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Abstract
Acquiring a multi-task imitation policy in 3D ma-
nipulation poses challenges in terms of scene un-
derstanding and action prediction. Current meth-
ods employ both 3D representation and multi-
view 2D representation to predict the poses of
the robot’s end-effector. However, they still re-
quire a considerable amount of high-quality robot
trajectories, and suffer from limited generaliza-
tion in unseen tasks and inefficient execution in
long-horizon reasoning. In this paper, we propose
SAM-E, a novel architecture for robot manipula-
tion by leveraging a vision-foundation model for
generalizable scene understanding and sequence
imitation for long-term action reasoning. Specif-
ically, we adopt Segment Anything (SAM) pre-
trained on a huge number of images and prompt-
able masks as the foundation model for extract-
ing task-relevant features, and employ parameter-
efficient fine-tuning on robot data for a better un-
derstanding of embodied scenarios. To address
long-horizon reasoning, we develop a novel multi-
channel heatmap that enables the prediction of the
action sequence in a single pass, notably enhanc-
ing execution efficiency. Experimental results
from various instruction-following tasks demon-
strate that SAM-E achieves superior performance
with higher execution efficiency compared to the
baselines, and also significantly improves gener-
alization in few-shot adaptation to new tasks.

1. Introduction
Robot manipulation has made significant progress, benefit-
ing from embodied datasets (Walke et al., 2023; Collabora-
tion, 2023; Fang et al., 2023), Imitation Learning (IL) (Jiang
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et al., 2023; Reed et al., 2022) or Reinforcement Learning
(RL) algorithms (Zakka et al., 2023; Hansen et al., 2022;
Shi et al., 2024; Bai et al., 2024), and advanced transformer
(Chebotar et al., 2023; Zhao et al., 2023a) or diffusion-based
networks (Xian et al., 2023; He et al., 2023; 2024). To per-
form a wide range of complex manipulation tasks in the 3D
physical world, it is crucial to understand the 3D scene struc-
ture that encompasses object positions, orientations, shapes,
occlusions, and the relationships between objects and the
environment (Billard & Kragic, 2019). Various methods
utilize 3D representations such as voxel patches (James
et al., 2022b; Shridhar et al., 2022b), point clouds (Chen
et al., 2023; Zhang et al., 2023b) to provide 3D localizations
for predicting the end-effector poses. However, learning a
3D representation can be computationally expensive. For
instance, the voxel-based method (Shridhar et al., 2022b)
achieves state-of-the-art performance while suffering from
cubic scaling of the number of voxels with the resolution,
making it prohibitive for larger datasets.

To tackle these challenges, recent studies have investigated
feature extraction from single-view images and information
aggregation using multi-view transformers (Guhur et al.,
2022), which provide enhanced efficiency as the scaling of
image patches aligns with the input resolution. For exam-
ple, recently proposed RVT (Goyal et al., 2023) achieves
36 times faster training speeds and better performance than
voxel-based approaches. However, learning a multi-view
policy still requires a considerable amount of high-quality
robot trajectories for imitation, and the resulting policy ex-
hibits limited generalization capabilities for unseen tasks
and low execution efficiency in long-horizon reasoning. Mo-
tivated by recent research on visual foundation models that
leverage web-scale datasets and demonstrate robust zero-
shot and few-shot generalization (Radford et al., 2021; Li
et al., 2022; Rombach et al., 2022; Hudson et al., 2023), we
delve further into the multi-view architecture to enhance the
generalization capabilities and execution efficiency of 3D
manipulation policies in language-following tasks.

In this paper, we present a novel architecture for robot ma-
nipulation that leverages a vision-foundation model for im-
age understanding and sequence imitation for long-horizon
reasoning. We name our method SAM-E, as we utilize the
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Segment Anything Model (SAM) (Kirillov et al., 2023) as
the foundation model for Embodied manipulation. SAM
is a prompt-conditioned image segmentation model trained
on a large dataset of images and masks. Utilizing SAM as
the foundational perception model benefits the scene un-
derstanding and generalization in various manipulation sce-
narios. Moreover, the prompt-conditioned SAM encoder is
suitable for language-instructed manipulation by extracting
task-relevant visual features according to the task descrip-
tions. Further, we conduct parameter-efficient finetuning for
SAM with robot data to enhance the understanding of em-
bodied scenarios. With prompt-guided features, we employ
multi-view attention to integrate the view-wise representa-
tions with coordinate information for action prediction.

To improve the efficiency of long-horizon action predic-
tion, we propose a novel prediction head that generates
multi-channel pose heatmaps for an action sequence. Sub-
sequently, the heatmaps from different views are back-
projected into 3D space to generate scores for a discretized
set of 3D points, ultimately determining the 3D positions
and rotations of actions. During inference, the action se-
quence can be predicted in a single pass and executed
sequentially, resulting in a notable improvement in exe-
cution efficiency compared to previous step-by-step pre-
diction methods. We conduct experiments on various 3D
instruction-following tasks from RLBench, consisting of 18
tasks with 249 variations (James et al., 2020). The results
demonstrate that SAM-E achieves superior performance and
higher reasoning efficiency compared to baseline methods.
Moreover, the visual foundation model greatly enhances the
generalization ability of the learned policy in adapting to
new tasks with few-shot demonstrations.

2. Preliminaries
LC-POMDP. The problem of language-conditioned robot
manipulation can be modeled as a Language-Conditioned
Partial Observable Markov Decision Process (LC-
POMDP) formulated as an augmented POMDP M :=
(S,O,A,P, ρ0,L, f, T ), where S and A denote state space
and action space separately, O denotes the space of obser-
vations, P(s|s, a) : S × A → S denotes the transition
probability or the environment dynamics, ρ0 represents the
initial state distribution, L denotes the set of all language
instructions, f(o|s) : S → O is the observation function,
and T represents the episode horizon. We adopt imitation
learning without considering the reward function used for
RL. For each episode, the robot is given a language instruc-
tion l ∈ L representing the goal of the current task. At each
time step t, the robot is required to take action according to
a policy π(at|ot, l) given the observation ot. Since we focus
on 3D manipulation, the observation ot contains multi-view
images from cameras at different perspectives.

Imitation Learning. To address the language-conditioned
manipulation tasks, imitation learning (Goyal et al., 2023;
Li et al., 2024) allows the agent to mimic a set of ex-
pert demonstrations denoted as D := {(τ, l)i}|D|

i=0, where
τ := (o0, a0, . . . , oT−1, aT−1, oT ) is the expert trajectory,
and l represents the language instruction. A common imita-
tion learning objective for the policy πθ is to maximize the
likelihood of action conditioned on the language and current
state, Formally, the loss function is

L(θ) := −E(τ,l)∼D

[
T−1∑
t=0

log πθ(at|ot, l)

]
. (1)

Key-frame Extraction. To improve the utilization of expert
demonstrations, we align with the consensus in 3D manip-
ulation algorithms (James & Davison, 2022; James et al.,
2022a; Shridhar et al., 2022b; Goyal et al., 2023) by incor-
porating key-frame extraction for selecting key-frame ac-
tions. The key-frame extraction involves a Boolean function
K : R|A| → {0, 1}, which determines whether an action
should be identified as a key-frame. For each demonstration
τ , a sequence of key-frame actions {k1, k2, . . . , km} is gen-
erated by the function K following two simple conditions:
(i) the joint-velocities are near zero (occurs when entering
pre-grasp poses or a new phase of task), and (ii) gripper
state has changed (occurs when the object is grasped or
released). Based on the function K, the imitation objective
in Eq. (1) becomes predicting the ‘next key-frame action’ in
the demonstration. In the following, we slightly abuse at to
represent the next key-frame action of st since we adopt the
same key-frame extraction process to SAM-E and baselines.

3. Method
The proposed SAM-E is a multi-view imitation framework
that leverages the pre-trained visual foundation model and
action-sequence imitation for multi-task 3D manipulation.
The key idea of SAM-E contains two perspectives: (i) lever-
aging the visual foundation model SAM with the prompt-
driven architecture and its strong generalization ability to
handle the language-prompt(instructed) tasks in embodied
scenarios; (ii) utilizing the temporal smooth properties of
actions to perform sequence modeling of actions to enhance
coherent planning and execution efficiency. We introduce
the visual foundation model for embodied perception in
§3.1 and the multi-view architecture in §3.2. Then we give
the motivation of sequence imitation in §3.3 and the multi-
channel prediction architecture in §3.4.

We illustrate the architecture of SAM-E in Figure 1. Overall,
we adopt the SAM encoder (Kirillov et al., 2023) to gener-
ate prompt-guided and object-oriented representations, and
fine-tune the encoder with embodied data and Low-Rank
Adaptation (LoRA) (Hu et al., 2022) technique for manip-

2



SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation

Segment Anything

SAM Encoder
(ViT)

Mask Decoder

LoRA

Depth & Coordinates 

Conv2d

M
ul

ti-
vi

ew
 T

ra
ns

fo
rm

er

“use the stick to drag the 
cube onto the azure target.”

CLIP

Image Embedding

A
ct

io
n-

Se
qu

en
ce

 P
re

di
ct

io
n 1

2

3
4

Multi-View Images

Multi-Step Execution (4 actions)

Figure 1. Overview of SAM-E. (i) The SAM encoder provides promptable visual embedding of single-view observations after fine-tuning
on embodied scenarios with parameter-efficient LoRA. (ii) Multi-view transformer achieves cross-view information integration and
vision-language alignment. (iii) The coherent action sequence is predicted via temporal imitation for efficient multi-step execution.

ulation scenarios, which results in a minimal increase in
computation requirement. Then, a multi-view transformer
is used to integrate cross-view visual information combined
with coordinate information and language instruction for
multi-view correspondence and vision-language alignment.
To address long-horizon action prediction, SAM-E predicts
a coherent action sequence in a single pass with a novel
action-sequence policy head.

3.1. Perception Foundation and LoRA Finetune

SAM for Promptable Perception. SAM (Kirillov et al.,
2023) comprises a powerful image encoder and lightweight
mask decoder, structured as a prompt-driven architecture
designed for real-world image segmentation. Aiming at
achieving promptable segmentation and effective ambigu-
ity awareness, the image encoder of SAM is trained with
flexible prompts from the downstream mask decoder. Con-
sequently, after diverse segmentation task training, the SAM
encoder is capable of extracting powerful object-centering
image embedding rich in semantic information. This also en-
ables SAM to handle unknown prompts arising from various
segmentation requirements in robot interactions, including
complex object-associated scenarios.

In 3D manipulation, the scene perception is expected to be
object-oriented and adaptable, accommodating a range of
intentions and shifting focus as tasks progress. For instance,
given the task instruction of ‘place the apple in the basket’,
the agent should first find and focus on the apple to pick
it up, followed by finding the basket to place. The percep-
tion module should be capable of flexible object-centered
attention based on task instructions and allow attention ad-
justment to other objects as the task progresses (See §C for
an example). From this point, the SAM encoder is suitable

as a perception foundation model for language-instructed
manipulation with rich task variations. The SAM encoder is
a Vision Transformer (ViT) (Dosovitskiy et al., 2021) pre-
trained with MAE (He et al., 2022), which processes RGB
images into C × H × W image embedding. In practice,
we utilize the ViT-B architecture for the image encoder to
showcase the advantages of pre-trained segmentation rep-
resentations with a low computational cost in manipulation
tasks. The image encoder contains 12 layers of transformer
blocks and outputs the image embedding of the visual inputs.
The proposed SAM-E leverages the SAM encoder as the
foundation to generate prompt-guided and object-oriented
representations from visual observations, which is essential
for language-instructed manipulation.

LoRA with Embodied Data. To effectively adapt the SAM
encoder to embodied scenarios at an affordable computing
cost, we employ LoRA to finetune the encoder during the
policy training. As indicated in LoRA, we freeze the pa-
rameters in the image encoder and add a trainable low-rank
bypass to each of the transformer encoder blocks as:

W0 +∆W = W0 +BA, (2)

where W0 ∈ Rd×k is the pre-trained weight matrix frozen
during training, B ∈ Rd×r and A ∈ Rr×k are trainable
matrix, and rank r ≪ min(d, k). ∆W = BA represents
the accumulated gradient update during adaptation with A
initiated by Gaussian initialization and B initiated with zero.
We set the rank r to 4 by default. In practice, we apply
LoRA to the self-attention modules with query and value
projection layers:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (3)
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Figure 2. Multi-view Transformer has two stages for view-wise
information and cross-view information integration.

Q = ŴqX = WqX +BqAqX, (4)

K = WkX, (5)

V = ŴvX = WvX +BvAvX, (6)

where Wq, Wk and Wv are frozen projection weights in-
herited from SAM encoder, and Aq, Bq, Av, and Bv are
trainable LoRA parameters.

3.2. Multi-View Transformer

After extracting the view-wise representations, we adopt a
multi-view transformer to integrate multi-view visual ob-
servations, depth information with coordinates, and task-
relevant language instructions using an attention mechanism,
enabling a comprehensive fusion of the input in multiple
modalities. The architecture is shown in Figure 2. The vi-
sual observations are processed into image embedding by
the previously mentioned SAM encoder, while depth and co-
ordinate information is processed through a Conv2D layer to
obtain 3D spatial features. We concatenate the image embed-
dings with spatial features in the channel dimension along
the patch tokens, resulting in a combined representation that
we refer to as ‘view tokens’. Additionally, we utilize a pre-
trained CLIP text encoder to generate language embeddings,
from which language tokens are derived. Firstly, view to-
kens from the same view pass through view-wise attention
blocks like ViT to maintain the single-view information.
Subsequently, visual tokens across different views and the
language tokens are attended to cross-view attention blocks,
to integrate cross-view scene information with language in-
structions. The visual tokens, now enriched with cross-view
information and language information are used as input for
the action-sequence prediction.
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Figure 3. Movement shift in positions and rotations of the end
effector in RLBench task close jar, representing smooth changes
of positions and rotations in temporally adjacent steps.

3.3. Motivation for Action-Sequence Modeling

In the next, we aim to provide the intuition of action-
sequence modeling, attempting to ground the utility of this
technique. We start with an assumption about the temporal
smooth properties of actions in the robot manipulation.

Assumption 3.1 (Temporal-Smooth Assumption). Since
the actions of the manipulation task are the desired posi-
tions and rotations of the end effector, the optimal action
sequences (a∗0, a

∗
1, a

∗
2, . . . , a

∗
T ) are smooth, formulated as:

∥a∗t − a∗t+1∥ < ϵ, 0 ≤ t ≤ T − 2, (7)
∀ τ∗ := (o0, a

∗
0, o1, a

∗
1, . . . , oT−1, a

∗
T−1, oT ) ∼ Pτ

π∗(·),

where Pτ
π∗(·) denotes the distribution of trajectories derived

from the optimal policy π∗.

Intuitively, the assumption holds in most embodied manip-
ulation tasks if the actions are the positions and rotations
of the end effector. For example, in the common Pick-and-
Place tasks, the optimal action sequences are a sequence of
points in Euclidean space, which leads the end effector to
approach the object and desired goal. Meanwhile, the grip-
per will rotate smoothly to align with the gripping points
of the object. In Figure 3, we show the movement shift
of positions and the Quaternion angle of rotations of the
end-effector in a manipulation task close jar from RLBench
(James et al., 2020), which further justifies our assumption.
We observe that in certain manipulation tasks, end effec-
tor rotations undergo relatively rapid changes, particularly
with large keyframe intervals, which weaken the assump-
tion of smooth rotation. However, the end effector positions
maintain superior smoothness in Euclidean space, which are
more crucial for action-sequence modeling in our method.

The typical approach trains the policy π to predict the action
at given the multi-view image ot and the task instruction l,
as

π(l, ot) → at.

Such a step-by-step process only focuses on predicting ac-
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tions of the current situation, which can lead to stagnation
and contradictory sequential actions, as observed in exper-
iments. Based on the Assumption 3.1, we can improve
the action-prediction process by considering a long-horizon
decision process instead of a single action, as

πseq(l, ot) → {at, at+1, . . . , at+h−1},

where h is the horizon of the action sequence.

Then we motivate the sequence-prediction procedure based
on the assumption. The sequence modeling process tries to
predict the optimal action sequence condition on the obser-
vation. Intuitively, the learning objective of πseq is more
difficult compared to that of πstep. However, when we take
a closer look at the prediction of action in a sequence (e.g.,
at+k), training to predict this action is accompanied by the
prediction of former actions (i.e., (ât, . . . , ât+k−1)) and
latter actions (i.e., (ât+k+1, . . . , ât+h−1)). Back to the as-
sumption that the optimal action sequences are smooth, we
believe that predicting the former and latter actions can pro-
vide implicit prior and constraint in predicting at+k. Thus,
the smooth properties of action sequences provide an oppor-
tunity to perform long-horizon reasoning by predicting the
adjacent actions as a whole, thereby reflecting the motion
trajectory of the robot’s end-effector in completing tasks. In
contrast, the action prediction of the traditional policy is only
conditioned on the observation without any ‘prompt’ from
the former actions, making the traditional policy inferior to
action-sequence modeling in these tasks. Such a technique
in 2D manipulation tasks is also called action chunking
(Bharadhwaj et al., 2023; Zhao et al., 2023a), while we give
a clear motivation by an empirically justified assumption
and extend it to 3D scenarios using multi-channel heatmaps.

3.4. Architecture for Action-Sequence Prediction

We introduce a novel multi-channel policy head for the
action-sequence prediction, as shown in Figure 4. The pol-
icy head takes view tokens from the multi-view transformer
(shown in Figure 2) as input, processing view tokens from
different views independently, and outputs action sequence
prediction in parallel channels within a single view image.

In 3D manipulation, each action in the sequence comprises
an 8-dimensional vector dictating the next movement. This
vector includes a 6-DoF target end effector pose (3-DoF for
position and 3-DoF for rotation), a binary value indicating
the gripper state (open or closed), and another binary value
determining whether the collision is permissible for the low-
level motion planner. (i) For predicting positions, the policy
head generates a heatmap from the view tokens correspond-
ing to each view. These heatmaps represent the desired posi-
tion distribution from the perspective of each view. Then the
heatmaps from different views are back-projected to into 3D
space to generate scores for a discretized set of 3D points, de-
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Figure 4. The Action-Sequence Policy Head outputs multi-
channel pose heatmaps for a sequence of positions and rotations.

termining the 3D positions. For action-sequence prediction,
we equip the heatmap with time-dimension channels to learn
temporal information from demonstrations, which leads to
coherent action prediction in the temporal dimension. (ii)
For predicting rotations, we follow previous methods (Goyal
et al., 2023) to discretize Euler angles into bins of 5◦ res-
olution and thus turn rotation prediction into classification
as the binary of gripper state and collision indicator. We
use heatmap as the weight to extract the view-wise features
from the view tokens, which provide higher weights near
the desired target position within the view image, and then
output the action sequence of rotation, gripper state, and
collision indicator using a fully connected network.

4. Related Works
Visual Robot Manipulation. Early research in robot ma-
nipulation adopts joint states of the robot arm and geometric
information of objects in RL or IL frameworks (Zeng et al.,
2017; Deng et al., 2020; Xie et al., 2020; Yu et al., 2020;
Xu et al., 2022), assuming the acquisition of pre-perception
information and coordinates of objects. In real-world ma-
nipulation tasks, visual perception provides more general
inputs without additional assumptions (Yuan et al., 2023).
Various methods have adopted visual pretraining models
for affordance (Goyal et al., 2022; Bahl et al., 2023), repre-
sentation learning (Khandelwal et al., 2022; Shridhar et al.,
2022a; Nair et al., 2023; Ma et al., 2023b;a), and goal gen-
eration (Gao et al., 2023; Jia et al., 2023) to facilitate policy
learning. Other works incorporate language encoders (Xie
et al., 2023) and cross-modal transformers (Brohan et al.,
2023b; Guhur et al., 2022) for instruction-following manipu-
lation. However, these methods learn manipulation policies
from top-down 2D images and are limited to pick-and-place
primitives (Hansen et al., 2023). In contrast, by leverag-
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ing 3D perception, the robot is able to take into account
object orientations, occlusions, and collisions in complex
manipulation tasks. Recent methods utilize 3D representa-
tions, such as voxel patches (James et al., 2022b; Shridhar
et al., 2022b), point clouds (Chen et al., 2023; Zhang et al.,
2023b; Eisner et al., 2022), and feature fields (Gervet et al.,
2023), to achieve accurate 3D localizations for action pre-
diction. Another line of research utilizes multi-view images
to represent the projections of a 3D environment onto image
planes, significantly reducing the computation requirements
(Liu et al., 2023a; Seo et al., 2023; Goyal et al., 2023).
Our method lies in multi-view architectures and leverages
pre-trained foundation models to enhance generalization
across various visual scenarios and task descriptions. The
technique of action chunking is also employed in 2D manip-
ulation (Bharadhwaj et al., 2023; Zhao et al., 2023a), while
we extend it to 3D scenarios using multi-channel heatmaps.

Foundation Models for Embodied Agents. Large Lan-
guage Models (LLMs) (Touvron et al., 2023; Hu et al.,
2023a), Vision Language Models (VLMs) (Liu et al., 2023b;
Li et al., 2023), and vision foundation models (Radford et al.,
2021) have demonstrated remarkable capabilities (Akyürek
et al., 2023) and hold great promise for solving complex
embodied tasks. The chain-of-thought capacity (Wei et al.,
2022) of LLMs has been effectively utilized in task plan-
ning for embodied agents, including EmbodiedGPT (Mu
et al., 2023), ReAct (Yao et al., 2023), SayCan (Ahn et al.,
2022), and DoReMi (Guo et al., 2023). The commonsense
knowledge within LLMs can serve as a world model (Zhao
et al., 2023b; Hao et al., 2023; Lin et al., 2023) in text-
based environments. Additionally, it can be utilized as
a reward designer, as demonstrated by VoxPoser (Huang
et al., 2023), Text2Reward (Xie et al., 2024), and Eureka
(Ma et al., 2024). GenSim (Wang et al., 2024) and RoboGen
(Wang et al., 2023a) leverage LLMs to generate task cur-
ricula and simulation environments to augment robot data.
VLMs are commonly employed as foundation models for
embodied policies, taking visual observations and language
instructions as inputs, and generating language plans (Driess
et al., 2023) or tokenized actions (Brohan et al., 2023a; Wu
et al., 2023) as outputs. Other approaches utilize VLMs for
reward generation (Rocamonde et al., 2024) in RL frame-
works and self-reflection for task planning (Hu et al., 2023b).
RoboFlamingo (Li et al., 2024) is related to our method as it
employs OpenFlamingo as a base policy and finetunes this
policy using embodied datasets. However, it is limited to 2D
manipulation and lacks explicit consideration of 3D geom-
etry, which hinders its capacity to develop highly accurate
spatial manipulation skills in robotics.

Segment Anything Model. SAM (Kirillov et al., 2023)
is a promptable segmentation model capable of generat-
ing masks by receiving various prompts, including points,

bounding boxes, and language prompts. Subsequent works
have examined the application of SAM for object local-
ization (Zhang et al., 2023a), tracking (Rajič et al., 2023;
Cheng et al., 2023), and semantic analysis (Mazurowski
et al., 2023). For embodied agents, SAM-G (Wang et al.,
2023b) is a concurrent work that utilizes point prompts to
establish correspondences and employs SAM to generate
masked images for the agent. However, SAM-G focuses on
extracting the agent-relevant mask for robust visual repre-
sentations and mitigating the impact of noise (e.g., colors,
backgrounds) in 2D manipulation and locomotion tasks. In
contrast, our method adopts SAM to enhance 3D manip-
ulation within a multi-view framework and extracts task-
relevant features to facilitate generalization across various
manipulation scenarios and language instructions.

5. Experiments
In this section, we evaluate SAM-E in RLBench (James
et al., 2020), which is a challenging multi-task 3D manipula-
tion benchmark. To perform a fair comparison to baselines,
we use the same settings as the state-of-art method (Goyal
et al., 2023) by using 18 tasks with 249 variations in experi-
ments. Moreover, we evaluate the generalization ability of
SAM-E via few-shot adaptation in 6 new tasks. The Videos
are available at: https://sam-embodied.github.
io/.

5.1. Experiment Setup

Baselines. We compare SAM-E against off-the-shelf al-
gorithms proved to work on multi-view 3D manipulation,
including (i) RVT (Goyal et al., 2023), the state-of-the-art
multi-view architecture for 3D manipulation by re-rendering
visual observations into orthographic projections of cube
views and predicting the next move based on these projec-
tions; (ii) PerAct (Shridhar et al., 2022b), an action-centric
method that encodes RGB-D images into voxel grid patches
for 3D representation and predicts the action within the 3D
voxel space. (iii) We include R3M (Nair et al., 2023), the
visual representation designed for robot manipulation, as an
alternative encoder in our architecture. (iv) We include two
more general visual representations CLIP (Radford et al.,
2021), DINO (Caron et al., 2021) in our architecture. (v) We
include a variant referred to SAM→RVT that replaces the
SAM encoder with RVT’s visual encoder, which is trained
from scratch. (vi) Since RVT has been shown to significantly
outperform other behavior cloning (BC) baselines including
CNN-BC, ViT-BC (Jang et al., 2021), and Coarse-to-Fine
BC (James et al., 2022b), we do not include the scores of
these methods and we refer to Goyal et al. (2023) for details.
(vii) Additionally, we compare SAE-E against Hiveformer
(Guhur et al., 2022) with same tasks evaluated in their paper
(we refer to §E for the results).
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Figure 5. The comparison of training curves from 5 seeds with
±1 std. We observe that SAM-E achieves a higher success rate
than R3M and non-pre-trained baselines. Meanwhile, SAM and
its variations achieve a better training efficiency compared to RVT,
benefiting from action sequence imitation. The training curve of
RVT is from our reproduction by running the official code.

Table 1. A comparison of trainable parameters to baselines.
Models RVT SAM-E (SAM → RVT) SAM-E (SAM → R3M) SAM-E

Trainable Para. 36.3M 35.6M 35.6M 35.7M

Simulation Environment. We perform experiments in RL-
Bench (James et al., 2020), which is simulated by Cop-
peliaSim (Rohmer et al., 2013) to control a Franka Panda
robot equipped with a parallel gripper. Visual observations
are captured by four RGB-D cameras (left shoulder, right
shoulder, front, and wrist) with a resolution of 128 × 128,
and target gripper pose is achieved by a sample-based mo-
tion planner. In this elaborated simulator, the agent is tested
to complete the task within a limited number of timesteps,
which is 25 in experiments. The tasks include picking and
placing items, executing staged moves for tool usage, and
comprehending scenes to solve puzzles (see §A for more
detailed descriptions of the tasks). The algorithms are eval-
uated in a multi-task and multi-modal setting, characterized
by a high degree of variation, which necessitates the agent
to demonstrate scene understanding, instruction comprehen-
sion, and precise action prediction.

Training Datasets. We utilize the same training datasets
as RVT and PerAct, comprising 100 expert demonstrations
per task. Unlike RVT and PerAct, which slice demonstra-
tion episodes into keyframe transitions with empirically
crucial duplication for important transitions, we seamlessly
decompose demonstrations into multiple sub-episodes of
keyframes to facilitate action-sequence prediction. We train
SAM-E for 60K steps and choose the last model for evalua-
tion, which is the same as RVT. We use cosine learning rate
decay after 2K steps warm-start (see §B for more details).

0 20 40 60 80 100
Success Rate (%) of Evaluation

reach_and_drag

put_money_in_safe

push_buttons

meat_off_grill

100%

96%

68% 28% 4%

96%

Inference Times on Success Cases

Once
Twice
More

Figure 6. An illustration of the execution efficiency in several tasks.
SAM-E completes most tasks in merely once or twice inferences
in all success cases. We refer to §D for more examples.

5.2. Main Experiments

Multi-Task Learning. We train all methods in 18 tasks and
the comparison of success rate is given in Table 2. SAM-E
outperforms PerAct and RVT in 14 out of 18 tasks. SAM-
E outperforms PerAct and RVT by an average of 21.2%
and 7.7% percentage points in success rate across 18 tasks,
marking a relative improvement with 43.0% and 12.2%,
while incurring significantly lower model inference costs.
Furthermore, it achieves an improvement exceeding 30%
points in several tasks. Eliminating the pre-trained SAM
encoder in SAM-E leads to a performance drop but still
outperforms RVT, benefiting from the action sequence pol-
icy head. Building upon this, the addition of R3M’s frozen
representation has yielded a marginal performance improve-
ment, however, which is still inferior compared to SAM-E.
Similarly, CLIP and DINO representations have mediocre
performances compared to SAM-E. Notably, SAM-E has
comparable training time and even less trainable parameters
compared to RVT, as shown in Table 1. Moreover, Fig-
ure 5 shows that SAM-E and its variations exhibit higher
training efficiency than RVT, mainly attributed to the action
sequence imitation. Further, utilizing SAM as the scalable
visual foundation, SAM-E not only achieves the best per-
formance on the current setup, but also shows potential for
further enhancing its advantages with more embodied data
or update steps.

Different from baselines that predict the next keypoint grip-
per pose at each timestep, SAM-E generates a sequence
of actions for long-term planning and sequential execution,
thereby considering the task completion from a higher per-
spective and has much fewer inference steps. According
to Table 2, SAM-E demonstrates an average execution effi-
ciency of more than 5X greater than that of RVT. In tasks
such as meat off grill, push buttons, and put money in safe
(see §A for task descriptions), SAM-E can complete the
task after merely a glance at the initial state, as shown in
Figure 6. In contrast, RVT requires, on average, 5.5, 3.8,
and 6.0 steps to complete them for its successful cases. For
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Table 2. Multi-task Performances. SAM-E outperforms state-of-the-art methods in most tasks and on average, with much fewer inference
steps in execution. Scores of PerAct and RVT are adopted from Goyal et al. (2023). Mean and std of 5 evaluations are reported.

Models
Put in

Drawer
Reach

and Drag
Turn
Tap

Slide to
Target

Open
Drawer

Put in
Cupboard

Place in
Shape Sorter

Put Money
in Safe

Push
Buttons

Close
Jar

PerAct 51.2±4.7 89.6±4.1 88.0±4.4 74.0±13.0 88.0±5.7 28.0±4.4 16.8±4.7 84.0±3.6 92.8±3.0 55.2±4.7
RVT 88.0±5.7 99.2±1.6 93.6±4.1 81.6±5.4 71.2±6.9 49.6±3.2 36.0±2.5 91.2±3.0 100.0±0.0 52.0±2.5
SAM-E (SAM → RVT) 87.2±5.9 100.0±0.0 100.0±0.0 79.2±6.6 95.2±3.3 59.2±5.2 35.2±4.4 72.0±4.0 98.4±2.2 83.2±5.9
SAM-E (SAM → R3M) 83.2±5.9 99.2±1.8 100.0±0.0 88.8±4.4 95.2±3.3 41.6±7.3 31.2±7.7 95.2±3.3 96.0±0.0 78.4±2.2
SAM-E (SAM → CLIP) 88.8±3.3 100.0±0.0 100.0±0.0 78.4±13.4 92.0±4.0 40.0±4.9 42.4±6.1 80.8±1.8 100.0±0.0 73.6±2.2
SAM-E (SAM → DINO) 78.4±4.6 99.2±1.8 99.2±1.8 88.0±4.9 89.6±5.4 52.0±7.5 30.4±9.2 85.6±2.2 100.0±0.0 89.6±3.6
SAM-E (ours) 92.0±5.7 100.0±0.0 100.0±0.0 95.2±1.8 95.2±5.2 64.0±2.8 34.4±6.1 95.2±3.3 100.0±0.0 82.4±3.6

Models
Stack

Blocks
Place
Cups

Place Wine
at Rack

Screw
Bulb

Sweep to
Dustpan

Insert
Peg

Meat off
Grill

Stack
Cups

On
Average

Inference
Steps(Sum)

PerAct 26.4±3.2 2.4±3.2 44.8±7.8 17.6±2.0 52.0±0.0 5.6±4.1 70.4±2.0 2.4±2.0 49.4 -
RVT 28.8±3.9 4.0±2.5 91.0±5.2 48.0±5.7 72.0±0.0 11.2±3.0 88.0±2.5 26.4±8.2 62.9 6158±64
SAM-E (SAM → RVT) 22.4±3.6 0.0±0.0 92.8±6.6 61.6±9.2 84±0.0 7.2±5.9 95.2±3.3 3.2±3.3 65.3±0.6 1190±19
SAM-E (SAM → R3M) 32.0±2.8 1.6±2.2 92.8±3.3 60.0±2.8 96.8±3.3 5.6±6.7 97.6±2.2 2.4±2.2 66.5±1.0 1165±63
SAM-E (SAM → CLIP) 22.4±10.8 0.0±0.0 93.6±2.2 59.2±4.4 85.6±2.2 8.0±2.8 96.0±4.0 4.8±3.3 64.8±0.9 1192±17
SAM-E (SAM → DINO) 28.8±7.7 0.8±1.8 93.6±3.6 64.0±9.8 100.0±0.0 11.2±3.3 96.0±2.8 1.6±2.2 67.1±0.4 1143±15
SAM-E (ours) 26.4±4.6 0.0±0.0 94.4±4.6 78.4±3.6 100.0±0.0 18.4±4.6 95.2±3.3 0.0±0.0 70.6±0.7 1130±12

Table 3. Few-shot adaptation. Mean and std of 5 evaluations are reported.

Models
Meat on

Grill
Open
Jar

Screw
Nail

Toilet
Seat Done

TV
on

Solve
Puzzle

On
Average

RVT (from scratch) 80.0±6.3 36.0±4.9 7.2±4.4 99.2±1.8 2.4±3.6 11.2±4.4 39.3±2.3
SAM-E (from scratch, SAM → RVT) 60.0±2.8 12.0±0.0 36.0±6.9 96.0±0.0 15.2±3.3 20.8±7.7 40.0±1.8
SAM-E (from scratch, SAM → R3M) 69.6±4.6 16.0±0.0 29.6±6.1 100.0±0.0 12.0±2.8 22.4±2.2 41.6±1.4
SAM-E (from scratch, SAM → CLIP) 64.0±0.0 12.0±0.0 16.0±4.0 100.0±0.0 14.7±6.1 24.0±4.0 38.4±1.0
SAM-E (from scratch, SAM → DINO) 53.3±8.3 12.0±4.0 26.7±2.3 100.0±0.0 16.0±4.0 24.0±4.0 38.7±1.2
SAM-E (from scratch) 75.2±4.4 12.8±1.8 28.0±8.0 100.0±0.0 20.8±1.8 17.6±2.2 42.4±1.5

RVT (adaptation) 68.8±3.3 36.0±0.0 1.6±2.2 100.0±0.0 1.6±2.2 14.4±6.7 37.1±1.0
SAM-E (adaptation, SAM → RVT) 69.6±6.1 39.2±3.3 38.4±4.6 99.2±1.8 17.6±2.2 38.4±3.6 50.4±1.1
SAM-E (adaptation, SAM → R3M) 64.8±5.9 37.6±2.2 28.8±5.9 100.0±0.0 12.8±1.8 37.6±6.7 46.9±2.3
SAM-E (adaptation, SAM → CLIP) 78.7±2.3 38.7±4.6 28.0±6.9 100.0±0.0 16.0±0.0 25.3±8.3 47.8±1.9
SAM-E (adaptation, SAM → DINO) 68.0±4.0 33.3±6.1 50.7±8.3 98.7±2.3 24.0±4.0 22.7±2.3 49.6±1.0
SAM-E (adaptation) 84.0±5.7 56.0±7.5 62.4±4.6 100.0±0 35.2±1.8 41.6±7.3 63.2±1.5

reach and drag, SAM-E completes it all in two inferences
while RVT needs to execute 6.4 times on average.

Few-Shot Adaptation. We evaluate the generalization abil-
ity of SAM-E by adapting the trained model to 6 new tasks
from RLBench. We use 10X fewer demonstrations and
15X fewer update steps in policy adaptation than that of the
multi-task experiments to show the generalization capability
of the SAM-E in few-shot adaptation. The results are shown
in Table 3. We initialize the models with weights from their
multi-task training for adaptation, and also introduce their
random initialization variants for training from scratch. We
find RVT struggles with transferring knowledge from pre-
vious tasks to new ones during adaptation, often resulting
in performance drops compared to training from scratch.
In contrast, SAM-E significantly benefits from adaptation
compared to starting from scratch. Specifically, SAM-E
outperforms RVT by 3.1% points (a 7.9% relative increase)
when trained from scratch. However, during adaptation to
new tasks, the performance gap widens dramatically, with
SAM-E surpassing RVT by 26.1% points, a substantial
70.4% relative improvement. This demonstrates that SAM-
E has superior generalization capabilities.

When training from scratch, SAM-E (SAM → R3M) achieves
a slightly better performance than SAM-E (SAM → RVT)
that does not have a pre-trained encoder, but results in worse
performance in adaptation, which shows R3M has limited
few-shot generalization ability. While worse than SAM-
E (SAM → R3M) in training from scratch, SAM-E (SAM
→ CLIP) and SAM-E (SAM → DINO) have better perfor-
mances in adaptation, showing greater generalization of
the representations pre-trained in more general image data.
SAM-E (SAM → RVT) also significantly outperforms RVT
in adaptation over from scratch, demonstrating the enhanced
generalization ability gained from the action-sequence pre-
diction. In terms of adapting to new tasks, SAM-E equipped
with a SAM encoder demonstrates significant advantages
over the methods mentioned above. This highlights the ex-
ceptional capabilities of SAM-E to generalize in novel task
descriptions.

5.3. Ablations

First, we conduct ablation experiments in multi-task experi-
ments to verify the necessity of components in SAM-E. We
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Table 4. Success rate and parameters amount of the variations
Models Success Rate Parameters Trainable Parameters

SAM-E 70.6±0.7 122.5M 35.7M
SAM-E (SAM → RVT) 65.3±0.6 35.6M 35.6M
SAM-E (LoRA, QKV) 69.2±0.9 122.6M 35.8M
SAM-E (w/o LoRA) 67.2±1.0 122.4M 35.6M
SAM-E (full finetune) 65.8±1.0 122.4M 122.4M

include (i) SAM-E (SAM → RVT); (ii) SAM-E (LoRA, QKV),
which is a variant of LoRA module additionally including K
matrix of attention blocks; (iii) SAM-E (w/o LoRA), a frozen
SAM encoder without LoRA fine-tuning, and (iv) SAM-E
(full finetune), which performs full-parameter training of the
SAM encoder. We give the brief result in Table 4. We find
SAM is a crucial visual foundation and a suitable finetune
method is required for adaptation to embodied scenarios.
Using LoRA to parameter-efficiently finetuning, SAM is
better than the variant that trains all parameters, which may
lead to failure due to the limited demonstrations. For LoRA,
adding the trainable matrix for Q and V is better than all Q,
K, and V , which is consistent with previous observations
(Hu et al., 2022). (See §F for the complete results)

Additionally, to illustrate the impact of the action sequence
length h (refer to §B.2 for details), we conduct an abla-
tion study on the action horizon, examining h values of
{1,3,5,7}. During both the training and evaluation execu-
tion of the multi-task experiments, we modify the action
horizon h while maintaining consistency in other experi-
mental settings. The outcomes are presented in Table 5 (See
§F for the complete results), showing the average success
rate across 18 tasks and the computing time for each model
inference on our same device during the model evaluation.
We observe that h = 5 performs the best on the average
success rate, while it may not suitable for certain tasks. We
can also find that h = 1 leads to a drop in performance,
which we attribute to the insufficient temporal information
to drive SAM foundation training, combined with the lack
of empirically crucial duplication for important transitions.
Moreover, we can observe that SAM-E’s inference time is
slightly longer than that of RVT. Nevertheless, SAM-E is
even faster in inference considering an action sequence (5
actions) is predicted in 152ms, while RVT requires 5*103ms
to predict 5 actions.

5.4. Real-World Experiment

To demonstrate the effectiveness of SAM-E in real-world
scenarios, we train and test the model in a real-world setup
with a Franka Panda robot arm. As shown in Figure 14,
we use two statically mounted RGB-D cameras in a third-
person view at the left front and right front to capture the
multi-view observation. We calibrate the cameras with the
robot base and record the RGB-D streams from the cam-
eras and robot joint pose simultaneously during the data

Table 5. Ablation over action sequence length h

Models Success Rate Inference Time (ms)

RVT 62.9 103
SAM-E (h = 1) 30.6±1.4 126
SAM-E (h = 3) 64.0±0.6 144
SAM-E (h = 5) 70.6±0.7 152
SAM-E (h = 7) 66.5±1.2 156

collection. We train SAM-E in 5 tasks with 10 episodes
for each, including put the towel on the cabinet, stack the
block, close the drawer, pick up the banana, and put the
orange into the drawer. All the episodes are collected by
human demonstrators. The results show that SAM-E can
perform real-time prediction in real-world scenarios and
complete tasks effectively, validating SAM-E’s capability
in real-world scenarios. See the §G and the videos for more
details and model performance.

6. Conclusion
We have introduced Segment Anything Model for
Embodied 3D manipulation (SAM-E), a novel multi-view
architecture that adopts SAM as the visual foundation model
with parameter-efficient finetuning for promptable percep-
tion to embodied scenarios, as well as a novel action-
sequence prediction head for efficient planning and coherent
execution. We conduct experiments of SAM-E on various
3D instruction-following tasks from RLBench for multi-task
experiments and few-show adaptation. We find SAM-E out-
performs prior state-of-the-art models on multi-task manip-
ulation and achieves a significant improvement in execution
efficiency and few-shot adaptation with great generalization
ability. Our work highlights the feasibility of leveraging
a visual foundation model and sequence prediction for en-
hancing generalization and efficiency in 3D manipulation.
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A. RLBench Tasks
We follow the multi-task multi-variation simulated experiments setting of RVT (Goyal et al., 2023) and PerAct (Shridhar
et al., 2022b) with 18 RLBench tasks (shown in Figure 7) and 249 unique variations across object placement, color, size,
category, count, and shape. Here we give a summary of the 18 RLBench tasks in Table 6. The extra 6 RLBench tasks
(shown in Figure 8) for the few-shot adaptation experiment are summarized in Table 7.

Close Jar Insert Peg Screw Bulb Place Wine at Rack Place Cups

Meat off Grill Open Drawer Turn Tap Stack Block Put in Drawer

Insert Peg Put in Cupboard Slide to Target Stack CupsReach and Drag

Sweep to Dustpan Put Money in Safe Push Buttons

Figure 7. Language-Conditioned Manipulation Tasks in RLBench. We conduct multi-task experiments on 18 simulated tasks in
RLBench(James et al., 2020). Apart from the language instruction depicted in the figures, there are a total of 249 variations of these tasks,
as illustrated in Table 6. During the test, the agent needs to handle the novel object poses, randomly sampled goals, and randomly sampled
scenes with different semantic instantiations of object colors, shapes, sizes, and categories within a maximum of 25 execution steps.
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Table 6. The 18 RLBench tasks for multi-task experiment

Task name Language Template Avg. Keyframes #of Variations Variation Type

put in drawer “put the item in the drawer” 12.0 3 placement
reach and drag “use the stick to drag the cube onto the target” 6.0 20 color
turn tap “turn tap” 2.0 2 placement
slide to target “slide the block to target” 4.7 4 color
open drawer “open the drawer” 3.0 3 placement
put in cupboard “put the in the cupboard” 5.0 9 category
place in shape sorter “put the in the shape sorter” 5.0 5 shape
put money in safe “put the money away in the safe on the shelf” 5.0 3 placement
push buttons “push the button, [then the button]” 3.8 50 color
close jar “close the jar” 6.0 20 color
stack block “stack blocks” 14.6 60 color,count
place cups “place cups on the cup holder” 11.5 3 count
place wine at rack “stack the wine bottle to the of the rack” 5.0 3 placement
screw bulb “screw in the light bulb” 7.0 20 color
sweep to dustpan “sweep dirt to the dustpan” 4.6 2 size
insert peg “put the ring on the spoke” 5.0 20 color
meat off grill “take the off the grill” 5.0 2 category
stack cups “stack the other cups on top of the cup” 10.0 20 color

Meat on Grill Open JarTV on

Solve Puzzle Screw NailToilet Seat down

Figure 8. Language-Conditioned Manipulation Tasks in RLBench. We conduct few-shot adaptation experiments on 6 simulated tasks
in RLBench to evaluate the generalization ability of SAM-E. Task variations are shown in Table 7. The tasks must be completed by the
agent within a maximum of 25 steps.

B. Implementation Details
In this section, we provide more implementation details of SAM-E.

B.1. Visual Input

In our experiments of RLBench, the visual observations are captured by four cameras (left shoulder, right shoulder, front,
and wrist) with a resolution of 128 × 128 in RGB-D. We follow the re-render approach introduced by RVT (Goyal et al.,
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Table 7. The 6 RLBench tasks used for the few-shot adaptation experiments.

Task name Language Template Avg. Keyframes #of Variations Variation Type

meat on grill “put the on the grill ” 5.0 2 category
open jar “open the jar” 6.0 20 color
screw nail “screw the nail in to the block” 6.0 1 -
toilet seat down “toilet seat down” 4.7 1 -
tv on “turn on the TV” 8.0 1 -
solve puzzle “solve the puzzle” 5.0 1 -

2023) before feeding visual images to the model. Specifically, the RGB-D images are rerendered to generate virtual images
in the form of cube orthographic projection. Then we use the cube orthographic projections as the visual inputs of SAM-E.

B.2. Action Sequence Imitation

We utilize a multi-channel action sequence policy head to predict the action sequence, trained by action sequence imitation.
To extract the temporal information of actions from the expert demonstrations, we employ the keyframe extraction on each
demonstration, generating a dataset of keyframe sequences. Given observations, SAM-E generates an action sequence with
a default action horizon of 5 and is trained to maximize the likelihood objective of imitation learning. Note that the action
sequence data may have variable lengths, when the data is shorter than the action horizon, we mask the untrained action
head, and when the data is longer, we truncate it accordingly.

B.3. Hyperparameters

In our experiments, the hyperparameters are primarily fixed, as shown in Table 8.

Table 8. Training Hyperparameters

Hyperparameters Multi-task Training Few-shot adaptation

batch size 10 10
learning rate 4e-3 4e-3

optimizer LAMB LAMB
learning rate schedule cosine decay cosine decay

warmup steps 2000 2000
training steps 60K 4K

training epochs 15 1

C. Visualization
We visualize the attention map of the multi-view transformer to show SAM-E’s various attention patterns for task com-
prehension and action sequence prediction. We use task put item in drawer as an example, which is completed by three
executions.

(i) In the first execution with the initial observation (see Figure 9), SAM-E’s attention, from one of its heads, is predominantly
focused on the Franka robot, the drawer cabinet, and more specifically, the item on the cabinet and the handle of the top
drawer. This observation aligns with the given instruction to ‘put the item in the top drawer’, highlighting SAM-E’s
capability to identify key objects within the scene according to the task description for task execution.

(ii) In the second inference, following an action sequence that results in the opening of the top drawer, SAM-E adapts its
focus. It now observes the newly available space within the drawer for placing the item (see Figure 10). Concurrently,
another of its attention heads redirects back to the end-effector and the item, strategizing the subsequent action of picking up
and placing the item into the drawer(see Figure 11).
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(iii) In the final inference (see Figure 12), SAM-E concentrates on the end-effector picking up the item and positioning it
accurately into the target position. This phase likely involves precise adjustments and movements, ensuring the successful
completion of the task as the language instruction.

Top View Back View Front View Right View Left View

Figure 9. SAM-E’s multi-view attention map of the initial inference.

Top View Back View Front View Right View Left View

Figure 10. SAM-E’s multi-view attention map of the second inference, focusing on the open drawer.

Top View Back View Front View Right View Left View

Figure 11. SAM-E’s multi-view attention map of the second inference, focusing on the end-effector and the item.

Top View Back View Front View Right View Left View

Figure 12. SAM-E’s multi-view attention map of the last inference.

17



SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation

D. One Glance Results
Figure 13 shows the results of execution times of SAM-E on success cases of several tasks. Thanks to its promptable
perception and efficient action sequence prediction, SAM-E excels in task completion by executing actions coherently,
resulting in improved performance and significantly reduced inference requirements. For the following tasks, in comparison,
RVT requires an average of [6.4, 6.0, 3.8, 5.5, 3.7, 4.3, 5.5, 5.0, 4.8] execution times of its success cases.
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Figure 13. The comparison of execution times on success cases of several tasks.

E. Comparison with Hiveformer
To compare the performance of SAM-E and HiverFormer, we add experiments to train SAM-E with the same 10 tasks
evaluated in the Hiveformer paper with 100 demonstrations per task, which is the same as Hiveformer (results are shown in
Table 9). The score of Hiveformer is adapted from their original paper. We remark that SAM-E is trained with 10 tasks with
all variations, which is much more challenging than Hiveformer which is trained with a unique variation for each task.

Table 9. Comparison with Hiveformer. Scores of Hiveformer are adopted from Guhur et al. (2022). Mean and std of 5 evaluations are
reported.

Models
Pick and

Lift
Pick up

Cup
Put Knife
on Board

Reach
Target

Stack
Wine

Take Money
out Safe

Take Umbrella
out Stand

Push
Buttons

Put Money
in Safe

Slide to
Target

On
Average

Hiveformer 88.9 92.9 75.3 100.0 71.2 79.1 89.2 100.0 58.2 78.7 83.3
SAM-E 87.2±1.8 88.8±5.2 68.0±4.0 100.0±0.0 69.6±7.3 98.4±2.2 96.0±2.8 100.0±0.0 93.6±2.2 84.8±7.7 88.6±0.7

F. Ablation
We provide the complete results of the ablation study in Table 10 and Table 11.

G. Real-World Experiments
We conduct real-world experiments on a FranKa Panda robot arm in the real world, equipped with a dual RGB-D camera
setup positioned at the left front and right front for multi-view observation, shown in Figure 14. We construct the real-world
scene and design 5 tasks for experiments, including put the towel on the cabinet, stack the block, close the drawer, pick up
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Table 10. Ablation Performances of SAM-E’s variations. Mean and std of 5 evaluations are reported.

Models
Put in

Drawer
Reach

and Drag
Turn
Tap

Slide to
Target

Open
Drawer

Put in
Cupboard

Place in
Shape Sorter

Put Money
in Safe

Push
Buttons

Close
Jar

SAM-E 92.0±5.7 100.0±0.0 100.0±0.0 95.2±1.8 95.2±5.2 64.0±2.8 34.4±6.1 95.2±3.3 100.0±0.0 82.4±3.6
SAM-E (LoRA, QKV) 88.8±7.7 100.0±0.0 100.0±0.0 90.4±6.1 94.4±3.6 57.6±4.6 37.6±5.4 92.8±5.2 100.0±0.0 78.4±4.6
SAM-E (w/o LoRA) 84.8±7.2 100.0±0.0 100.0±0.0 92.0±4.0 92.8±3.3 52.0±2.8 31.2±5.2 92.8±1.8 98.4±2.2 87.2±5.2
SAM-E (full finetune) 93.3±4.6 98.7±2.3 100.0±0.0 69.3±11.5 90.7±2.3 52.0±0.0 29.3±11.5 89.3±2.3 100.0±0.0 68.0±0.0

Models
Stack

Blocks
Place
Cups

Place Wine
at Rack

Screw
Bulb

Sweep to
Dustpan

Insert
Peg

Meat off
Grill

Stack
Cups

On
Average

Inference
Steps(Sum)

SAM-E 26.4±4.6 0.0±0.0 94.4±4.6 78.4±3.6 100.0±0.0 18.4±4.6 95.2±3.3 0.0±0.0 70.6±0.7 1130±12
SAM-E (LoRA, QKV) 32.0±4.9 3.2±1.8 93.6±3.6 69.6±4.6 98.4±2.2 6.4±6.1 97.6±2.2 5.6±2.2 69.2±0.9 1142±6
SAM-E (w/o LoRA) 20.8±7.2 0.0±0.0 92.0±4.0 64.0±7.5 96.8±1.8 8.8±6.6 94.4±3.6 0.8±1.8 67.2±1.0 1182±6
SAM-E (full finetune) 20.0±6.9 1.3±2.3 90.7±2.3 69.3±4.6 100.0±0.0 0.0±0.0 98.7±2.3 13.3±4.6 65.8±1.0 1204±18

Table 11. Ablation Performances with different action sequence length. Mean and std of 5 evaluations are reported.

Models
Put in

Drawer
Reach

and Drag
Turn
Tap

Slide to
Target

Open
Drawer

Put in
Cupboard

Place in
Shape Sorter

Put Money
in Safe

Push
Buttons

Close
Jar

SAM-E (h = 1) 0.0±0.0 6.7±2.3 98.7±2.3 45.3±4.6 72.0±6.9 8.0±4.0 14.7±2.3 8.0±0.0 69.3±2.3 12.0±4.0
SAM-E (h = 3) 77.6±2.2 84.8±1.8 100.0±0.0 72.8±1.8 92.0±2.8 31.2±5.2 35.2±3.3 84.8±5.2 99.2±1.8 73.6±3.6
SAM-E (h = 5) 92.0±5.7 100.0±0.0 100.0±0.0 95.2±1.8 95.2±5.2 64.0±2.8 34.4±6.1 95.2±3.3 100.0±0.0 82.4±3.6
SAM-E (h = 7) 88.8±9.5 99.2±1.8 100.0±0.0 80.8±18.6 90.4±4.6 53.6±7.3 28.8±3.3 92.8±1.8 100.0±0.0 72.8±3.3

Models
Stack

Blocks
Place
Cups

Place Wine
at Rack

Screw
Bulb

Sweep to
Dustpan

Insert
Peg

Meat off
Grill

Stack
Cups

On
Average

Inference
Steps(Sum)

SAM-E (h = 1) 0.0±0.0 1.3±2.3 40.0±6.9 58.7±2.3 24.0±4.0 34.7±14.0 54.7±4.6 2.7±4.6 30.6±1.4 8329±60
SAM-E (h = 3) 16.8±3.3 1.6±2.2 76.8±4.4 49.6±6.7 87.2±1.8 54.4±2.2 100.0±0.0 13.6±3.6 64.0±0.6 2026±30
SAM-E (h = 5) 26.4±4.6 0.0±0.0 94.4±4.6 78.4±3.6 100.0±0.0 18.4±4.6 95.2±3.3 0.0±0.0 70.6±0.7 1130±12
SAM-E (h = 7) 13.6±5.4 3.2±3.3 92.0±4.0 70.4±5.4 100.0±0.0 8.8±4.4 97.6±3.6 4.8±1.8 66.5±1.2 919±12

the banana, and put the orange into the drawer. For data collection, we manually control the robot arm for demonstrations
by a controller and collect the RGB-D stream and robot joint pose simultaneously with a data collection pipeline. We
collect demonstrations with variations in item placement for all tasks. See https://sam-embodied.github.io/
for videos and performance.

Real World Scene

Stack the block

Pick up the banana

Put the orange into the drawer

Close the drawer

Put the towel on the cabinet

Figure 14. Real-World Scene and tasks.
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H. Limitation and Future Work
In this work, we propose SAM-E with SAM as the visual foundation and action-sequence policy head, which outperforms
prior state-of-the-art methods. However, we also identify limitations that suggest directions for future research. We employ
parameter-efficient fine-tuning on relatively limited robot data to enhance its understanding of embodied manipulation.
Future improvements might include leveraging the scalability of the visual foundation through training on larger datasets,
such as Open-X (Collaboration, 2023). Additionally, we employed a fixed horizon for the action-sequence policy, which,
while generally effective, could be less suitable for certain tasks, such as stack cups in our experiments, in which may need
to pay more attention to the trade-off between precision and coherence of the action. It would be intriguing to see the action
horizon optimized through a mechanism or learned from data.
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