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Abstract
Fine-tuning vision-language models (VLMs) with
abundant unlabeled data recently has attracted in-
creasing attention. Existing methods that resort
to the pseudolabeling strategy would suffer from
heavily incorrect hard pseudolabels when VLMs
exhibit low zero-shot performance in downstream
tasks. To alleviate this issue, we propose a
Candidate Pseudolabel Learning method, termed
CPL, to fine-tune VLMs with suitable candidate
pseudolabels of unlabeled data in downstream
tasks. The core of our method lies in the gener-
ation strategy of candidate pseudolabels, which
progressively generates refined candidate pseu-
dolabels by both intra- and inter-instance label
selection, based on a confidence score matrix for
all unlabeled data. This strategy can result in bet-
ter performance in true label inclusion and class-
balanced instance selection. In this way, we can
directly apply existing loss functions to learn with
generated candidate psueudolabels. Extensive ex-
periments on nine benchmark datasets with three
learning paradigms demonstrate the effectiveness
of our method. Our code can be found here.

1. Introduction
Recent studies in large pre-trained vision-language models
(VLMs) (Radford et al., 2021; Li et al., 2022; Yuan et al.,
2021) have demonstrated promising zero-shot performance.
Nonetheless, previous research (Zhou et al., 2022a;b; Zhang
et al., 2024) indicated that substantial labeled data is still
necessary to further improve the performance of VLMs for
adaptation on various downstream tasks. This requirement
for adaptation would cause considerable labeling costs, as
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Figure 1: (a) Confusion matrix between true labels and
hard pseudolabels of dataset EuroSAT, where incorrect and
imbalanced pseudolabels are always generated. (b) An ex-
ample illustration of a set of candidate pseudolabels, which
consists of classes with the top-2 highest confidence scores.

labeled data is hard to obtain.

In response to this challenge, recent studies (Menghini et al.,
2023; Huang et al., 2022; Lai et al., 2023; Tanwisuth et al.,
2023; Shu et al., 2022) have shifted their focus towards
scenarios with abundant unlabeled data, aiming to exploit
the inherent zero-shot ability of VLMs. These studies can
reduce the dependency on labeled data for adapting VLMs
to downstream tasks. Besides, previous studies also showed
that fine-tuning VLMs with pseudolabels generated by the
zero-shot ability of VLMs is an effective approach for ex-
ploiting unlabeled data (Huang et al., 2022; Menghini et al.,
2023; Mirza et al., 2023). However, the performance of
existing methods heavily relies on the accuracy of the gen-
erated hard pseudolabels. When VLMs exhibit diminished
zero-shot abilities in certain downstream tasks, the perfor-
mance of these methods would significantly deteriorate.

To illustrate this issue, we conducted a pilot experiment to
empirically demonstrate the deficiency of hard pseudolabels.
Specifically, we leveraged CLIP (Radford et al., 2021) to
generate hard pseudolabels on the EuroSAT dataset (Hel-
ber et al., 2019) and subsequently calculated the confusion
matrix between the ground-truth labels and predicted class
labels. The results, as shown in Figure 1(a), reveal that a
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Figure 2: Our candidate pseudolabel learning (CPL) signifi-
cantly surpasses hard pseudolabel learning (Menghini et al.,
2023) on the RESISC45 dataset in terms of label estimation
accuracy (label estimation accuracy is defined as the rate at
which the true label is included in the pseudolabels), leading
to improved performance on test accuracy.

substantial number of samples from other categories are
incorrectly predicted as class 6, while fewer samples are
classified into classes 0 and 5. Fine-tuning VLMs on such a
training set with a significant number of incorrect and imbal-
anced pseudolabels inevitably leads to inferior performance.

Motivated by the idea of multiple annotations in crowd-
sourcing (Hossain & Kauranen, 2015; Li et al., 2023), we
aim to provide a set of pseudolabels that can potentially be
the true label (dubbed candidate pseudolabels in this paper),
instead of merely considering a single hard pseudolabel. To
form the set of candidate pseudolabels for each instance, we
select the classes with the top-k highest prediction confi-
dences, which would probably contain the true label even
though the (top-1) prediction is incorrect (see Figure 1(b)).
We also demonstrate the advantages of using candidate pseu-
dolabels in Figure 2, where the blue lines represent the true
label estimation accuracy of candidate pseudolabel learning
and hard pseudolabel learning. On the other side, the red
lines represent the trend of test accuracy for both methods
throughout the iterations. From Figure 2, we can find that
with training proceeds, the true label is given by the candi-
date pseudolabel with a probability of almost 85%, while
it is around 70% for hard pseudolabeling. In addition, we
can also find that the test accuracy of the model can be
continually improved as the iteration increases.

In this paper, we propose a Candidate Pseudolabel Learning
(CPL) method to fine-tune VLMs with suitable candidate
pseudolabels of unlabeled data in downstream tasks. The
core of our CPL framework lies in the generation strategy of
candidate pseudolabels, which needs to progressively gen-
erate refined candidate pseudolabels during the fine-tuning
process. Specifically, we construct a confidence score ma-
trix encompassing all unlabeled data. Based on this matrix,
we take into account two aspects, including intra- and inter-
instance label selection. The simultaneous consideration of
the two aspects can ensure that the true label is selected in
the set of candidate pseudolabels to a large extent. Mean-

time, it can effectively mitigate the overwhelming influence
that dominant classes may exert on the generation of pseu-
dolabels, thereby ensuring a balanced and accurate repre-
sentation of classes.

Based on this novel pseudolabel structure, we transform
the multiclass classification problem into the problem of
learning with multiple candidate labels (Luo & Orabona,
2010; Cour et al., 2011). In this way, we can fine-tune
VLMs with candidate pseudolabels using popular loss func-
tions for learning with multiple candidate labels (Feng et al.,
2020; Wen et al., 2021; Zhang et al., 2021b). In our CPL
method, the fine-tuning of the model and the update of
candidate pseudolabels are conducted iteratively, mutually
benefiting each other. We conduct extensive experiments
across three learning paradigms (unsupervised learning,
semi-supervised learning, and transductive zero-shot learn-
ing) and two prompt-tuning paradigms (textual and visual).
Experimental results demonstrate that our proposed method
consistently achieves state-of-the-art performance.

2. Related Work
2.1. Vison-Language Models

Recently, Vision Language Models, such as CLIP (Rad-
ford et al., 2021), ALBEF (Li et al., 2021), BLIP (Li et al.,
2022), and Flamingo (Alayrac et al., 2022), pre-trained on
large-scale image-text data, have achieved significant suc-
cess (Zhang et al., 2024). These models are capable of
zero-shot image classification. Besides, the performance of
VLMs can be further enhanced by fine-tuning with anno-
tated data from downstream datasets. For instance, CoOp
(Zhou et al., 2022b) learns prompt vectors by minimizing
prediction errors using the cross-entropy loss. Tip-Adapter
(Zhang et al., 2021c) employs additional adapter modules
for parameter-efficient fine-tuning on downstream datasets.
In this paper, we primarily focus on the performance of
CLIP, a representative VLM, in downstream tasks.

2.2. Prompt Tuning

Prompt tuning is a technique that can enhance the perfor-
mance of large pre-trained models in specific downstream
tasks through efficient parameter fine-tuning. The com-
mon types of prompt tuning include text-based (Zhou et al.,
2022b;a; Ge et al., 2023) and visual prompt tuning (Bahng
et al., 2022; Jia et al., 2022). Text-based prompt tuning
(Zhou et al., 2022b) employs continuous optimization strate-
gies to optimize a set of continuous vectors, thereby elimi-
nating the need for manually designed discrete prompt texts.
visual prompt tuning (Jia et al., 2022) offers an efficient
alternative to complete fine-tuning of transformer models
by introducing a minimal number of trainable parameters
in the visual input. In classification tasks, prompt tuning
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necessitates training on a small number of labeled examples
for each class. In this paper, we mainly explore candidate
pseudolabels in visual prompt tuning (Jia et al., 2022) and
text prompting tuning (Zhou et al., 2022b) to enhance the
performance of VLMs when unlabeled data is available.

2.3. Learning from Unlabeled Data

In real-world applications, we often have access to a substan-
tial amount of unlabeled data for downstream tasks. This
motivates us to devise effective methods for utilizing such
data. In semi-supervised learning (Sohn et al., 2020; Xu
et al., 2021; Wei et al., 2024; Zhang et al., 2021a), pseudola-
beling is a widely studied and adopted technique. Grounded
in the principle of entropy minimization (Grandvalet & Ben-
gio, 2004), it typically selects the most reliable samples
from unlabeled data based on the confidence for inclusion
in training. However, this pseudolabeling strategy has been
found challenging to apply directly to the zero-shot predic-
tions of VLMs as it struggles to effectively estimate the most
accurate samples from unlabeled data (Huang et al., 2022).
In previous research on pseudolabeling for VLMs, Huang
et al. (2022) initially proposed generating more reliable of-
fline pseudolabels by selecting multiple examples with the
highest confidence for each category. On the other hand,
Menghini et al. (2023) proposed updating pseudolabels it-
eratively while still selecting the most reliable samples for
each category. In this paper, we propose a novel candidate
pseudolabel generation strategy that aims to improve the la-
bel estimation accuracy of pseudolabels, thereby enhancing
the performance of VLMs when adapting to downstream
tasks with unlabeled data.

3. Methodology
Problem Definition. In this paper, our objective is to fine-
tune VLMs using downstream unlabeled data drawn from a
d-dimensional feature space represented as X ⊆ Rd. The
corresponding label space for all the downstream data is
denoted as Y = {1, ..., C}, indicating that we are consider-
ing a C-class classification problem. Specifically, our focus
is on exploiting the inherent zero-shot capability of VLMs
to generate pseudolabels for unlabeled data. We consider
three commonly encountered learning paradigms associated
with abundant unlabeled data, including Semi-supervised
Learning (SSL) (Sohn et al., 2020; Cascante-Bonilla et al.,
2021), Transductive Zero-shot Learning (TRZSL) (Wan
et al., 2019; Gao et al., 2020), and Unsupervised Learning
(UL) (Noroozi & Favaro, 2016; Schmarje et al., 2021).

Motivation. For pseudolabel generation, previous methods
(Huang et al., 2022; Menghini et al., 2023) rely on confi-
dence ranking to select the most confident samples for each
class. However, the utilization of hard pseudolabels may in-
advertently amplify the effects of lower prediction accuracy

for certain categories. In this paper, we draw inspiration
from the concept of the multiple annotations in crowdsourc-
ing, constructing a set of potential true labels for model
learning. Intuitively, the advantages of candidate pseudola-
bels over hard pseudolabels can result in more precise label
estimation, implying that the candidate pseudolabels can
better encapsulate the true label within its candidate set.
This is illustrated and contrasted in Figure 2.

Overview. The overall workflow of our method can be
divided into three steps: ❶ The generation of candidate
pseudolabels for unlabeled training data (see Sec. 3.1).
Considering both intra- and inter-instance perspectives, we
selectively construct the training set with candidate pseu-
dolabels from the unlabeled dataset DUL, while keeping
balanced quantities among varying classes. ❷ Based on
the candidate pseudolabel, we transform the conventional
multi-classification problem into a problem akin to learn-
ing in a set of candidate labels (see Sec. 3.2), which has
been extensively studied in the field of partial-label learning
(Cour et al., 2011). Therefore, any loss function designed
for partial-label learning can be employed to update the
model’s parameters. ❸ We iterate the preceding steps until
the model’s parameters are optimized for downstream tasks.
This iterative process facilitates the progressive refinement
and optimization of candidate pseudolabels.

3.1. Scheme for Generating Candidate Pseudolabels

Notations. Given an unlabeled example, the set of candi-
date pseudolabels is denoted by S. For the unlabeled set
DUL = {(xi)}Ni=1 composed of N instances, the pair of
the instance and the corresponding set of candidate pseu-
dolabels for DUL is represented by {(xi, Si)}Ni=1. Suppose
a VLM with learnable parameters θ is represented by fθ.
Given an instance x in DUL, the output of the model can be
denoted by fθ(x). Then, we can obtain a vector of confi-
dence scores for all classes via the Softmax function g(·),
i.e., p = g(fθ(x)) = (p1, p2, . . . , pC)

⊤. For convenience,
we represent pic as the confidence score of the c-th class
for the i-th instance. By constructing a confidence score
matrix (p1,p2, ...,pN )⊤ for all unlabeled data (as shown
in Figure 3), we propose to generate candidate pseudolabels
by simultanesouly considering two aspects, including both
the intra- and inter-instance label selection, respectively.

Intra-instance Label Selection. The concept of intra-
instance label selection originates from the idea of selecting
the top-K confident labels as the most probable label can-
didates for each instance. However, we further consider
that it may not be reasonable to select an equal number of
top-K confident labels as the candidate set for each instance,
because of the varying levels of identification difficulty as-
sociated with each instance.

In response to this issue, we propose an adaptive strategy
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Figure 3: Illustration of the training target generation pro-
cess in our CPL method. At the beginning of each train-
ing iteration, we first construct a confidence score matrix
composed of confidence score vector p for each unlabeled
instance. Then, candidate pseudolabels, derived from both
intra- and inter-level selection, are extracted to formulate
the training target s for the subsequent model training.

where different values of K are set for instances with differ-
ent identification difficulty. Specifically, for each unlabeled
instance xi, potential labels are sequentially incorporated
into the candidate set Sintra

i . This is done in descending
order based on the corresponding confidence scores until
the cumulative confidence score just surpasses a threshold
τ . Formally, for an unlabeled instance xi, its selected candi-
date set Sintra

i is represented as

Sintra
i = MinSize({c |

∑C

c=1
pic ⩾ τ}), (1)

where MinSize(·) means a function that returns the set with
the minimal size and we assume that we select the elements
(pi1, . . . , piC) from the largest to the smallest. The hyper-
parameter τ serves as a threshold to ensure that the candi-
date set Sintra

i for each instance xi encompasses a nearly
equivalent level of confidence scores, thereby guarantee-
ing a comparable level of label estimation accuracy for the
candidate pseudolabels of each instance.

As for the determination of the threshold τ , considering
the model’s average prediction confidence increases with
the training process, it is natural to think that the threshold
could also be adaptively updated with the model’s train-
ing. Therefore, we obtain τ from the prediction confidence
among DUL and update at the beginning of each training
iteration. Specifically, for an unlabeled instance xi, the
prediction confidence is represented as p̂i = maxc∈[C](pic),
which is the maximum value among the confidence scores of
instance xi. Subsequently, we can obtain a list of the predic-
tion confidence denoted as p̂ = (p̂1, p̂2, ..., p̂N ) ∈ [0, 1]N .
By sorting p̂ in ascending order, τ is determined when the
ratio α is given:

τ = Quantile(Sort(p̂), α). (2)

Here, Quantile(·, α) is a function that returns the value at
the given quantile of the vector and Sort(·) is a function that

sorts the vector in ascending order. α is a hyper-parameter
that denotes the specified quantile. It is noteworthy that,
based on the formula in Equation (2), setting α = 0%
would result in an extreme case where all the candidates for
pseudolabels contain only the most confident label. This is
equivalent to the hard pseudolabeling, further demonstrating
the flexibility of our candidate set generation strategy.

Inter-instance Label Selection. Since the predictions from
CLIP exhibits class imbalance performance across various
categories (see Figure 1(a)), the generated single hard pseu-
dolabels are typically class-imbalanced. To balance the ratio
of each category in the candidate pseudolabel set and mit-
igate the overwhelming influence of dominant classes in
pseudolabel generation, we also employ an inter-instance
label selection strategy to further refine the candidate pseu-
dolabels.

Specifically, for each class c ∈ [C], we employ a vector
qc = (p1c, p2c, . . . , pNc) to denote the confidence scores
across all N instances (i.e., the column vector of the confi-
dence score matrix illustrated in Figure 3). Then, we sort
vector qc in ascending order and construct the candidate
pseudolabel set Sinter

i of an instance xi. Class c is included
in Sinter

i , when pic exhibits relatively higher confidence lev-
els within the vector qc. Given a selection ratio β, for an
unlabeled instance xi, its candidate pseudolabel set Sinter

i is
constructed by

Sinter
i = {c | pic > Quantile(Sort(qc), β)}Cc=1. (3)

Eventually, for each unlabeled instance xi, its final candi-
date pseudolabel set Si is obtained by the intersection of the
two candidate pseudolabel sets Sintra

i in Eq. (1) and Sinter
i

in Eq. (3). This can be formally expressed as

Si = Sintra
i ∩ Sinter

i . (4)

This refined strategy for candidate pseudolabel generation
ensures a more balanced and accurate representation of
classes, thereby enhancing the model’s ability to learn from
a diverse and equitable distribution of pseudolabels.

3.2. Learning with Candidate Pseudolabels

With the generated candidate pseudolabels for unlabeled
data, we need to construct a suitable training objective to
learn from such supervision information. Fortunately, many
loss functions have been designed for learning with candi-
date pseudolabels (a.k.a. partial-label learning) (Feng et al.,
2020; Wen et al., 2021; Zhang et al., 2021b), which can be
directly used even without any modifications.

At the start of each training iteration, we construct the train-
ing set, denoted as DT, from the unlabeled set DUL. This
set contains M instance-candidate pairs {(xi, Si)}Mi=1. In
simple terms, we filter out instances with no candidate la-
bels in DUL and add the remaining instances, along with
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their candidate labels, into DT. The construction of DT can
be represented as

DT = {(xi, Si) | |Si| > 0}Ni=1. (5)

In practical training, the training target of candidate pseu-
dolabels for each unlabeled instance xi can be re-expressed
as a vector si with the size of C, where sic = 1 if c ∈ S and
sic = 0 if c /∈ S, for c ∈ [C]. Subsequently, the instances
from DT and the corresponding training targets are utilized
for training the model.

Depending on the availability of labeled data in downstream
tasks, the training objective of our method can be divided
into two forms:

• In the context of semi-supervised learning and trans-
ductive zero-shot learning, a small labeled set DL =
{(xi,yi)}Oi=1 is provided. Consequently, at each itera-
tion, we have two sets: labeled set {(xi,yi)}

b1
i=1 with a

batch size of b1 and {(xi, si)}b2i=1 with a batch size of b2.
The training objective is

L = LL + λLUL

=
1

b1

∑b1

i=1
Lce(xi,yi) + λ

1

b2

∑b2

i=1
Lp(xi, si),

where Lce represents the cross-entropy loss function used
for learning with the labeled set, and Lp denotes the loss
function used for learning with the candidate pseudolabel
set. During training, we typically set b2 to a pre-fixed
value. For b1, we set it as (|DL|/|DT|) × b2, ensuring
that DL and DT have similar iteration counts throughout
the training process.

• In the unsupervised learning setting, we only have access
to the unlabeled data DUL. Given each mini-batch of
training data {(xi, si)}b2i=1, the training objective is

L = LUL =
1

b2

∑b2

i=1
Lp(xi, si).

Update of Candiate Pseudolabels. Throughout the train-
ing process, the candidate pseudolabels are progressively
updated after each pre-defined iteration. For each iteration,
we regenerate the candidate pseudolabels for all unlabeled
data based on intra- and inter-instance label selection, learn-
ing with the newly generated candidate pseudolabels The
detailed iterative process can be found in Appendix A.

4. Experiments
To evaluate the effectiveness of our proposed candidate pseu-
dolabel learning (CPL) method, we implement experiments
in several dimensions. ❶ Learning paradigm variety: we
conduct experiments on three learning paradigms including

semi-supervised learning, unsupervised learning, and trans-
ductive zero-shot learning. ❷ Prompt tuning variety: all
methods are tested with a textual prompt as well as a visual
prompt as CLIP’s learnable parameters and tuning strategy.
❸ Task variety: we evaluate the effectiveness of CPL on
nine classification tasks.

4.1. Experimental Setting

Datasets. We conduct an extensive evaluation of our method
on nine classification datasets from diverse domains, includ-
ing FGVC-Aircraft (Maji et al., 2013), EuroSAT (Helber
et al., 2019), CUB (Wah et al., 2011), Flowers102 (Nils-
back & Zisserman, 2008), RESISC45 (Cheng et al., 2017),
DTD (Cimpoi et al., 2014), CALTECH-101 (Fei-Fei et al.,
2004), UCF-101 (Soomro et al., 2012), and CIFAR-100
(Krizhevsky et al., 2009).

Learning Paradigms. To comprehensively evaluate the
performance of our method, we consider three common
scenarios involving the use of unlabeled data: Unsupervised
Learning (UL), Semi-Supervised Learning (SSL), and Trans-
ductive Zero-Shot Learning (TRZSL) tasks. The details of
each paradigm and how labeled data issues are handled can
be found in Appendix C.2.

Hyper-parameter Configuration. Unless otherwise spec-
ified, our experiments utilize ViT-B/32 as the visual back-
bone, and the prefix size is set at 16 for both textual and
visual prompt learning. Also, we adopt the Classifier-
Consistent (CC) (Feng et al., 2020) as the default loss
function for learning with candidate labels in our method.
The default prompt “a photo of a [CLASS]” is em-
ployed to obtain initial predictions from CLIP on all un-
labeled instances. We adopt SGD as the optimizer and
conduct training for 50 epochs. The learning rate is set at
0.0001 for two warm-up cycles, after which it is adjusted
to 0.02 and decays following the cosine annealing rule. For
SSL and TRZSL, we just set λ to 1. Regarding candidate
pseudolabel update, we designate the iteration number for
the CUB dataset as T = 5 and T = 10 for all other datasets.
Further technical specifics can be found in Appendix C.3.

4.2. Comparison with Previous Methods

Experimental Design and Baselines. We carry out experi-
ments on two fine-tuning scenarios: tuning with few-shot
unlabeled data and tuning with full unlabeled data. In the
former scenario, we select q samples per class from all
unlabeled data, making it more appropriate for rapid fine-
tuning on the downstream dataset. In our experiments, we
set q = 16 for all methods to ensure fair comparisons. By
contrast, the latter scenario fine-tunes CLIP on the entire un-
labeled data to achieve superior performance. We compare
our CPL with two existing methods, namely, Few Pseudola-
bels (FPL) (Menghini et al., 2023) and Grow and Refine
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Table 1: Comparison results of top-1 test accuracy (%) on six benchmarks when applying Textual prompts as tuning
strategy. Note that “✓” and “✗” denote whether full unlabeled data are utilized for fine-tuning or not, respectively.

Flowers102 RESISC45 DTD

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

Zero-shot CLIP 63.670.00 63.400.00 54.480.00 54.460.00 43.240.00 43.450.00
FPL ✗ 75.960.74 65.670.23 80.970.00 68.130.55 63.070.38 72.110.00 37.105.45 44.960.55 46.300.03
CPL (Ours) ✗ 77.360.24 70.010.21 84.600.10 71.730.57 68.470.34 72.160.26 54.630.79 48.920.17 59.791.32
GRIP ✓ 83.600.48 69.841.06 86.260.00 74.110.68 70.550.88 81.070.00 56.070.85 46.091.06 65.300.01
CPL (Ours) ✓ 89.660.36 72.900.78 87.350.76 80.98 0.11 77.390.44 85.850.49 61.210.56 51.910.71 68.000.34

CUB EuroSAT FGVCAircraft

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

Zero-shot CLIP 51.820.00 51.570.00 32.880.00 30.540.00 17.580.00 17.860.00
FPL ✗ 55.290.59 53.040.53 55.440.20 62.051.64 48.961.49 53.7026.87 20.020.77 16.620.67 17.550.37
CPL (Ours) ✗ 56.370.45 54.180.05 64.010.17 64.842.15 51.451.97 54.032.27 22.370.66 18.900.20 28.470.43
GRIP ✓ 56.650.33 51.420.21 59.480.38 58.662.64 57.211.77 92.330.69 16.980.82 15.220.71 26.080.25
CPL (Ours) ✓ 58.530.24 53.470.36 66.200.50 77.510.80 67.260.47 93.780.12 22.480.63 18.350.27 30.860.70

Table 2: Comparison results of top-1 test accuracy (%) on six benchmarks when applying Visual prompts as tuning strategy.
Note that “✓” and “✗” denote whether full unlabeled data are utilized for fine-tuning or not, respectively.

Flowers102 RESISC45 DTD

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

Zero-shot CLIP 63.670.00 63.400.00 54.480.00 54.460.00 43.240.00 43.450.00
FPL ✗ 67.030.65 65.500.41 71.940.00 65.140.25 62.240.22 67.850.00 47.601.09 47.690.48 52.430.00
CPL (Ours) ✗ 70.580.13 68.940.16 78.130.31 68.850.13 67.970.17 72.180.27 52.640.68 50.370.46 55.900.69

GRIP ✓ 67.951.2 63.090.56 77.180.00 71.220.77 68.430.61 82.190.00 54.574.86 50.510.99 62.780.00
CPL (Ours) ✓ 73.520.37 67.250.41 80.140.73 78.460.74 72.970.58 86.670.33 58.740.81 53.420.56 65.310.78

CUB EuroSAT FGVCAircraft

Methods SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

Zero-shot CLIP 51.820.00 51.570.00 32.880.00 30.540.00 17.580.00 17.860.00
FPL ✗ 52.860.42 53.170.06 54.170.16 52.472.53 48.793.69 68.6814.74 20.140.26 18.280.33 16.280.45
CPL (Ours) ✗ 53.370.55 53.280.31 56.430.21 66.372.10 52.832.10 74.021.34 21.520.68 20.100.51 26.730.08

GRIP ✓ 53.830.11 52.910.26 54.920.17 63.483.09 63.683.42 96.970.77 19.430.50 17.510.61 26.420.30
CPL (Ours) ✓ 49.500.42 52.110.24 56.370.06 72.031.24 68.931.15 98.310.18 20.510.68 18.260.38 30.260.46

Iteratively Pseudolabels (GRIP) (Menghini et al., 2023),
across six classification tasks under these two scenarios.
The performance of each method is reported by calculating
the test set accuracy, averaged over three runs. For TRZSL,
we report the harmonic mean of the accuracies of seen and
unseen classes.

Results about textual prompt tuning and visual prompt tun-
ing are shown in Table 1 and 2, respectively. We observed
that: ❶ Our method consistently outperforms existing hard
pseudolabel methods. Our proposed CPL framework con-
sistently surpasses FPL and GRIP, across a variety of tasks
and datasets under both scenarios of tuning with few-shot
unlabeled data and tuning with full unlabeled data. This
underscores the efficacy of our approach in enhancing the
performance of CLIP in downstream tasks. ❷ Our method

exhibits less dependency on the accuracy of zero-shot CLIP
and utilizes unlabeled data more effectively. Our method
excels in settings where the zero-shot capability of CLIP is
relatively low and the labeled data is scarce. As shown in
Table 1, our method performs well on the EuroSAT dataset,
where the initial performance of CLIP is subpar. When
tuning with the full unlabeled data, our method improves
the top-1 test accuracy by 18.85% and 10.05% in the SSL
and UL paradigms, compared with GRIP. Similarly, on the
DTD dataset, our method improves the top-1 test accuracy
by 5.14% and 5.82% in the SSL and UL paradigms, com-
pared with GRIP. These results demonstrate that our method
has a lower requirement for the initial zero-shot capability,
rendering it more robust across various learning paradigms
and tasks.
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Table 3: Comparison results of top-1 test accuracy (%) on unsupervised learning when applying parameter-efficient tuning.
The best and second-best performances are highlighted via bold and underline, respectively.

Flowers-102 UCF-101 CIFAR-100 EuroSAT DTD CALTECH-101

CLIP 66.6 61.0 64.2 45.1 42.9 90.5
CLIP-PR 57.7 57.9 63.2 44.2 40.1 84.8
UPL 71.5 63.9 65.8 62.2 48.0 90.6
LaFTer 71.0 68.2 74.6 73.9 46.1 93.3

LaFTer + Ours 76.7 71.0 77.3 82.2 56.3 93.4

Table 4: Comparison results of top-1 test accuracy (%) on
DTD with textual prompts tuning. The performance of CPL
with five different loss functions is evaluated on three tasks.

Methods SSL UL TRZSL

Zero-shot CLIP 43.240.00 43.450.00

FPL ✗ 37.105.45 44.960.55 46.300.03
CPL Soft CE ✗ 51.830.62 47.020.37 59.690.59
CPL CC ✗ 54.630.79 48.920.17 59.791.32
CPL RC ✗ 54.980.49 49.960.15 59.420.44
CPL CAV ✗ 55.500.29 48.690.66 59.440.13
CPL LW ✗ 55.210.74 49.820.91 59.240.72

GRIP ✓ 56.070.85 46.091.06 65.300.01
CPL Soft CE ✓ 60.830.66 49.130.10 66.260.77
CPL CC ✓ 61.210.56 51.910.71 68.000.34
CPL RC ✓ 60.210.46 51.580.11 67.950.31
CPL CAV ✓ 61.060.50 49.310.19 67.760.53
CPL LW ✓ 60.200.69 52.230.84 68.290.99

4.3. More Analyses

Versatility. Our proposed CPL can be universally applied
to existing label-free CLIP fine-tuning scenarios, thereby
enhancing their performance. To demonstrate this, we sub-
stitute the corresponding pseudolabel module in the exist-
ing state-of-the-art method with the candidate pseudolabels
generation and update module from CPL. We report the per-
formance of the existing four methods (LaFTer (Mirza et al.,
2023), UPL (Huang et al., 2022), and CLIP-PR (Kahana
et al., 2022)) under a parameter-efficient tuning strategy
while incorporating our proposal into LaFTer.

The results are presented in Table 3. The combiner (LaFTer
+ Ours) consistently performs best across all six benchmarks.
On the DTD dataset, an improvement of 10.2% in top-1 test
accuracy is observed compared with the second-best method,
LaFTer. Significant improvements across these datasets
demonstrate the versatility of our proposed candidate pseu-
dolabels. Consequently, our method is not only effective
in its own right but can also enhance the performance of
existing CLIP fine-tuning methods when integrated.

Training Loss. Our method is not confined to a particular
loss function. Due to this flexibility, it can achieve competi-
tive performance with various loss functions. In addition to
the Classifier-Consistent (CC) (Feng et al., 2020), we have

also explored four other loss functions capable of handling
learning with multiple candidate labels. These include RC
(Feng et al., 2020), CAV (Zhang et al., 2021b), LW (Wen
et al., 2021), and a soft target cross-entropy. In our proposed
soft target cross-entropy (Soft CE), normalized confidence
scores from the model prediction are used as the soft targets
for the next iteration. We defer the detailed discussion of
this soft target scheme to Appendix B.

The comparison results are detailed in Table 4. We observe
that all explored loss functions exhibit competitive perfor-
mance, significantly outperforming the hard pseudolabel
methods, FPL and GRIP. This suggests that our CPL is
not overly sensitive to the choice of loss function, further
highlighting its flexibility. Moreover, we find that all can-
didate pseudolabel schemes consistently outperform Soft
CE, incorporating more prediction information from the
prior model. This indicates that the strategy of treating
all candidate labels equally can more effectively mitigate
the influence of prior category bias, thereby enhancing the
performance of CLIP in downstream tasks.

Imbalance Dataset. Considering the universality of the
class-imbalanced training set underlying unlabeled data, we
conduct relevant experiments to evaluate the performance of
our proposed method in the class imbalance setting. Specifi-
cally, we keep the convention from Zhou et al. (Zhou et al.,
2020) and manually construct an imbalanced CIFAR-100
via an imbalanced ratio δ. We set δ = 50 and δ = 100 (a
larger value of δ denotes more imbalanced) to compared the
performance of CPL and LaFTer on the imbalanced dataset.
The comparison results are shown in Table 5. While class
imbalance does exert some influence on the performance of
CPL, our results indicate that CPL still outperforms LaFTer,
which employs hard pseudolabels, under these imbalanced
conditions.

We further explore the impact on CPL’s performance when
the inter-instance label selection is not applied on imbal-
anced CIFAR100. As shown in Table 5, the performance
of CPL without the inter-instance label selection on imbal-
anced CIFAR100 is slightly inferior to that of CPL with the
inter-instance label selection, especially when the balance
ratio is 50. This result further substantiates the necessity of
the inter-instance label selection strategy and intra-instance
label selection strategy.
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Table 5: Comparison of top-1 test accuracy (%) on CI-
FAR100 dataset with both balanced and imbalanced distri-
bution. Note that “w/o inter” denotes the variant of CPL
without the inter-instance label selection.

Methods Balanced Imbalanced
δ=100

Imbalanced
δ=50

LaFTer 74.64 65.63 66.59
CPL (w/o inter) 76.07 66.68 67.85
CPL 77.32 67.70 69.65

Figure 4: Visualization of the average set size of candidate
pseudolabels among all unlabeled data on six datasets under
the UL setting of textual prompt tuning.

Set Size of Candidate Pseudolabels. While increasing
the size of the candidate set enhances the likelihood of en-
compassing the true label, it simultaneously amplifies the
ambiguity of the training targets, thereby enhancing the dif-
ficulty for the model to learn from the candidate labels. We
visualize the average size of the generated candidate pseu-
dolabels among all unlabeled data before the last iteration
and present the result in Figure 4. It can be observed that
the average size of candidate pseudolabels on the majority
of the six datasets is close to 1. This implicitly indicates
that a large number of unlabeled data have only one candi-
date label. Consequently, the candidate pseudolabels in our
method would not introduce a high degree of ambiguity or
high entropy optimization objectives.

Different Proportion of Unlabeled Data. When a large
amount of unlabeled downstream data is available, effi-
ciently leveraging it under resource constraints becomes
crucial. Typically, utilizing more unlabeled data can yield
improved performance but at the cost of increased compu-
tational requirements and training time. The question then
arises: is it more beneficial to invest additional resources
to use all the unlabeled data, or is it better to train with a
small amount of high-quality data? To explore this, we com-
pared the performance improvement of CPL on different
datasets when a certain proportion of unlabeled data or a
small amount of well-labeled data is used for training.

In Figure 5, a common trend is observed across all datasets:
as the proportion of data used for training increases, the
performance improvement of CPL gradually diminishes,
eventually reaching a saturation point. Simultaneously, we
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Figure 5: Visualization of the performance improvement
of CLIP with CPL (each class only has two labeled data)
and fully supervised few-shot learning when textual prompt
tuning is applied. The x-axis in blue represents the number
of labeled instances, while the x-axis in red represents the
proportion of the unlabeled dataset. Both lines originate
from the zero-shot performance of CLIP.

also find that few-shot learning usually achieves a higher per-
formance improvement than methods primarily relying on
unlabeled data, even though the quantity of used unlabeled
data is larger.

This is particularly significant on fine-grained datasets with
a large number of classes, such as CUB and FGVC-Aircraft.
In addition, the onset of performance saturation when using
unlabeled data also happens earlier on these datasets. These
observations suggest that when a downstream dataset is
challenging, using more well-labeled data for training may
be a more efficient way to improve the performance of CLIP
under resource constraints.

4.4. Ablation Studies

Sensitivity Analysis. There are mainly two hyperparame-
ters in our CPL method, containing α in Eq. (2) and β in Eq.
(3). We conduct a sensitivity study to explore the impact of
each hyperparameter on CPL’s performance. In Figure 6, we
plot the performance of one hyperparameter while keeping
the other constant. Generally, the larger the value of α and
the smaller the value of β, the more candidate pseudolabels
CPL tends to generate during the pseudolabel generation
process. In this figure, we find that maintaining the value
of α between 0.45 and 0.75 and β between 0.95 and 0.97
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Figure 6: Hyperparameters evaluation on DTD dataset under
the UL setting. We illustrate the performance of our method
while keeping β = 0.95 (left) and α = 0.60 (right) constant.

Figure 7: left: The frequency distribution of the generated
pseudolabels with different strategies. right: The influence
of each strategy on the class-level test accuracy for EuroSAT.

yields better performance. However, when β exceeds 0.99,
the performance declines as CPL tends to generate fewer
candidate pseudolabels. Consequently, a large number of
unlabeled samples end up with an empty set of candidate
labels, reducing the utilization of unlabeled samples. More
analyses about these two hyperparameters via grid search
are shown in Appendix D.

Effect of Each Selection Strategy. The core of our pro-
posed CPL is the generation of candidate pseudolabels,
which includes two label selection strategies. We evalu-
ate the effectiveness of each strategy using two metrics:
frequency of different classes in pseudolabels and class-
level test accuracy. Firstly, compared to hard pseudolabels,
the intra-instance label selection strategy results in a more
class-balanced training target (as shown on the left of Figure
7), leading to improved test accuracy. Furthermore, incor-
porating an additional inter-instance label selection enables
CPL to achieve a more balanced distribution among differ-
ent classes, particularly evident in classes 5-9 as shown on
the left of Figure 7. The right side of Figure 7 illustrates
the impact of each strategy on the class-level test accuracy.
The results indicate that both strategies contribute to the
improvement in test accuracy. These results underscore two
key points: ❶ both intra-instance and inter-instance label
selection strategies are crucial for generating high-quality
candidate pseudolabels and ❷ the inter-instance label selec-
tion can further enhance class balance and test accuracy.

Different Image Encoders. We further conduct experi-
ments to evaluate the effect of different image encoders. The

Table 6: Comparison results of a different image encoder
(ViT-L/14) when applying textual prompt tuning.

Methods SSL UL TRZSL

D
T

D

Zero-shot CLIP 52.450.00 51.610.00
FPL ✗ 60.611.56 52.990.43 60.770.54
CPL ✗ 62.780.17 57.230.19 62.521.38

GRIP ✓ 60.910.00 54.400.00 64.920.00
CPL ✓ 69.820.32 57.200.45 71.970.46

R
E

SI
SC

45

Zero-shot CLIP 62.670.00 62.130.00
FPL ✗ 79.010.55 70.850.66 77.690.83
CPL ✗ 80.380.37 76.010.19 79.970.77

GRIP ✓ 81.530.00 76.860.00 86.880.00
CPL ✓ 87.750.29 80.880.86 89.731.73

Fl
ow

er
s1

02 Zero-shot CLIP 73.980.00 73.050.00
FPL ✗ 89.070.94 77.810.30 91.840.73
CPL ✗ 88.370.39 82.980.14 96.650.08

GRIP ✓ 94.210.00 82.330.00 96.180.00
CPL ✓ 96.800.63 83.940.69 97.340.74

comparison results on Flowers102, RESISC45, and DTD
using ViT-L/14 are presented in Table 6. Our method con-
sistently surpasses the previous methods, demonstrating the
effectiveness of our approach in enhancing the performance
of CLIP in downstream tasks when larger image encoders
are employed. This suggests that our method is capable of
better leveraging unlabeled data to improve the performance
of CLIP, even when the model size is increased.

5. Limitations
It is important to note that the performance of our method is
dependent on the quality of the generated candidate pseu-
dolabels. As such, it inherits the inherent limitation of
pseudolabeling methods - the true label may not be included
in the generated candidate pseudolabels. In future work,
we aim to enhance the quality of candidate pseudolabels by
refining the generation strategy and devising a method to
better handle this situation.

6. Conclusion
In this paper, we have proposed a novel candidate pseu-
dolabel learning (CPL) method to fine-tune vision-language
models (VLMs), with abundant unlabeled data. The key
to our method lies in the strategy of generating suitable
candidate pseudolabels, which contains both intra- and inter-
instance label selection. In this way, our generated candidate
pseudolabels can offer two key advantages over conven-
tional hard pseudolabels: enhanced accuracy in true label
estimation and balanced representation across classes. Our
extensive experiments, conducted across nine benchmark
datasets and three learning paradigms validated the effec-
tiveness of our method. This is particularly evident when the
zero-shot capabilities of VLMs are not reliably applicable
to downstream tasks.
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Appendix for
“Candidate Pseudolabel Learning: Enhancing Vision-Language Models by

Prompt Tuning with Unlabeled Data”
In the appendix of this paper, we provide further details:

• Elaboration on the iterative process for updating candidate pseudolabels (Appendix A).

• Exploration of an alternative approach for formulating a soft target from the candidate label set (Appendix B).

• Additional information about the datasets and hyperparameters used in our method (Appendix C).

• Presentation of experimental results derived from varying the primary hyperparameters and examination of the influence
of the other hyperparameters (Appendix D).

A. Details about Training Iterations
In this section, we provide a detailed description of our iterative process for updating candidate pseudolabels, as outlined in
Algorithm 1. Specifically, in each iteration, after generating candidate pseudolabels for each instance, we filter out instances
where the candidate set is empty, forming Dtemp. Subsequently, for each class, we select the Kt instances with the highest
confidence scores, add these instances to the training set DT, and simultaneously remove these instances from DUL to avoid
repeated selection. Through this step, we ensure that the number of instances for each class does not exceed Kt and output
the training set DT for the current iteration.

Simultaneously, to utilize more training data, after the iteration is completed, we increase Kt by ∆ so that more unlabeled
data can be utilized in the next iteration. This iteration process is then repeated until we reach the maximum number of
iterations T . Normally, The increment for each category’s quantity per iteration is set to ∆ = |DUL|

T . This process is akin
to curriculum learning, as it starts training with simple and reliable instances and gradually increases the difficulty. The
emphasis is on updating the candidate pseudolabels corresponding to unlabeled data before each iteration and reinitializing
the learnable parameters of the model.

The overall iteration process in the CPL and prior work (Menghini et al., 2023) both adhere to the above-mentioned iterative
update strategy, ensuring fair comparison. At the same time, we have made some simple modifications to make it more
suitable for our candidate pseudolabels.

Specifically, to select a designated number of instances for class c (class-wise Top-Kt selection), the approach adopted
in previous work (Menghini et al., 2023) utilized the confidence scores of all potential labels for the ranking process. In
contrast, we confine our ranking and selection to only the labels included in candidate label set S. In other words, we only
involve all confidence scores of the instances for which c ∈ S in the ranking process. This makes the improved top-K
selection method more appropriate for candidate pseudolabels, as we should prioritize the categories in the candidate label
set during the selection process and exclude the influence of non-candidate categories.

Table 7: Comparison results of top-1 test accuracy (%) on UL task with textual prompts tuning. The main difference here is
using a soft target or not.

Methods EuroSAT DTD Flowers102

CPL CC 67.26 51.91 72.90
CPL RC 66.38 51.58 71.91
CPL CAV 66.91 49.31 72.06
CPL LW 67.15 52.23 72.33

CPL Soft CE 56.85 49.53 71.87
CPL Soft CC 65.58 50.98 72.58
CPL Soft RC 65.89 50.83 71.89
CPL Soft CAV 64.90 48.78 71.72
CPL Soft LW 65.74 51.04 72.15
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Algorithm 1 Top-K Selection Process in Each Iteration

Input: Total iteration number T , an unlabeled set DUL := {xi}Ni=1, the number of instances Kt that should be selected in iteration t for
all classes. The increment number between two iterations is ∆.

Output: The training set DT with candidate psuedolabels
1: for t ∈ 1, ..., T do
2: Initialize the training set DT := ∅
3: Generate candidate pseudolabels S for each unlabeled instance xi according to two label selection strategies (with Eq. (1) (3)).
4: Refine the set of instance-candidate pairs Dtemp := {(xi, Si)}Mi=1 by filtering the sample where Si = ∅
5: for c ∈ [C] do
6: Q := |Dtemp| ▷ Q is the number of instances in current Dtemp

7: Vc := {pic|c ∈ Si}Qi=1 ▷ Collect the corresponding confidence scores when c is contained in the set Si

8: DT ← DT

⋃
{(xi, Si)|pic ∈ Top-Kt(Vc)}Qi=1 ▷ Select top-Kt instances according to the candidate labels’ confidence scores

9: if sample (xi, Si) is selected then
10: Dtemp ← Dtemp\(xi, Si)
11: end if
12: end for
13: Kt+1 := Kt +∆
14: Transform each candidate set S in DT into training target s.
15: Return the training set DT.
16: end for

B. Discussion on Soft Pseudolabels
In this section, we explore an alternative approach to utilizing the candidate label set S as the learning target, specifically by
formulating a soft target derived from S. This approach aims to provide a more comprehensive evaluation of our method.

Unlike candidate pseudolabels, which treat all candidate labels equally, soft pseudolabels utilize normalized confidence
scores from the previous model’s prediction as the soft target for the subsequent iteration. Specifically, the confidence scores
from the preceding model’s output for each category c ∈ S are used as the criteria for defining the soft target.

Let ŷ = (y1, y2, y3, · · · , yC) represents the soft target for unlabeled instance x. For a category c ∈ [C], the corresponding
value yc in soft target can be calculated as follows:

yc =

{
P (y=c|x)∑

k∈S P (y=k|x) =
pc∑

k∈S pk
, if c ∈ S

0, otherwise
, (6)

where S is the candidate pseudolabel set for instance x. We compared the performance between this soft target generation
method and CPL which treats all candidate labels equally, as shown in Table 7.

In Table 7, “Soft CE” refers to the approach where the soft target is obtained using Equation (6) before each iteration, and
training is conducted using the cross-entropy loss. Similarly, “Soft CC” refers to the method where the soft target is obtained
in the same manner, but training is executed using the CC objective function. All other experimental settings are the same as
those in Section 4.1.

From the table, we observe that methods not utilizing the soft target exhibit marginally superior performance on the three
datasets. This suggests that directly using candidate pseudolabels as the training target can more effectively enhance
the performance of CLIP when fine-tuning on downstream tasks, especially when the zero-shot capabilities of CLIP are
relatively weak on these datasets. We posit that this may be attributed to the fact that the utilization of a soft target, which
contains more information, might inadvertently reinforce the model’s previous erroneous predictions and class bias, thus
exacerbating the impact of confirmation bias and hindering subsequent learning process. Therefore, in the main text, we
implement our CPL by treating all candidate labels equally.

C. Experimental Details
C.1. Comparison Methods

In this section, we provide a detailed introduction to the methods included in our experiments, which are divided into two
categories. The first category encompasses strategies for fine-tuning CLIP under limited data conditions, including:

• Few-pseudolabels (FPL) (Menghini et al., 2023): This approach generates offline pseudolabels by selecting the top-K
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samples with the highest confidence for each class from CLIP zero-shot predictions, performed only once.

• Grow and Refine Iteratively Pseudolabels (GRIP) (Menghini et al., 2023): GRIP maintains class balance by selecting
the top-K samples at each iteration for each class, with K progressively increasing after each iteration. The key
distinction between GRIP and FPL lies in GRIP’s iterative pseudolabel updates and the incremental increase of samples
for each class at each iteration.

• Unsupervised Prompt Learning (UPL) (Huang et al., 2022): Align with FPL, UPL employs the most confident
samples for each class and generates offline pseudolabels to learn text prompts through the CLIP text encoder.

• CLIP-PR (Kahana et al., 2022): This method optimizes an adapter atop the CLIP vision encoder. It uses label
distribution priors from the training set of downstream datasets and generates offline pseudolabels only once.

• LaFTer (Mirza et al., 2023): This method utilizes an unlabeled image collection and a set of text descriptions generated
by a Large Language Model (LLM) to fine-tune CLIP with online pseudolabels. Notably, it also generates hard
pseudolabels and employs a consistency regularization strategy (Sohn et al., 2020) to learn from unlabeled data.

The second category pertains to the loss functions in partial-label learning:

• Classifier-Consistent (CC) & Risk-Consistent (RC) (Feng et al., 2020): These two methods are designed for partial-
label learning. They develop two novel methods that are guaranteed to be provably consistent when dealing with
learning from a candidate set of labels.

• Class Activation Value (CAV) (Zhang et al., 2021b) : This method introduces the class activation value as a versatile
tool to select the true label. It identifies the class with the maximum CAV for model training.

• Leveraged Weighted (LW) Loss (Wen et al., 2021): The leveraged weighted loss function introduces a leverage
parameter to balance the losses on partial labels and non-partial ones.

C.2. Task Introduction

We provide a detailed explanation of experimental settings for three learning paradigms, in line with (Menghini et al., 2023).

• For Semi-Supervised Learning (SSL), access to labeled data is limited. We assess the impact of pseudolabels in
scenarios with a few labeled data and abundant unlabeled data, using two labeled samples per class.

• For Unsupervised Learning (UL), we only have access to unlabeled data. In this scenario, we initially rely on the
zero-shot predictions of CLIP to obtain all pseudolabels without any manual annotation.

• For Transductive Zero-Shot Learning (TRZSL), labeled data for certain target classes (seen classes) are provided in
the downstream dataset. We set the ratio of seen to unseen classes at 62-38, with all pseudolabels generated from unseen
classes. It is noteworthy that in TRZSL, we report the harmonic mean of the accuracies of seen and unseen classes.

Table 8: Detailed settings for experiments in Section 4
Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft

Statistic data

Class number 102 45 47 200 10 100
Training set size 2040 6300 3760 5594 27000 6667
Testing set size 6149 25200 1880 5794 5000 3333

Training procedure

Network ViT-B / 32
Batch size 64
Epoch 50 where first two epochs are set for warmup
Optimizer SGD
Momentum 0.9
Learning rate (LR) 0.02
Weight decay 5e-2
LR scheduler CosineAnnealingLR

Hyperparameters

α in intra-instance label selection 0.60 0.90 0.75 0.75 0.75 0.90
β in inter-instance label selection 0.99 0.97 0.95 0.99 0.80 0.97
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C.3. Datasets and Hyperparameters

In this section, we provide additional visualization and details regarding the datasets and hyperparameters used in CPL.

Setup. We provide the statistical data for six datasets and the complete experimental setup in Table 8.

Additional Dataset Visualizations. In addition to the pilot experiment in Figure 1(a) in the main text, which reveals the low
label estimation accuracy and class bias issues of hard pseudolabels on EuroSAT, we also visualize the confusion matrix on
the DTD dataset in a similar manner, as shown in Figure 8. This visualization reveals similar issues on the DTD dataset.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Predicted Label

G
ro

un
d 

Tr
ut

h

Figure 8: Confusion matrix illustrating the correlation between true labels and predicted hard pseudolabels on DTD.

D. Additional Experimental Results
In this section, we present the experimental results derived from our method when varying the two primary hyperparameters
(α, β) and hyperparameter λ which controls the balance between labeled and unlabeled data for SSL and TRZSL tasks.

Ablation Studies for the Trade-off Coefficient λ. For the SSL and TRZSL tasks, we conduct ablation studies on the
hyperparameter λ, as shown in Table 9 and Table 10. We observe that, except for a few datasets (e.g., Flowers102), most
datasets do not exhibit excessive dependency on the hyperparameter λ. Therefore, for SSL and TRZSL, we consistently set
λ to 1 in the main text to avoid the impact of over-parameterization.

Grid Search for Hyperparameter Selection. We conduct ablation studies to examine the influence of hyperparameters
more comprehensively. We set α ∈ {0.15, 0.30, 0.45, 0.60, 0.75, 0.90} and β ∈ {0.80, 0.90, 0.93, 0.95, 0.97, 0.99} for SSL
and UL, and β ∈ {0.60, 0.70, 0.75, 0.85, 0.90, 0.95} for TRZSL.The results of these experiments for the three tasks on
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Table 9: Comparison of top-1 test accuracy (%) on SSL tasks with textual prompt tuning, illustrating the influence of λ.
Here, we use all the unlabeled data for fine-tuning CLIP.

Methods Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft

Zero-shot CLIP 63.67 54.48 43.24 51.82 32.80 17.58

CPL λ=0.50 90.09 80.97 58.96 58.11 76.71 22.76
CPL λ=0.75 90.28 81.76 60.13 58.46 76.96 22.07
CPL λ=1.00 89.66 80.98 61.21 58.53 77.51 22.48
CPL λ=1.25 89.68 81.37 59.31 58.42 77.60 22.86
CPL λ=1.50 88.77 81.64 61.28 58.28 77.33 22.65

Table 10: Comparison of top-1 test accuracy (%) on TRZSL tasks with textual prompt tuning, illustrating the influence of λ.
Here, we use all the unlabeled data for fine-tuning CLIP.

Methods Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft

Zero-shot CLIP 63.40 54.46 43.45 51.57 30.54 17.86

CPL λ=0.50 90.01 85.95 67.31 65.28 93.37 32.60
CPL λ=0.75 86.91 84.91 67.77 65.25 93.11 31.47
CPL λ=1.00 87.35 85.85 68.00 63.94 93.78 30.26
CPL λ=1.25 88.98 86.10 67.82 64.84 94.01 30.42
CPL λ=1.50 87.13 85.96 68.11 64.81 93.56 30.05

the DTD dataset are depicted in Figures 9, 10, and 11. The results indicate that our method is robust to changes in these
hyperparameters in a range (especially in TRZSL and SSL), and can achieve competitive performance across a wide range
of settings.
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Figure 9: (a) Illustrates the impact of the parameter α under various settings of β. (b) Illustrates the impact of the parameter
β under various settings of α.
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Figure 10: (a) Illustrates the impact of the parameter α under various settings of β. (b) Illustrates the impact of the parameter
β under various settings of α.
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Figure 11: (a) Illustrates the impact of the parameter α under various settings of β. (b) Illustrates the impact of the parameter
β under various settings of α.
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