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Abstract

Lightweight image super-resolution (SR) meth-
ods have obtained promising results with mod-
erate model complexity. These approaches pri-
marily focus on a lightweight architecture de-
sign, but neglect to further reduce network re-
dundancy. While some model compression tech-
niques try to achieve more lightweight SR mod-
els with neural architecture search, knowledge
distillation, or channel pruning, they typically re-
quire considerable extra computational resources
or neglect to prune weights. To address these is-
sues, we propose a flexible meta pruning (FMP)
for lightweight image SR, where the network
channels and weights are pruned simultaneously.
Specifically, we control the network sparsity via
channel vectors and weight indicators. We feed
them into a hypernetwork, whose parameters
act as meta-data for the parameters of the SR
backbone. Consequently, for each network layer,
we conduct structured pruning with channel vec-
tors, which control the output and input channels.
Besides, we conduct unstructured pruning with
weight indicators to influence the sparsity of ker-
nel weights, resulting in flexible pruning. During
pruning, the sparsity of both channel vectors and
weight indicators are regularized. We optimize
the channel vectors and weight indicators with
proximal gradient and SGD. We conduct exten-
sive experiments to investigate critical factors in
the flexible channel and weight pruning for im-
age SR, demonstrating the superiority of our FMP
when applied to baseline image SR architectures.

1MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai
Jiao Tong University, China 2School of Intelligence Science and
Technology, Nanjing University, China 3ETH Zürich, Switzerland
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Figure 1. Visual samples of image SR (×4) by lightweight meth-
ods. Our FMP achieves better visual reconstruction.

1. Introduction
As one of the fundamental image processing tasks, single im-
age super-resolution (SR) aims to upscale a low-resolution
(LR) input to the desired size by restoring more details.
Recently, the task has received increasing attention, with
much exploration of deep neural network architectures for
improved performance and efficiency (Dong et al., 2014;
Kim et al., 2016; Lim et al., 2017; Zhang et al., 2018b;
Liang et al., 2021). Image SR first witnessed the appli-
cation of deep convolutional neural networks (CNN) in
SRCNN (Dong et al., 2014), with three convolutional lay-
ers. Kim et al. successfully trained a deeper network with
residual learning (Kim et al., 2016). Lim et al. further built
a much deeper network EDSR (Lim et al., 2017) by sim-
plifying the residual blocks (He et al., 2016). Zhang et
al. achieved even deeper in RCAN (Zhang et al., 2018a)
with the residual in residual (RIR) structure. Such an RIR
structure was further utilized in SwinIR (Liang et al., 2021),
where Swin Transformer (Liu et al., 2021) was introduced
as the basic block. Most of these CNN and Transformer
based methods have obtained increasing SR performance
with large model size and run-time, making them hard to de-
ploy in practice. Therefore, lightweight models are heavily
desired in real-world applications, where the computational
resources are limited (Lee et al., 2020).

To achieve lightweight image SR, increasing effort has
been devoted to design lightweight architectures and in-
corporation of model compression techniques. Many well-
designed lightweight SR models have been proposed, such
as CARN (Ahn et al., 2018), IMDN (Hui et al., 2019),
RLFN (Kong et al., 2022), and ELAN (Zhang et al., 2022a).
However, the required architectural exploration is costly
in both time and energy. Meanwhile, knowledge distilla-
tion (KD) (Hinton et al., 2014) was introduced to distill
knowledge from a teacher SR network to the student (He
et al., 2020; Lee et al., 2020). Neural architecture search
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(NAS) (Zoph & Le, 2017; Elsken et al., 2019) was also
utilized to explore lightweight SR structures, including
MoreMNAS (Chu et al., 2019b) and FALSR (Chu et al.,
2019a). However, they also have several drawbacks. KD-
based methods usually require a large teacher network,
consuming considerable computational resources. NAS-
based methods often need a large computational budget for
searching. Most manually designed, distilled, or searched
lightweight networks neglect to deeply consider inference
time by also removing redundant network channels and
weights. This could be suitably conducted by network prun-
ing techniques (i.e., structured and unstructured pruning).

To explore the network redundancy and reduce complex-
ity, researchers usually turn to network pruning tech-
niques (Reed, 1993; Sze et al., 2017), mainly consisting
of structured pruning (i.e., channel pruning) (Li et al., 2017)
and unstructured pruning (i.e., weight pruning) (Han et al.,
2015; 2016). Aligned structured sparsity was investigated
and jointly optimized in image SR network ASSLN (Zhang
et al., 2021; 2022b). They paid much attention to aligning
pruned channel locations across different layers. On the
other hand, MetaPruning (Liu et al., 2019) learned the pa-
rameters of the backbone network via hypernetworks (Ha
et al., 2017), which can only obtain fixed-size weights. How-
ever, such outputs can hardly be used for layer-wise config-
uration searching. To control the output size, Li et al. pro-
posed a differentiable meta pruning method via hypernet-
works (DHP) (Li et al., 2020a). However, DHP only prunes
the network channels for image SR and neglects to remove
redundant kernel weights.

To alleviate the problems, we first design a lightweight SR
baseline (LSRB) and then propose flexible meta pruning
(FMP). Specifically, following the NTIRE 2022 Challenge
on Efficient Super-Resolution (ESR) (Li et al., 2022), we
primarily focus on actual inference time. We design LSRB
based on residual blocks (Lim et al., 2017) and enhanced
spatial attention (ESA) (Liu et al., 2020). We then propose
a hypernetwork, whose parameters serve as meta-data for
those of the backbone network. The hypernetwork takes
channel vectors and weight indicators as inputs and obtains
network parameters for the SR backbone LSRB without
pretraining. The channel vectors control the output and in-
put channels of each network layer for structured pruning.
While, weight indicators influence the sparsity of kernel
weights for unstructured pruning. We adopt a sparsity regu-
larizer to channel vectors and weight indicators, resulting
in automatic network pruning. In the pruning stage, we
optimize the channel vectors and weight indicators with
proximal gradient and SGD, respectively. This stage is then
halted when the target compression ratio is reached. After
the pruning stage, the channel vectors and weight indica-
tors are sparsified. The corresponding channels and kernel
weights of the backbone network are also pruned flexibly.

The main contributions are summarized as follows:

• We propose a flexible meta pruning (FMP) technique
for lightweight image super-resolution (SR). We jointly
conduct flexible structured and unstructured network
pruning during the image SR training.

• We propose channel vectors and weight indicators to
control backbone channel and weight sparsity. We
optimize them with proximal gradient and SGD, re-
spectively, enabling differentiable and flexible pruning.

• We design a simple yet effective SR baseline (LSRB),
achieving better performance than the champion solu-
tion in ESR challenge. We apply our FMP to LSRB
and other baselines, obtaining more efficient backbones
and showing the effectiveness of FMP (see Fig. 1).

2. Related Works
Lightweight Image SR Networks. Recently, lightweight
image SR networks have been attracting consistent attention
and achieved promising performance. Dong et al. proposed
FSRCNN (Dong et al., 2016) to accelerate image SR by
placing the upscale module at the tail network position.
Ahn et al. proposed CARN (Ahn et al., 2018) with a cascad-
ing mechanism in a residual network. Hui et al. constructed
the cascaded information multi-distillation for a lightweight
network (IMDN) (Hui et al., 2019). Kong et al. proposed a
residual local feature network (RLFN) (Kong et al., 2022)
with enhanced spatial attention (ESA) (Liu et al., 2020).
Zhang et al. proposed an efficient long-range attention net-
work (ELAN) (Zhang et al., 2022a). Also, model compres-
sion techniques have been utilized for lightweight image
SR. He et al. (He et al., 2020) and Lee et al. introduced
knowledge distillation (Hinton et al., 2014) and proposed to
learn with privileged information (Lee et al., 2020). In the
meantime, Chu et al.introduced neural architecture search
(NAS) (Zoph & Le, 2017; Elsken et al., 2019) for image
SR in FALSR (Chu et al., 2019a) and MoreMNAS (Chu
et al., 2019b). Although those works have achieved notable
progress, they still need to carefully design the architectures
or consume extra resources.

Network Pruning. In the deep networks, there is consid-
erable number of redundant parameters, which could be
pruned without hurting performance too much (Reed, 1993;
Sze et al., 2017; Cheng et al., 2018a;b). Network pruning
techniques could be roughly divided into structured pruning
(i.e., channel pruning) (Li et al., 2017; Wen et al., 2016;
He et al., 2017; Wang et al., 2021) and unstructured prun-
ing (i.e., weight pruning) (Han et al., 2015; 2016). With
a pretrained large model, Zhang et al. integrated channel
pruning into image SR with aligned structured sparsity in
ASSL (Zhang et al., 2021) or structure-regularized prun-
ing in SRP (Zhang et al., 2022b), which utilized pretrained
models. Structured pruning usually leads to regular sparsity
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after pruning. While, unstructured pruning produces irreg-
ular sparsity (Wen et al., 2016; Wang et al., 2019). Very
few image SR works investigate such things. In this work,
we focus on a flexible pruning technique, which considers
both channel and weight pruning simultaneously without
any pretrained networks via a hypernetwork.

Meta Learning. As a concept of learning to learn, meta
learning is a wide collection of machine learning methods.
It was also introduced in image SR (Hu et al., 2019), where
the meta-upscale module was proposed to dynamically pre-
dict the weights of the upscale filters for the arbitrary scaling
factor. Recently, one hot meta learning topic has been about
using a hypernetwork (Ha et al., 2017) to predict the weight
parameters of the backbone network. Such ideas about hy-
pernetwork have been widely investigated in NAS (Brock
et al., 2018), network channel pruning (Liu et al., 2019; Li
et al., 2020b), and image super-resolution (e.g., DHP (Li
et al., 2020a)). However, most of them focus on channel
pruning and neglect to prune the weights. In this work,
we design a more general hypernetwork, which deals with
channel and weight pruning for each network layer simulta-
neously and obtains more efficient image SR networks.

3. Proposed Method
3.1. Motivation
Why Flexible Pruning? The general idea of this work is
first introduced before elaborating on details of our flexi-
ble network pruning method. Structured pruning and un-
structured pruning are two important network compression
methods that can cut down the model complexity of deep
neural networks significantly. They have different strengths.
On one hand, structured pruning leaves regular kernels af-
ter pruning, which is beneficial for the actual acceleration
of the network. On the other hand, unstructured pruning
removes single weights in a kernel and can compress the net-
work without sacrificing too much accuracy of the network.
However, the unstructured pruning leads to irregular kernels,
which can hardly reduce time. They need specific hardware
designs to achieve actual acceleration. Thus, coupling struc-
tured pruning and unstructured pruning brings together the
merits of both techniques, squeeze out the redundancy from
deep network, and take full advantage of the capacity of the
network under a fixed budget.

How to do Flexible Pruning? We design a flexible network
pruning method that shrinks the model by the specified com-
pression ratio, using structured and unstructured pruning.
An important problem that follows is how to couple the
two techniques during the design of the algorithm, while
at the same time decouple them during the optimization of
the pruning process. To achieve that, we propose to utilize
hypernetworks that, in short, predict the parameters of the
backbone network. The key components of the proposed
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Figure 2. Framework of our designed LSRB based on RLFN (Kong
et al., 2022). Left: There are N basic blocks in LSRB. Right: Each
basic block consists of residual block (Lim et al., 2017) (two Conv
layers and one ReLU), Conv 1×1, and ESA (Liu et al., 2020).

method are the channel vectors and the weight indicator,
which serve as tools to handle structured pruning and un-
structured pruning. Each convolutional layer of the back-
bone network is assigned a channel vector and a weight
indicator. The channel vectors control the number of output
channels of the convolutional layer, while the weight indi-
cators reflect the influence of single weight parameters of
the network. By manipulating channel vectors and weight
indicator during the optimization of the pruning process, we
achieve joint structured and unstructured pruning.

3.2. Lightweight SR Baseline
Deep image SR networks learn a mapping from a low-
resolution (LR) image ILR to its high-resolution (HR) coun-
terpart IHR. Here, we focus on lightweight SR networks,
which have fewer parameters and computation operations,
but achieve comparable or higher performance.

Most of the previous lightweight image SR networks (Ahn
et al., 2018; Hui et al., 2019) focus on reducing parameters
and FLOPs. Although they have achieved high performance,
their inference speed is usually not very fast, hindering their
practical usage. Pursuing faster inference speed is attract-
ing increasing attention. Recently, NTIRE 2022 Efficient
Super-Resolution (ESR) workshop (Li et al., 2022) targets
to investigate efficient SR models in terms of inference
time and lightweight networks. Its latest champion solu-
tion is RLFN (Kong et al., 2022), which utilizes residual
blocks (Lim et al., 2017) and enhanced spatial attention
(ESA) (Liu et al., 2020) as building blocks (i.e., RLFB).

In RLFN (Kong et al., 2022), its residual block consists of
3 convolutional (Conv) layers, each of which is followed
by ReLU (Nair & Hinton, 2010). This can introduce too
much non-linearities, which may hamper pixel-wise recon-
struction tasks, such as image SR. On the other hand, we
find that ESA performs better in lightweight networks than
in large ones. It motivates us to use more ESA and fewer
ReLU modules with limited model size. Consequently, we
modify RLFB (Kong et al., 2022) by replacing its residual
block with the simplified residual block (Lim et al., 2017),
which has 2 Conv layers and a ReLU between them. We
name this version as an lightweight SR baseline (LSRB)
and show its details in Fig. 2. As investigated in our experi-
ments, this simple LSRB can further reduce inference time
with comparable performance. LSRB can also be used as
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backbone network and be further pruned by our proposed
flexible meta pruning (see Fig. 3).

3.3. General Hypernetwork
Notation. Before delving deep into the details of the hy-
pernetwork design, we first introduce the notation that is
used throughout this paper. Let cout×cin×k1×k2 denote
the original kernel size and cpout×cpin×k1×k2 denote the tar-
get kernel size in general. The corresponding original and
target kernel sizes in l-th layer of the backbone network
are denoted as clout×clin×k1×k2 and cp,lout×cp,lin×k1×k2.
By compressing the weight parameters W l

B in the orig-
inal network, we aim at to derive a compact representa-
tion of those weights, i.e., WP,l

B . To control the pruning
of the network, we introduce another two tools, namely,
the channel vectors zlC ∈ Rclout and the weight indicators
Zl
W ∈ Rclout×clin×kl

1×kl
2 . The size of the channel vector

is equal to the number of output channels of the backbone
layer and controls the pruning of the single channels. The
weight indicator is initialized as a tensor with all ones and
acts as a continuous mask that reflects the single weight
strength. The design of the hypernetwork is inspired by
(Li et al., 2020a) and tailored to the joint optimization of
structured pruning and unstructured pruning in this work.

Hypernetwork. Following the design in DHP, the hyper-
network has three inputs including the channel vector of the
previous layer, the channel vectors of the current layer, and
the weight indicators of the current layer. The computation
in the hypernetwork is conducted in three steps.

Step 1 A matrix, i.e., M l = zlC · (zl−1
C )T , forms a grid

used for structured purning.

Step 2 Every element of the computed matrix is trans-
formed to a vector by two linear operations

Ol
i,j = W l

2 · (M l
i,j ·W l

1) , (1)

where W l
1 ∈ Rm×1 and W l

2 ∈ Rk2×m, the scalar M l
i,j

is the i, j-th element of the matrix M l, and Ol
i,j ∈ Rk2

,

Ol ∈ Rclout×clin×k2

. Note that for each element M l
i,j , W l

1

and W l
2 are different and for the simplicity of notation the

subscript i, j is omitted.

Step 3 The output Ol from the second stage is reshaped

into Zl
C ∈ Rclout×clin×k×k and masked by the weight indi-

cators. This results in the modified tensor
Zl = Zl

C ⊙ Zl
W , (2)

where ⊙ denotes element-wise multiplication, Zl is the final
output of the hypernetwork. The tensor Zl could be used as
the weight parameters of the convolutional (Conv) layers of
the SR backbone.

As a summary, we denote the parameters of the hypernet-
work as ΘH = {W l

1,W
l
2}. And the functionality of the

hypernetwork can be simplified as
ΘB = FH(zC , ZW ; ΘH), (3)

where FH(·) denotes the hypernetwork function, ΘB de-
notes the weights of the backbone network.

By optimizing channel vectors and weight indicators, it
is possible to achieve structured pruning and unstructured
pruning simultaneously (Fig. 4). Specifically, the network
weights could be flexibly pruned along the channel (i.e., out-
put and in channels) and spatial dimensions. By the above
formulation, we have already coupled structured pruning
and unstructured pruning within the same framework. Next,
we deal with the problem of decoupling their optimization.

3.4. Flexible Meta Pruning for Image SR
We show how to apply FMP for image SR in Fig. 3 and give
more details about layer controller sparsity regularization
and joint optimization during pruning in SR.

Sparsity Regularization. For the joint optimization of
the network pruning and image SR problem, we use the
following loss function, that contains four terms
L = Lrec(IHR, ISR)+αD(ΘH)+λCR(zC)+λWR(ZW ),

(4)
where α, λC , and λW are regularization factors.

Our pruning algorithms is jointly optimized with image SR
by considering the image reconstruction loss Lrec in the
loss function. We use L1 loss between the ground-truth HR
image IHR and the reconstructed SR image ISR. And the
super-resolved output could be obtained via

ISR = FFMP (ILR;FH(zC , ZW ; ΘH)). (5)
The term D(ΘH) in Eq. 4 denotes the weight decay regular-
ization applied to the parameters of the hypernetwork and α
is the weight decay factor.

The network pruning is achieved by applying sparsity regu-
larization on the channel vectors and the weight indicators
which correspond to the terms R(zC) and R(ZW )

R(zC) =

L∑
l=1

∥∥zlC∥∥1 , (6)

R(ZW ) =

L∑
l=1

∥∥Zl
W

∥∥
p
. (7)

In Eq. 7, the Lp norm is applied as a regularization on the
weight indicator. In the experiments, we ablate different
choices of the norm (e.g., L1, L2, and weight decay).

Differentiable Optimization. Since the channel vectors
and the weight indicator are not intertwined by non-linear
operations, we can decouple their optimization for network
pruning by different methods. First, the parameters ΘH in
the hypernetwork is optimized by SGD,

ΘH [t+ 1] = ΘH [t]− η∇H(ΘH [t]), (8)
where H = Lrec + αD, and η denotes the learning rate.
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Figure 3. Illustration of our flexible meta pruning (FMP) for image SR. Each backbone layer is associated to layer controller, which
provides channel vectors and weight indicators to hypernetwork. Its output ΘB can actually serve as the weights of SR backbone. We
optimize the whole pipeline by utilizing reconstruction loss, weight decay, and sparsity regularization.
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Figure 4. Illustration of hypernetwork in flexible meta pruning.
Channel vectors and weight indicators are inputs. The network
weights could be flexibly pruned along the channel (i.e., output
and in channels) and spatial dimensions.

Second, for the optimization of the channel vectors, we
apply proximal gradient descent method which contains a
gradient descent step and a proximal step.
zC [t+∆] = zC [t]− η∇G(zC [t]), (9)

zC [t+ 1] = proxλµR

(
zC [t+∆]− λµ∇L

(
zC [t+∆]

))
,

(10)
where G = Lrec + λCR. µ is the step size of proximal gra-
dient and is set as the learning rate of SGD update. The prox-
imal operator of L1 sparsity regularization on the channel
vectors have closed-form solutions as the soft-thresholding
function. Finally, the weight indicators are also optimized by
the standard SGD, i.e., ZW [t+1] = ZW [t]− η∇E(ZW [t]),
where E = Lrec + λWR. During the optimization, we set
regularization factors λC=0.1 and λW =0.02 for both struc-
tured and unstructured pruning. If the compression ratio of
one pruning method is achieved, the optimization method
for either the channel vectors or the weight indicators is
stopped while the other one continues. The whole algorithm
converges if both of the compression targets are achieved.

4. Experimental Results
4.1. Settings
Data and Evaluation. Following most recent works (Timo-
fte et al., 2017; Lim et al., 2017; Haris et al., 2018), we use

DIV2K dataset (Timofte et al., 2017) and Flickr2K (Lim
et al., 2017) as training data. We use five standard bench-
mark datasets: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde
et al., 2010), B100 (Martin et al., 2001), Urban100 (Huang
et al., 2015), and Manga109 (Matsui et al., 2017). We evalu-
ate the SR results with PSNR and SSIM (Wang et al., 2004)
on Y channel of transformed YCbCr space. It should be
noted that to obtain our results we do not use self-ensemble.
We also provide model size and FLOPs comparisons. If
not specifically stated, in the main comparison, we set the
output size as 3×1280×720 to calculate FLOPs.

Training Settings. Following (Lim et al., 2017; Zhang
et al., 2018a), we perform data augmentation on the training
images, which are randomly rotated by 90◦, 180◦, 270◦ and
flipped horizontally. Each training batch consists of 16 LR
color patches, whose size is 64×64. Our FMP model is
trained by ADAM optimizer (Kingma & Ba, 2015) with
β1=0.9, β2=0.999, and ϵ=10−8. We set the initial learning
rate as 10−4 and then decrease it to half every 2×105 itera-
tions. We use PyTorch (Paszke et al., 2017) to implement
our models with RTX 3090 GPUs.

4.2. Main Comparisons
We apply FMP to LSRB and compare with representative
lightweight SR networks: SRCNN (Dong et al., 2014), FSR-
CNN (Dong et al., 2016), VDSR (Kim et al., 2016), LapSRN
(Lai et al., 2017), DRRN (Tai et al., 2017a), MemNet (Tai
et al., 2017b), CARN (Ahn et al., 2018), IMDN (Hui et al.,
2019), LatticeNet (Luo et al., 2022), ASSLN (Zhang et al.,
2021), and DIPNet (Yu et al., 2023). We configure LSRB to
keep a similar model size and FLOPs as recent leading ones
(e.g., IMDN (Hui et al., 2019)).

Quantitative Results. In Tab. 1, we provide our quantitative
results without self-ensemble. ASSLN (Zhang et al., 2021)
ranks the second best place, while our FMP performs the
best on all datasets across all scales. Specifically, let us take
the high-quality Urban100 as an example. Our FMP obtains
about 0.0051, 0.0035, and 0.0047 SSIM gains on Urban100
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN ×2 36.66 0.9542 32.42 0.9063 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN ×2 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR ×2 37.53 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140 37.22 0.9750
LapSRN ×2 37.52 0.9590 33.08 0.9130 31.80 0.8950 30.41 0.9100 37.27 0.9740
DRRN ×2 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.92 0.9760
MemNet ×2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
CARN ×2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9764
IMDN ×2 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.87 0.9773
LatticeNet ×2 38.06 0.9607 33.70 0.9187 32.20 0.8999 32.25 0.9288 N/A N/A
ASSLN ×2 38.12 0.9608 33.77 0.9194 32.27 0.9007 32.41 0.9309 39.12 0.9781
DIPNet ×2 37.98 0.9605 33.66 0.9192 32.20 0.9002 32.31 0.9302 38.62 0.9770
FMP (ours) ×2 38.17 0.9615 33.81 0.9215 32.32 0.9022 32.71 0.9360 39.17 0.9783

SRCNN ×3 32.75 0.9090 29.28 0.8209 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN ×3 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR ×3 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279 32.01 0.9340
DRRN ×3 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.74 0.9390
MemNet ×3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
CARN ×3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9539
IMDN ×3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9444
LatticeNet ×3 34.40 0.9272 30.32 0.8416 29.10 0.8049 28.19 0.8513 N/A N/A
ASSLN ×3 34.51 0.9280 30.45 0.8439 29.19 0.8069 28.35 0.8562 34.00 0.9468
FMP (ours) ×3 34.55 0.9291 30.48 0.8456 29.20 0.8101 28.40 0.8597 34.06 0.9473

SRCNN ×4 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN ×4 30.71 0.8657 27.59 0.7535 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR ×4 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524 28.83 0.8870
LapSRN ×4 31.54 0.8850 28.19 0.7720 27.32 0.7280 25.21 0.7560 29.09 0.8900
DRRN ×4 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.46 0.8960
MemNet ×4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
CARN ×4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.46 0.9083
IMDN ×4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LatticeNet ×4 32.18 0.8943 28.61 0.7812 27.57 0.7355 26.14 0.7844 N/A N/A
ASSLN ×4 32.29 0.8964 28.69 0.7844 27.66 0.7384 26.27 0.7907 30.84 0.9119
DIPNet ×4 32.20 0.8950 28.58 0.7811 27.59 0.7364 26.16 0.7879 30.53 0.9087
FMP (ours) ×4 32.34 0.8979 28.71 0.7878 27.67 0.7425 26.35 0.7954 30.90 0.9132

Table 1. PSNR/SSIM comparisons about lightweight image SR. Best and second best results are colored with red and blue.
×2 ×3 ×4Method Params FLOPs Params FLOPs Params FLOPs

SRCNN 57K 52.7G 57K 52.7G 57K 52.7G
FSRCNN 12K 6.0G 12K 5.0G 12K 4.6G
VDSR 665K 612.6G 665K 612.6G 665K 612.6G
LapSRN 813K 29.9G N/A N/A 813K 149.4G
DRRN 297K 6,796.9G 297K 6,796.9G 297K 6,796.9G
MemNet 677K 2,662.4G 677K 2,662.4G 677K 2,662.4G
CARN 1,592K 222.8G 1,592K 118.8G 1,592K 90.9G
IMDN 694K 158.8G 703K 71.5G 715K 40.9G
LatticeNet 756K 169.5G 765K 76.3G 777K 43.6G
ASSLN 692K 159.1G 698K 71.2G 708K 40.6G
FMP (ours) 694K 153.7G 684K 67.3G 704K 39.0G

Table 2. Model size and FLOPs comparisons.
(×2, ×3, ×4) over the second-best method, respectively.
These comparisons show the effectiveness of FMP, which
conducts flexible network pruning and increases the effi-
ciency of the network parameters from hypernetwork. We
make better use of the channel and weight sparsity of the
backbone and increase the efficiency of the network param-
eters from hypernetwork, achieving better performance.

Model Complexity. In Tab. 2, we provide model com-
plexity comparison. Several lightweight SR models (e.g.,
SRCNN and FSRCNN) achieve a very small number of
parameters and FLOPs, yet have limited SR performance.
Compared with recent leading works (e.g., IMDN, Lat-
ticeNet, and ASSLN), our FMP has comparable parameter
numbers and FLOPs. FMP operates fewer FLOPs than
most other compared methods. When considering Tabs. 1
and 2 together, our FMP achieves a good trade-off between
performance and model complexity.

Visual Results. We further provide visual results (×4) in

Inference Time (ms) Urban100Method Params FLOPs Urban100 DIV2K PSNR SSIM

RLFN (Kong et al., 2022) 0.32 M 1.23G 19 34 25.54 0.7675
LSRB-6-48 0.35 M 1.31G 12 23 25.62 0.7700

Table 3. Quantitative results (×4). Input size is 3×64×64 for
FLOPs. Inference time is tested with a RTX 3090 GPU.

Prune Ratio (%) Method Set5 Set14 B100 Urban100

60 DHP (Li et al., 2020a) 31.99 28.52 27.53 25.92
FMP (ours) 32.16 28.60 27.55 25.96

40 DHP (Li et al., 2020a) 32.01 28.49 27.52 25.86
FMP (ours) 32.08 28.58 27.53 25.91

20 DHP (Li et al., 2020a) 31.94 28.42 27.47 25.69
FMP (ours) 31.97 28.51 27.47 25.78

Table 4. Flexible vs. channel pruning in EDSR-8-128.

Fig. 5. In img 083, we can observe that most compared
methods either hardly reconstruct structural details with
proper directions or suffer from blurring artifacts. In con-
trast, our FMP can recover more structural details and better
alleviate the blurring artifacts. Other similar observations
can also be easily found. These visual comparisons are
consistent with the trend in quantitative results (see Tab. 1),
indicating the superiority of our method.

4.3. Ablation Study
We train all models from scratch for ablation study. The in-
put size is 3×64×64, which is also used to calculate FLOPs
for simplicity. Training process will stop if meets conver-
gence or reach the maximum iteration number 300K.

Effectiveness of LSRB. To show the effectiveness of
the newly designed LSRB, we first compare it with
RLFN (Kong et al., 2022). To keep similar model com-
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Urban100: img 078 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 083 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 095 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)

Urban100: img 098 (×4)

HQ Bicubic SRCNN FSRCNN VDSR

LapSRN CARN IMDN ASSLN FMP (ours)
Figure 5. Visual comparison (×4) with lightweight SR networks on Urban100 dataset.

Total Ratio (%) Channel Prune Ratio (%) Weight Prune Ratio (%) PSNR (dB) of EDSR-8-128 + FMPMethod FLOPs Params FLOPs Params FLOPs Params Set5 Set14 B100 Urban100 Manga109

L1 norm 61.98 57.32 24.89 25.51 13.12 17.17 32.01 28.52 27.51 25.90 30.10
L2 norm 61.87 58.05 8.90 10.16 29.24 31.78 31.97 28.49 27.49 25.81 30.01
Weight Decay 61.95 59.98 31.11 31.49 6.94 8.53 32.03 28.53 27.52 25.90 30.10

Table 5. Weight pruning methods in FMP for image SR (×4). We apply FMP to the backbone EDSR-8-128.

plexity, we configure LSRB-6-48, which consists of 6 basic
blocks (RBs) with 48 channels for each Conv layer. We re-
port inference time on Urban100 and DIV2K validation and
test data. In Tab. 3, our LSRB achieves much faster better
performance than RLFN at the cost of slightly more pa-
rameters and FLOPs. This observation indicates that LSRB
achieves a good trade-off among inference time, model com-
plexity, and performance. It is promising to further reduce
its redundant parameters with our proposed FMP.

Flexible vs. Channel Pruning. We then compare with
channel pruning methods in image SR. In the pruning stage,
we do not use pretrained models, which are needed in
ASSL (Zhang et al., 2021) and SRP (Zhang et al., 2022b).
Consequently, we compare with DHP (Li et al., 2020a),
which only conducts channel pruning without pretraining.
In Tab. 4, we use EDSR-8-128 as the image SR backbone,

which has been used in DHP (Li et al., 2020a) and consists
of 8 RBs with 128 channels for each convolutional (Conv)
layer. By additionally pruning kernel weights, FMP per-
forms better than DHP across different cases. As a result,
more redundant weights can be pruned. This comparison
indicates that flexibly pruning both network channels and
weights achieves further improvements.

Pruning Method. As mentioned in Sec. 3.4, sparsity regu-
larization can be applied to the channel vectors and weight
indicators. The optimization of channel vectors has been
sufficiently studied in DHP (Li et al., 2020a). Thus, we just
use the default L1 norm regularization for channel vector
optimization. By contrast, we study the sparsity regular-
ization on the weight indicators thoroughly in this paper.
Specifically, we study three regularization terms in Eq. 7 in-
cluding L1 norm, L2 norm, and weight decay regularization
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Total Ratio (%) Channel Prune Ratio (%) Weight Prune Ratio (%) PSNR (dB) of EDSR-8-128 + FMPMetric Criteria FLOPs Params FLOPs Params FLOPs Params Set5 Set14 B100 Urban100 Manga109

Params

Channel 72.88 70.61 18.34 18.51 8.78 10.88 32.00 28.51 28.51 25.94 30.05
Weight 48.55 41.49 33.24 33.39 18.21 25.12 31.90 28.45 27.46 25.76 29.87

Total Fixed 62.23 55.59 19.65 19.78 18.11 24.63 31.98 28.50 27.51 25.85 30.04
Total 61.95 59.98 31.11 31.49 6.94 8.53 32.03 28.53 27.52 25.90 30.10

FLOPs

Channel 72.93 70.70 18.34 18.51 8.73 10.78 32.04 28.56 27.53 25.96 30.15
Weight 59.19 54.39 27.19 27.60 13.63 18.01 31.97 28.49 27.50 25.90 30.02

Total Fixed 67.46 62.70 18.64 18.95 13.90 18.35 31.97 28.54 27.53 25.91 30.07
Total 65.39 61.57 23.15 23.60 11.45 14.83 32.04 28.55 27.53 25.94 30.11

Table 6. Convergence criteria in FMP for image SR (×4). We apply FMP to the backbone EDSR-8-128.

Method Type Params FLOPs Set5 B100
MoreMNAS-A NAS 1,039K 238.6G 37.63 31.95
FALSR-A NAS 1,021K 234.7G 37.82 32.12
CARN+KD KD 1,592K 222.8G 37.82 32.08
ASSLN C Prune 692K 159.1G 38.12 32.27
FMP (ours) C+W Prune 694K 153.7G 38.17 32.32

Table 7. Parameters, FLOPs, and PSNR comparisons (×2). ‘C’
and ‘W’ denote channel and weight.

in Tab. 5. We find that L1 norm and weight decay could
perform better than L2 norm. Meanwhile, the L1 norm per-
forms faster convergence than weight decay. Therefore, we
choose L1 norm for weight indicator optimization.

4.4. Convergence Criteria
As shown in Sec. 3.4, the convergence criteria needs to be
defined during the optimization of the pruning algorithm. In
the paper, we define the pruning ratio γC and γW in terms
of either the number of parameters or FLOPs, depending
on which metric we want to optimize for. Both structured
pruning and unstructured pruning are conducted during the
optimization. In addition, we defined four convergence cri-
teria: (1) Channel: the pruning algorithm converges if the
channel pruning ratio γC is achieved. (2) Weight: the prun-
ing algorithm converges if the weight pruning ratio γW is
achieved. (3) Total Fixed: both the pruning ratio γC and
γW should be met individually. (4) Total: the joint prun-
ing ratio γC + γW is achieved. The percentage of weight
pruning and channel pruning is determined automatically.
We provide results in Tab. 6. We can learn from Tab. 6 that
pruning channel and weight jointly (i.e., Total Fixed and To-
tal cases) reduces more parameters and obtains comparable
performance as channel pruning alone.

4.5. Different Model Compression Methods
To further show effectiveness of flexible network pruning
method, we compare FMP with representative model com-
pression techniques for image SR. Specifically, we com-
pare with neural architecture search (NAS) based methods
(i.e., MoreMNAS-A (Chu et al., 2019b) and FALSR-A (Chu
et al., 2019a)), knowledge distillation (KD) based methods
(i.e., CARN+KD (Lee et al., 2020)), and channel pruning
based method (i.e., ASSLN (Zhang et al., 2021)). We pro-
vide quantitative results in Tab. 7. Our FMP obtains the
best performance (see Tab. 1) with comparable parameters
and FLOPs as others. We do not have to search lots of
architectures or train a teacher network as NAS and KD
based methods do. ASSLN prunes channels from a pre-
trained model. With our proposed flexible network pruning

strategy, we can prune channels and weights jointly without
pretrained models, being more flexible than ASSLN.

4.6. Discussions and Future Works
Although there are some works integrating network pruning
for lightweight image SR (Li et al., 2020a; Zhang et al.,
2021; 2022b), we find that there still exist several challenges
and basic problems to be solved.

New Performance Benchmark. In our ablation study, we
train each model from scratch with similar training iterations
regardless of scale factors. This is important to examine the
effectiveness of the pruning method in image SR. But, we
mainly compare with SOTA lightweight SR methods, where
some tricks could be involved, like pretraining and training
iterations. Convincing benchmarks specifically designed for
network pruning in SR are needed.

Generalization Ability. In this work, we mainly apply
our FMP to EDSR (Lim et al., 2017) and newly designed
LSRB. To further demonstrate the generalization ability of
the network pruning methods, we should also have applied
FMP to several classic image SR models. Although LSRB
is closely related to several leading lightweight networks
(e.g., IMDN (Hui et al., 2019), RFAN (Liu et al., 2020),
RLFN (Kong et al., 2022)), it is more convincing to try more
SR models. It is worth investigating FMP into Transformer
based methods (e.g., SwinIR (Liang et al., 2021)).

Plug-and-Play Pruning in SR. The main motivation for
developing ESR models is to deploy them in devices with
limited resources conveniently. In practice, people hope to
directly utilize a pruning method in SR models with little
extra effort as much as possible. Therefore, exploring plug-
and-play pruning methods in SR is another future work,
which moves further steps toward practical situations.

5. Conclusion
We design a lightweight SR baseline, which runs fast yet ob-
tains comparable performance as other lightweight models.
We then propose a flexible meta pruning (FMP) technique to
prune network channels and weights simultaneously. Specif-
ically, we introduce a hypernetwork, taking channel vectors
and weight indicators as inputs. The hypernetwork outputs
serves as the network parameters for the SR backbone. Con-
sequently, for each network layer, we conduct structured
pruning with channel vectors, controlling the output and

8



Lightweight Image Super-Resolution via Flexible Meta Pruning

input channels. Besides, we conduct unstructured pruning
with weight indicators to influence the sparsity of kernel
weights, resulting in flexible pruning. During pruning, both
channel vectors and weight indicators are regularized by
sparsity, and are optimized with proximal gradient and SGD
respectively. We investigate the effect of key factors in the
flexible network pruning. Our FMP also achieves superior
performance gains over recent leading methods.
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