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Abstract
In this work, we investigate an intriguing and
prevalent phenomenon of diffusion models which
we term as “consistent model reproducibility”:
given the same starting noise input and a deter-
ministic sampler, different diffusion models of-
ten yield remarkably similar outputs. We con-
firm this phenomenon through comprehensive ex-
periments, implying that different diffusion mod-
els consistently reach the same data distribution
and score function regardless of diffusion model
frameworks, model architectures, or training pro-
cedures. More strikingly, our further investigation
implies that diffusion models are learning distinct
distributions influenced by the training data size.
This is evident in two distinct training regimes:
(i) “memorization regime,” where the diffusion
model overfits to the training data distribution,
and (ii) “generalization regime,” where the model
learns the underlying data distribution. Our study
also finds that this valuable property generalizes
to many variants of diffusion models, including
those for conditional generation and solving in-
verse problems. Lastly, we discuss how our find-
ings connect to existing research and highlight the
practical implications of our discoveries.

1. Introduction
Recently, diffusion models have emerged as a powerful new
family of deep generative models with remarkable perfor-
mance in many applications, including image generation
(Ho et al., 2020; Song et al., 2020b; Rombach et al., 2022a)
, image-to-image translation (Su et al., 2022; Saharia et al.,
2022a; Zhao et al., 2022), text-to-image synthesis (Rom-
bach et al., 2022a; Ramesh et al., 2021; Nichol et al., 2021),
and solving inverse problem (Chung et al., 2022b; Song
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Figure 1. Visualization of generation samples from different
diffusion models. We utilized denoising diffusion probabilistic
models (DDPM) (Ho et al., 2020; Song et al., 2020a), consistency
model (CT) (Song et al., 2023b), U-ViT (Bao et al., 2023) trained
on CIFAR-10 (Krizhevsky et al., 2009) dataset. Samples in the
corresponding row and column are generated from the same initial
noise with a deterministic ODE sampler.

et al., 2022; Chung et al., 2022a; Song et al., 2023a; Li et al.,
2024). These models learn an unknown data distribution
generated from the Gaussian noise distribution through a
process that imitates the non-equilibrium thermodynamic
diffusion process (Ho et al., 2020; Song et al., 2020b). In
the forward diffusion process, the noise is continuously in-
jected into training samples; while in the reverse diffusion
process, a model is learned to remove the noise from noisy
samples parametrized by a noise-predictor neural network.
Then guided by the trained model, new samples (e.g., im-
ages) from the target data distribution can be generated by
transforming random noise instances through step-by-step
denoising following the reverse diffusion process. Despite
the remarkable data generation capabilities, the fundamental
mechanisms driving their performance are largely under-
explored.

In this work, we study an intriguing while prevalent phe-
nomenon that sets diffusion models apart from most other
generative models. We refer to this phenomenon as “consis-
tent model reproducibility”. More precisely, as illustrated
in Figure 1, when different diffusion models are trained on
the same dataset, and sampled from the same noises when
using a deterministic ODE sampler.1

1We employ a deterministic sampler to ensure model repro-
ducibility, but stochastic samplers can also achieve reproducibility
when they generate consistent noise across different models.
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(a) Reproducibilty (b) Generalizability

Figure 2. “Memorization” and “Generalization” regimes for unconditional diffusion models. We utilize DDPMv4 and train them on
the CIFAR-10 dataset, adjusting both the model’s size and the size of the training dataset. In terms of model size, we experiment with
UNet-64, UNet-128, and UNet-256, where, for instance, UNet-64 indicates a UNet structure with an embedding dimension of 64. As for
the dataset size, we select images from the CIFAR dataset, ranging from 26 to 215. Under each dataset size, different models are trained
from the same subset of images. The figure on the left displays the reproducibility score as we compare various models across different
dataset sizes, while the figure on the right illustrates the generalizability score of the models as the dataset size changes.

Different diffusion models consistently converge to
nearly identical image contents,

which is irrespective of network architectures, training and
sampling procedures, and perturbation kernels. This phe-
nomenon implies that different diffusion models are learn-
ing nearly identical mapping and distributions, as further
discussed in Section 3.

More interestingly, through studying the reproducibility un-
der different regimes of training data size, we further find
that diffusion models are learning different types of data
distributions depending on the size of training data. As il-
lustrated in Figure 2, this is corroborated by our findings
that the consistent model reproducibility emerges in two
distinct regimes: (i) “Memorization regime”: the model has
the capacity to memorize the training data but no ability to
generate new samples. The co-existence of reproducibility
and memorization implies that the diffusion model is learn-
ing the empirical multi-delta distribution of the training
samples. (ii) “Generalization regime”: the model regains
reproducibility while it gains the ability to produce new data.
The co-emergence of reproducibility and generalizability
indicates that the diffusion model is learning the underlying
distribution of the data.

Summary of contributions. In summary, we briefly high-
light our contributions below:

• A comprehensive study of model reproducibility. We
present the first comprehensive and systematic study of
the reproducibility in diffusion models. Our findings are
consistent under various network architectures, noise per-

turbation kernels, training and sampling settings.

• Two regimes of model reproducibility and distribu-
tion learning. Our analysis reveals that reproducibility
manifests in two regimes. We demonstrate that diffusion
models learn different types of distributions (i.e., empiri-
cal vs. underlying distribution) in different regimes.

• Model reproducibility beyond unconditional diffusion
models. Under various different settings, we show that
reproducibility manifest in different but structured ways,
including conditional diffusion models, inverse problem
solving, fine-tuning.

Theoretical and practical implications of our work.
Theoretically, understanding the question will shed light
on how the mapping function is learned and constructed
between the noise and data distributions. As a deep learning
problem with a highly non-convex objective function, the
diffusion model reproducibility reflects its robust optimiza-
tion landscape. Theoretically understanding this robustness
could potentially lead to the development of more inter-
pretable deep learning algorithms. In practice, a deeper
understanding of model reproducibility could have the po-
tential to (1) improve training efficiency (2) address data
privacy issues with generative models (3) yield more in-
terpretable and controllable data generative processes. We
discuss this in detail in Section 6.

2. Consistent Model Reproducibility
While the illustrations in Figure 1 and initial investigations
in the seminal work (Song et al., 2020b) are motivating,
this work provides a more comprehensive and systematic
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study of model reproducibility in diffusion models.2 We
begin by proposing quantitative metrics to evaluate repro-
ducibility as well as generalizability in diffusion models.
Subsequently, we discover a strong relationship between the
reproducibility and generalizability of diffusion models.

2.1. Measures of Reproducibility and Generalizability

Measure of model reproducbility. To study the repro-
ducibility phenomenon in Figure 1 more quantitatively, we
introduce the reproducibility (RP) score to measure the sim-
ilarity of image pair generated from two different diffusion
models starting from the same noise, which is drawn i.i.d.
from the standard Gaussian distribution:

RP Score := P (MSSCD(x1,x2) > 0.6) ,

which measures the probability of a generated sample pair
(x1,x2) from two different diffusion models to have self-
supervised copy detection (SSCD) similarityMSSCD larger
than 0.6 (Pizzi et al., 2022; Somepalli et al., 2023b).3 Higher
RP score indicates stronger model reproducibility. In prac-
tice, we estimate RP Score by the empirical probability
using 10K noise samples. The SSCD similarity is first in-
troduced in (Pizzi et al., 2022) to measure the replication
between image pair (x1,x2), which is defined as follows:

MSSCD(x1,x2) =
SSCD(x1) · SSCD(x2)

||SSCD(x1)||2 · ||SSCD(x2)||2
where SSCD(·) represents a neural descriptor for copy de-
tection of images.

In addition, we also use the mean-absolute-error (MAE)
score to measure the reproducibility, MAE Score :=
P (MAE(x1,x2) < 15.0), based upon similar setting with
the RP score. MAE(·) is the operator that measures the
mean absolute different of image pairs in the pixel value
space ([0, 255]).

Measure of model generalizability. Moreover, we dis-
cover a strong relationship between model reproducibility
and its generalizability, where the latter refers to the model’s
ability to produce new samples distinct from the ones in the
training set. To assess the generalizability of diffusion mod-
els, we introduce the generalization (GL) score as follows:

GL Score := 1− P

(
max
i∈[N ]

[MSSCD(x,yi)] > 0.6

)
,

which is defined based upon the probability of maximum
MSSCD over the training dataset larger than 0.6. Similar

2Recent seminal work (Song et al., 2020b) has observed a sim-
ilar phenomenon (see also subsequent works (Song et al., 2023b;
Karras et al., 2022)), but the study in (Song et al., 2020b) remains
preliminary.

3As demonstrated in (Somepalli et al., 2023b), MSSCD > 0.4
already exhibits very strong visual similarities.

to RP score, we empirically sample 10K initial noises to
estimate the probability. Intuitively, GL score measures the
dissimilarity between the generated sample x and all N
samples yi from the training dataset {yi}Ni=1. Higher GL
score indicates stronger generalizability.

2.2. Model Reproducibility Manifests in Two Regimes

Based upon RP and MAE scores, we provide comprehen-
sive quantitative studies (see Figure 4) to demonstrate the
prevalence of model reproducibility in diffusion models.
More interestingly, we discover that the reproducibility of
the model arises either through memorization of the training
data or by acquiring the ability to generalize. As highlighted
in Figure 2, we show that

The model reproducibility manifests in two distinct
memorization and generalization regimes,

depending on the size of training data and model capacities.
In the following, we discuss the two regimes in detail.

• “Memorization regime” characterizes the scenario
where the reproducibility is due to the memorization of
the training data distribution. As illustrated in the left
region of Figure 2a, this regime occurs when the model
has much larger capacity than the size of training data.
Although the model possesses the ability to reproduce the
same results starting from the same noise, the generated
samples are only replications of the samples in the training
data and the model lacks the ability to generate new sam-
ples; see the left region of Figure 2b. In this regime, the
emergence of reproducibility is due to the fact that all dif-
fusion models memorize the same multi-delta distribution
of training samples. This can be verified by characteriz-
ing the closed-form solution of the score function under
empirical multi-delta distribution (see Proposition 3.2),
and by showing that practical diffusion models converge
to such score function (see Figure 3). An in-depth study
is provided in Section 3.1. It should noted that, given no
generalizability, training diffusion models in this regime
might hold limited practical interest.

• “Generalization regime” emerges when the diffusion
model not only regains its reproducibility but also be-
comes capable of generating new samples distinct from
the training data; see the right region of Figure 2b. This
usually happens when the diffusion model is trained on
large dataset without full capacity to memorize the whole
dataset (Yoon et al., 2023); see the right region of Fig-
ure 2a. This is the regime in which diffusion models are
commonly trained and employed in practice. As illus-
trated in Figure 2b, we revealed that there is a clear tran-
sition from the memorization regime to the generalization
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regime as the training samples increase. In the general-
ization regime, the model reproducbility co-emerges with
the model’s generalizability. We believe this is because all
diffusion models are learning the same score function of
the true underlying data distribution instead of the train-
ing data distribution. We provide an in-depth study in
Section 3.2.

2.3. Reproducibility is Rare in Generative Models

We end this section by highlighting that only diffusion mod-
els appear to consistently exhibit model reproducibility. This
property rarely exists in other generative models, with one
exception as noted in (Khemakhem et al., 2020).4 Detailed
analysis of model reproducibility of Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) and Variational
Autoencoder (VAE) (Kingma & Welling, 2013) are pro-
vided in Appendix B. In contrast to diffusion models, the
observed lack of reproducibility in GANs and VAEs implies
that they are not effectively trained to capture the underlying
data distribution. This deficiency is a contributing factor to
the occurrence of mode collapse in GANs (Arora & Zhang,
2017).

3. Analyzing Reproducibility in Two Regimes
If the diffusion models are learning the same data distri-
bution p(x0), the result of reproducibility among different
diffusion models implies that they are approximating the
same score function s(xt; t) of p(x0), which can be derived
from Tweedie’s formula (Luo, 2022) as follows.

Lemma 3.1. Suppose the distribution learned by diffusion
model is p(x0) and the perturbation kernel pt(xt|x0) =
N (xt; stx0, s

2
tσ

2
t I) with perturbation parameters st, σt.

The ideal score function has the following form

s(xt; t) =
1

s2tσ
2
t

(
Ext∼pt(xt)[x0|xt]− xt

)
=

1

s2tσ
2
t

(
st

Ex0∼p(x0)[N (xt; stx0, s
2
tσ

2
t I) · x0]

Ex0∼p(x0)[N (xt; stx0, s2tσ
2
t I)]

− xt

)
.

Furthermore, let fs : E 7→ I be the mapping from the noise
space E to the image space I , by using a deterministic ODE
sampler and the score function s(xt; t). The reproducibility
of diffusion models is result from the learned mapping fs is
reproducibility. Therefore, to understand the phenomenon
in the memorization and generalization regimes, it boils
down to understand two questions:

• What data distribution p(x0) are the diffusion models
learning in each regime?

4(Khemakhem et al., 2020) demonstrates that VAE is uniquely
identifiable encoding given a factorized prior distribution over the
latent variables.

• How well do diffusion models approximate the score
function s(xt; t) of the corresponding distribution p(x0)?

In the following, we study both questions for the memoriza-
tion regime in Section 3.1 and the generalization regime in
Section 3.2, respectively.

3.1. Reproducibility in Memorization Regime

Through a combination of theoretical and experimental
study, we show that in the memorization regime,

reproducibility is a result of memorizing the training
distribution p(x0) =

1
N

∑N
i=1 δ(x0 − yi),

here p(x0) denotes the multi-delta distribution of the train-
ing samples {yi}Ni=1 and δ(·) denotes the Dirac delta func-
tion. In the following, we corroborate our claim by (i) deriv-
ing the optimal score function of p(x0) in Proposition 3.2,
and by (ii) showing that practical diffusion models converge
to the optimal score function in the small data regime; see
Figure 4.

Proposition 3.2. Given a training dataset {yi}Ni=1 of N -
samples, consider the same setting of Lemma 3.1 with p(x0)
following the empirical multi-delta distribution p(x0) =
1
N

∑N
i=1 δ(x0 − yi). In this setting, we can show that the

score function can be characterized as

semp(xt; t) = −
1

s2tσ
2
t

[
xt − st

∑N
i=1N (xt; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

]

The proof for Proposition 3.2 can be found in the Ap-
pendix C, building upon previous findings from (Karras
et al., 2022; Yi et al., 2023). From Proposition 3.2, we can
see that the score function semp(xt; t) is purely determined
by the given training dataset {yi}Ni=1 and perturbation pa-
rameters st, σt.

Moreover, by comparing the reproducibility between the
theoretical noise-to-image mapping fsemp and different prac-
tically trained diffusion models, our experiments in Figure 3
(left) demonstrate that the trained networks have a very high
similarity compared with the theoretical solution when the
training data size is small enough. In the meanwhile, the
training loss in Figure 3 (right) also converges to the min-
imum value in this case, which is proven in Appendix C.
As such, in the memorization regime when the model has a
much larger capacity than the training data, the reproducibil-
ity among different diffusion models and the theoretical
mapping implies that all diffusion models are approximat-
ing the same score function of the empirical multi-delta
distribution of the training data. In this regime, the diffusion
model lacks the ability to generate new samples.
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Figure 3. Convergence of the optimal denoiser (left) and training loss (right) w.r.t. the training data size. We employ DDPMv4
and conduct training on the CIFAR-10 dataset. During this process, we make modifications to both the model’s capacity and the size
of the training dataset, maintaining the same configuration as depicted in Figure 2. The left figure illustrates the reproducibility score
between each diffusion model and the theoretically unique identifiable encoding as outlined in Proposition 3.2, the right figure illustrates
the training loss for these models when trained till converge.

Figure 4. Similarity among different unconditional diffusion
model settings in generalization regime. We visualize the quan-
titative results based upon seven different unconditional diffusion
models (DDPMv4, DDPMv6 (Ho et al., 2020; Song et al., 2020a),
Multistagev1 (Zhang et al., 2023), EDMv1 (Karras et al., 2022),
UViT (Bao et al., 2023), CT (Song et al., 2023b), Progressivev1
(Salimans & Ho, 2022)) based upon reproducibility score (left) and
MAE score (right) (defined in Section 2.1). About more detailed
settings and a more comprehensive comparison could be found in
Appendix A.

3.2. Reproducibility in Generalization Regime

Second, we study reproducibility in the generalization
regime, which is the typical training setting for most practi-
cal diffusion models. Within this regime, we first focus on
examining the learning of score function through model re-
producibility. Based upon preliminary studies using simple
models, we show that in the generalization regime,

reproducibility is a byproduct of diffusion model
learning the ground-truth distribution p(x0).

Following this, we conduct a thorough investigation into the

reproducibility of various pre-trained diffusion models used
in real-world applications.

3.2.1. REPRODUCIBILITY & DISTRIBUTION LEARNING

However, analysis of the estimation accuracy under the true
natural image distribution is exceedingly challenging. In-
stead, we illustrate through empirical evidence that diffusion
models have the capacity to learn the underlying distribu-
tion by utilizing data samples generated from two given
distributions: (i) a mixture of Gaussian distribution and (ii)
pre-trained diffusion models.

Case 1: Learning score functions of a mixture of Gaus-
sians. We first consider learning diffusion models based
upon the following mixture of low-rank Gaussian (MoG)
distribution 5:

p(x0) =
1

C

∑
i∈[C]

N (x0;0,Σi) with Σi = UiU
⊤
i , (1)

where C is the number of classes, and U∗
i ∈ Rd×r is the

low-rank basis for the ith class with r ≪ d. In this case, by
invoking Lemma 3.1, we can show that the corresponding
score function has the following form.
Proposition 3.3. Under the same setting of Lemma 3.1
with p(x0) following the MoG distribution introduced in
equation 1, we can show that the optimal score function is:

sMoG(xt, t) =
∑
i∈[C]

πi(xt, t)

s2tσ
2
t

(
−xt +

1

1 + σ2
t

UiU
⊤
i xt

)
,

with πi(xt, t) =
N(xt;0,s

2
tUiU

⊤
i +s2tσ

2
t Id)∑

i∈[C] N(xt;0,s2tUiU⊤
i +s2tσ

2
t Id)

.

5As shown in (Wang & Vastola, 2023), the learned data distribu-
tion could be approximated as the Mixture of Gaussian distribution.
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Figure 5. Score matching accuracy. We train the same diffusion
model with varying numbers of training samples N and subspace
dimension r from the Mixture of Gaussian distribution defined in
Equation (1) and plot the metric Lscore in different colors for each
r. The detailed experimental settings are in Appendix D.1.

The proof can be found in Appendix C. To test whether
practical diffusion models converge to the optimal score
function sMoG(xt, t), we train the diffusion models sθ by
using N data points {yi}Ni=1 ⊆ Rn drawn from the MoG
distribution in equation 1. We measure the distance between
sMoG(xt, t) and sθ by Lscore:

Lscore := Et∼U(0,1),x0∼p(x0)
xt∼pt(xt|x0)

[
∥sθ(xt, t)− sMoG(xt, t)∥2

]
,

where the expectation is calculated for t uniformly sampled
from [0, 1], x0 sampled from the MoG distribution p(x0)
and xt sampled from the noise perturbation kernel pt(xt|x0)
given t and x0. From experiment results shown in Figure 5,
we observe that sθ(xt, t) converges to sMoG(xt, t) as N
increases given different r. Therefore, under this setting
of MoG distribution, the diffusion model could converge
towards the score function sMoG given enough training
samples (in the generalization regime).

Case 2: Learning score functions from pre-trained diffu-
sion models. Second, suppose the underlying image dis-
tribution p(x0) can be characterized by the noise-to-image
mapping fsθ1

(ϵ), ϵ ∼ N (0, s2tσ
2
t Id) of a pretrained diffu-

sion model in generalization regime sθ1
. We sample N data

points from p(x0) to generate a training dataset {yi}Ni=1,
based upon which we train another diffusion model sθ2 with
sufficient large N (in the generalization regime ). We then
calculate the reproducibility of the two models following
the same metric as in Section 2.1.

Experimentally, we find that the two models have a high
RP Score=0.80, which indicates that the diffusion model
fsθ2

could converge to the underlying distribution, which
is the same data distribution as fsθ1

, and at the same time
they have the same noise-to-image mapping. The detailed
experiment settings are in Appendix D.2.

3.2.2. PREVALENCE OF REPRODUCIBILITY

Finally, we conclude this section by showing the preva-
lence of reproducibility in the generalization regime, which
is irrespective of network architectures, training and sam-
pling procedures, and perturbation kernels. Specifically,
in Figure 4, we visualize the similarity matrix for seven
different popular diffusion models, where each element
of the matrix measures pairwise similarities of two differ-
ent diffusion models based upon RP score (left) and MAE
score (right). All the models are trained with the CIFAR-10
dataset (Krizhevsky et al., 2009). Experimental details and
more comprehensive studies can be found in Appendix A.

As we can see from Figure 4, there is a very consistent
model reproducible phenomenon for comparing any two
models. For even the most dissimilar models, the RP and
MAE scores are notably high at 0.7 and 0.68, respectively.
Specifically, we observe the following:

• Different network architectures. We evaluate (i) U-Net
(Ronneberger et al., 2015) based architecture: DDPM
(Ho et al., 2020), DDPM++ (Song et al., 2020b), Mul-
tistage (Zhang et al., 2023), EDM (Karras et al., 2022),
Consistency Training (CT) and Distillation (CD) (Song
et al., 2023b), and (ii) Transformer (Vaswani et al., 2017)
based architecture: DiT (Peebles & Xie, 2022) and U-ViT
(Bao et al., 2023). This phenomenon remains consistent
regardless of the specific architecture employed.

• Different training procedures. We consider discrete
(Ho et al., 2020) and continuous (Song et al., 2020b) set-
tings, training from scratch or distillation (Salimans &
Ho, 2022; Song et al., 2023b) for the diffusion model.
When we compare CT (consistency training) and EDMv1,
even when we use different training losses, they both con-
verge to similar noise-to-image mappings. Additionally,
comparing DDPMv1 and Progressivev1 reveals that both
training from scratch and distillation approaches lead to
the same results.

• Different sampling procedures. For sampling, we only
use deterministic samplers, such as DPM-Solver (Lu et al.,
2022), Heun-Solver (Karras et al., 2022), DDIM (Song
et al., 2020a) etc. For example, DDPMv4 utilizes DPM-
solver, EDMv1 employs a 2nd order heun-solver, and CT
utilizes consistency sampling, yet they all exhibit very
high model reproducibility.

• Different perturbation kernels. For the data corrup-
tion process, we compared Variance Preserving (VP) (Ho
et al., 2020), Variance Exploding (VE), and sub Vari-
ance Preserving (sub-VP) (Song et al., 2020b) perturba-
tion methods for noise perturbation stochastic differential
equations. We scale the initial noise using the standard
deviation specific to the terminated Gaussian distribution
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of each perturbation kernel to ensure a fair comparison,
details can be found in Appendix A. Our observations
indicate that the choice of perturbation methods (VP, sub-
VP, and VE) has a limited impact on reproducibility when
comparing DDPMv4, DDPMv6, and EDMv1.

4. Beyond Unconditional Diffusion Models
In this section, we explore the concept of model repro-
ducibility in a broader context, extending beyond uncon-
ditional diffusion models. We demonstrate that model re-
producibility manifests more generally across various sce-
narios, including conditional diffusion models, diffusion
models for inverse problems, and the fine-tuning of diffu-
sion models. Due to space constraints, we defer the results
of fine-tuning diffusion models to Appendix H.

4.1. Conditional Diffusion Models

Conditional diffusion model, introduced by (Ho & Salimans,
2022; Dhariwal & Nichol, 2021), gained its popularity in
many applications such as text-to-image generation (Rom-
bach et al., 2022a; Ramesh et al., 2021; Nichol et al., 2021).
These models achieve a superior degree of control and en-
hanced quality in output generation through the integration
of rich class embeddings within the denoising function. In-
terestingly, we find that model reproducibility of conditional
models exhibits in a structured way and is strongly related
to unconditional counterparts.

Specifically, our experiments in Figure 6 demonstrate that
(i) model reproducibility exists among different conditional
diffusion models, and (ii) model reproducibility presents be-
tween conditional and unconditional diffusion models only
if the type (or class) of content generated by the uncondi-
tional models matches that of the conditional models. More
results can be found in Appendix E.

To support our claims, we define the conditional repro-
ducibility score between different conditional diffusion mod-
els by RPcond Score := P (MSSCD(x

c
1,x

c
2) > 0.6 | c ∈ C)

to evaluate similarity between outputs of different condi-
tional diffusion models, based on the likelihood of their
similarity exceeding a threshold from the same initial noise
and conditioned on the class c ∈ C. We also intro-
duce a between reproducibility score RPbetween Score :=
P (max

c∈C [MSSCD(x1,x
c
2)] > 0.6), for an unconditional

generation x1 and conditional generation xc
2 originating

from an identical noise, to assess the similarity between
unconditional output x1 and conditional output xc

2.

Results in Figure 6 (a) (b) show that samples from
different conditional models (EDM-cond, UViT-cond,
MultistageEDM-cond) are similar when conditioned on
the same class and noise, supporting Claim (i). On the
other hand, a high RPbetween Score and visual similarities

between unconditional and conditional samples, as seen
Figure 6 (c), support Claim (ii).

Furthermore, beside the CIFAR-10 dataset, we also demon-
strate the conditional reproducibility on large-scale datasets
such as ImageNet (Deng et al., 2009) in Figure 7 and large-
scale diffusion models such as Stable Diffusion (Rombach
et al., 2022a) in Appendix F.

4.2. Diffusion Models for Inverse Problems

Recently, diffusion models have also been demonstrated as
rich, structural priors to solve a broad spectrum of inverse
problems (Song et al., 2023a; Chung et al., 2022a; Song
et al., 2021; Chung et al., 2022b),6 including but not limited
to image super-resolution, de-blurring, and inpainting. Mo-
tivated by these promising results, our illustration is based
upon solving the image inpainting problem using a mod-
ified deterministic variant of diffusion posterior sampling
(DPS) (Chung et al., 2022a), showcasing that for solving
inverse problem using diffusion models: model reproducibil-
ity holds only within the same type of network architectures.

Our claim is supported by the experimental results in Fig-
ure 8. Specifically, Figure 8 (a) virtualizes the samples
generated from different diffusion models, and Figure 8
(b) presents the similarity matrix of model reproducibil-
ity between different models, i.e., U-Net based (DDPMv1,
DDPMv2, DDPMv3, DDPMv4, Multistagev1) and Trans-
former based (DiT, U-ViT) architectures. We note a strong
degree of model reproducibility among architectures of the
same type (e.g., U-Net vs. Transformer), but the model re-
producibility score exhibits a notable decrease when any U-
Net model is compared with any Transformer-based model.

We conjecture that the lack of reproducibility across net-
work architectures is due to the following reasons: (i) DPS
introduces the gradient term ∂sθ(xt,t)

∂xt
during the sampling,

and this extra term might break the reproducibility for dif-
ferent type of architectures. (ii) the reproducibility between
different types of architectures might not hold for out-of-
distribution data generation, whereas the data xt passed into
the learned score function sθ(xt, t) is out-of-distribution for
solving inverse problems. We leave these for future study.

5. Related Works
Convergence analysis of diffusion models. Numerous
theoretical studies have investigated the diffusion model’s
convergence towards the underlying distribution. Most of
these studies, including (Li et al., 2023a; Chen et al., 2022;
Benton et al., 2023; Block et al., 2020; Lee et al., 2022;

6Here, the problem is often to reconstruct an unknown signal
u from the measurements z of the form z = A(u) + η, where A
denotes some (given) sensing operator and η is the noise.
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Figure 6. Model reproducibility for conditional diffusion model in the generalization regime. In this study, we employ conditional
diffusion models, specifically U-Net-based (EDM-cond, MultistageEDM-cond) and transformer based (UViT-cond), which we train on
the CIFAR-10 dataset using class labels as conditions. Additionally, we select unconditional diffusion models, namely Progressivev1,
DDPMv4, and EDMv2, as introduced in Section 3.2.2. Figure (a) showcases sample generations from both unconditional and conditional
diffusion models (with the ”plane” serving as the condition for the latter). Notably, samples within the same row and column originate
from the same initial noise. The reproducibility scores between the conditional diffusion models are presented in (b), and between
unconditional and conditional diffusion models in (c).

(a) Visualization. (b) RPcond Score

Figure 7. Model reproducibility for conditional diffusion model
generations on ImageNet dataset. In this experiment, we choose
the conditional diffusion model (EDM, ADM (Dhariwal & Nichol,
2021), CD, CT, iDDPM (Nichol & Dhariwal, 2021)) trained on
the ImageNet dataset. 10K image pairs are generated to estimate
the RPcond Score. Due to the complexity of the ImageNet dataset,
we set the threshold for the SSCD metric as 0.4 instead of 0.6 here,
following the setting in (Somepalli et al., 2023b).

Yingxi Yang & Wibisono, 2022), have established conver-
gence by assuming an L2-accurate score estimation. Others
have explored convergence without relying on this assump-
tion. Nonetheless, these studies rely on strong simplification
regarding network architectures (Li et al., 2023b; Chen et al.,
2023) and data distributions (Chen et al., 2023). Our paper
provides an empirical complement to existing theoretical
analyses. In contrast, our paper focuses on the learned distri-
bution and score function under various practical diffusion
model settings. The empirical findings not only broadens
the understanding of diffusion models in realistic settings
but also bridges the gap between theory and practice.

Understanding memorization & generalization. Re-
cently, Yoon et al. (2023) categorized the training regimes
of diffusion models into memorization and generalization,
concluding that diffusion models tend to generalize when
they fail to memorize the training data. In the memoriza-
tion regime, Yi et al. (2023); Gu et al. (2023) demonstrated

that training diffusion models converges towards an optimal
denoiser. In contrast, in the generalization regime, Pid-
strigach (2022) linked generalization in simple settings to
avoiding overfitting, while Kadkhodaie et al. (2023) showed
that the generalization capabilities of diffusion models arise
from an implicit bias towards geometry-adaptive harmonic
bases. Furthermore, Somepalli et al. (2023a;b); Carlini et al.
(2023) revealed that diffusion models can still replicate train-
ing samples even in the generalization regime, leading to
significant privacy concerns.

In comparison, our work takes a step further to delve into the
problem. By examining the largely overlooked reproducibil-
ity phenomenon, our work is the first to show that diffusion
models learn distinct distributions in different regimes: in
the memorization regime, diffusion models learn the empir-
ical distribution, while in the generalization regime, they
learn the underlying distribution. Moreover, our research
provides the first empirical evidence that diffusion models
can overcome the curse of dimensionality when learning the
underlying distribution, enabling effective generalization
even with a limited number of training samples. Finally, our
analysis also extends to conditional diffusion models and
diffusion models for inverse problems, which have not been
addressed in previous studies.

6. Conclusions and Implications
This study focuses on an important phenomenon in diffusion
models, which we term “consistent model reproducibility”.
We believe this intriguing phenomenon could significantly
impact future research on diffusion models. Below, we
outline several promising directions:

Improving training efficiency. The potential of this work
to improve the training efficiency of diffusion models lies in

8
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Figure 8. Model reproducibility for solving inverse problems in the generalization regime. In this investigation, we employ various
unconditional diffusion models, as introduced in Section 3.2.2, which were initially trained on the CIFAR-10 dataset. Our approach
involves utilizing a modified deterministic variant of diffusion posterior sampling (DPS), as detailed in Appendix G. Specifically, we focus
on the task of image inpainting. Figure (a) presents both the observation z, unknown signal u, and generations from different diffusion
models. Notably, samples within the same row and column originate from the same initial noise. The reproducibility scores for different
diffusion models under the DPS algorithm are quantitatively analyzed in (b).

leveraging the distinct relationship between noise and image
spaces. Recent research (Zhang et al., 2024) illustrates this
by delineating the training of diffusion models into three
stages, each employing networks of varying sizes. This
approach capitalizes on the reproducibility phenomenon,
indicating that adequately parameterized networks learn the
same score function. Consequently, by appropriately ad-
justing parameter sizes for each stage, empirical evidence
shows that the proposed method surpasses existing tech-
niques, particularly in improving training efficiency in the
generalization regime. These findings imply that incorpo-
rating reproducibility as a guiding principle in training dif-
fusion models holds significant promise for future research
endeavors.

Black-box model privacy. Several commercial, large-
scale diffusion models, e.g. Imagen (Saharia et al., 2022b),
DALL-E (Betker et al., 2023), are designed as black-box
systems, raising significant privacy concerns due to the prop-
erty of reproducibility. Our analysis, in the Case 2 of Sec-
tion 3.2.1, indicates that one can replicate the mapping
from a trained diffusion model fsθ

by training a new score
function sθ′ from generated data by fsθ

(through the open-
source API). Furthermore, given the white-box duplication
fsθ′ , gradient-based adversarial attacking (Guo et al., 2021)
and training data privacy (Carlini et al., 2023) would arise
as more exacerbated problems.

Controllable data generation. Given the unique map-
ping learned by the diffusion model, we could control image
distribution by manipulating the noise distribution. More
specifically, in text-driven image generation, image distri-
bution could be manipulated for adversarial attacking (Zou
et al., 2023), robust defending (Zhu et al., 2023), copyright

protection (Somepalli et al., 2023b;a). In solving inverse
problems, one recent paper (Liu et al., 2023a) manipulated
the noise distribution for more efficient sampling. Beyond,
the image distribution could also be designed to reduce the
uncertainty and variance in our signal reconstruction (Jalal
et al., 2021; Chung & Ye, 2022; Luo et al., 2023a).
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Appendix

We include more comprehensive experiment settings, quantitative results, and detailed discussion of the unconditional
diffusion model in Appendix A, Quantitative analysis of other generative models is in Appendix B, theoretical proof in
Appendix C, experiment setting for Section 3.2.1 in Appendix D, experiment settings for conditional diffusion model in
Appendix E, stable diffusion in Appendix F, diffusion model for solving inverse problems in Appendix G, fine-tuning
diffusion model in Appendix H.

A. Unconditional Diffusion Model
Expanded experiment setting More detailed settings of the diffusion model we selected are listed in Table 1. With the
exception of DiT and UViT, which we implemented and trained ourselves, all selected diffusion model architectures utilize
the author-released models.

Architectural Relationships For DDPMv1, DDPMv2, and DDPMv7, we adopt the DDPM architecture initially proposed
by (Ho et al., 2020), but we implement it using the codebase provided by (Song et al., 2020b). DDPMv3 and DDPMv8, on
the other hand, employ DDPM++, an enhanced version of DDPM introduced by (Song et al., 2020b). DDPM++ incorporates
BigGAN-style upsampling and downsampling techniques, following the work of (Brock et al., 2018). DDPMv4, DDPMv5,
and DDPMv6 adopt DDPM++(deep), which shares similarities with DDPM++ but boasts a greater number of network
parameters. Moving to Multistagev1, Multistagev2, and Multistagev3, these models derive from the Multistage architecture,
a variant of the U-Net architecture found in DDPM++(deep). For EDMv1, EDMv2, CT, and CD, the EDM architecture is
identical to DDPM++, but they differ in their training parameterizations compared to other DDPM++-based architectures.
Finally, UViT and DiT are transformer-based architectures.

Distillation Relationships CD, Progressivev1, Progressivev2, and Progressivev3 are all diffusion models trained using
distillation techniques. CD employs EDM as its teacher model, while Progressivev1, Progressivev2, and Progressivev3 share
DDPMv3 as their teacher model. It’s worth noting that these models employ a progressive distillation strategy, with slight
variations in their respective teacher models, as elaborated in (Salimans & Ho, 2022).

Initial Noise Consistency However, it is important to note a nuanced difference related to the noise perturbation kernels.
Specifically, for VP and subVP noise perturbation kernels, we define the noise space as E = N (0, I), whereas the VE
noise perturbation kernel introduces a distinct noise space with E = N (0,σ2

max · I), where σmax is predefined. So during
the experiment, we sample 10K initial noise ϵvp, subvp ∼ N (0, I) for the sample generation of diffusion models with VP
and subVP noise perturbation kernel. For diffusion models with VE noise perturbation kernel, the initial noise is scaled as
ϵve = σmaxϵvp, subvp.

Additionally, it’s worth mentioning that for all 8x8 image grids shown in the Figure 1, 11, 14, 15, 16, 17, 22 no matter for
the unconditional diffusion model, conditional diffusion model, diffusion model for the inverse problem, or fine-tuning
diffusion model, we consistently employ the same 8x8 initial noise configuration. The same setting applies to 10k initial
noises for reproducibility score. This specific design is for more consistent results between different variants of diffusion
models (e.g., we could clearly find the relationship between the unconditional diffusion model and conditional diffusion
model by comparing Figure 11 and Figure 16, 17).

Further discussion In Figure 11, we provide additional visualizations, offering a more comprehensive perspective on
our findings. For a deeper understanding of our results, we present extensive quantitative data in Figure 10 and Figure 9.
Building upon the conclusions drawn in Section 3.2.2, we delve into the consistency of model reproducibility across
discrete and continuous timestep settings. To illustrate, we compare DDPMv1 and DDPMv2, demonstrating that model
reproducibility remains steadfast across these variations.Moreover, it’s worth noting that while all reproducibility scores
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Table 1. Comprehensive unconditional reproducibility experiment settings
Name Architecture SDE Sampler Continuous Distillation
DDPMv1 DDPM VP DPM-Solver ! %

DDPMv2 DDPM VP DPM-Solver % %

DDPMv3 DDPM++ VP DPM-Solver ! %

DDPMv4 DDPM++(deep) VP DPM-Solver ! %

DDPMv5 DDPM++(deep) VP ODE ! %

DDPMv6 DDPM++(deep) sub-VP ODE ! %

DDPMv7 DDPM sub-VP ODE ! %

DDPMv8 DDPM++ sub-VP ODE ! %

Multistagev1 Multistage (3 stages) VP DPM-Solver ! %

Multistagev2 Multistage (4 stages) VP DPM-Solver ! %

Multistagev3 Multistage (5 stages) VP DPM-Solver ! %

EDMv1 EDM VP Heun-Solver ! %

EDMv2 EDM VE Heun-Solver ! %

UViT UViT VP DPM-Solver ! %

DiT DiT VP DPM-Solver ! %

CD EDM VE 1-step ! !

CT EDM VE 1-step ! %

Progressivev1 DDPM++ VP DDIM (1-step) ! !

Progressivev2 DDPM++ VP DDIM (16-step) ! !

Progressivev3 DDPM++ VP DDIM (64-step) ! !

surpass a threshold of 0.6, signifying robust model reproducibility, some scores do exhibit variations. As highlighted in
Figure 9, we observe that similar architectures yield higher reproducibility scores (e.g., DDPMv1-8), models distilled from
analogous teacher models exhibit enhanced reproducibility (e.g., Progressivev1-3), and models differing solely in their
ODE samplers also display elevated reproducibility scores (e.g., DDPMv4, DDPMv5).We hypothesize that the disparities in
reproducibility scores are primarily attributed to biases in parameter estimation. These biases may arise from factors such as
differences in architecture, optimization strategies, and other variables affecting model training.

B. Compare GAN & VAE
To further investigate this observation within the realm of diffusion models, we extend our assessment to model similarity
in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational Autoencoders (VAEs) (Kingma &
Welling, 2013). We gauge this similarity through the application of a reproducibility score. In our evaluation of GAN-based
methods, we contrast two prominent variants: Wasserstein GAN (wGAN) (Arjovsky et al., 2017) and Spectral Normalization
GAN (SNGAN) (Miyato et al., 2018). We conduct this analysis using the CIFAR-10 dataset. Simultaneously, within the
realm of VAE-based approaches, we consider both the standard VAE and the Variational Autoencoding Mutual Information
Bottleneck (VAMP) model (Tomczak & Welling, 2018). Our evaluation focuses on the MNIST dataset introduced by Deng
(LeCun et al., 1998). It’s important to note that each model utilized in this analysis was provided by its respective author,
and the reproducibility score calculation follows a similar methodology to that applied in the diffusion model experiments.
Of particular significance is the fact that the latent space for VAE-based methods is learned through the encoder, and this
encoder architecture varies among different models. In this context, our approach involves sampling initial noise from the
latent space of one model and employing it for the generation of another. The similarity matrices, presented in Figure 12,
collectively indicate a notable absence of reproducibility in both GAN and VAE methods.

15



The Emergence of Reproducibility and Consistency in Diffusion Models

Figure 9. Comprehensive reproducibility score among different unconditional diffusion model settings.

C. Theoretical Analysis
This section mainly focuses on the proof of Proposition 3.2 in Section 3.1, the empirical score function would minimize the
score matching loss function, Proposition 3.3 in Section 3.2.

As the background, let pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t I) be the perturbation kernel of diffusion model, which is a continuous

process gradually adding noise from original image x0 to xt along the timestep t ∈ [0, 1]. Both st = s(t), σt = σ(t) here
are simplified as scalar functions of t to control the perturbation kernel. It has been shown that this perturbation kernel is
equivalent to a stochastic differential equation dx = f(t)xdt+ g(t)dωt, where f(t), g(t) are a scalar function of t. The
relations of f(t), g(t) and st, σt are:

st = exp(
∫ t

0

f(ξ)dξ), and σt =

√∫ t

0

g2(ξ)

s2(ξ)
dξ (2)

Proposition 3.2. Given a training dataset {yi}Ni=1 of N -samples, consider the same setting of Lemma 3.1 with p(x0)

following the empirical multi-delta distribution p(x0) =
1
N

∑N
i=1 δ(x0 − yi). In this setting, we can show that the score
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Figure 10. Comprehensive MAE score among different unconditional diffusion model settings.

function can be characterized as

semp(xt; t) = −
1

s2tσ
2
t

[
xt − st

∑N
i=1N (xt; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

]

Proof. we compute

pt(x) =

∫
pt(x|x0)p(x0)dx0 =

1

N

N∑
i=1

N (x; styi, s
2
tσ

2
t I).

Therefore, the score function is:

semp(xt; t) = ∇xt logpt(xt) =
∇xt

pt(xt)

pt(xt)
= − 1

β2
t

∑N
i=1N (xt; styi, s

2
tσ

2
t I) (xt − styi)∑N

i=1N (xt; styi, s2tσ
2
t I)

= − 1

s2tσ
2
t

[
xt − st

∑N
i=1 N(xt; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

]

17



The Emergence of Reproducibility and Consistency in Diffusion Models

(a) DDPMv1 (b) DDPMv2 (c) DDPMv3

(d) DDPMv5 (e) DDPMv6 (f) DDPMv7

(g) DDPMv8 (h) EDMv1 (i) EDMv2

(j) DiT (k) CD (l) Progressivev1

(m) Progressivev2 (n) Progressivev3

Figure 11. Comprehensive samples visulization for unconditional diffusion model
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Figure 12. Quantitative results for GANS and VAEs.

Figure 13. Pretrained model and the model trained on the sampled dataset produce almost identical results.

From the relationship of predict ϵemp, predict xemp, and the score function:

ϵemp(xt, t) = −stσts(xt, t) =
1

stσt

[
xt − st

∑N
i=1N (xt; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

]

xemp(xt, t) =
xt − stσtϵemp(xt, t)

st
=

∑N
i=1N (xt; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

Then given the noise prediction loss L(ϵθ; t) = Ext∼pt(xt)[|ϵ− ϵθ(xt, t)||2] with pt(xt) =
1
N

∑N
i=1N (xt; styi, s

2
tσ

2
t I),

we will show that arg minϵθ(xt;t)L(ϵθ;xt, t) = ϵemp(xt, t).

Proof. The proof is inspired from (Karras et al., 2022). The loss could be calculated as:

L(ϵθ; t) = Ext∼pt(xt)[|ϵ− ϵθ(xt, t)||2] (3)

=

∫
Rd

1

N

N∑
i=1

N (xt; styi, s
2
tσ

2
t I)||ϵ− ϵθ(xt, t)||2dxt (4)

where ϵ ∼ N (0, I) is defined follow the perturbation kernel pt(xt|x0) = N (xt; stx0, s
2
tσ

2
t I):
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xt = styi + stσtϵ⇒ ϵ =
xt − styi

stσt
(5)

And ϵθ is a ”denoiser” network for learning the noise ϵ, under the assumption that the ϵθ has infinite model capacity, and
can approximate any continuous function to an arbitrary level of accuracy based on the Universal Approximation Theorem.
So plugging Eq. 5 into 4, we could reparameterization the loss as:

L(ϵθ; t) =
∫

Rd

1

N

N∑
i=1

N (xt; styi, s
2
tσ

2
t I)||ϵθ(xt, t)−

xt − styi

stσt
||2︸ ︷︷ ︸

=:L(ϵθ ;xt,t)

dxt (6)

Eq. 6 means we could minimize L(ϵθ; t) by minimizing L(ϵθ;xt, t) for each xt. And to find the ”optimal denoiser” ϵ∗θ
that minimize the L(ϵθ;xt, t) for every given xt, t:

ϵ∗θ(xt; t) = arg minϵθ(xt;t)L(ϵθ;xt, t) (7)

Since ϵθ can approximate any continuous function to an arbitrary level of accuracy, this is a convex optimization problem;
the solution could be solved by setting the gradient of L(ϵθ;x, t) w.r.t ϵθ(xt; t) to zero:

∇ϵθ(xt;t)[L(ϵθ;xt, t)] = 0 (8)

⇒∇ϵθ(xt;t)[
1

N

N∑
i=1

N (xt; styi, s
2
tσ

2
t I)||ϵθ(xt, t)−

xt − styi

stσt
||2] = 0 (9)

⇒ 1

N

N∑
i=1

N (xt; styi, s
2
tσ

2
t I)[ϵ∗θ(x; t)−

xt − styi

stσt
] = 0 (10)

⇒ϵ∗θ(xt; t) =
1

stσt
[xt − st

∑N
i=1N (x; styi, s

2
tσ

2
t I)yi∑N

i=1N (xt; styi, s2tσ
2
t I)

] (11)

Proposition 3.3. Under the same setting of Lemma 3.1 with p(x0) following the MoG distribution introduced in equation 1,
we can show that the optimal score function is:

sMoG(xt, t) =
∑
i∈[C]

πi(xt, t)

s2tσ
2
t

(
−xt +

1

1 + σ2
t

UiU
⊤
i xt

)
,

with πi(xt, t) =
N(xt;0,s

2
tUiU

⊤
i +s2tσ

2
t Id)∑

i∈[C] N(xt;0,s2tUiU⊤
i +s2tσ

2
t Id)

.

Proof. First, let’s consider the simplified case when C = 1:

p(x0) = N
(
x0;0,U

∗U∗T
)

Which is equivalent to:

x = U∗a, (12)
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where a ∼ N (0, Id). Then, we compute

pt(xt) =

∫
pt(xt|U∗a)N (a;0, I)da

=
1

(2π)n/2snt σ
n
t

∫
1

(2π)d/2
exp

(
− 1

2s2tσ
2
t

∥xt − stU
∗a∥2

)
exp

(
−∥a∥

2

2

)
da

=
1

(2π)n/2snt σ
n
t

(
1 + σ2

t

σ2
t

)−d/2

exp

(
− 1

2s2tσ
2
t

xT
t

(
In −

1

1 + σ2
t

U∗U∗T

)
xt

)
·
∫

1

(2π)d/2

(
σ2
t

1 + σ2
t

)−d/2

exp

(
−1 + σ2

t

2σ2
t

||a− 1

st + stσ2
t

U∗Txt||22
)
da

=
1

(2π)n/2snt σ
n
t

(
1 + σ2

t

σ2
t

)−d/2

exp

(
− 1

2s2tσ
2
t

xT
t

(
In −

1

1 + σ2
t

U∗U∗T

)
xt

)
=

1

(2π)n/2det
(
s2tU

∗U∗T + s2tσ
2
t In

)1/2 exp

(
−1

2
xT
t

(
s2tU

∗U∗T

+ s2tσ
2
t In

)−1

xt

)
= N

(
xt;0, s

2
tU

∗U∗T

+ s2tσ
2
t In

)
.

Note that the fifth equality follows from

det
(
s2tU

∗U∗T

+ s2tσ
2
t In

)
= (s2t + s2tσ

2
t )

d · (s2tσ2
t )

n−d(
s2tU

∗U∗T

+ s2tσ
2
t In

)−1

=
1

s2tσ
2
t

(
In −

σ2
t

1 + σ2
t

U∗U∗T

)
And the score function is:

sGaussian(xt, t) = ∇xt
logpt(xt) =

∇xt
pt(xt)

pt(xt)
= −

(
s2tU

∗U∗T

+ s2tσ
2
t I

)−1

xt

= − 1

s2tσ
2
t

(
Id −

1

1 + σ2
t

·U∗U∗T

)
xt = −

1

s2tσ
2
t

xt +
1

s2tσ
2
t

1

1 + σ2
t

U∗U∗T

xt.

Similarity, when the target distribution is Mixture of low rank gaussian:

p(x0) =
∑
i∈[C]

N
(
x0;0,U

∗
i U

∗T

i

)
Then:

pt(x) =
∑
i∈[C]

∫
pt(x|U∗

i a)N (a;0, I)da

=
∑
i∈[C]

N
(
x;0, s2tU

∗
i U

∗T

i + s2tσ
2
t In

)
.

And the score function is:

s(x, t) = ∇xlogpt(x)

=
∇xpt(x)

pt(x)

=

∑
i πiN

(
x0;0,U

∗
i U

∗T

i

)(
− 1

s2tσ
2
t
x+ 1

s2tσ
2
t

1
1+σ2

t
U∗

i U
∗T

i x
)

∑
i πiN

(
x0;0,U∗

i U
∗T

i

)
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Additional Experiment Setting for Figure 4 For a more comprehensive view of our results, we present additional
visualizations in Figure 14 and Figure 15. In these experiments, we train UNet models with varying numbers of channels on
subsets of the CIFAR-10 dataset, each comprising different training samples. Our standard batch size for all experiments is
set at 128, and we continue training until the generated samples reach visual convergence, characterized by minimal changes
in both appearance and semantic information.

D. Experiment setting for Section 3.2.1
D.1. Learning score functions of a mixture of Gaussian

For the mixture of Gaussian distribution, we set C = 2, d = 48, r = 6. We utilize the EDM diffusion model with embed
dimension 128, training with 3000 iterations for all N . We generate totally 100k (xt, t) pairs for estimate Lscore

D.2. Model Recovery of Diffusion Models

In order to show how diffusion models can be recovered, we train an EDM model on the dataset sampled from a pretrained
model with same architecture. We use a well-trained diffusion model in the generalization regime, the mapping of which
is denoted as fθ1

, as an implicit representation of the distribution, denoted as pDM (x0) = fθ1
(ϵ), ϵ ∼ N (0, s2tσ

2
t Id).

We sample N data points {yi}Ni=1 ⊆ Rn from pDM (x0), following the sampling process of the diffusion model to train
another diffusion model, denoted as fθ2 . We then calculate the reproducibility of the two models fθ1 , fθ2 following the
same practice as in section 2.1.

In detail, fθ2 is pretrained on CIFAR10 and N = 50k which is the same as the size of CIFAR10 training set. We follow
the same practive as in EDM(Karras et al., 2022). We use the DDPM++ model architecure and variance preserving(VP)
formulation. We train the model until convergence.

As we can see in Figure 13, fθ1 and fθ2 almost generates identical results.

E. Conditional Diffusion Model
Extended Experiment setting To investigate the reproducibility of the conditional diffusion model, we opted for three
distinct architectures: the conditional EDM (Karras et al., 2022), conditional multistage EDM (Zhang et al., 2023), and
conditional U-ViT (Bao et al., 2023). Our training data consisted of the CIFAR-10 dataset, with the class labels serving as
conditions. It’s worth noting that the primary distinction between EDM and multistage EDM lies in the architecture of the
score function. Conversely, the contrast between EDM and conditional U-ViT extends beyond architectural differences
to encompass conditional embeddings. Specifically, EDM transforms class labels into one-hot vectors, subjects them to a
single-layer Multilayer Perceptron (MLP), and integrates the output with timestep embeddings. In contrast, U-ViT handles
class labels by embedding them through a trainable lookup table, concatenating them with other inputs, including timestep
information and noisy image patches represented as tokens. For all three architectures, we pursued training until convergence
was achieved, marked by the lowest FID. The DPM-Solver was employed for sampling purposes. To generate samples, we
employed the same 10K initial noise distribution as utilized in the unconditional setting (refer to Section 3.2.2). For each
such initial noise instance, we generated 10 images, guided by 10 distinct classes, resulting in a total of 100K images.

Discussion The observed reproducibility between the unconditional diffusion model and the conditional diffusion model
presents an intriguing phenomenon. It appears that the conditional diffusion model learns a mapping function, denoted as
fc∈C : E 7→ Ic∈C , which maps from the same noise space E to each individual image manifold Ic∈C corresponding to each
class c. In contrast, the mapping of the unconditional diffusion model, denoted as f : E 7→ I, maps the noise space to a
broader image manifold I ⊂

⋃
c∈C Ic. A theoretical analysis of this unique reproducibility relationship holds the promise

of providing valuable insights.

Currently, our research is exclusively focused on the conditional diffusion model. It raises the question of how the
reproducibility phenomenon manifests in the context of the text-to-image diffusion model (Rombach et al., 2022a; Ramesh
et al., 2021; Nichol et al., 2021), where the conditioning factor is not confined to finite classes but instead involves complex
text embeddings.

As illustrated in Figure 16 and Figure 17, our previous comparisons were made with the same initial noise and class
conditions. However, when comparing the same model with identical initial noise but different class conditions, we
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uncovered intriguing findings. For instance, the first row and column images in Figure 16 (i) and (l) exhibited remarkable
similarity in low-level structural attributes, such as color, despite differing in semantics. This observation is consistent with
findings in Figure 22, where we explored generation using diffusion models trained on mutually exclusive CIFAR-100 and
CIFAR-10 datasets. These findings bear a striking resemblance to the conclusions drawn in (Khrulkov et al., 2022), which
also demonstrated a similar phenomenon in a simplified scenario, where I follows a Gaussian distribution. To gain a deeper
understanding of reproducibility and the phenomena mentioned in this paragraph, leveraging optimal transport methods
(e.g., Schrödinger bridge (Shi et al., 2023; De Bortoli et al., 2021; Luo et al., 2023b; Delbracio & Milanfar, 2023; Liu et al.,
2023b)) holds significant potential.

F. Stable Diffusion
Our study also explores the reproducibility of the text-to-image diffusion model, Stable Diffusion (Rombach et al., 2022a),
trained on the LAION-5B dataset (Schuhmann et al., 2022). We utilize the series of pre-trained Stable Diffusion models
(versions v1-1 to v1-4) released by (Rombach et al., 2022b). These models exhibit key differences:

• Versions v1-1, v1-2, and v1-3 each are trained on different subsets of the LAION-5B dataset.

• Versions v1-3 and v1-4 share the same training subset from LAION-5B.

• Version v1-2 is resumed from v1-1, while v1-3 and v1-4 are resumed from v1-2.

Further details on their training settings are available at (Rombach et al., 2022b).

For reproducibility assessment, we use the prompt ”a photograph of an astronaut riding a horse” along with 1,000 randomly
generated initial noises. The reproducibility score is determined with SSCD metric larger than 0.4. To isolate the impact of
the guiding prompt on reproducibility, we also evaluate the reproducibility score with the same prompt but different initial
noises.

The results, shown in Figure 18a, reveal the highest reproducibility score between v1-3 and v1-4 (0.63), likely due to their
same training datasets. Lesser but noticeable reproducibility scores (below 0.21) are observed among v1-1, v1-2, and v1-3,
which might be attributable to their sequential training and overlapping datasets. This finding aligns with (Kadkhodaie
et al., 2023), suggesting that training on exclusive subsets of the same dataset can yield reproducible results in diffusion
models. A notable observation in Figure 18c is the presence of flip generations between v1-3 and v1-4, potentially a result
of data augmentation introducing randomness. We hypothesize that excluding data augmentation could further increase the
reproducibility score between v1-3 and v1-4. Furthermore, when varying the initial noise but with the same prompt, the
reproducibility scores approach zero, as evidenced in Figure 18b, indicating only the same prompt but different initial noise
will not have reproducibility.

G. Diffusion Model for Solving Inverse Problem
To explore the reproducibility of diffusion models in solving inverse problems, we adopted the Diffusion Posterior Sampling
(DPS) strategy proposed by Chung et al. (Chung et al., 2022a). Our adaptation involved a slight modification of their
algorithm, specifically by eliminating all sources of stochasticity within it. Additionally, we employed the DPM-Solver for
Diffusion Posterior Sampling.

Extended Experiment setting To explore the reproducibility of diffusion models in solving inverse problems, we adopted
the Diffusion Posterior Sampling (DPS) strategy proposed by Chung et al. (Chung et al., 2022a). Our adaptation involved a
slight modification of their algorithm, specifically by eliminating all sources of stochasticity within it. Additionally, we
employed the DPM-Solver for Diffusion Posterior Sampling: Algorithm 1, with Ndps = 34 posterior samping steps, 33
iterations for 3rd order DPM-Solver, 1 for 1st order DPM-Solver, thus 100 function evaluations. We also set all ξi = 1.

For the task involving image inpainting on the CIFAR-10 dataset, we applied two square masks to the center of the images.
One mask measured 16 by 16 pixels, covering 25% of the image area, and the other measured 25 by 25 pixels, covering 61%
of the image area. We denoted these as ”easy inpainting” and ”hard inpainting” tasks. In Figure 8 and Figure 19, we utilized
the ”easy inpainting” scenario with a specific observation z as illustrated in the figure. In Figure 20, we considered both the
”easy inpainting” and ”hard inpainting” tasks. We also employed 10K distinct initial noise and their corresponding 10K
distinct observations z to calculate the reproducibility score, as presented in Figure 20.
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Algorithm 1 Determinsitic DPS with DPM-Solver.

Input: Ndps, u,f(t),g(t), st, σt, {ξi}
Ndps
i=1

xNdps ∼ N (0, I)
for i = Ndps to q do

x̂0 =
1

f(i)

(
xi −

g2(i)

siσi
ϵθ (xi, i)

)
x′
i−1 ← Dpm-Solver(xi, i)

xi−1 ← x′
i−1 − ξi∇xi ||u−A (x̂0) ||22

end for
return x̂0

Discussion Reproducibility is a highly desirable property when employing diffusion models to address inverse problems,
particularly in contexts such as medical imaging where it ensures the reliability of generated results. As observed in
Figure 19, the reproducibility scores vary for different observations z, and the decrease in reproducibility differs across
various architecture categories. For instance, when considering observation z1, the reproducibility scores across different
architecture categories remain above 0.5, whereas for z3, they fall below 0.3. Since the choice of observation z also
significantly impacts reproducibility, we conducted a complementary experiment presented in Figure 20. In this experiment,
for each initial noise instance, we employed a different observation z. From the results, it is evident that reproducibility
decreases between different categories of diffusion models. Furthermore, reproducibility diminishes as the inpainting task
becomes more challenging, with ”hard inpainting” being more demanding than ”easy inpainting.”

Here is an intuitive hypothesis of the decreasing reproducibility:

The update step of Diffusion Posterior Sampling (DPS), is constrained by the data consistency through the following
equation:

xi−1 ← x′
i−1 − ξi∇xi

||u−A (x̂0) ||22 (13)

Where x̂0 =
1

f(i)

(
xi −

g2(i)

siσi
ϵθ (xi, i)

)
, we could show that:

ξi∇xi
||z −A (x̂0) ||22 =

∂A (x̂0)

∂xi
(A (x̂0)− z) (14)

=
∂A (x̂0)

∂x̂0

∂x̂0

∂xi
(A (x̂0)− z) (15)

=
1

f(i)

∂A (x̂0)

∂x̂0

(
1− g2(i)

siσi

∂ϵθ (xi, i)

∂xi

)
(A (x̂0)− z) (16)

This analysis highlights that the unconditional diffusion model is reproducible as long as the function ϵθ is reproducible.
However, for the diffusion model used in inverse problems to be reproducible, both the function ϵθ (xt, t) and its first-order
derivative with respect to xt must be reproducible. In other words, the denoiser should exhibit reproducibility not only
in its results but also in its gradients. Combining the findings in Figure 20, we can infer that for similar architectures,

reproducibility also extends to the gradient space
∂ϵθ (xt, t)

∂xt
, which may not hold true for dissimilar architectures. Ensuring

reproducibility in the gradient space should thus be a significant focus for achieving reproducibility in diffusion models for
solving inverse problems.

Additionally, it’s worth noting that the data xt passed into the denoiser ϵθ (xt, t) is always out-of-distribution (OOD) data,
especially in tasks like image inpainting. Consequently, the reproducibility of OOD data xt is also crucial for achieving
reproducibility in diffusion models for solving inverse problems.
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H. Fine-tuning Diffusion Model
Few-shot image fine-tuning for diffusion models, as discussed in (Ruiz et al., 2023; Gal et al., 2022; Moon et al., 2022;
Han et al., 2023), showcases remarkable generalizability. This is often achieved by fine-tuning a small portion of the
parameters of a large-scale pre-trained (text-to-image) diffusion model. In this study, we delve into the impacts of partial
model fine-tuning on both model reproducibility and generalizability, by extending our analysis in Section 2. We show that
Partial fine-tuning reduces reproducibility but improves generalizability in “memorization regime”.

Experiment setting In our investigation of reproducibility during fine-tuning, we first trained an unconditional diffusion
model using EDM (Karras et al., 2022) on the CIFAR-100 dataset (Krizhevsky et al., 2009). All the fine-tuned models
discussed in this section were pre-trained on this model. Subsequently, we examined the impact of dataset size by conducting
fine-tuning on the EDM using varying numbers of CIFAR-10 images: 64, 1024, 4096, 16384, and 50000, respectively.
Building upon the findings in (Moon et al., 2022), which indicate that fine-tuning the attention blocks is less susceptible to
overfitting, we opted to target all attention layers for fine-tuning in our experiments. For comparison purposes, we also
trained a diffusion model from scratch on the CIFAR-10 dataset, using the same subset of images. All models were trained
for the same number of training iterations and were ensured to reach convergence, as evidenced by achieving a low Fréchet
Inception Distance (FID) and maintaining consistent mappings from generated samples. The training utilized a batch size of
128 and did not involve any data augmentation.

Our claim is supported by our results in Figure 21, comparing model fine-tuning and training from scratch of with varying
size of the training data, where both models have the same number of parameters. In comparison to training from scratch
that we studied in Figure 2b, fine-tuning specific components of pre-trained diffusion models, particularly the attention layer
in the U-Net architecture, yields lower model reproducibility score but higher generalization score in the memorization
regime. However, in the generalization regime, partial model fine-tuning has a minor impact on both reproducibility and
generalization in the diffusion model. Our result reconfirms the improved generalizability of fine-tuning diffusion models on
limited data, but shows a surprising tradeoff in terms of model reproducibility that is worth further investigation.

Additional generations produced by both the ”from scratch” diffusion models and the fine-tuned diffusion models are
presented in Figure 22, encompassing various training dataset sizes. A notable observation arises when comparing the
fine-tuned diffusion model’s generation using 4096 and 50000 data samples. Even with this limited dataset, the fine-tuned
diffusion model demonstrates a remarkable ability to approximate the target distribution. This suggests that the fixed portion
of the diffusion model, containing information from the pre-trained CIFAR-100 dataset, aids the model in converging
to the target distribution with less training data. In contrast, when attempting to train the diffusion model from scratch
on CIFAR-10, even with 16384 data samples, it fails to converge to the target distribution. Additionally, despite the
distinct nature of CIFAR-100 and CIFAR-10, their generations from the same initial noise exhibit striking similarities
(Figure 22). This similarity might be a contributing factor explaining how the pre-trained CIFAR-100 diffusion model assists
in fine-tuning the diffusion model to converge onto the CIFAR-10 manifold with reduced training data.
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Figure 14. Visualization between theoretical and experimental results.

26



The Emergence of Reproducibility and Consistency in Diffusion Models

Figure 15. Visualization between theoretical and experimental results.
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(a) EDM Class0 (b) Multistage EDM Class0 (c) U-ViT Class0

(d) EDM Class1 (e) Multistage EDM Class1 (f) U-ViT Class1

(g) EDM Class2 (h) Multistage EDM Class2 (i) U-ViT Class2

(j) EDM Class3 (k) Multistage EDM Class3 (l) U-ViT Class3

(m) EDM Class4 (n) Multistage EDM Class4 (o) U-ViT Class4

Figure 16. Visualization of conditional diffusion model generations (class 0 - 4).
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(a) EDM Class5 (b) Multistage EDM Class5 (c) U-ViT Class5

(d) EDM Class6 (e) Multistage EDM Class6 (f) U-ViT Class6

(g) EDM Class7 (h) Multistage EDM Class7 (i) U-ViT Class7

(j) EDM Class8 (k) Multistage EDM Class8 (l) U-ViT Class8

(m) EDM Class9 (n) Multistage EDM Class9 (o) U-ViT Class9

Figure 17. Visualization of conditional diffusion model generations (class 5 - 9).
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(a) Reproducibility score for same initial noise (b) Reproducibility score for different initial noise

(c) Visualization of stable diffusion.

Figure 18. Reproducibility of Stable Diffusion.
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(a) observation z1

(b) observation z2

(c) observation z3

Figure 19. Visualization of inverse problem solving with different observations
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Figure 20. Extended experiments on image impainting for reproducibility score.

Figure 21. Model reproducibility for diffusion model finetuing. In this experiment, we employ DDPMv4. Two distinct training
strategies are investigated: ”from scratch,” denoting direct training on a subset of the CIFAR-10 dataset, and ”partial fine-tuning,” which
involves pretraining on the entire CIFAR-100 dataset (Krizhevsky et al., 2009) followed by fine-tuning only the attention layers of the
model on a subset of the CIFAR-10 dataset. The dataset sizes for CIFAR-10 range from 26 to 215. Importantly, both ”from scratch” and
”partial fine-tuning” are trained using the same subset of images for each dataset size. Under different dataset sieze, Figure (a) illustrates
the reproducibility score between these two strategies and (b) presents the generalization score for them.
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Figure 22. More visualization of finetuning diffusion models
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