of programs and data,
cost-effective local preprocessing is essential to generate
new obfuscated models. Our implementation is also flexible,
which indicates significant potential for GROUPCOVER.

Accuracy. By ensuring that each cluster’s linear transforma-
tion matrix A in GROUPCOVER is invertible, the inference
process theoretically incurs no loss in accuracy. However,
numerical errors may arise in practical computations. We
provide GROUPCOVER’s accuracy performance across dif-
ferent datasets and network architectures in Table 6. The av-
erage loss is a mere 0.013%, indicating that GROUPCOVER
maintains the initial performance of the secret model and is
suitable for various fields where high accuracy is essential.

Table 6. The inference accuracy comparison.

Dataset
No-shield GROUPCOVER

Average
LossAlexNet VGG16 AlexNet VGG16

C100 56.31% 73.45% 56.23% 73.46% -0.07%
C10 83.96% 93.29% 83.99% 93.27% +0.01%
S10 75.36% 90.53% 75.34% 90.53% -0.02%

Preprocessing Cost. To demonstrate GROUPCOVER’s re-
markably low preprocessing cost, we first compare it with
other model IP protection schemes. It’s important to note
that leading approaches in this area typically require alter-
ing the network’s structure or properties to achieve higher
security or accuracy. For instance, cryptography and differ-
ential privacy-based methods necessitate model retraining.
For vertical comparison, the TEESlice scheme requires re-
training, while NNSplitter uses reinforcement learning for
obfuscation, with an average time cost of 5 hours per device.
In contrast to these intensive pre-processing steps, GROUP-
COVER takes only a few seconds to obfuscate a model,
showing a significant advantage in low pre-processing cost.

Implementation. Our RPC-based implementation enables
GROUPCOVER to be applied in distributed scenarios. En-
hancing communication between TEE and GPU, coupled
with system-level optimizations, can substantially accelerate
GROUPCOVER’s inference efficiency. These improvements
suggest that GROUPCOVER has the potential for large-scale
secure inference applications.

6. Conclusion
We assess existing GPU-accelerated TEE-shield schemes
for protecting model IP and identify privacy leakage issues
in their model obfuscation methods. Exploiting these vul-
nerabilities, we design a statistical analysis-based model
stealing attack, achieving 3× of the accuracy compared to
black-box baseline. This inspires to the security design of
GROUPCOVER, focusing on sufficiently random obfusca-
tion strategies and mutual covering of model parameters.
Under similar attacks, GROUPCOVER achieves defense ca-
pabilities close to black-box schemes (1.03×) while intro-
ducing moderate computational overhead (19%). Compared
to similar schemes requiring model structural modifications,
GROUPCOVER maintains inference accuracy and has mini-
mal preprocessing time, offering the promising scalability.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Detailed Obfuscation Methods of
NNsplitter and Magnitude

NNSplitter (Zhou et al., 2023) employs a reinforcement
learning approach to find an optimized obfuscation strategy.
They define ‘stealthiness’ as making minimal modifications
to the weights. To achieve this, they introduce an RL-based
controller targeting the most crucial weights. With a loss
function defined as L and the changes of weight as ∆W,
their fixed optimization strategy can be described as:

min
∆W′

L(∆W′) = −LM
(
f
(
x;W +∆W′) ,y)+ λ

∥∥∆W′∥∥
0

s.t. α ∗min{wi} ≤ wi +∆w′
i ≤ β ∗max{wi},

where f denotes the functionality of the DNN model M,
x is the training samples with y being the corresponding
labels, and λ controls the sparsity of weight changes.

Depending on the network and hyper-parameters, the
NNSplitter agent gradually reduces the number of convolu-
tion kernels to be modified. It alters parameters within the
range of [c± ϵ], where c, ϵ is the hyper-parameters, to the
interval [α · min(wi), β · max(wi)], thus minimizing the
obfuscated model’s accuracy.

Algorithm 2 Secure Versions Generation
1: Input: W = {W1, · · · ,WL}; p.
2: Output: W and r = {r1, · · · , rL}.
3: for l = 0; l < L; l ++ do
4: m← Mean(Wl); s← STD(Wl);
5: Let Wtop be the top |Wl| · p weights of Wl;
6: rl ← ∅;
7: for wi ∈Wtop do
8: r ← Norm(mean = m, STD = s);
9: wi ← wi + (−wi + r);

10: rl ← rl ∪ (−wi + r);
11: end for
12: Update Wl with Wtop;
13: end for

The Magnitude (Hou et al., 2021) obfuscation approach
adopts a more straightforward method by selecting the top
W weights with the largest magnitudes and substituting
them with values drawn from a distribution identical to that
of the secret model’s parameters. The specifics of Magni-
tude’s obfuscation algorithm are detailed in Algorithm 2.

B. Detailed Obfuscation Methods of SOTER
and ShadowNet

SOTER (Shen et al., 2022) and ShadowNet (Sun et al., 2023)
both protect the IP of model parameters through weight
matrix modification. While they employ different architec-
tures to articulate this process, they follow the same design
rationale and cryptographic paradigm. Both treat linear
layers as W = [w1, · · · , wn], where n represents the size
of the output channel for convolutional layers and the first
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dimension of the weight matrix for fully connected lay-
ers. Subsequently, they obfuscate these linear operations
in comparable fashions. For instance, SOTER, focusing on
scale, alters 20% of the parameters and then shuffles both
plaintext and obfuscated weights before offloading to the
GPU, ensuring the model distributed to the GPU remains
non-functional. ShadowNet prioritizes security properties,
scaling all weights wi and disrupting the sequence of vectors
in W . Despite introducing additional noise, for efficiency’s
concern, they expose this noise to the GPU, enabling noise
elimination through simple differential attack. The program
process of SOTER and ShadowNet is shown in Table 7.

Table 7. The program process of obfuscate and inference for
SOTER and ShadowNet.

Data: input X , secret weight W = [w1, · · · , wn], output Y
Operation: random permute Pπ , convolute Conv(W,X)

SOTER Obfuscation:
obfuscate θ = 20% weights
W ′ = fo(W ) = Pπ(µwi)

Offload Conv in GPU:
Y ′ = Conv(W ′, X)
= fo(Y ) = Pπ(µyi)

Restore Output Y in TEE:
Y =fo−1(Y ′) = P−1

π (µ−1y′
i)

ShadowNet Obfuscation:
w′

i ∈ W ′, w′
i = λiwi + f⌈0.2i⌉

W ′ = fo(W ) = Pπ({w′
i})

Offload Conv in GPU:
Y ′ = Conv(W ′, X) = fo(Y )
= Pπ(λiyi + f⌈0.2i⌉xi)
R = Conv({fi}i∈[0.2n], X)
Restore Output Y in TEE:
Y = fo−1(Y ′)
= P−1

π (λ−1
i y′

i −R)

C. The Replicate Details of Attacked Schemes
In configuring our hyperparameters for replication NNSplit-
ter, we precisely define the range [c − ϵ, c + ϵ] to ensure
that the number of parameters modified within each layer
do not exceed 0.002%. For the boundaries [α ·min(wi), β ·
max(wi)], we select the values corresponding to the top
0.1% of the weights as the limits. We set the coefficients
α and β to vary between 40% and 60%, thus providing
a more concealed alteration than the original setup. This
adjustment subtly affects the weight distribution, offering
a stealthier approach to parameter modification while still
adhering to the core principles of the NNSplitter method.
On the other hand, Magnitude takes a broader range. It does
not select weights based on their location within a range,
but rather targets the upper echelon of weights by magni-
tude. Specifically, the top 1% of weights are replaced with
values randomly generated around the aggregate mean of
the parameters.

SOTER presents a middle ground with a prescribed obfus-
cation ratio of θ = 0.2. This method does not discriminate
between weights; instead, it randomly selects 20% of the
weights for obfuscation. ShadowNet goes a step further
by shuffling all convolution kernels. This comprehensive
approach to obfuscation scrambles the order of the kernels.
However, it reveals its mask weights fi, i ∈ ⌈rn⌉ to the
GPU. This design decision means that the obfuscation pa-

rameter r, which we set to the default value of 0.2, does not
impede the potential for reversing the obfuscation, as the
random numbers can be easily eliminated through differen-
tial analysis. Follow the settings above, our replicate work
is available in https://github.com/ZzzzMe/GroupCover.

D. Simulation Experiment Configuration
In response to the evolving landscape of Trusted Execution
Environments (TEEs), which increasingly favor confidential
virtual machine modes such as those introduced with Intel’s
TDX and the H100 series (Dhanuskodi et al., 2023), there
is a marked shift toward ensuring security without neces-
sitating changes to the upper-layer application code. Our
research aligns with this trend by adapting our secure model
obfuscation framework, GROUPCOVER, to operate within
these next-generation TEEs. Leveraging the flexibility and
wide adoption of the PyTorch framework, we have ensured
that GROUPCOVER is compatible with established GPU-
accelerated TEE inference frameworks such as Slalom.

To rigorously evaluate the overhead introduced by GROUP-
COVER, we conducted an exhaustive analysis across a spec-
trum of model architectures, including, but not limited to,
AlexNet, ResNet18, ResNet50, and VGG16 BN. This di-
verse set of models allows for a comprehensive understand-
ing of the overhead implications across various architectural
complexities and depths.

Our experimental design involved a consistent clustering
size of 4, which was meticulously selected to maintain a
balance between security and computational efficiency. The
experiments are conducted over several datasets, including
CIFAR10, CIFAR100, and STL10, with queries totaling 10k
for CIFAR10, 10k for CIFAR100, and 8k for STL10, all
processed under the same batch size of 128. This consistent
approach across different datasets and models ensures the
generalizability and applicability of our findings.
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