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Abstract
Artificial Intelligence (AI) holds promise as a tech-
nology that can be used to improve government
and economic policy-making. This paper pro-
poses a new research agenda towards this end by
introducing Social Environment Design, a gen-
eral framework for the use of AI in automated
policy-making that connects with the Reinforce-
ment Learning, EconCS, and Computational So-
cial Choice communities. The framework seeks to
capture general economic environments, includes
voting on policy objectives, and gives a direction
for the systematic analysis of government and eco-
nomic policy through AI simulation. We highlight
key open problems for future research in AI-based
policymaking. By solving these challenges, we
hope to achieve various social welfare objectives,
thereby promoting more ethical and responsible
decision making.

1. Introduction
Economic policy formulation is a domain fraught with com-
plexity, with traditional economic models providing limited
foresight into the outcomes of policy decisions. Policy-
makers must not only understand the immediate implica-
tions of individual policies but also their aggregate and
long-term effects. In addition, human policy-maker incen-
tives are oftentimes not aligned with the interests of the
general public, and may instead prioritize special interests
or reelection (de Figueiredo & Richter, 2014). In light of
this, AI-based approaches to policy design that can simulate
economies and target different objectives, hold the potential
for improved policy understanding and formulation (Zheng
et al., 2022; Koster et al., 2022).
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Figure 1. The proposed framework. The process begins with vot-
ing, where human or AI players report preferences on social wel-
fare objectives to a voting mechanism (1). This an objective for
a Principal policy-maker, who designs a parameterized N -player
Partially Observable Markov Game (POMG) (2). The players are
the same as the voters. This POMG unfolds over several timesteps
H (3). Following the POMG, game state information is extracted
to initiate n last POMG state used as the first game state of the new
round. This whole process is repeated again in the next round.

Wra where AI is gaining increasing attention in governments
(House, 2023; Engstrom et al., 2020), it is timely to under-
stand its potential influence on future policy-making. Ide-
ally, such a framework should satisfy the following desider-
ata:

1. Alignment of policy-makers to the values of con-
stituents, whilst ensuring fair and equitable representa-
tion (Barocas et al., 2023).

2. Sufficient model expressivity (Patig, 2004) to accu-
rately represent the intricate governance structures
found in the real world, capturing the subtleties and
variances of socio-economic interactions.

3. Balance expressiveness with computational tractabil-
ity, making it feasible to scale to systems with a large
number of agents.

4. Build theoretical understanding, enabling systematic
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analysis and offering a new lens on complex economic
models.

In this paper, we propose a new framework, Social Environ-
ment Design, that lays out an agenda in making progress
towards these desiderata. In our framework, illustrated in
Figure 1, we suggest addressing the concern of a misaligned
policy-maker with “Voting on Values (Hanson, 2013),” cou-
pled with a Principal policy-maker (or environment de-
signer) who seeks to achieve suggested policy goals. We
capture the complexity of a general economic environment
whilst maintaining computational tractability by model-
ing the economy as a Partially Observable Markov Game
(POMG), which maintains a fixed observation space for each
agent. Finally, we structure our framework as repeatedly
finding Stackelberg Equilbria, enabling theoretical under-
standing by allowing reduction to simpler subproblems.

We now state the position of this paper: Social Environ-
ment Design should be further developed in order to
enable AI-based policy-making. Towards this end, we
discuss several open problems of practical and theoretical
interest. By introducing this framework, we open a dialogue
on AI’s application to economic and government policy
design, aspiring to someday help leverage AI to assist poli-
cymakers in enhancing economic resilience and governance
effectiveness.

In summary, we list our core contributions:

1) We propose the Social Environment Design framework to
enable future research in AI-led policymaking in complex
economic systems;

2) We release a core implementation of our framework as a
Sequential Social Dilemma Environment along with code;
and

3) We provide a characterization of open problems, along
with prospective solution concepts and algorithmic ap-
proaches to forward the dialogue on AI’s application in
economic policy design.

2. Preliminaries
Here we give some preliminaries on several foundational
games and solution concepts. We start by introducing the
foundational concept of a Stackelberg Game and Partially
Observable Markov Game, and combine these concepts
together into the Stackelberg Markov Game. We then in-
troduce the Mechanism Design problem, which studies a
related problem as Social Environment Design in a more
constrained setting.

Definition 2.1. A (n+ 1)-player Stackelberg-Nash Game
S = (n,X ,Y,u) comprises one player called the leader
and n ∈ N \ {0} players called followers. In a Stackelberg-

Nash game, the leader first commits to an action x ∈ X
from action space X ⊂ Rm. Then, having observed the
leader’s action, each follower i ∈ [n], responds with an
action yi in their action space Yi ⊂ Rm. We define the
followers’ joint action space Y =×i∈[n]

Yi. We refer to a
collection of actions y = (y1, · · · , yn) ∈ Y as a followers’
action profile, and to a collection (x, y) ∈ X × Y as an
action profile.

After all players choose an action, the leader receives payoff
uo(x,y) ∈ R, while each follower i ∈ [n] receives payoff
ui(x,y) ∈ R. Each player i ∈ [n] aims to maximize her
payoff, and the leader aims to maximize her payoff assuming
the followers will best respond.

Fixing the leader’s action x ∈ X , a Stackelberg
Nash game S induces a lower-level Nash game GS =
(n,m,Y,u−0(x, ·)) among the followers.

Definition 2.2. A Partially Observable Markov
Game (POMG) M with n agents is a tuple
(S,A, T, r,Ω, O, γ, µ0). Note that this game is also
referred to as a Partially Observable Stochastic Game
(POSG). Here,

• S is a shared state space for all agents;

• A =×i∈[n]
Ai is the joint action space;

• T : S × S → ∆(A) is a stochastic transition function;

• r : S × A → Rn is the reward function with r =
(r1, · · · , rn);

• Ω =×i∈[n]
Ωi is the joint observation space;

• O : S × A → ∆(Ω) is the stochastic observation
function;

• γ ∈ [0, 1) is a discount factor;

• µ0 ∈ ∆(S) is the initial state distribution.

An agent’s behavior in this game is characterized by its
policy πi : Ω → A, which maps observations to actions.

We now combine this two foundational concepts together.

Definition 2.3. A (n + 1)-player Stackelberg-Markov
Game S = (n,Φ,Π,u) comprises one player called the
leader and n ∈ N \ {0} players called followers. In a
Stackelberg-Markov game, the leader first commits to an
action ϕ ∈ Φ from action space Φ ⊂ Rm which induces a
n-player low-level (Partially Observable) Markov Game
Mϕ = (S,Aϕ, Tϕ, rϕ,Ωϕ, Oϕ, γ, µϕ

0 ). Then, having ob-
served the leader’s action, each follower i ∈ [n], responds
with an policy πi : Ω → Ai in their policy space Πi. We
define the followers’ joint policy space Π =×i∈[n]

Πi. We
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refer to a collection of policies π = (π1, · · · , πn) ∈ Π as a
followers’ policy profile.

After all players choose an action, the leader receives payoff
uo(ϕ, π) ∈ R, while each follower i ∈ [n] receives payoff

ui(ϕ, π) = EMϕ,π[

∞∑
t=0

γtrϕi (s
t, at)] ∈ R. (1)

Each player i ∈ [n] aims to maximize her payoff, and the
leader aims to maximize her payoff assuming the followers
will best respond.

For all followers i ∈ [n], we define the δ-best-response
correspondence

BRδ
i (ϕ, π−i) = {πi ∈ Πi | ui(ϕ, π)

≥ max
πi∈Πi

ui(ϕ, (πi, π−i))− δ}, (2)

and the joint δ-best-response correspondence
BRδ(ϕ, π) =×i∈[n]

BRδ
i (ϕ, π−i).

Definition 2.4. A (ε, δ)-strong Stackelberg-Markov-
Nash equilibrium (SSMNE) in a Stackelberg-Markov
game S = (n,Φ,Π,u) is an action profile (ϕ∗, π∗) ∈ Φ×Π
such that

u0(ϕ
∗, π∗) ≥ max

ϕ∈Φ
max
BRδ

u0(ϕ, π)− ε and

ui(ϕ
∗, π∗) ≥ max

πi∈Πi

ui(ϕ
∗, (πi, π

∗
−i))− δ, ∀i ∈ [n].

(3)

We now introduce the Mechanism Design (MD) problem,
which while somewhat similar in motivation to Social En-
vironment Design (SED), is a very different setting. SED
considers POMG environments rather than the single-shot
mechanisms found in MD. Additionally, in MD the mech-
anism stays fixed, and the optimal mechanism should be
found in closed-form. On the other hand, SED will iter-
atively attempt to find a better environment, and makes
no claims around optimality or closed-formedness of the
generated environment.

Definition 2.5. A (One-Shot) Mechanism Design problem
P = (n, T , S, t,u, u0, f) comprises of n agents, each i ∈
[n] owning a private type ti ∈ Ti from a set of possible
types Ti ⊂ Rm .

Our goal in Mechanism Design is to design some system
known as mechanism which achieves some collective social
outcome. In order to do so, we must first be able to capture
the values and preferences of an agent. An agent’s prefer-
ences over outcomes s ∈ S, for a set S of outcomes, can be
expressed in terms of a utility function that is parameterized
by the type. Let ui(s, ti) denote the utility of agent i for
outcome s ∈ S given type ti. A strategy (which formally
defines an agent’s behavior) si : Ti → Ai chooses an action

based on the given type. Let ai = si(ti) ∈ Ai denote the
action of agent i given type ti, where Ai is the set of all
possible actions available to agent i.

A mechanism M = ({Ai}i∈[n], g) defines the set of ac-
tions Ai available to each agent i, and an outcome rule g :

×i∈[n]
Ai → S, such that g(a) is the outcome implemented

by the mechanism for action profile a = (a1, · · · , an).
u0 : M××i∈[n]

Ai → R is a principal objective function,
where u0(M,a) represents the expected utility/revenue of
the principal when mechanism designer chooses mechanism
M and agents choose action profile a. Note that u0 defines
this collective social objective, also known as the social
choice function. The goal of the mechanism designer is to
design a mechanism M = ({Ai}i∈[n], g) ∈ M that maxi-
mizes u0(M,a∗), where strategy profile a∗ = (a∗1, · · · , a∗n)
is an (Nash (Nash, 1951), Bayesian-Nash (Harsanyi, 1968),
dominant-strategy (Laffont & Maskin, 1982)) equilibrium
to the game induced by M .

3. Formal Definition of Social Environment
Design Game

Definition 3.1. A Social Environment Design Game
S = (Φ, P, ϕ0, D, δ,Θ,O, f) is a one-leader-n-
follower onlinea Stackelberg-Markov Game, where

• Φ ⊆ Rk is the principal action space;

• P : Φ 7→ Mϕ is a policy implementa-
tion map that maps from a principal action
ϕ ∈ Φ to a parameterized POMG Mϕ =
(S,Aϕ, Tϕ, rϕ,Ωϕ, Oϕ, γϕ, µϕ

0 );

• ϕ0 ∈ Φ is some initial action;

• D : Φ × Φ 7→ R≥0 is a divergence measure on
the leader action space;

• δ > 0 is the divergence constraint;

• Θ ⊆ R(n+1)×m is the type space;

• W = {wi}i∈[l] is some set of predefined social
welfare functions, where each w maps Φ×Π 7→
R. We give examples of several possible choices
of objectives below in Social Welfare Examples.
Π here refers to the set of all possible policy pro-
files in the parameterized POMG;

• f : Θ 7→ W is a social choice function represent-
ing the voting mechanism.

aHere, online means that the Stackelberg-Markov Game
is repeatedly played, with the first state of a new round made
equal to the final state of the last round.
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We define the Social Environment Design Game formally as
repeatedly finding a Stackelberg Equilibrium in a Markov
Game (Gerstgrasser & Parkes, 2023; Brero et al., 2022),
iterated over several rounds of voting.

At a high level, we frame the economic design problem as
a Stackelberg game between the policy designer and eco-
nomic participants. The economic participants first vote for
a given objective, or values to optimize for. Subsequently,
the Principal (leader) attempts to maximize this objective by
designing the rules of an economic system, which induce
an environment for the participants. We model this envi-
ronment as a Partially Observable Markov Game (POMG)
with theparticipants as the agents. We refer to this as the
Social Environment Design Game because it generalizes
mechanism design in a number of ways; e.g., it involves
voting on goals, and it involves the design of an economic
policy for an economic environment in which agents take
actions and report types.

Further analysis and breakdown of Definition 3.1.

Θ is composed of (n+1) vectors. Θ1 is the type space of the
principal and Θ−1 to be the type space of the participants.
Θ can be added to the state space of the POMG, which
allows dynamic types that change over time in response
to the state of the game. We do not allow the Principal to
directly manipulate or observe the state space. Thus, we
can embed the type space within the state space to hide
it from the Principal. Even with elements of the POMG
that the Principal does have control over, such as the state
transition function Tϕ, one can enforce hard constraints on
how much power the Principal has to change the function
explicitly through the divergence D or implicitly through
the implementation map P .

Both the infinite-horizon and finite-horizon version of the
Social Environment Design Game can be considered. In
contrast to standard Reinforcement Learning (RL), we do
not need a discount factor for the infinite-horizon version,
as we consider the Principal as maximizing the objective
at the current voting round (and the objective may change
at each round). Exploring the tradeoffs between this local
objective and more complex, sequential objectives is left as
an important direction for future work. In the finite horizon
case, we add an additional time horizon T to our game.

We now proceed to a detailed breakdown of our game. The
Social Environment Design Game can be divided into a Vot-
ing Mechanism and Stackelberg Game, which is played
with the Principal’s objective determined by the Voting
Mechanism.

Definition 3.2. The Voting Mechanism is defined as V =
(W, f,Θ).

Here, we use the standard axiomatic model (Arrow, 2012),

where W is the set of alternatives, f is the social choice
function, and Θ is the type space (set of all preference pro-
files). A specific agent i’s type θi is a latent vector that
represents agent i’s values. This type contains all informa-
tion necessary for recovering a partial ordering over alter-
natives. The goal of the Voting Mechanism is to define an
objective for the Principal. For this, we define the Voting
Mechanism, f , and ask the players for a preference report
θ−1 ∈ Θ−1, perhaps untruthful. We leave to future work
whether some notion of approximate incentive compatibility
can be achieved by the principal. The Voting Mechanism
then computes the objective w = f(θ1, θ−1) as a result of
the vote, where θ1 ∈ Θ1 is the preferences of the Principal.
By including the preferences of the principal, this objective
function allows expressing a form of “moral objectivity,”
or other biases. It also allows to express mechanisms such
as auctions, where the objective of the principal may be
entirely selfish such as revenue, and not depend at all on the
participant’s types.

Social Welfare Examples. Examples of social welfare
functions that could be included in the voting set are the
Utilitarian objective:

w(ϕ, π) =
∑
i

ui(ϕ, π). (4)

where ui(ϕ, π) is as defined in Equation 1, π is the tuple
of all agents π = (πi)i∈[n], and πi maps Ωϕ

i → Aϕ
i . Other

possible choices include the Nash Welfare objective:

w =

(∏
i

ui(ϕ, π)

)1/n

. (5)

and the Egalitarian objective:

w = min
i

ui(ϕ, π). (6)

Custom welfare functions can also be considered.

Definition 3.3. The Stackelberg Game is defined as I =
(Φ, P,D, δ, ϕ0) and is a Stackelberg-Markov Game.

The Stackelberg Game game is played after the Voting
Mechanism, and can be thought of as a single timestep
of the full game. The Principal (leader) will choose action
ϕ ∈ Φ which induces a parameterized Induced Economy
Mϕ = (S,Aϕ, Tϕ, rϕ,Ωϕ, Oϕ, γϕ, µϕ

0 ) through the policy
implementation map P : ϕ 7→ Mϕ. If agent preferences
change over time, this can be modeled by adding agent types
into the state space of the POMG. The transition function T
would then be able to express changes in preferences over
time.

The objective of the leader in the Stackelberg Game game
is to design a POMG, given the objective w as decided in
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the Voting Mechanism:

max
ϕ

w(ϕ, π)

s.t. D(ϕ0, ϕ) ≤ δ

and µ
P (ϕ)
0 = ∆(sT ).

(7)

Again, π is the tuple of all agents π = (πi)i∈[n], and πi

individual agents that map Ωϕ
i → Aϕ

i . Our notation µ
P (ϕ)
0

denotes the µ0 of the tuple P (ϕ), and ∆(st) refers to a Delta
Dirac distribution centered on sT . The second constraint
µ
P (ϕ)
0 = ∆(sT ) forces ϕ to choose a POMG that has the

same initial state as the terminal state of the last round so
that continuity is kept between rounds.

This constrained optimization can be transformed into an
unconstrained problem by using an additional reparam-
eterization R : ξ 7→ Φ̂, where ξ ∈ Ξ := RL and
Φ̂ := {ϕ | D(ϕ0, ϕ) ≤ δ}. The optimization can then pro-
ceed in RL with no constraints. In this case, the Stackelberg
game would reduce to I = (Ξ, P ′), where P ′ = P ◦ R.
Finally, the Induced Economy is defined as the POMG
produced as the output of the principal.

Definition 3.4. The Induced Economy is defined as Mϕ =
(S,Aϕ, Tϕ, rϕ,Ωϕ, Oϕ, γϕ, µϕ

0 ) and is a Partially Observ-
able Markov Game.

Agents within the POMG interact with one another and
attempt to maximize their utility according to their true
preferences. The n participants (followers) play strategically
in the parameterized POMG Mϕ. At each step t of the game,
each follower i chooses an action ai,t from their action
space Ai, the game state evolves according to the joint
action at = (a1,t, · · · , an,t) and the transition function T ,
and agents receive observations and reward according to O
and r. An agent’s behavior is characterized by its policy
πi : Ω

ϕ
i → Aϕ

i , which maps observations to actions. Each
follower seeks to maximize its own (discounted) total return∑

t(γ
ϕ)trϕi (st, ai,t, a−i,t).

4. Example: Apple Picking Game
In order to give a motivating example for how preference
elicitation for the principal in Social Environment Design
can be used to align policy-maker incentives, we have cre-
ated a Sequential Social Dilemma Game inspired by the
Harvest Game (Perolat et al., 2017). The aim in the Har-
vest game is to collect apples, with each apple yielding a
reward. If all apples in an area are harvested, they never
grow back. The dilemma arises when individual self-interest
drives rapid harvesting, which could permanently deplete
resources. Thus, agents must sacrifice personal benefit and
cooperate for the collective well-being.

One potential solution to this dilemma is through the use

Figure 2. An example of Social Environment Design as an apple
picking game, built with Melting Pot 2.0 (Agapiou et al., 2022).
Player agents observe a restricted view of their environment, and re-
ceive a mixed reward depending on the apples they collect and the
apples their observable neighbors collect. The principal observes
both an unrestricted view of the environment and the running totals
of all the players’ cumulative rewards, where it collects tax and
redistributes wealth on the cumulated rewards at the end of every
tax period (50 timesteps), similar to Zheng et al. (2022). Rewards
for the Principal are determined by the change in value of the ob-
jective it is currently assigned by agent votes. For training details
and hyperparameters, please refer to Appendix A.

of a central government that taxes and redistributes apples.
Thus, we have created a new game in which a principal
designs tax rates on apple collection, and players vote on
Utilitarian (productivity) vs. Egalitarian (equality) objec-
tives for the principal, similar to Koster et al. (2022). As
players interact within this evolving environment, the prin-
cipal faces the challenge of crafting policies that balance
immediate economic incentives with sustainability goals. In
order to achieve this, the principal must foster cooperation
among players, guiding them towards the objective they
have chosen. We release our code in the supplementary
material for reproducibility.

To build intuition for how the Apple Picking Game maps
onto the theoretical framework described in section 3,
we give a more formal definition of the game here. Re-
call the definition of a Social Environment Design Game
S = (Φ, P, ϕ0, D, δ,Θ,W, f). The action space for the en-
vironment designer Φ is defined as tax weights 0 ≤ Φi ≤ 1,
determining the percentage of income to be taxed for each
bracket. For simplicity we evenly redistribute the taxes, and
set the number of tax brackets to three.

In this environment, the Principal can only change the
reward function of the induced POMG, so Mϕ =
(S,A, T, rϕ,Ω, O, γ, µ0). Let there be n agents, with the
type of each agent defined by σ, or the selfishness of the
agent. Finally, let ai be the number of apples collected for a
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given agent i. We can now define the policy implementation
map P , which in this case reduces to the parameterization
of the reward function. Here a is a vector of all the apples
collected with length n:

ri(a, ϕ) = σirtax,i(a) + (1− σi)

∑
j∈n

rtax,j(a, ϕ)

 (8)

The reward is an average between the apples an agent col-
lects and the apples all other agents collect within its field
of view weighted by the selfishness of the agent. The taxed
reward is the amount of apples after tax an agent collects
plus an equal share of the redistributed total tax:

rtax,i(a, ϕ) = (ai − T (ai, ϕ)) +
1

n

∑
j∈n

T (aj , ϕ),

where tax T (a, ϕ) =

B−1∑
b=0

ϕb · ((τb+1 − τb)1[a > τb+1]

+ (a− τb)1[τb < a ≤ τb+1]).

Here, [τb, τb+1] refer to the tax brackets. Importantly, the
principal can only incentivize agents through the taxed re-
ward and cannot directly observe the true reward. We sam-
ple selfishness uniformly over [0, 1], and keep them fixed
during training. Allowing them to change over time either
randomly or in some fashion dependent on the performance
of the Principal is left for future work. The objective space
of the Principal is defined as W = {η

∑
i,t ai,t + (1 −

η)mini
∑

t a(i, t) | 0 ≤ η ≤ 1}, an interpolation between
the Utilitarian and Egalitarian objective. A simple social
choice function f(σ) = η can be defined as the average of
agent selfishness: f(σ) = 1

n

∑
i σi. In this setting, we leave

the Principal optimization unconstrained and thus do not
need to define D or δ. ϕ0 is initialized to 0, or no tax.

We run several tax periods per voting round, and at the end
of each voting round the principal decides on a new tax rate,
for each bracket —as well as calculating, applying and redis-
tributing tax to the players for that entire period, delivered
in the players’ final reward. We release the codebase, which
is designed for fast experimentation and further research, in
the supplementary material, and include environment hyper-
parameters and training details in Appendix A. We do not
include experimental results here, as the primary purpose
of this paper is to propose a future research agenda and
illustrate open problems.

5. Challenges and Open Problems
Based on the AI-led economic policy-making framework
presented, the following key open problems of our frame-

work are proposed for further exploration: Preference ag-
gregation and democratic representation in voting mech-
anisms is a complex challenge that requires advanced al-
gorithms to reflect collective preferences while respecting
minority views, as well as ensuring that the simulated popu-
lation is representative and their preferences correctly mod-
eled. Modeling human behavior within the simulator is
another key challenge, and points towards possibly incorpo-
rating bounded-rationality into MARL (Wen et al., 2019a) or
role-based modeling (Wang et al., 2020; 2021b). To ensure
responsible AI governance and accountability, responsi-
ble oversight mechanisms must be established. Furthermore,
exploring socioeconomic interactions within these systems
is important, especially in understanding and deriving the
conditions for convergence to and definition of the Prin-
cipal’s objective. As our framework is positioned within a
continual learning setting, it is important to redefine what an
optimal Principal looks like in this context. Finally, scaling
laws of the framework should be analyzed in order to fully
model real-world complexities. Can the framework handle
simulating economies with thousands or millions of agents?
What is the role of scale? When is simulation useful, and
when does it fail?

Preference Aggregation and Democratic Representation.

Aggregation algorithms within the Voting Mechanism: The
development of sophisticated algorithms that can effectively
aggregate disparate and potentially conflicting preferences
of diverse agent populations is a significant challenge. These
algorithms must ensure that the outcomes represent collec-
tive preferences without overwhelming the minority views.

Incorporating diverse decision-making models: The frame-
work must be flexible enough to respect various cultural,
ethical, and socioeconomic decision-making paradigms that
different groups of agents might exhibit. Such agents should
imitate humans well, which we expand on further next.

Modeling Human Behavior.

Representative Agents: Modeling agent behavior to accu-
rately represent the diverse economic behaviors of real-
world individuals is a complex and significant challenge.
The agents should capture a variety of human traits, which
include various decision-making styles, risk tolerance levels,
and reactions to incentives and regulations.

Bounded Rationality: Human decision-making in economic
settings often demonstrates bounded rationality, where deci-
sions are made based on satisficing rather than optimizing
behavior. Further research is required to develop AI agents
that can capture such nuances in human decision-making.

Agents’ Perception of the System: It may also be important
for the follower AI agents in the framework to model how
humans perceive the system overall, encompassing their
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beliefs about the function and credibility of the principal,
the perceived power dynamics, and their understanding of
collective objectives.

Cognitive and Behavioral Biases: Human economic be-
havior is influenced by a variety of cognitive biases. For
instance, time-inconsistent preferences can lead to procras-
tination and problems with self-control, and loss aversion
can skew risk preferences. AI agents within this framework
need to capture these biases for accurate representation of
human economic behavior.

Interaction and Network Effects: Humans do not make eco-
nomic decisions in isolation; their decisions are influenced
by their interactions with others. This opens another avenue
of research in modeling these network effects accurately
within the agent behavior models. Higher order effects
are oftentimes essential to understanding the behavior real-
world systems.

Role-Based Modeling: Finally, research on modeling the
behavior and decisions of real-world policymakers and the
influences shaping their choices based on their role is essen-
tial (Wang et al., 2020). This is crucial for the principled
design of the principal agent that designs economic policies.

AI Governance and Accountability.

Transparent decision-making processes: AI systems in-
volved in policy-making benefit from transparent decision-
making processes. We view the creation of interpretable AI
models that can provide explanations for suggested policies
is essential for trust and accountability.

Legal and ethical frameworks for AI decisions: There is
a need to establish legal and ethical frameworks that de-
lineate the responsibilities and liabilities associated with
AI-driven decision-making. These frameworks should set
guidelines for what constitutes fair and lawful AI behavior
in an economic context.

Oversight and human-AI collaboration: Establishing effec-
tive oversight mechanisms that involve both AI and human
collaboration is important. The role of human experts in
supervising and guiding AI decisions, and their ability to
intervene when AI-driven policies deviate from desired out-
comes, is still to be determined.

Convergence to Desired Outcomes.

Existence and characterization of forms of convergence or
equilbria: Can we characterize the conditions under which
an equilibrium will exist in such complex socioeconomic
interactions? The uniqueness or multiplicity of equilibria
and the conditions under which they are attained are also
interesting to study. Also, conventional game-theoretic equi-
libria may not be the right object of study, as empirically
these economic systems may never converge to a single,

stable behavior.

Algorithmic stability and multi-agent coordination: Identify-
ing reinforcement learning algorithms that can demonstrably
converge is another open problem. In addition, coordination
among several agents, with varying objectives and possibly
divergent strategies, also remains a large open problem.

Influence of dynamic changes on convergence points: The
complex dynamics of economic systems call for a deep un-
derstanding of the sensitivity of equilibria to shocks and
changes in the environment and agent behavior from vari-
ables that may have been unforeseen by the principal. En-
suring the robustness and stability of the principal to be able
to recover from such shocks is also of importance.

Scaling Laws and Computational Efficiency.

Scaling up the model to larger systems: The proposed frame-
work needs to be scaled to simulate economies of increas-
ingly complexities. This comprises accommodating an in-
creasing number of agents and more intricate interactions
among them. Scaling laws of the model parameters and the
computational resources required need to be examined.

Efficient learning and decision-making algorithms: Effi-
cient algorithms for learning agent behavior and optimizing
the policy design are crucial for the practicality of the frame-
work. Particularly, the principal must be sample efficient, as
every step it takes induces an entire MARL optimization.

Massive parallelization: To tackle real-world complex sys-
tems, embracing the advantage of high-performance comput-
ing is necessary. This includes implementing the framework
with massively parallel computations for both the learning
and the decision-making processes. Techniques for splitting
these processes into smaller tasks that can be processed si-
multaneously, as well as the efficient management of these
tasks, represent challenging aspects to be addressed.

Model compression techniques: Consideration and applica-
tion of model reduction techniques can be crucial for sim-
ulation feasibility. It is important to identify the dominant
features and behaviors that drive the system outcome, and
focus computational resources on those, while simplifying
or neglecting less influential details.

Robustness and performance evaluation: The robustness of
the Principal model and follower models with respect to the
increase in scale, and the degradation in performance under
computational constraints should be examined in future
work. This includes an analysis of the trade-off between
model performance and computational efficiency.

6. Related Work
The concept of environment design was first proposed
by Zhang et al. (2009) and focused on the single agent
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setting. In contrast, our framework resides between various
strands of research, including but not limited to economic
policy design, Stackelberg game learning, multi-agent rein-
forcement learning, mechanism design, and computational
social choice. In this section, we delve into a comprehensive
exploration of its connections with prior research.

6.1. Economic Policy Design and Simulation

Several approaches to automated economic policy design
have been proposed in the past (Liu et al., 2022; Curry
et al., 2023; Yang et al., 2022a), and how usage of AI
may span both participation in and design of economic
systems (Parkes & Wellman, 2015). Here we cite several
that are most related to our proposed framework and re-
search agenda. Perhaps most related to our approach is
Human Centered Mechanism Design (Koster et al., 2022;
Balaguer et al., 2022). They propose learning mechanisms
from behavioral models trained on human data, with the
mechanism objective attempting to satisfy a majoritarian
vote of the human participants. However, their work differs
from ours in several key ways; firstly, they do not con-
sider a fully general economic environment and limit their
scope only to a generalization of the linear public goods
setting. In other words, our framework encompasses Envi-
ronment Design whilst theirs encompasses only Mechanism
Design. Secondly, the voting that is defined within their
framework is taken over actual mechanisms proposed by
the designer and is by majority, whereas our voting is taken
explicitly over Principal objectives and does not specify a
majority vote, which allows potentially addressing issues
such tyranny of the majority. A more general game environ-
ment is illustrated in the AI Economist (Zheng et al., 2022)
and its application to taxation policy, although they adopt a
Principal with a fixed goal that is not subject to voting by
participants.

6.2. Stackelberg Game

From the perspective of the Principal, it plays a Stackelberg
game with agents of different types. Stackelberg games
model many real-world problems that exhibit a hierarchical
order of play by different players, including taxation (Zheng
et al., 2022), security games (Jiang et al., 2013; Gan et al.,
2020), and commercial decision-making (Naghizadeh &
Liu, 2014; Zhang et al., 2016; Aussel et al., 2020). In
the simplest case, a Stackelberg game contains one leader
and one follower. For these games with discrete action
spaces, Conitzer & Sandholm (2006) show that linear pro-
gramming approaches can obtain Stackelberg equilibria in
polynomial time in terms of the pure strategy space of
the leader and follower. To find Stackelberg equilibria
in continuous action spaces, Jin et al. (2020); Fiez et al.
(2020) propose the notion of local Stackelberg equilibria
and characterize them using first- and second-order con-

ditions. Moreover, Jin et al. (2020) show that common
gradient descent-ascent approaches can converge to local
Stackelberg equilibria (except for some degenerate points)
if the learning rate of the leader is much smaller than that of
the follower. Fiez et al. (2020) give update rules with conver-
gence guarantees. Different from these works, in this paper,
we consider Stackelberg games with multiple followers.

More sophisticated than its single-follower counterpart, un-
less the followers are independent (Calvete & Galé, 2007),
computing Stackelberg equilibria with multiple followers
becomes NP-hard even when assuming equilibria with a spe-
cial structure for the followers (Basilico et al., 2017). Wang
et al. (2021a) propose to deal with an arbitrary equilibrium
which can be reached by the follower via differentiating
though it. Gerstgrasser & Parkes (2023) proposes a meta-
learning framework among different policies of followers
to enable fast adaption of the principal, which builds upon
prior work done by Brero et al. (2022) who first introduced
the Stackelberg-POMDP framework. Hossain et al. (2024)
study the multi-sender persuasion game as a special case of
Stackelberg game with multiple principals.

Multi-agent reinforcement learning holds the promise to
extend Stackelberg learning to more general and realistic
problems. Tharakunnel & Bhattacharyya (2007) propose
Leader-Follower Semi-Markov Decision Process to model
the sequential Stackelberg learning problem. Cheng et al.
(2017) propose Stackelberg Q-learning but without any con-
vergence guarantee. Shu & Tian (2019); Shi et al. (2019)
study leader-follower problems from an empirical perspec-
tive, where the leader learns deep models to predict the
followers’ behavior.

6.3. Multi-Agent Reinforcement Learning

Another component of the proposed framework is the fol-
lowers’ behavior learning. Deep multi-agent reinforcement
learning (Yu et al., 2022; Wen et al., 2022; Kuba et al., 2021;
Christianos et al., 2020; Peng et al., 2021; Jiang et al., 2019;
Rashid et al., 2018; Dong et al., 2022; 2023; Wang et al.,
2019a) algorithms have seen considerable advancements
in recent years. Notable contributions such as COMA (Fo-
erster et al., 2018), MADDPG (Lowe et al., 2017), PR2
(Wen et al., 2019b), and DOP (Wang et al., 2021d) address
policy-based MARL challenges. These approaches leverage
a (decomposed) centralized critic for computing gradients
to decentralized actors. Conversely, value-based algorithms
decompose the joint Q-function into individual Q-functions,
facilitating efficient optimization and decentralized imple-
mentation. Techniques such as VDN (Sunehag et al., 2018),
QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019),
and Weighted QMIX (Rashid et al., 2020) incrementally
enhance the mixing network’s representational capacity. Ad-
ditional investigations explore MARL through coordination
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graphs (Guestrin et al., 2002b;a; Böhmer et al., 2020; Kang
et al., 2022; Wang et al., 2021c; Yang et al., 2022b), com-
municative strategies (Singh et al., 2019; Mao et al., 2020;
Wang et al., 2019b; Kang et al., 2020), diversity (Li et al.,
2021), and also expressive neural network architectures like
Transformer (Wen et al., 2022), offering insights for partici-
pant learning without directly addressing human behavior
modeling.

For modeling behavior, role-based learning frame-
works (Wang et al., 2020; 2021b) are the most related
to our work. They learn the roles of different agents au-
tonomously and enhance learning efficiency by decompos-
ing the task and learning sub-task-specific policies. How-
ever, these works are mainly studied in the setting of the De-
centralized Partially Observable Markov Decision Process
(Dec-POMDP), and are thus differ from the present work in
two ways: (1) The reward is shared among agents; and (2)
The dynamics, including reward and transition dynamics,
is fixed. There likely would exist significant challenges in
generalizing these to the kinds of non-shared reward settings
that are essential for many economic applications.

6.4. Computational Social Choice

Computational social choice is an interdisciplinary field
combining computer science and social choice theory, fo-
cusing on the application of computational techniques to
social choice mechanisms (such as voting rules or fair al-
location procedures) and the theoretical analysis of these
mechanisms with computational tools (Brandt et al., 2016).
A fundamental component of the field is the study of manip-
ulative behavior in elections and other collective decision-
making processes, as well as the design of systems resistant
to manipulation (Elkind et al., 2010; Procaccia, 2010). This
area of study will likely inform the development of the Vot-
ing Mechanism. Additionally, computational social choice
attempts to optimize the fair distribution of resources, often
involving complex allocation problems (Thomson, 2016;
Procaccia, 2016).

The present work deviates from typical computational social
choice models in that it attempts to simulate the actual policy
outcomes of the vote within a simulated economy, which is a
departure from the analysis typically found in computational
social choice. While this represents a step towards greater
real-world practicality, it also dramatically increases both
the difficulty and complexity of the problem setting.

6.5. Automated Mechanism Design

Automated Mechanism Design (AMD) (Sandholm, 2003)
makes use of search algorithms for the design of specific rule
sets (mechanisms) for games that lead to desirable outcomes
even when participants act in self-interest. Our work shares
some of the motivations of automated mechanism design

(AMD) in that it hypothesized that automated approaches
would someday outperform traditional manual designs, be
applicable to a broader range of problems, and circumvent
economic impossibility results, by transferring the burden
of design from humans to machines.

The work of AMD has also been advanced through deep
learning in the framework known as differentiable eco-
nomics. Dütting et al. (2024) use deep neural networks
to learn the allocation and payment rules of auctions. Since
then, a line of follow-up work has been introduced, extend-
ing the framework to make the architecture more powerful
and general (Shen et al., 2021; Ivanov et al., 2022; Duan
et al., 2023; Curry et al., 2022; Wang et al., 2023; 2024).
Deep learning methods have also been explored in equilib-
rium calculation (Kohring et al., 2023; Bichler et al., 2023;
2021). While these techniques are applied to settings less
general than ours, some of the architectural details may be
useful in building a Principal.

7. Conclusion
In this paper, we have presented a framework for policy
design and simulation that merges economic policy design
with AI to potentially help better inform economic policy-
making. It is designed to tackle issues such as preference
aggregation and counterfactual testing in complex economic
systems. Significant challenges, including democratic rep-
resentation and accountability in AI-driven systems, are
highlighted. We hope to engage interdisciplinary expertise
and foster collaborative innovation, and aspire to help create
AI systems that not only enhance economic resilience and
governance effectiveness but also uphold democratic ideals
and ethical standards.
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are several relevant considerations that are important to
take-up in advancing this framework towards adoption by
policy-makers. For example, its effectiveness depends on
capturing all pertinent stakeholders within a given scenario.
Related, is to ensure that agent modeling is consistent with
the diverse motivations and incentives of people, firms, and
other entities. Lastly, any real-world trial of this initiative
should engage vigorously and faithfully with non-technical
stakeholders.
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Position: Social Environment Design

A. Environment Hyperparameters and Training Details
Here we give a detailed breakdown of several key hyperparameters and Training Details within our environment in section 4.

We use PPO (Schulman et al., 2017) player agents with parameter sharing and GAE (Schulman et al., 2015), collecting
samples at a horizon shorter than the episode length to perform multiple policy update iterations per episode. The principal
has separate, discrete, action subspaces for each tax bracket, and is also trained by standard PPO at the same time-scale as
the player agents. We follow a two-phase curriculum with tax annealing, as suggested in Zheng et al. (2022). This annealing
can be formalized as a constraint in the policy implementation map by simply bounding the maximum tax percentage that
can be set. It is worth noting, however, that training the principal in this way is susceptible to issues of non-stationarity, and
we refer to Yang et al. (2022a) for a discussion on alternatives.

To give a further explanation regarding the Apple Respawn Probabilities, the probability of a respawn per timestep depends
on how many neighbors are around it in a circular radius of 2. With four neighbors, the respawn probability is 0.025. With
0, the probability becomes 0.

Hyperparameter Value

Number of Agents 7
Initial Number of Apples 64
Apple Respawn Probabilities [0.025, 0.005, 0.0025, 0.0]
Base Reward 1 on apple collection
Social Reward 1 on apple collection of observable agents
Agent Type (σ, β) Sampled from Uniform [0, 1]
Agent Observability (units are grid tiles) (Forward: 9, Right: 5, Backward: 1, Left: 5)
Principal Tax Brackets (units are in apples) [(1,10),(11,20),(21,10000)]
Tax Period 50
Episode Length 1000
Sampling Horizon 200

Table 1. Hyperparameters for our methods in section 4.
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