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Abstract
Text-to-3D-aware face (T3D Face) generation and
manipulation is an emerging research hot spot in
machine learning, which still suffers from low
efficiency and poor quality. In this paper, we pro-
pose an End-to-End Efficient and Effective net-
work for fast and accurate T3D face generation
and manipulation, termed E3-FaceNet. Differ-
ent from existing complex generation paradigms,
E3-FaceNet resorts to a direct mapping from text
instructions to 3D-aware visual space. We intro-
duce a novel Style Code Enhancer to enhance
cross-modal semantic alignment, alongside an
innovative Geometric Regularization objective
to maintain consistency across multi-view gen-
erations. Extensive experiments on three bench-
mark datasets demonstrate that E3-FaceNet can
not only achieve picture-like 3D face generation
and manipulation, but also improve inference
speed by orders of magnitudes. For instance,
compared with Latent3D, E3-FaceNet speeds up
the five-view generations by almost 470 times,
while still exceeding in generation quality. Our
code is released at https://github.com/
Aria-Zhangjl/E3-FaceNet.

1. Introduction
Text-to-3D-aware face (T3D Face) generation is an emerg-
ing research hot spot in machine learning (Toshpulatov et al.,
2021; Zhang et al., 2023b; Wu et al., 2023; Xia & Xue,
2023). Compared with the well-developed 2D face gener-
ation (Xia et al., 2021; Patashnik et al., 2021; Peng et al.,
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2022a;b; Du et al., 2023), T3D Face not only requires to
depict the intricate details of different facial components but
also to model the 3D shapes and positions under different
poses (Toshpulatov et al., 2021; Xia & Xue, 2023). Ad-
ditionally, the semantic consistency between cross-modal
(Zhou et al., 2019; Luo et al., 2022; Zhou et al., 2021; Wu
et al., 2023) and cross-view (Or-El et al., 2022; Chan et al.,
2022; Xia & Xue, 2023) generations is also a main obstacle.

To overcome these challenges, most of existing methods of-
ten adopt a multi-stage pipeline for high-quality T3D Face
generation (Zhang et al., 2023b; Wu et al., 2023; Rowan
et al., 2023; Li & Kitani, 2023). For instance, Wu et al.
(2023) propose two independent networks to generate face
polygon mesh and texture map separately, and then synthe-
size the textured mesh by the renderer (Li et al., 2018). Li
& Kitani (2023) first generate the latent code via a diffusion
model (Rombach et al., 2022) and then feed it to a pre-
trained 3D generator for T3D Face generations. Moreover,
most methods also require test-time tuning in 2D image
space (Zhang et al., 2023b; Canfes et al., 2023; Zhang et al.,
2023a) or the manual editing of facial attributes (Wu et al.,
2023). Despite effectiveness, the training and inference of
existing methods are still time-consuming, greatly impeding
their real-world applications.

Unlike previous works, we are keen to fast and accurate T3D
face generation and manipulation via direct cross-modal
mapping. In particular, we aim to use the text description
to impact the whole process of 3D face generation, includ-
ing the learning of the implicit 3D scene representations,
i.e., NeRF (Mildenhall et al., 2021), and the subsequent 2D
upsampling. This intuition has been well validated in the
recent progress of T2D face generation (Peng et al., 2022a;
Sun et al., 2022; Peng et al., 2022b), where the text fea-
ture can be directly used to modulate the sampled latent
code for adversarial image generation. Adopting this direct
cross-modal mapping strategy can help T3D Face methods
avoid the complex processing steps in existing multi-stage
pipelines, thereby substantially improving inference speed.

However, direct text-to-3D modeling is still intractable,
which suffers from two main issues. First, most T3D face
datasets contain only single-view face images aligned with
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This person has pale skin and blond hair.The man is attractive and has bushy eyebrows.

This person has beard. She is chubby and has black hair.She is wearing lipstick . She has high cheekbones and is young.

(b) 𝑬𝑬𝟑𝟑-FaceNet with Style Code Enhancer and Geometric Regularization(a) Direct text-to-3D mapping

This young person is wearing heavy makeup
with mouth slightly open.

He has big nose and is young. He is chubby
and has beard. Generation Manipulation

Figure 1. (a) The 3D-aware portraits generated by direct cross-modal mapping. Without any 3D regularization and semantic enhancement,
the model tends to generate faces with artifacts (labeled in red box) and fails to generate the accurate face attribute (shown in green
color). (b) Multi-view results of T3D face generation and manipulation by our E3-FaceNet. With the proposed Style Code Enhancer
and Geometric Regularization, E3-FaceNet can well align the text instructions and generate high-quality 3D-aware face images without
obvious defects (red for generation and blue for manipulation). Notably, the speeds of five-view image generation and manipulation of
E3-FaceNet are only 0.64s and 0.89s, respectively. The backgrounds of these images are removed for better comparison.

text descriptions, lacking accurately matched T3D face ex-
amples from multi-view collections (Yu et al., 2023). Con-
sequently, a cross-modal mapping T3D face model is often
hard to be fully supervised during training, leading to the
generation of obvious artifacts, as shown in Fig.1(a). In
addition, the visual semantic space of T3D face generation
is much larger than that of T2D face, so it is more challeng-
ing to ensure semantic consistency among cross-modal and
cross-view generations. For instance, the model is prone
to overlooking the attributes in the text prompt, as shown
in Fig.1(a). In this case, direct mapping for T3D face still
remains an open problem.

To remedy these issues, we propose a novel End-to-end
Efficient and Effective T3D Face generation and manipula-
tion network in this paper, termed E3-FaceNet. Concretely,
E3-FaceNet is built based on a pre-trained unconditional
3D generation network called StyleNeRF (Gu et al., 2021).
In E3-FaceNet, the text representation is directly applied
to modulate the sampled noise for end-to-end text-guided
3D generation. To improve semantic alignment, we also
propose a novel Style Code Enhancer to inject text informa-
tion into the process of adversarial image rendering, which
also enables E3-FaceNet with the ability of text-driven face
editing. Meanwhile, to generate high-quality 3D geomet-
ric details, we also propose a novel learning objective for
E3-FaceNet, which leverages both basic and high-order ge-
ometric information to regularize the generated faces in 3D
space, thereby helping the model synthesize more vibrant
and natural-looking 3D faces. Equipped with these two in-
novative designs, E3-FaceNet achieves efficient and precise
controls over 3D face synthesis, as shown in Fig.1(b).

To validate our E3-FaceNet, we conduct extensive exper-
iments on three widely-used benchmarks, namely Multi-
Modal CelebA-HQ (Xia et al., 2021), CelebAText-HQ (Sun
et al., 2021) and FFHQ-Text (Zhou, 2021), and compare

E3-FaceNet with a set of state-of-the-art (SOTA) methods
of 2D and 3D face generations, including (Xia et al., 2021;
Peng et al., 2022a;b; Wu et al., 2023; Aneja et al., 2023).
The experimental results show that our method not only per-
forms better than existing T3D face methods in generation
quality, 3D consistency and semantic alignment, but also
improves the inference speed by orders of magnitude e.g.,
0.64s v.s. 302s of Latent3D (Canfes et al., 2023). Com-
pared with T2D face methods, E3-FaceNet also excels in
single-view image quality, e.g., 12.46 FID v.s. 53.38 FID
of StyleCLIP (Patashnik et al., 2021) on MMCelebA-HQ.
Moreover, our method also supports accurate 3D face ma-
nipulation with very limited time cost, e.g, only 0.17s per
view. These results well validate the effectiveness and effi-
ciency of E3-FaceNet towards fast and accurate T3D Face
generation and manipulation.

Conclusively, the contribution of this paper is three-fold:

• We propose a novel cross-modal mapping method for
fast and accurate T3D-Face generation and manipula-
tion, termed E3-FaceNet.

• We propose a novel geometric regularization to avoid
the artifacts caused by direct cross-modal mapping and
an innovative module called Style Code Enhancer to
ensure the semantic consistency of T3D generation.

• On a bunch of 2D and 3D benchmarks, our E3-FaceNet
outperforms a set of compared methods in terms of im-
age quality and semantic consistency, and improves the
speed of T3D Face generation by orders of magnitude.

2. Related Work
2.1. 3D-aware Image Generation

The task of 3D-aware image generation (Xia & Xue, 2023)
is to generate high-quality renderings that are consistent
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across multiple views. Recent studies have been con-
ducted in representing 3D scenes with neural implicit func-
tions(Mescheder et al., 2019; Park et al., 2019; Mildenhall
et al., 2021), among which neural implicit representation
(NIR) (Mescheder et al., 2019; Mildenhall et al., 2021; Park
et al., 2019) emerges as an effective alternative for learning-
based 3D reconstruction with multi-view 2D supervision.
This representation is then applied to 3D image synthe-
sis under single-view image supervision (Schwarz et al.,
2020; Chan et al., 2021; Gu et al., 2021; Or-El et al., 2022;
Chan et al., 2022). In this paper, we extend the representa-
tive implicit method, i.e., StyleNeRF (Gu et al., 2021), for
text-conditioned 3D face generation. By incorporating text
semantics into the latent code, our proposed method enables
the end-to-end mapping from text words to 3D faces.

2.2. Text-to-3D Face Generation

Text-to-3D face (T3D Face) generation often aims to in-
corporate text information into 3D generative models for
language-guided 3D face generation. Dreamface (Zhang
et al., 2023b) and Describe3D (Wu et al., 2023) propose to
generate text-conditioned texture maps to render 3D mor-
phable models (3DMM) (Blanz & Vetter, 2023). Despite the
effectiveness of geometric modeling, these methods require
additional processes to add more facial assets like hair or
wrinkle. A relevant work to this paper is TG-3DFace (Yu
et al., 2023), which uses tri-plane neural representations
and extends EG3D (Chan et al., 2022), a 3D-aware GAN,
for end-to-end text-conditioned generation. However, its
text-control mechanism is still compositional, which needs
to additionally integrate a face parser and train an attribute
classifier for fine-grained semantics injection. To guide the
generator in learning correct priors, TG-3DFace incorpo-
rates a camera pose conditional discriminator during the
training process. Different from previous methods, our pro-
posed E3-FaceNet seamlessly integrates text information
into the whole process of 3D representation and 2D upsam-
pling, achieving single-stage cross-modal mapping without
any further interventions. Besides, we also propose a set
of innovative designs to cope with the problems encoun-
tered in direct T3D Face generations, i.e., 3D geometric
regularization and Style Code Enhancer.

2.3. Text-Guided 3D Face Manipulation

Despite the advancement (Jetchev, 2021; Michel et al., 2022;
Aneja et al., 2023; Canfes et al., 2023), text-guided 3D
face manipulation still have obvious drawbacks in infer-
ence speed and generalization. Build upon TB-GAN (Gecer
et al., 2020), Latent3D (Canfes et al., 2023) optimizes an
intermediate layer using a CLIP-based loss (Radford et al.,
2021) to generate UV-texture maps. However, the editing
quality for textures and expressions are limited due to re-
liance on 3D scan data. Another method, i.e., ClipFace

(Aneja et al., 2023), uses two mappers to predict texture and
expression latent codes but requires training new mappers
for each text instruction, greatly limiting its efficiency and
generalizations. In contrast, our E3-FaceNet can handle dif-
ferent editing instructions via predicting the style code offset
without instance level optimization, achieving efficient and
effective 3D face manipulation.

3. Method
3.1. Preliminary

We first recap the preliminaries of our E3-FaceNet, includ-
ing Neural Radiance Field (NeRF) (Mildenhall et al., 2021)
and the 3D generation network StyleNeRF (Gu et al., 2021).

NeRF represents a continuous scene as function F(x,v) =
(c, σ), which takes a 3D point x ∈ R3 and a viewing direc-
tion v ∈ R2 as input and a RGB color c ∈ [0, 1]3 together
with a scalar volume density σ ∈ [0,∞] as output. To better
model high-frequency details, Mildenhall et al. (2021) map
each dimension of x and v to high-dimension feature space
with Fourier features ζ. For given near and far bounds tn
and tf , the expected rendered color ĉθ of ray r(t) = o+ tv
is obtained by

ĉθ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),v)dt, (1)

where

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (2)

In practice, NeRF formulates F as MLPs and the parameters
θ is optimized over a set of input images and their camera
poses by minimizing

L =
∑
r∈Ri

∥ĉθ(r)− cGT(r)∥2 (3)

where Ri denotes a set of input rays and cGT is the corre-
sponding GT color.

To enable the control of style attributes, StyleNeRF formal-
izes 3D representations by conditioning NeRF with a style
code w = f(z), z ∈ N (0, I) as

ϕn
w(x) = gnw ◦ . . . ◦ g1w ◦ ζ (x) , (4)

where ϕn
w(x) is the nth layer feature of point x, f is the

mapping network that projects the noise vector z to the style
space W , and giw(.) is the ith MLP modulated by w.

Then the final predicted RBG value c and density σ can be
obtained by

σw(x) = hσ ◦ ϕnσ
w (x), cw(x,v) = hc ◦ [ϕnc

w (x), ζ (v)], (5)
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Figure 2. The overall structure of E3-FaceNet. E3-FaceNet uses the extracted text features to module the sampled noise, thereby achieving
text-guided 3D-aware generation. To improve fine-grained semantic alignment, we introduce a Style Code Enhancer (SCE) to predict style
code offsets in each upsample block, which also enables E3-FaceNet to perform fast face editing through the interpolation of offsets.

where hσ and hc are linear projections. In order to improve
efficiency, StyleNeRF first renders a low-resolution feature
map by approximating Eq.1 as:

ĉθ(r) = hc ◦ [ϕnc,nσ
w (A(r)) , ζ (v)] , (6)

where ϕn,nσ
w (A(r)) = gnw ◦ . . .◦gnσ+1

w ◦A(r) and A(r) =∫ tf
tn

T (t)·σw(r(t))·ϕnσ
w (r(t))dt. These aggregated features

will be upsampled to the desired resolution in 2D space.

By incorporating NeRF into the style-based architecture,
StyleNeRF supports style mixing and simple editing by
exploring the style space, indicating that this latent space is
semantically editable. Inspired by StyleNeRF and previous
adversarial T2D face methods (Sun et al., 2022; Peng et al.,
2022b), we resort to mapping text information onto this
style space for precise language-guided 3D generation.

3.2. The Overall Framework

The overall structure of E3-FaceNet is depicted in Fig.2. In
principle, E3-FaceNet aims to build a deterministic function
to directly map the text description T and the noise vector z
to the 3D-aware face image I of the camera pose p:

G : (z, T, p) → I, (7)

where G denotes the generation network, z ∈ Z is sampled
from Gaussian latent space, and p ∈ P is the camera pose.

To realize Eq.7, we first extract the feature of the description
ft by the CLIP text encoder and map it to the latent space
Z. Then we modulate the random noise z ∈ Rd by z′ =
z ⊕ f ′

t , where f ′
t is the projected text feature and ⊕ denote

to element-wise addition.

Subsequently, the corresponding style code w is obtained
by a mapping network w = f(z′) ∈ W . In this simple way,
we can effectively combine text information with the style
code, and impact both 3D and 2D representation learnings.

However, this injection is still of limited influence, and
achieving well alignment between the synthesis and text
semantics remains a challenge (Yu et al., 2023; Wu et al.,
2023). Meanwhile, an inherent problem of training a 3D
generative model using 2d unposed supervision is the ab-
sence of multi-view information (Gu et al., 2021; Xia & Xue,
2023). As shown in Fig.1(a), the model tends to generate
3D faces with obvious artifacts and low semantic alignment.
To overcome these challenges, we further propose a novel
Style Code Enhancer and a geometric regularization.

3.3. Style Code Enhancer

As discussed above, it is often difficult to control the entire
generation with a single style code w in 2D image genera-
tion (Abdal et al., 2020; Saha et al., 2021). And this problem
will become more prominent in T3D face generation, since
the 3D visual semantic space is much larger than that of the
2D one (Xia & Xue, 2023). Previous studies (Karras et al.,
2019; Patashnik et al., 2021; Xia et al., 2022) have shown
the varying levels of detail captured by different layers in
a 2D image generator. Based on this, we divide the T3D
face generation process into two parts: NeRF blocks gener-
ate coarse textual semantics like facial contour and shape,
and 2D upsample blocks render intricate facial attributes.
We introduce a Style Code Enhancer (SCE) to enhance fine-
grained text semantics incorporation and improve the impact
of style codes in the rendering process.
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Figure 3. Illustration of the corresponding 3D location P(u,v) and
normal vector n(u,v) for a given pixel p(u,v). To generate smooth
and natural-looking faces with the absence of multi-view informa-
tion, we propose to regularize these two terms in 3D space.

Concretely, SCE at the ith upsample block first fuses the
input image features Fi with the text one f̂t via a cross-
modal attention (Rombach et al., 2022):

F′
i = Attention(Qi,Ki, V i)

= softmax(
QiKiT

√
d

· V i),
(8)

with

Qi = W i
Q · Fi,K

i = W i
K · f̂t, V i = W i

V · f̂t. (9)

Here, f̂t refers to the last hidden state of the text encoder.

Then F′
i is used to predict the offset ∆wi of the style code,

denoted as w′
i = w + ∆wi, as well as to modulate the

current upsample block by

w′
i = w +∆wi = w +MLP (Conv1×1(F

′
i)). (10)

To ensure the preservation of global semantics, a regulariza-
tion on ∆w is added, formulate as

L∆ =
∑
i

∥∆wi∥1. (11)

Equipped with Style Code Enhancer, E3-FaceNet can bet-
ter embed fine-grained text information into the rendering
process, as it refines and augments missing semantic infor-
mation based on both the given text and the intermediate
visual features while maintaining the image quality.

T3D face manipulation. Notably, the proposed SCE also
enables E3-FaceNet to perform 3D manipulation. Specifi-
cally, we first obtain the predicted style code offsets, wori

and wedit, corresponding to the original text prompt and
manipulation instruction using Eq.8-Eq.10. Then a simple
linear interpolation of two style code offsets is applied to
refine the final style code offset ∆w by

∆w = (1− λ)∆wori + λ∆wedit (12)

where λ ∈ [0, 1] is a scale to control the editing degree. The
updated style code is then used to influence the rendering
process of the generated faces to edit the corresponding
attribute while preserving the overall facial identity.

3.4. Geometric Regularization in 3D Space

Due to the lack of 3D supervision from the unposed 2D
training dataset (Gu et al., 2021), a direct text-to-3D image
mapping is prone to generating incorrect 3D geometries
and shapes of human faces. To address this issue, we also
equip E3-FaceNet with a novel regularization on both basic
geometric property and high-order geometric features.

Specifically, we focus on the points’ 3D location and nor-
mal vector corresponds to each pixel of the rendered feature
map, as shown in Fig.3. These two geometric regulariza-
tions are designed to enforce smoothness and coherence
among neighboring points, obtaining a more accurate repre-
sentation of the 3D face’s shape and facial attributes.

Formally, the estimated depth d̂ of a ray r can be defined by

d̂(r) =

∫ tf

tn

T (t)σw(r(t))tdt. (13)

Therefore, the 3D location P(u,v)(x, y, z) of pixel p(u, v)
in the world coordinate can be easily obtained via

P(u,v)(x, y, z) = Pc + d̂(r(u,v)) · d, (14)

where Pc is the camera coordinate and d is the normalized
viewing direction. d can be easily obtained by the sampled
camera pose p and the pre-defined camera intrinsic matrix.
Then the 3D location constraint is defined by

Lloc =
∑
(u,v)

∑
(i,j)∈{−1,1}2

∥P(u+i,v+j) − P(u,v))∥1. (15)

In terms of the normal vector of P , previous works formu-
late it as n = − ∇xσ

∥∇xσ∥ (Boss et al., 2021; Srinivasan et al.,
2021). Since we can calculate the gradient ∇xσ directly, we
turn to approximate n by virtual normal (Yin et al., 2019)
to reduce GPU memory and computation.

Following (Klasing et al., 2009) and (Yin et al., 2019), we as-
sume that local 3D points locate in the same plane of which
the normal vector is the surface normal. Therefore, for each
3D point P(u,v), we select it two neighboring points, e.g.,
P(u+1,v) and P(u,v−1), to establish a plane and compute the
normal vector by

n(u,v) =

−−−−−−−−−→
P(u,v)P(u+1,v) ×

−−−−−−−−−→
P(u,v)P(u,v−1)∥∥∥−−−−−−−−−→P(u,v)P(u+1,v) ×
−−−−−−−−−→
P(u,v)P(u,v−1)

∥∥∥ . (16)

In this case, we perform regularization on the normal vec-
tors, defined by

Lnormal =
∑

(u,v)

∑
(i,j)∈{−1,1}2 ∥n(u+i,v+j) − n(u,v)∥1. (17)
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Conclusively, the final smooth regularization loss can be
written by

Lreg = Lloc + Lnormal. (18)

By integrating these regularizations, E3-FaceNet signifi-
cantly enhances face synthesis, achieving a more accurate
3D shape and improved fidelity.

3.5. Objective Function

In terms of optimization, E3-FaceNet adopts a non-
saturating GAN objective (Goodfellow et al., 2014) with R1
regularization (Mescheder et al., 2018) for stable training.
The objective for the discriminator is

LD =− 1

2
[EI∼Pdala

logD(I) + EÎ∼pG
log(1−D(Î))

+ EI∼Pdala
logD(I, T ) + EÎ∼pG

log(1−D(Î , T ))]

+ γEI∼Pdala
[(∥∇D(I)∥2 + ∥∇D(I, T )∥2)].

(19)

In terms of the generator, its objectives are 5-fold. First, E3-
FaceNet adopts the conditional loss (Mirza & Osindero,
2014) in adversarial training for text-guided generation,
which is formulated as

Ladv = −1

2
[EÎ∼pG

logD(Î) + EÎ∼pG
logD(Î , T )]. (20)

Meanwhile, NeRF-path regularization loss LNeRF−path

(Gu et al., 2021) is used to enforce 3D consistency. To
achieve fast convergence, we also adopt a contrastive loss
Lclip that is defined by

Lclip = −
n∑

i=1

log
exp(ET (Ti) · EI(Îi))∑n

j=1 exp(ET · (Ti) · EI(Îj))
, (21)

where Ti and Îi are the input text prompts and corresponding
generated image. In this case, the overall objectives are:

L
G
= Ladv + Lreg + L∆ + Lclip + βLNeRF−path, (22)

where β is a hyper-parameter, and L∆ is the style regular-
ization term defined in Eq.11.

4. Experiment
4.1. Experimental Settings

Datasets The benchmarks used in this paper include MM-
CelebA (Xia et al., 2021) , CelebAText-HQ (Sun et al.,
2021) and FFHQ-Text (Zhou, 2021). MMCelebA consists
of 30,000 face images while CelebAText-HQ has 15,015
face images, each of which corresponds to 10 different text
descriptions. FFHQ-Text is a small-scale face image dataset
with diverse facial attributes. This dataset contains 760 fe-
male FFHQ faces with 9 descriptions for each image. We

Table 1. Comparison with existing T3D Face methods. Our E3-
FaceNet not only has better performance but also a faster speed.

Method CelebAText FFHQ-Text Inference 1

MVIC(↑) SA (↑) MVIC(↑) SA(↑) Time

Latent3D 0.7835 0.2688 0.7845 0.2758 301.92s
Describe3D 0.7973 0.2449 0.8027 0.2402 22.93s

E3-FaceNet 0.8521 0.2623 0.8467 0.2778 0.64s

only use the training split of MMCelebA to train our E3-
FaceNet and evaluate it on the test split along with other
2D methods trained on the same dataset. In terms of 3D
methods, as none of the available models can be trained
on MMCelebA, we conducted zero-shot validation on the
CelebAText-HQ dataset and FFHQ-Text for a fair compari-
son, which can also assess the generalization.

Metrics Following the settings of (Yu et al., 2023; Wu
et al., 2023; Aneja et al., 2023), we evaluate the gener-
ation quality of our method and the compared methods
from three aspects: (1) Image-Quality, i.e., the reality and
fidelity of the rendered 2D face images, using Fréchet In-
ception Distance (FID) (Heusel et al., 2017) and Kernel
Inception Distance (KID) (Bińkowski et al., 2018) metrics,
(2) Semantic-Alignment (SA), i.e., using the text-image sim-
ilarity of CLIP to measure whether the generated face align
with the given description, and (3) Multi-View Identity Con-
sistency (MVIC), i.e., calculating the mean Arcface cosine
similarity (Schroff et al., 2015) scores between the face
images synthesized from the same 3D face but rendered
from different camera poses. For better evaluations, we
also conduct a user study from the perspectives of Identity
Preservation (IP), Semantic-Alignment (SA) and Editing-
Quality (EQ). For more details refer to our appendix.

Implementation Details In this paper, we use StyleNeRF
(Gu et al., 2021) as our base model. Similarly, we adopt
NeRF++ (Zhang et al., 2020), a variant of NeRF, as the
backbone. We follow the settings of (Gu et al., 2021) and
use NeRF++ to produce a feature map at 32x32 resolution,
which is then progressively upsampled to 512x512 resolu-
tion. We trained our E3-FaceNet with a learning rate of
2.5e-4 for both the generator and discriminator. To expe-
dite convergence, we initialized the model with pre-trained
weights of StyleNeRF, which were trained on the FFHQ
dataset at a resolution of 512. We set γ = 0.5 and β = 0.2.
The entire process for our model takes approximately about
5 days on 4 V100 GPUs.

4.2. Experimental Results

Comparison with T3D Face methods. We first quantita-
tively compare our E3-FaceNet with two strong T3D Face
methods, namely Latent3D (Canfes et al., 2023) and De-

1We test the speed of five-view generation with one V100 GPU.
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Latent3D Describe3d Ours

This girl is about 15 to 20 years old and has bright light-brown round squinty
eyes with double eyelids, thin rounded eyebrows and smooth white skin.

A woman has medium flat bushy eyebrows, big bright eyes with thick
eyelashes, double eyelids, and a diamond-shaped face.

His eyelashes are short, his eye sockets are deep, and his eyes are blue.

Latent3D ClipFace Ours

This man has goatee.

(a) T3D Face Generation (b) T3D Face Manipulation

This man has bushy eyebrows.

This man has heavy makeup.

He has a prominent forehead and a thin stubble over his mouth.

Figure 4. Comparison with T3D Face generation and manipulation methods. E3-FaceNet can generate face images of better quality than
the compared methods, while well aligning the generation and editing prompts2. Its inference speed is also much faster.

Table 2. Comparison with existing T3D face manipulation. The
inference time is for five-view generation.

Method IP (↑) SA(↑) EQ(↑) Inference Time(↓)

Latent3D 21.92 2.8 11.60 304.44s
ClipFace 8.16 44.56 12.48 17min + 1.83s

Ours 69.92 52.64 75.92 0.89s

scribe3D (Wu et al., 2023) on CelebAText (Sun et al., 2021)
and FFHQ-Text (Zhou, 2021), of which results are given in
Tab.1. From this table, we can first find that E3-FaceNet
greatly outperforms the other two methods under the metric
of MVIC, e.g., +6.87% on CelebAText, showing great ad-
vantages in terms of multi-view identity preservation. Mean-
while, the performance of SA is also outstanding, which is
slightly worse than Latent3D on CelebAText but obviously
better on FFHQ. These results suggest that E3-FaceNet can
achieve excellent multi-view semantic alignment. Moreover,
retaining high performance, our E3-FaceNet also speeds
up the five-view generations by orders of magnitudes. For
example, compared with Latent3D and Describe3D, the in-
ference speed of E3-FaceNet is 471.75 × and 35.83 × faster.
Notably, E3-FaceNet achieves such performance under the
setting of zero-shot generation.

Text-Driven 3D Face Manipulation. To examine the edit-
ing ability of E3-FaceNet, we also compare it with Latent3D
and ClipFace (Aneja et al., 2023) in Tab.2. Without available
evaluations, we conduct a user study for this comparison.
We can first observe that the identity preservation and the
editing quality of E3-FaceNet are much superior to the com-
pared methods, e.g., 69.92 v.s. 21.92 of Latent3D on IP and
75.92 v.s. 12.48 of ClipFace on EQ. Besides, E3-FaceNet
also exhibits strong cross-modal semantic consistency, e.g.,

Table 3. Comparison with T2D face methods on MM-CelebA.
Method FID (↓) KID (↓) CLIP-Score (↑)

StyleCLIP 53.38 49.89 0.2452
TediGAN 47.61 45.63 0.2865

OpenFaceGAN 20.72 12.58 0.2590
PixelFace 16.63 8.65 0.2583

Ours 12.46 5.84 0.2770

52.64 v.s. 44.56 of ClipFace on SA. In addition, the effi-
ciency of E3-FaceNet is still much better than the others.
For instance, ClipFace requires about 17 mins to train the
texture mappers with another 1.8 seconds for rendering.
In contrast, E3-FaceNet only takes 0.89 seconds for the
five-view editing.

Comparison with T2D Face methods. To further examine
the generation ability of E3-FaceNet, we also compare it
with a set of strong T2D Face methods on MMCelebA (Xia
et al., 2021; Patashnik et al., 2021; Peng et al., 2022a;b),
and the result is shown in Tab.3. Theoretically, 2D face gen-
eration is relatively easier than 3D one (Toshpulatov et al.,
2021). However, E3-FaceNet also achieves outstanding per-
formance on FID and KID for 2D image quality, indicating
that E3-FaceNet has better perceptual quality. In terms of
CLIP-Score for semantic alignment, E3-FaceNet is slightly
worse than TediGAN (Xia et al., 2021), which requires an
example-dependent optimization, i.e., 200 steps for each
text. Compared with the end-to-end 2D methods, i.e., Open-
Face (Peng et al., 2022b) and PixelFace (Peng et al., 2022a),
E3-FaceNet is still better in semantic consistency, well con-
firming the merits of our SCE. Overall, E3-FaceNet also

2The backgrounds are removed for better comparison.
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Table 4. Ablation study of E3-FaceNet. Lreg is the proposed geometric regularization and SCE is Style Code Enhancer.

Setting MMCelebA CelebAText FFHQ-Text
FID(↓) KID(↓) CLIP-Score(↑) MVIC(↑) SA(↑) MVIC(↑) SA(↑)

w/o Lreg & SCE 13.44 6.11 0.2622 0.7960 0.2499 0.7873 0.2681

Only Lloc in Eq.15 12.87 6.16 0.2657 0.8431 0.2547 0.8313 0.2711
Only Lnormal in Eq.17 12.78 5.94 0.2703 0.8307 0.2570 0.8278 0.2730

Lreg in Eq.18 12.72 5.92 0.2652 0.8560 0.2540 0.8511 0.2704

Lreg+SCE 12.46 5.83 0.2770 0.8521 0.2623 0.8467 0.2778

She wears earrings. She has arched eyebrows. She is attractive.

She is wearing heavy makeup. She is young and has high 
cheekbones, mouth slightly open.

w/o 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 & 𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿𝑛𝑛𝑙𝑙𝑟𝑟𝑛𝑛𝑛𝑛𝑙𝑙 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆𝑆𝑆𝑆𝑆

A woman has big bright blue eyes with double eyelids and a 
diamond-shaped face.

Figure 5. The visualizations of different settings of E3-FaceNet.
The bottom images are the correspondent feature map

exhibits a strong single-view generation ability, even better
than existing SOTA T2D Face methods.

Ablation study. We ablate different designs of E3-FaceNet
on four benchmarks in Tab.4. Compared with the plain base-
line, i.e., without Lreg and SCE, the location loss in Eq.15
or the normal smoothness in Eq.17 can help E3-FaceNet to
generate smooth surfaces and greatly improve MVIC score.
Meanwhile, their combination, i.e., Lreg, achieves better
performance. Besides, the introduction of SCE can inject
finer-grained text information into the generation process,
as evidenced by achieving the highest SA.

Visualizations of Text-to-3D Face Generation. We visu-
alize the T3D face generations of E3-FaceNet, Latent3D

TediGAN StyleCLIP OpenFace PixelFace Ours

He is young and has brown hair, wavy hair, and bags under eyes.

The woman has black hair, and arched eyebrows. She wears heavy makeup. She is young.

Figure 6. The comparison with text-to-2D face methods. E3-
FaceNet also excels in image quality and semantic consistency.

and Describe3D in Fig.4 (a). As can be seen, E3-FaceNet
excels in synthesizing high-quality images with better multi-
view consistency, which also well aligns with the given
prompts. Meanwhile, Latent3D and Describe3D are hard
to reconstruct faces with finer-grained details, as exempli-
fied by the prompt “thin stubble” in Fig.4 (a). Also, these
two methods fall short of generating 3D faces with diverse
facial attributes, such as hair or ears, lacking the ability to
incorporate such elements into the synthesized faces.

Visualizations of Text-Driven 3D Face Manipulation. We
also present the editing results of E3-FaceNet, Latent3D
and ClipFace in Fig.4 (b). It can be observed that Latent3D
struggles to respond to editing instructions, likely due to its
heavy reliance on the initially generated face (Canfes et al.,
2023). For instance, neither the “goatee” nor the “heavy
makeup” are generated in its editions. ClipFace is slightly
better and aware of the text semantics. However, without
geometry optimization, ClipFace synthesizes unnatural tex-
ture maps and barely achieves multi-view consistency, e.g.,
“goatee ”. The identity also changes significantly. In con-
trast, E3-FaceNet can well respond to the text semantics
while retaining high quality and multi-view consistency.

The impacts of different designs in E3-FaceNet. We also
visualize the impacts of each design in Fig.5. Without the
geometric regularization, the model tends to generate faces
of artifacts, which is most severe under the base settings.
In contrast, this loss term can help E3-FaceNet synthesize
3D faces with clear contour. Additionally, with SCE, finer-
grained semantics can be seamlessly injected. For example,
the model successfully generates earrings, while other set-
tings fail to capture this attribute.

Visualizations of Text-to-2D Face Generation. In Fig.6,
we also visually compare the single-view generation of E3-
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FaceNet with strong T2D Face methods (Xia et al., 2021;
Patashnik et al., 2021; Peng et al., 2022a;b). As can be seen,
E3-FaceNet can achieve better semantic alignment than
these 2D methods, e.g., gender, age, or hairstyles. Compared
with the end-to-end 2D methods, i.e., OpenFace and Pix-
elFace, E3-FaceNet also presents better generation qualities
of different views. These results well confirm the excellent
generation ability of E3-FaceNet again.

5. Conclusion
In this paper, we propose a novel and efficient E3-FaceNet
for fast and accurate T3D face generation and manipula-
tion. E3-FaceNet follows the principle of direct cross-modal
mapping, and introduces a novel Style Code Enhancer for
semantic-aligned rendering and an innovative Geometric
Regularization to ensure multi-view consistency. The exper-
iment results demonstrate that E3-FaceNet achieves higher-
fidelity generation and better semantic consistency than a set
of compared T2D and T3D Face methods, and also speed
up T3D face generation by orders of magnitudes.
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In this supplement, we first introduce the comparison methods and their experimental setup in Appendix A. Subsequently,
we provide a comprehensive description of the evaluation metrics in Appendix B. We also present additional visualization
results in Appendix C and Appendix D.

A. Introduction of Comparison Methods
In this section, we introduce the comparison methods used in the experiment and their implementation settings.

Latent3D (Canfes et al., 2023) builds upon the TB-GAN (Gecer et al., 2020), a generative model that inputs one-hot
encoded facial expressions along with a random noise vector, and then outputs shape, shape-normal, and texture images.
Typically, Latent3D optimizes the offset ∆c for the intermediate layer c of TB-GAN, directing how the target attributes, as
specified by the text prompt, are enhanced. It employs a combination of a CLIP-based loss, an identity loss and an L2 loss as

arg min
∆c∈C

LCLIP + λIDLID + λL2LL2, (23)

where λID and λL2 are the hyper-parameters of LID and LL2, respectively. We use the official implement code 1 for 3D
face generation and manipulation. Following their suggestions, we set λID = 0.01, λL2 = 0.0 with a learning rate of 0.01
for 100 epochs per text.

Describe3D (Wu et al., 2023) builds a dataset comprising 1,627 3D face models, each annotated with 25 labels representing
facial attributes. This dataset is then used for training the entire generation pipeline, which consists of three stages: text
parsing, concrete synthesis and abstract synthesis. The text parser is used to encode the input natural language into a
descriptive code d, which is then divided into shape-related code dS and texture-related code dT . The shape-related code dS
is employed to predict 3DMM (Blanz & Vetter, 2023) parameters, while the texture-related code dT serves as a conditional
input for StyleGAN2 (Karras et al., 2020) to generate texture maps. This process is known as concrete synthesis. To
boost performance, Describe3D incorporates additional optimization to finetune both the 3DMM parameters and texture
parameters during the abstract synthesis stage. We use the official code 2 and the released model to generate 3D faces.

ClipFace (Aneja et al., 2023) also leverages the geometric expressiveness of 3D morphable models but introduces a
self-supervised generative model to synthesize textures and expression parameters for the morphable model. Given a
textured mesh with texture code winit = {w1

init, ...,w
18
init} ∈ R512×18, Clipface predict the offsets formulated as:

w∗
delta,ψ

∗
delta = argmin

Wdelta
Ldelta, (24)

where wdelta and ψdelta are the optimized offsets for texture and expression, respectively. Ldelta is the full training loss
containing a CLIP-based loss for enhancing attributes depicted in the prompt and a regularization term for the facial
expression. In practice, they employ a 4-layer MLP architecture for the mappers and we use the code from their official
implement 3 in the experiments.

TediGAN (Xia et al., 2021) can perform text-guided 2D image generation by optimizing a random sampled noise z∗ via

z∗ = argmin
z

||x−G(z)||22 + λ′
1||F (x)− F (G(z))||22

+λ′
2||z− Ev(G(z))||22 + λ′

3LCLIP ,
(25)

LCLIP = 1− ⟨ET (T ), EI(G(z))⟩, (26)

where x is the original image of z, G is the generator, F is VGG network (Simonyan & Zisserman, 2014). λ′
1, λ′

2 and
λ′
3 are the loss weights corresponding to the perceptual loss, regularization term and CLIP loss, respectively. Ev is the

introduced inversion encoder, ET and EI are the CLIP text encoder and image encoder, respectively, ⟨·, ·⟩ is the cosine
similarity. Following the instructions of the official implement 4, we set λ1 = 5e− 5, λ2 = 2.0 and λ3 = 1.0. The learning
rate is set to 1e-2 and the number of optimization steps for each instruction is 200.

1https://github.com/catlab-team/latent3D_code
2https://github.com/zhuhao-nju/describe3d
3https://github.com/shivangi-aneja/ClipFace
4https://github.com/IIGROUP/TediGAN
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StyleCLIP (Patashnik et al., 2021) is another text-guided image generation and manipulation method concurrent to TediGAN,
which turns to optimize the latent code ws via

arg min
w∈W+

1− ⟨ET (T ), EI(G(z))⟩. (27)

We use the official code 5 and the learning rate is set to 0.1 with 200 optimization steps.

OpenFace (Peng et al., 2022b) is a learning-based method designed for 2D text-to-face generation task. It first constructs
an effective multi-modal latent space and then directly maps a text description to a latent code. This code is then fed to a
StyleGAN architecture and can perform text-guided face generation, combination and manipulation. We follow the official
code 6 and use the released model weights to generate single-view text-to-2D face.

PixelFace (Peng et al., 2022a) employs pixel regression for face generation, wherein each pixel value is predicted based
on the latent code and initialized pixel embeddings. The pixel embeddings are constructed using Fourier features and
coordinate embeddings. To incorporate text features, PixelFace proposes a cross-modal dependency based dynamic
parameter generation module to generate dynamic knowledge for pixel synthesis. We use the official code 7 and the released
model for single-view generation.

B. Evaluation Metric
We utilize both 2D and 3D metrics to provide a comprehensive validation of our E3-FaceNet. When comparing with 3D
methods, we randomly sample 200 text descriptions for each dataset, i.e., CelebAText-HQ (Sun et al., 2021) and FFHQ-Text
(Zhou, 2021). For each description, we generate a corresponding 3D face, then render it from five different poses. The
evaluation scores for the 3D metrics are calculated inside each group, then the average score across all 200 groups is obtained.
As the texts in CelebAText and FFHQ-Text are quite different from those in the Multi-Modal CelebA-HQ dataset, they can
be used for cross-dataset experiments. Note that in this comparison, all the models perform zero-shot generation, thus the
generalization and robustness can be effectively assessed. When comparing with 2D methods, we randomly select 30,000
descriptions from MMCelebA (Xia et al., 2021) and perform single-view generation for each text prompt. In this part, we
compare E3-FaceNet with a bunch of strong T2D Face generation methods trained on this dataset.

B.1. FID & KID

Fréchet Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID) (Bińkowski et al., 2018) are
two predominant metrics for assessing the quality of generated images. FID is defined by the Fréchet distance between the
feature from the real and generated images, which can be formulated as

FID = ||µr − µg||2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2) (28)

where Tr is the trace and (µr,Σr) and (µg,Σg) are the mean and covariance obtained from the real images and generated
images feature, respectively. We use Inception-v3 (Szegedy et al., 2016) to extract the image feature and lower FID indicates
better perceptual quality.

KID can be viewed as a Maximum Mean Discrepancy (MMD) (Bińkowski et al., 2018) directly on input images with the
kernel

K(Ir, Ig) = k(θ(Ir), θ(Ig)) (29)

k(x, y) = (
1

d
xT y + 1)3 (30)

where Ir and Ig are the real and generated images, respectively, and θ is the function mapping images to Inception
representations. In the main paper, we report KID×1000 and a lower score indicates better generation quality.

B.2. Multi-View Identity Consistency

In line with previous studies (Wu et al., 2023; Yu et al., 2023), we employ ArcFace (Schroff et al., 2015) to extract face
features from the rendered images. We calculate the average cosine similarities between any two out of five images inside

5https://github.com/orpatashnik/StyleCLIP
6https://github.com/pengjunn/OpenFace
7https://github.com/pengjunn/PixelFace

14

https://github.com/orpatashnik/StyleCLIP
https://github.com/pengjunn/OpenFace
https://github.com/pengjunn/PixelFace


Fast Text-to-3D-Aware Face Generation and Manipulation via Direct Cross-modal Mapping and Geometric Regularization

This man has big lips.
This man has big nose.
This man has black hair.
This man has blond hair.
This man has brown hair.
This man has bushy eyebrows.
This man is chubby.
This man has double chin.
This man has goatee.
This man has gray hair.
This man has mustache.
This man has narrow eyes.
This man has no beard.
This man has pale skin.
This man has heavy makeup.
This man has grey hair and wearing eyeglasses.
This man has sideburns and black hair.
This man has double chin and mustache.
This man has bushy eyebrows and a mustache.
This man is wearing necktie and has beard.
This man has gray hair and goatee.
This man has a big nose and big lips.
This man has blond hair and is young.
This man has grey hair and is chubby.
This man has pale skin and wears lipsticks.

This woman has big lips.
This woman has big nose.
This woman has black hair.
This woman has blond hair.
This woman has brown hair.
This woman has bushy eyebrows.
This woman is chubby.
This woman has double chin.
This woman has blue eyes.
This woman has beard.
This woman has heavy makeup.
This woman has pale skin.
This woman has gray hair.
This woman has bags under her eyes.
This woman wears lipsticks.
This woman is attractive and has blond hair.
This woman has big lips and a pointy nose.
This woman has bags under her eyes and bushy eyebrows.
This woman has heavy makeup, narrow eyes, and an oval face.
This woman has wavy hair, high cheekbones, and is wearing earrings.
This woman has black hair, bags under her eyes, and is smiling.
This woman has pale skin and brown hair.
This woman has bangs, with mouth slightly open.
This woman  has brown hair, rosy cheeks, and is wearing earrings.
This woman has brown hair, pale skin, and is wearing glasses.

Figure 7. Editing instructions for text-driven 3D face manipulation comparison. We collect a total of 25 prompts for both male (left) and
female (right) faces, including instructions for single-attribute editing and multi-attribute editing.

each group, and the multi-view identity consistency (MVIC) is obtained by computing the mean similarity score across 200
groups for each method on each dataset. A higher MVIC score indicates a greater level of multi-view consistency.

B.3. Semantic-Alignment

To evaluate the semantic alignment between text descriptions and the generated faces, we employ CLIP (Radford et al.,
2021) to extract features from both the rendered images and text descriptions. We then measure their similarity in the CLIP
space. For 3D methods, we calculate the average CLIP similarity for each group and compute the overall average CLIP
similarity across all generated results. In the case of 2D methods focused on single-view generation, we calculate the CLIP
score between each text description and its corresponding generated image, and then derive the mean score for this metric.
A higher score indicates better semantic alignment.

B.4. User Study

There is currently no standardized metric specifically designed for evaluating face manipulation. Previous studies, such
as ClipFace (Aneja et al., 2023), rely on FID which is widely used for quantitative comparison in image generation tasks.
However, comparing the two methods we are evaluating, namely Latent3D (Canfes et al., 2023) and ClipFace (Aneja
et al., 2023), is problematic because they are trained on different datasets. Using the aforementioned metrics under these
circumstances could lead to unfair comparisons. Additionally, obtaining a reliable FID score requires a large collection of
generated images. Given that both methods under evaluation rely on inference-time or example-dependent optimization,
producing a sufficient quantity of edited faces is a time-intensive task. Therefore, to ensure a more accurate and effective
quantitative comparison, we also carry out an additional user study, following (Xia et al., 2021; Yu et al., 2023).

B.4.1. EDITING INSTRUCTION

We manually collected a set of 50 editing instructions to perform face editing across various attributes, consisting of 25
instructions for male faces and 25 for female faces. In each group, we create 15 prompts for single-attribute manipulation
and 10 prompts for multi-attribute manipulation. Additionally, we include some unconventional edits, such as applying
“lipstick” to a man or adding “beard” to a woman, to further assess the editing capabilities of each method. The editing
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This man has big lips.

3

Original Edit Results

1

2

(a) Examples for Male Face Manipulation

This woman has big lips.

3

Original Edit Results

1

2

(b) Examples for Female Face Manipulation

Figure 8. Examples of user study. On the left is the original face, followed by the edited results of the given prompt under each group. To
ensure anonymity, we only present these generation results with indexes for recording purposes.

SJCDreamFusion MVDream

This woman is about 25 to 32 years old and has big heterochromia iridum eyes with
double eyelids, bushy rounded eyebrows and smooth olive skin.

This person is smiling, and young and has high cheekbones, and bags under eyes.

The man is young and has big nose, mustache, and big lips.

Figure 9. Results of generating 3D face of the current diffusion-distilled-based methods. Although these methods succeed in generating
3D objects, they cannot synthesize 3D human faces with high fidelity.

prompts are presented in Figure 7.

B.4.2. DETAILED EXPERIMENT SETTINGS

For Latent3D, we initially generate a 3D face and then perform optimization based on the provided prompt. For ClipFace,
we follow their templates and construct the editing instruction as “A photo of a male face with thick lips” or “A photo of a
male face with narrow eyes”. We train specific mappers for each instruction and randomly select a textured female face and
a male face for manipulation. Regarding E3-FaceNet, we generate the initial 3D face using two prompts, i.e., “This is a man”
and “This is a woman”. Then, we edit the generated face using the proposed Style Code Enhancer, with the default edit
weight set to 0.5.
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B.4.3. EVALUATION CRITERIA

For each editing instruction, we render manipulated 3D faces from three different views: left, front, and right. Participants
are presented with the original face and all editing results. We invite 25 individuals to assess the edited faces based on
three criteria: (1) Identity Preservation (IP), selecting the edit result that best preserves the facial identity of the original
face; (2) Semantic Alignment (SA), selecting the edit result that most closely aligns with the given instructions; and (3)
Editing Quality (EQ), selecting the edit result with the highest perceptual quality. We calculated the percentage of times
each method was chosen as the best performer by users, based on the previous mentioned criteria. As shown in Figure 8, the
edit results are presented anonymously to the users.

C. Additional Comparisons
Recently, researchers have been focused on transferring pre-trained 2D image-text diffusion models to synthesize 3D objects
without using any 3D data (Poole et al., 2022; Wang et al., 2023a; Shi et al., 2023; Wang et al., 2023b; Lin et al., 2023).
While these methods have achieved competitive quality in 3D content creation, they fall short in generating photo-realistic
human faces. Here we select three representative methods, i.e., Dreamfusion (Poole et al., 2022), SJC (Wang et al., 2023a)
and MVDream (Shi et al., 2023), for 3D face generation. However, as depicted in Figure 9, these methods struggle to
generate high-quality 3D faces conditioned on the given input. Additionally, they all rely on test-time tuning, which
significantly increases the inference time. For example, Dreamfusion takes approximately 40 minutes, and SJC takes around
20 minutes for inference on an RTX 3090 GPU. Therefore, these methods are not included in the comparison for T3D.

We also present additional generation comparisons with both 3D and 2D face generation methods mentioned in the main
paper in Figure 10 and Figure 12. Our method excels in synthesizing high-quality 3D faces that align effectively with the
given prompts and maintain consistency across various viewing angles. Additionally, our E3-FaceNet method is capable of
generating 3D faces with multiple facial assets, enhancing the diversity and realism of the generated results.

More results for text-driven 3D Face manipulation in shown in Figure 11, in which we show some editing examples for
female faces. This figure also demonstrates the limited edit ability of Latent3D, as neither “heavy makeup” nor “pale
skin” is generated in its editions. As for ClipFace, the identity changes significantly and struggles to achieve multi-view
consistency. As shown from editing results of “heavy makeup”, ClipFace generates unnatural texture maps and the edited
face appears distorted in the right view. In stark contrast, our E3-FaceNet cannot only effectively respond to the text
semantics but also maintain high image quality and multi-view consistency.

D. Additional Generation
Meanwhile, our proposed E3-FaceNet is capable of generating diverse 3D faces conditioned on the same input sentence, as
demonstrated in Figure 13. In each row, we sample different latent codes using different random seeds while inputting the
same text prompts. Impressively and remarkably, these generated results showcase that E3-FaceNet not only synthesizes
high-quality and semantically aligned 3D faces but also possesses the ability for diverse 3D face generation.
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A girl has medium rounded eyebrows, small bright eyes and a heart-shaped face.

This girl is about 15 to 20 years old and has big squinty brown eyes with double eyelids, 
medium bushy flat eyebrows and pale white smooth skin.

This woman is about 25 to 32 years old and has big heterochromia iridium eyes with 
double eyelids, bushy rounded eyebrows and smooth olive skin.

Latent3D Describe3d Ours

The woman smiled and opened her mouth, showing a row of white teeth.

This woman has round bright blue eyes with long eyelashes and double eyelids, 
thick eyebrows, small nose and smear mouth opened.

The man has straight black eyebrows and a pair of big eyes.

This woman is about 25 to 32 years old and has big bright brown eyes with double 
eyelids, thick bushy flat eyebrows and fair smooth dimpled skin.

This is a man with a high nose and a pair of big blue eyes, and his nose is small.

Figure 10. More comparison for 3D face generation. E3-FaceNet excels in generating fine-grained facial attributes while maintaining
multi-view consistency and preserving facial identity.
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L
atent3d

This woman has bushy eyebrows.

This woman has heavy makeup.

This woman is chubby.

This woman has pale skin.

Latent3D ClipFace Ours

Figure 11. More comparisons for 3D face manipulation. E3-FaceNet can faithfully edit the facial attributes described in the editing
instructions while keeping other attributes unchanged. This ensures precise and targeted attribute manipulation in the generated 3D faces.
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TediGAN StyleCLIP OpenFace PixelFace Ours

The person has brown hair, and wavy hair. She is attractive and is wearing lipstick.

This person has bangs, arched eyebrows, and big lips and wears lipstick. She is young.

This man has big nose, bangs, and straight hair. He is attractive. He has beard.

This man is young and has goatee, and sideburns.

The man has mouth slightly open, black hair, bags under eyes, and big nose.

The man is young and has bushy eyebrows, big lips, and oval face.

He has black hair.

The woman is attractive, and young and has oval face, high cheekbones, and arched eyebrows.

Figure 12. More comparisons with T2D Face methods. Our method showcases remarkable proficiency in maintaining high-quality visual
output and ensuring semantic consistency across different views.
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He has straight hair, bushy eyebrows, and big nose. He is young. He has no beard. 

This person has mouth slightly open, arched eyebrows, and 
oval face. She is young and is wearing heavy makeup. 

This person is smiling, and young and has high cheekbones, and bags under eyes.

She is wearing lipstick. She has bushy eyebrows, pointy nose, high 
cheekbones, big lips, and arched eyebrows. She is young.

This young man has pointy nose, and goatee. 

The woman has pointy nose, arched eyebrows, bags under 
eyes, and big nose. She is wearing lipstick.

He is young and has brown hair.

The man is young and has big nose, mustache, and big lips.

Figure 13. Diverse generation results of E3-FaceNet. These results demonstrate that our proposed method can not only generate high-
quality 3D faces that align well with the given prompts, but also achieve impressive diversity in the generated results.
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