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Abstract

We study online learning in adversarial nonsta-
tionary environments. Since the future can be
very different from the past, a critical challenge
is to gracefully forget the history while new data
comes in. To formalize this intuition, we revisit
the discounted regret in online convex optimiza-
tion, and propose an adaptive (i.e., instance op-
timal), FTRL-based algorithm that improves the
widespread non-adaptive baseline – gradient de-
scent with a constant learning rate. From a prac-
tical perspective, this refines the classical idea of
regularization in lifelong learning: we show that
designing better regularizers can be guided by the
principled theory of adaptive online optimization.
Complementing this result, we also consider the
(Gibbs & Candes, 2021)-style online conformal
prediction problem, where the goal is to sequen-
tially predict the uncertainty sets of a black-box
machine learning model. We show that the FTRL
nature of our algorithm can simplify the conven-
tional gradient-descent-based analysis, leading to
instance-dependent performance guarantees.

1. Introduction
Online learning can be broadly defined as a sequential de-
cision making problem, where each decision leverages the
learned knowledge from previous observations. However,
while forgetting is often thought as the opposite of learning,
the two concepts are actually coherent due to the distribu-
tion shifts in practice. Think about deploying a drone in
the wild: a common subtask is to learn its time-varying
dynamics model on the fly, but when doing that, we have
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to exclude the obsolete data that possibly contradicts the
current environment. This leads to a natural challenge for
the resulting online learning problem: how do we handle
the possible shortage of data after forgetting?

One potential solution is to inject suitable inductive bias
into the algorithm, which is among the most important ideas
in machine learning. Specifically, the inductive bias refers
to our prior belief of the ground truth, before observing
the data of interest. Regarding the drone example, physics
provides general principles on the evolution of the nature,
while modern foundation models can encode diverse “world
knowledge” from large scale pre-training. The point is that
even though forgetting reduces the amount of online data,
one could still exploit such inductive bias to improve the
learning performance.

Despite this natural intuition, algorithmically achieving it
remains a nontrivial task. In particular, the associated on-
line learning algorithm has two considerations to trade off
(i.e., the inductive bias and the online data), and optimally
balancing them requires going beyond simple heuristics.
The present work studies this problem from a theoretical
perspective, based on a discounted variant of Online Con-
vex Optimization (OCO; Zinkevich 2003; Cesa-Bianchi &
Lugosi 2006). Our results emphasize the importance of
regularization in nonstationary online learning:

On an algorithm that gradually forgets the online
data, one could use regularizers to inject the in-
ductive bias, which the algorithm never forgets.

Furthermore, designing better optimizers can be guided by
the theory of adaptive OCO.

1.1. Contribution

This paper presents new results on two related topics: (Sec-
tion 2) nonstationary online learning, and (Section 3) Online
Conformal Prediction (OCP; Gibbs & Candes, 2021).

• First, we consider the discounted OCO problem, formally
introduced in Section 2. It is known that under standard
assumptions on the complexity of the problem, the mini-
max optimal discounted regret bound can be achieved by
an extremely simple and widespread baseline – Online
Gradient Descent with constant1 learning rate (denoted

1Non-annealing and horizon-independent.
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as constant-LR OGD). In this paper, we propose an adap-
tive algorithm based on Follow the Regularized Leader
(FTRL; Abernethy et al., 2008), such that

– the minimax optimality of the OGD baseline is im-
proved to instance optimality; and

– all assumptions beyond convexity are removed.

More concretely, this is achieved by combining an undis-
counted adaptive OCO algorithm (Zhang et al., 2024)
with a simple rescaling trick – the latter can convert scale-
free (Orabona & Pál, 2018) upper bounds on the standard
undiscounted regret to the discounted regret, which could
be of independent interest.

In practice, compared to existing nonstationary OCO al-
gorithms that minimize the dynamic regret or the strongly
adaptive regret, our algorithm eschews the standard bi-
level aggregation procedure (Hazan & Seshadhri, 2009;
Daniely et al., 2015; Zhang et al., 2018a), thus is compu-
tationally more efficient. Compared to the “default” ap-
proach in continual / lifelong learning based on constant-
LR OGD (Abel et al., 2023), our algorithm uses a non-
trivial data-dependent regularizer to adaptively exploit the
available inductive bias. Furthermore, the design of this
regularizer follows from the principled theory of adaptive
OCO, rather than heuristics.

• Next, we consider OCP, a downstream online learning
task with set-membership predictions. To combat the
distribution shifts commonly found in practice, recent
works (Gibbs & Candes, 2021; Gibbs & Candès, 2022;
Bhatnagar et al., 2023) applied nonstationary OCO algo-
rithms (such as constant-LR OGD) to this setting. The
twist is that besides appropriate regret bounds, one has to
establish coverage guarantees as well.

In this setting, our discounted OCO algorithm leads to
strong instance-dependent guarantees, e.g., the adaptivity
to the targeted coverage level. Notably, since our algo-
rithm is built on the FTRL framework rather than gradient
descent, the associated coverage guarantee follows di-
rectly from the stability of its iterates. This exemplifies
the analytical strength of FTRL in OCP (over gradient
descent), which, to our knowledge, has not been demon-
strated in the literature.

Finally, we complement the above theoretical results with
OCP experiments (Section 4).

1.2. Related work

This paper explores the connection between two separate
topics in online learning: discounting and adaptivity.

Discounting Motivated by the intuition that “the recent
history is more important than the distant past”, the dis-
counted regret has been studied by a series of works on non-

stationary online learning (Cesa-Bianchi & Lugosi, 2006;
Freund & Hsu, 2008; Chernov & Zhdanov, 2010; Kapralov
& Panigrahy, 2011; Cesa-Bianchi et al., 2012; Brown &
Sandholm, 2019). Most of them do not consider adaptiv-
ity, although the under-appreciated (Kapralov & Panigrahy,
2011) presents important early ideas. Recently, the dis-
counted regret seems to lose its theoretical popularity to the
dynamic regret and the strongly adaptive regret, which we
survey in Appendix A. However, due to its computational
efficiency, the idea of discounting is still prevalent in prac-
tice, as exemplified by the success of the ADAM optimizer
(Kingma & Ba, 2014).

Concurrent to this work, Ahn et al. (2024) presented a con-
version from the discounted regret to the dynamic regret.
Independently, Jacobsen & Cutkosky (2024) studied the dy-
namic and strongly adaptive regret of discounted algorithms,
in the context of online linear regression.

Adaptivity Focusing on stationary environments, adap-
tive OCO concerns going beyond the conventional worst
case guarantees (Orabona, 2023a, Chapter 4 and 9). More
than a decade of research effort culminates in a series of
OCO algorithms that do not rely on any extra assumption
beyond convexity (Cutkosky, 2019; Mhammedi & Koolen,
2020; Chen et al., 2021; Jacobsen & Cutkosky, 2022; Zhang
et al., 2024; Cutkosky & Mhammedi, 2024), which this pa-
per builds on. Different from non-adaptive algorithms like
OGD, such adaptivity crucially relies on various sophisti-
cated forms of regularization (McMahan & Orabona, 2014;
Orabona & Pál, 2016; Cutkosky & Orabona, 2018; Zhang
et al., 2022). This naturally resonates with the crucial role
of regularization in “forgettive” continual / lifelong learning
settings (De Lange et al., 2021), but to our knowledge, a
quantitative connection has not been established in the liter-
ature. By studying adaptivity on the discounted regret, we
aim to fill this gap.

Regarding the OCP problem (the second half of this paper),
related works are discussed in Section 3.

1.3. Notation

Throughout this paper, ∥·∥ denotes the Euclidean norm.
ΠX (x) is the Euclidean projection of x onto a closed convex
set X . The diameter of a set X is supx,y∈X ∥x− y∥. For
two integers a ≤ b, [a : b] is the set of all integers c such that
a ≤ c ≤ b. The brackets are removed when on the subscript,
denoting a tuple with indices in [a : b]. If a > b, then the
product

∏b
i=a λi := 1. log means natural logarithm. 0 is a

zero vector whose dimension depends on the context.

We define the imaginary error function as erfi(x) :=∫ x

0
exp(u2)du; this is scaled by

√
π/2 from the conven-

tional definition, thus can also be queried from standard
software packages like SCIPY and JAX.
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2. Discounted Adaptivity
Setting The first half of this paper is about discounted
Online Convex Optimization (OCO), a two-person repeated
game between a player we control and an adversarial envi-
ronment. Different from the standard OCO problem (Zinke-
vich, 2003), there is also an expert that sequentially selects
the discount factors for the player. Specifically, in each
round we consider the following interaction protocol.

1. We (the player) make a prediction xt ∈ X using past
observations, where X ⊂ Rd is closed and convex.

2. The environment picks a convex loss function lt : X →
R, and reveal a subgradient gt ∈ ∂lt(xt) to the player.

3. The expert picks a discount factor λt−1 ∈ (0,∞),2 and
reveal it to the player.

4. The environment can choose to terminate the game. If
so, let T be the total number of rounds.

At the end of the game, the environment can also choose
any fixed prediction u ∈ X , called a comparator. Without
knowing the environment and the expert beforehand, our
(the player’s) goal is to guarantee low discounted regret,

Rλ1:T

T (l1:T , u) :=

T∑
t=1

(
T−1∏
i=t

λi

)
[lt(xt)− lt(u)] . (1)

We say an algorithm is minimax or non-adaptive if given an
uncertainty set S, it upper-bounds the worst case regret

sup
(l1:T ,u)∈S

Rλ1:T

T (l1:T , u).

This paper aims to design adaptive algorithms that directly
bound Rλ1:T

T (l1:T , u) by a function of the problem instance
(i.e., both the losses l1:T and the comparator u).

Discounting vs forgetting To motivate the above dis-
counted setting, suppose λt ≡ 1. Then, Eq.(1) recovers the
standard undiscounted regret in OCO, from which we can
further upper-bound the total loss of the player,

∑T
t=1 lt(xt).

However, the effectiveness of this follow-up argument re-
lies on the existence of a comparator u with low total loss∑T

t=1 lt(u). We call such an environment “stationary”.

This paper concerns the “nonstationary” environments vi-
olating the previous argument. Here, the expert provides
discount factors λ1:T to the player as side information, sug-
gesting the usefulness of each observation for future predic-
tions. For example,

• With λt ≡ λ < 1, the weight of past losses decays quickly
in Eq.(1), therefore the corresponding algorithm is moti-
vated to “forget the past”, matching the intuition devel-
oped in Section 1.

2The one round delay is due to our regret definition: the loss
function lt is undiscounted in the t-th round.

• A more extreme case is when λt takes value in {0, 1}.
Then, the problem reduces to a restarting variant of stan-
dard OCO, where each restart is triggered by λt = 0.

Overall, this paper treats the discount factors λ1:T as part of
the problem description, and focus on establishing tight up-
per bounds on Eq.(1). Choosing λ1:T online is an important
issue, which we defer to future works.

Inductive bias In the typical application of lifelong learn-
ing, one would use the output xt of an online learning algo-
rithm as the parameter of the underlying machine learning
model, therefore we consider the inductive bias as a fixed
prediction x∗ ∈ X known at the beginning of the game
(possibly obtained from pre-training). Intuitively, simply
predicting xt = x∗ would work “decently well”, and by
further modifying it in the game, the goal is to correct its
time-varying imperfection using the sequentially revealed
online data. Consistent with the arguments from Section 1,
an adaptive algorithm that optimally exploits x∗ would per-
form better than algorithms that do not.

Following this intuition, we consider the initialization x1 =
x∗ in the discounted OCO game. Without loss of generality,
we assume x∗ = 0 throughout this section, since a different
x∗ can be implemented by simply shifting the coordinates.

2.1. Preliminary

We begin by introducing the widespread non-adaptive base-
line, constant-LR OGD. To this end, notice that the main
difference between the discounted regret Eq.(1) and the
well-studied undiscounted regret (λt ≡ 1) is the effective
time horizon. Instead of the maximum length T , in the t-th
round Eq.(1) concerns an exponentially weighted look-back
window of length

Ht :=
t∑

i=1

t−1∏
j=i

λ2j

 , (2)

which is roughly min[(1− λ2)−1, T ] in the special case of
λt ≡ λ < 1. For later use, we also define the discounted
gradient variance Vt and the discounted Lipschitz constant
Gt,

Vt :=

t∑
i=1

t−1∏
j=i

λ2j

 ∥gi∥2 ; Gt := max
i∈[1:t]

t−1∏
j=i

λj

 ∥gi∥ .
(3)

A classical wisdom in online learning is that the learning
rates of OGD should be inversely proportional to the square
root of the time horizon (Orabona, 2023a, Chapter 2). Com-
bining it with the effective time horizon discussed above,
the following result is a folklore.
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Online Gradient Descent Consider the OGD update rule:
after observing the loss gradient gt, we pick a learning rate
ηt, take a gradient step and project the update back to the
domain X , i.e.,

xt+1 = ΠX (xt − ηtgt) .

Theorem 1 (Abridged Theorem 6 and 7). If the loss func-
tions are all G-Lipschitz, the diameter of the domain is at
most D, and the discount factor λt = λ ∈ (0, 1), then OGD
with a constant learning rate ηt = D

G

√
1− λ2 guarantees

for all T = Ω( 1
1−λ ),

sup
l1:T ,u

Rλ
T (l1:T , u) = O

(
DG

√
HT

)
.

Conversely, fix any variance budget V ∈ (0, G2HT ] and
any comparator u such that u,−u ∈ X . For any algorithm,
there exists a loss sequence such that VT defined in Eq.(3)
satisfies VT = V , and

max
[
Rλ1:T

T (l1:T , u),R
λ1:T

T (l1:T ,−u)
]
= Ω

(
∥u∥

√
VT

)
.

Picking the domain X as a norm ball centered at the ori-
gin, one could see that the worst case bound of constant-
LR OGD is minimax optimal under the Lipschitzness and
bounded-domain assumptions, which forms the theoretical
foundation of this common practice. Nonetheless, there is
an instance-dependent gap that illustrates a natural direction
to improve the algorithm: removing the supremum, and
directly aiming for

Rλ1:T

T (l1:T , u) = O
(
∥u∥

√
VT

)
. (4)

Such a bound is never worse than the O(DG
√
HT ) bound

of constant-LR OGD (under the same assumptions), while
the associated algorithm can be agnostic to both D and G.
This is the key strength of adaptivity: without imposing any
artificial structural assumption, the algorithm performs as if
it knows the “correct” assumption from the beginning.

2.2. Main result

To pursue Eq.(4), our main idea is a simple rescaling trick.

• In the undiscounted setting (λt ≡ 1), Eq.(4) has been
almost achieved by several recent works (Cutkosky, 2019;
Mhammedi & Koolen, 2020; Jacobsen & Cutkosky, 2022;
Zhang et al., 2023) modulo necessary residual factors.
For any such algorithm A, let RT,A(g1:T , u) denote its
undiscounted regret with respect to linear losses ⟨gt, ·⟩
and comparator u, i.e., Eq.(1) with λt ≡ 1.

• Next, consider the discounted regret with general λ1:T .
We take an aforementioned algorithm A and apply it to a

sequence of surrogate loss gradients ĝ1:T , where

ĝt =

(
t−1∏
i=1

λ−1
i

)
gt. (5)

If λ1, . . . , λT < 1, this amounts to “upweighting” recent
losses, or equivalently, “forgetting” older ones. The gener-
ated prediction sequence x1:T satisfies a discounted regret
bound that scales with RT,A (ĝ1:T , u), the undiscounted
regret of the base algorithm A on ĝ1:T .

Rλ1:T

T (l1:T , u)

=

(
T−1∏
t=1

λt

)
·

T∑
t=1

(
t−1∏
i=1

λ−1
i

)
[lt(xt)− lt(u)]

≤

(
T−1∏
t=1

λt

)
RT,A (ĝ1:T , u) . (6)

Within this trick, a particular challenge is that even if all
the actual loss functions lt are Lipschitz in a time-uniform
manner (∃G, s.t.,maxt ∥gt∥ ≤ G), the surrogate loss func-
tions ⟨ĝt, ·⟩ are not. Therefore, the base algorithm A cannot
rely on any a priori knowledge or estimate of the time-
uniform Lipschitz constant, similar to the scale-free prop-
erty (Orabona & Pál, 2018) in adaptive online learning.3

To make this concrete, we first forego the adaptivity to the
comparator u and analyze an example based on the famous
ADAGRAD (Duchi et al., 2011). The obtained algorithm
will be a building block of our main results.

Gradient adaptive OGD Proposed for the undiscounted
setting, ADAGRAD (Duchi et al., 2011) represents OGD
with gradient-dependent learning rates. Using it as the
base algorithm A leads to the following RMSPROP-like
prediction rule and its discounted regret bound.

Theorem 2. If the diameter of X is at most D, then OGD
with learning rate ηt = DV

−1/2
t guarantees for all T ∈ N+

and loss sequence l1:T ,

sup
u

Rλ1:T

T (l1:T , u) ≤
3

2
D
√
VT .

As one would hope for, the bound strictly improves constant-
LR OGD while matching the lower bound on the

√
VT

dependence. It is tempting to seek an even better learning
rate ηt that improves the remaining D to ∥u∥, but such a
direction leads to a dead end (Remark B.1).

3A scale-free algorithm generates the same predictions x1:T if
all the gradients g1:T are scaled by an arbitrary c > 0. However,
we need a bit more, since an algorithm can be scale-free even if
it requires an estimate of the time-uniform Lipschitz constant at
the beginning (Mhammedi & Koolen, 2020; Jacobsen & Cutkosky,
2022).
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Algorithm 1 1D magnitude learner on [0,∞).

Require: Hyperparameter ε > 0 (default ε = 1).
1: Initialize parameters v1 = 0, s1 = 0, h1 = 0.
2: for t = 1, 2, . . . do
3: If ht = 0, define the unprojected prediction x̃t = 0.

Otherwise, with erfi(x) :=
∫ x

0
exp(u2)du, (which

can be queried from SCIPY and JAX),

x̃t = ε · erfi

(
st

2
√
vt + 2htst + 16h2t

)

− εht√
vt + 2htst + 16h2t

exp

[
s2t

4(vt + 2htst + 16h2t )

]
.

4: Predict xt = Π[0,∞) (x̃t), the projection of x̃t to the
domain [0,∞).

5: Receive the 1D loss gradient gt ∈ R and the discount
factor λt−1 ∈ (0,∞).

6: Clip gt by defining gt,clip = Π[−λt−1ht,λt−1ht] (gt),
and update ht+1 = max (λt−1ht, |gt|).

7: If gt,clipx̃t < gt,clipxt, define a surrogate loss gradi-
ent g̃t,clip = 0. Otherwise, g̃t,clip = gt,clip.

8: Update vt+1 = λ2t−1vt + g̃2t,clip, st+1 = λt−1st −
g̃t,clip.

9: end for

To solve this problem, we will resort to the Follow the
Regularized Leader (FTRL) framework (Orabona, 2023a,
Chapter 7) instead of OGD. The key intuition (Fang et al.,
2022; Jacobsen & Cutkosky, 2022) is that, FTRL is stronger
since it memorizes the initialization, whereas OGD without
extra regularization does not. This is particularly important
in the discounted setting: FTRL gradually forgets the past
online data but not the inductive bias x∗, whereas OGD
forgets everything altogether.

Simultaneous adaptivity To achieve simultaneous adap-
tivity to both l1:T and u, things can get subtle. As mentioned
earlier, there are a number of choices for the base algorithm
A. We will adopt the algorithm from (Zhang et al., 2024),
surveyed in Appendix B.2, which offers an important benefit
(i.e., no explicit T -dependence, Remark B.4). Without loss
of generality,4 assume the domain X = Rd.

Overall, our discounted algorithm employs the polar-
decomposition technique from (Cutkosky & Orabona, 2018):
using polar coordinates, predicting xt ∈ Rd (to “chase” the
optimal comparator u) can be decomposed into two indepen-
dent tasks, learning the good direction u/∥u∥ and the good
magnitude ∥u∥. The direction is learned by the RMSPROP-

4Due to (Cutkosky, 2020, Theorem 2), given any unconstrained
algorithm that operates on X = Rd, we can impose any closed
and convex constraint without changing its regret bound.

like algorithm from Theorem 2, while the magnitude is
learned by a discounted variant of the erfi-potential learner
(Zhang et al., 2024, Algorithm 1) that operates on the non-
negative real line [0,∞). This magnitude learner itself will
be important for the OCP application, therefore we present
its pseudocode as Algorithm 1.

Algorithm 1 has the following intuition. At its center is a spe-
cial instance of FTRL building on the adaptive OCO theory,
which generates the prediction xt using the discounted gra-
dient variance vt, the discounted gradient sum st, and the
discounted Lipschitz constant ht. Complementing this core
component, two additional ideas are applied to fix certain
technical problems: (i) the unconstrained-to-constrained re-
duction from (Cutkosky & Orabona, 2018; Cutkosky, 2020),
and (ii) the hint-and-clipping technique from (Cutkosky,
2019). The readers are referred to Appendix B.2 for a de-
tailed explanation. The following theorem is proved in
Appendix B.3.
Theorem 3. Given any hyperparameter ε > 0, Algorithm 1
guarantees for all time horizon T ∈ N+, loss sequence
l1:T , comparator u ∈ [0,∞) and stability window length
τ ∈ [1 : T ],

Rλ1:T

T (l1:T , u) ≤ ε
√
VT + 2GTS + 16G2

T

+ u (S +GT ) +

(
max

t∈[T−τ+1:T ]
xt

)
GT

+

(
T−1∏

t=T−τ

λt

)(
max

t∈[1:T−τ ]
xt

)
GT−τ ,

where

S = 8GT

(
1 +

√
log(2uε−1 + 1)

)2
+ 2
√
VT + 16G2

T

(
1 +

√
log(2uε−1 + 1)

)
.

This result might seem a bit intimidating, so let us take a
few steps to interpret it. In particular, we want to justify the
appropriate asymptotic regime to consider (VT ≫ G2

T and
u ≫ ε), such that our main result on Rd (Theorem 4) can
use the big-Oh notation to improve clarity.

• First, one would typically expect VT ≫ G2
T , since when

λt = λ ∈ (0, 1) and |gt| = G for all t, we have GT = G
and VT = HTG

2 ≈ (1 − λ2)−1G2. As long as the
discount factor λt is close enough to 1, the condition
VT ≫ G2

T is likely to hold for general/practical gradient
sequences as well.

• Second, the hyperparameter ε serves as a prior guess of
the comparator u. If the guess is correct (ε = u), then by
assuming VT ≫ G2

T and maxt∈[1:T ] xt = O(u) (roughly,
the predictions are stable), the regret bound becomes

Rλ1:T

T (l1:T , u) = O
(
u
√
VT

)
, (7)
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exactly matching the lower bound. Realistically such an
“oracle tuning” is illegal, since ε is selected at the begin-
ning of the game, while reasonable comparators u are
hidden before all the loss functions are revealed. This is
where our algorithm shines: as long as ε is moderately
small, i.e., O(u), we would have the O(uS) term domi-
nating the regret bound, which only suffers a multiplica-
tive logarithmic penalty relative to the impossible oracle-
optimal rate Eq.(7). In comparison, it is well-known that
the regret bound of constant-LR OGD with learning rate
η depends polynomially on η and η−1 (cf., the proof of
Theorem 6), which means our algorithm is provably more
robust to suboptimal hyperparameter tuning.

• Third, we explain the use of τ . In nonstationary environ-
ments, the range of xt can vary significantly over time,
therefore a time-uniform characterization of its stability
(maxt∈[1:T ] xt, Remark B.2) could be overly conserva-
tive. We use a stability window of arbitrary length τ to
divide the time horizon into two parts: the earlier part is
forgotten rapidly (due to the

∏T−1
t=T−τ λt multiplier), so

only the later part really matters.

Example 1. Suppose again that λt = λ ∈ (0, 1). If λ ≈ 1,
the “forgetting” multiplier can be approximated by

T−1∏
t=T−τ

λt = λτ = λ
1

1−λ ·(1−λ)τ ≈ e(λ−1)τ . (Lemma B.1)

Consider λ = 0.99 for example: τ = 700 ensures λτ ≈
e−7 < 10−3. That is, if the past range of xt is negligible af-
ter a 10−3-attenuation, then our regret bound only depends
on the “localized stability” of xt evaluated in the recent 700
rounds, which is a small fraction in (let’s say) T ≈ millions.
More intuitively, it means “past mistakes do not matter”.

Given the 1D magnitude learner and its guarantee, the ex-
tension to Rd is now standard (Cutkosky & Orabona, 2018).
We defer the pseudocode to Appendix B.3.

Theorem 4 (Main result). Given any hyperparameter ε > 0,
Algorithm 3 in Appendix B.3 guarantees for all T ∈ N+,
loss gradients g1:T and comparator u ∈ Rd,

Rλ1:T

T (l1:T , u) ≤
(

max
t∈[1:T ]

xt

)
GT

+O
(
∥u∥

√
VT log(∥u∥ ε−1) ∨ ∥u∥GT log(∥u∥ ε−1)

)
,

where O(·) is in the regime of large VT (VT ≫ GT ) and
large ∥u∥ (∥u∥ ≫ ε). Furthermore, for u = 0,

Rλ1:T

T (l1:T , 0) ≤ O
(
ε
√
VT

)
+

(
max
t∈[1:T ]

xt

)
GT .

Similar to Theorem 3, the iterate stability term can be split
into two parts using an arbitrary τ . The key message is that

if the iterates are indeed stable (maxt∈[1:T ] xt = O(∥u∥))
and we suppress all the logarithmic factors with Õ(·), then

Rλ1:T

T (l1:T , u) ≤ Õ
(
∥u∥

√
VT

)
.

It matches the lower bound and improves all the aforemen-
tioned algorithms. Granted, there are several nuances in
this statement, but they are in general necessary even in the
undiscounted special case (Orabona, 2023a, Chapter 9).

Finally, we summarize a range of practical strengths. As
shown earlier, the proposed algorithm is robust to hyperpa-
rameter tuning. Observations and mistakes from the distant
past (which are possibly misleading for the future) are appro-
priately forgotten, such that the algorithm runs “consistently”
over its lifetime. Compared to the typical aggregation frame-
work in nonstationary online learning (Daniely et al., 2015;
Zhang et al., 2018a), our algorithm runs faster and never ex-
plicitly restarts (although we require given discount factors
to “softly” restart). In addition, compared to constant-LR
OGD that also tries to minimize the discounted regret, our
algorithm makes a better use of the inductive bias x∗ – in
the general case of x∗ ̸= 0, our discounted regret bound
scales with ∥u− x∗∥. This exemplifies the crucial role of
regularization, designed from the adaptive OCO theory.

3. Online Conformal Prediction
Complementing the above result, we now consider its appli-
cation in conformal prediction (Vovk et al., 2005), a frame-
work that quantifies the uncertainty of black box ML models.
Specifically, we study its online version (Gibbs & Candes,
2021; Bastani et al., 2022; Gibbs & Candès, 2022; Zaffran
et al., 2022; Bhatnagar et al., 2023), where no statistical
assumptions (e.g., exchangeability) are imposed at all. Our
setting follows the nicely written (Bhatnagar et al., 2023,
Section 2), and the readers are referred to (Roth, 2022; An-
gelopoulos & Bates, 2023) for additional background.

3.1. Preliminary

Similar to OCO, OCP is again a two-person repeated game.
Let a constant α ∈ (0, 1) be the targeted miscoverage rate
fixed before the game starts. At the beginning of the t-th
round, we receive a set-valued function Ct : R≥0 → 2Y

mapping any radius parameter r ∈ [0,∞) to a subset Ct(r)
of the label space Y . The Ct function is nested: for any
r′ > r, we have Ct(r) ⊂ Ct(r′) ⊂ Y . Then,

1. We pick a radius parameter rt ∈ [0,∞) and output the
prediction set Ct(rt).

2. The environment reveals the optimal radius r∗t ∈ [0,∞).
Intuitively, our prediction set Ct(rt) is “large enough”
only if rt > r∗t .

3. Our performance is evaluated by the pinball loss
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l
(α,∗)
t (rt), where for all r ∈ [0,∞),

l
(α,∗)
t (r) :=

{
α(r − r∗t ), r > r∗t ,

(α− 1)(r − r∗t ), else.
(8)

To demonstrate this framework, here is a simple 1D fore-
casting example. Suppose there is a base ML model that in
each round makes a prediction x̂t ∈ R of the true time series
x∗t ∈ R. On top of that, we “wrap” such a point prediction
xt by a confidence set prediction Ct(rt) = (x̂t−rt, x̂t+rt).
Ideally we want Ct(rt) to cover the true series x∗t , and this
can be checked after x∗t is revealed. That is, by defining the
optimal radius r∗t = |x∗t − x̂t|, we claim success if rt > r∗t .

Quite naturally, since r∗t is arbitrary, it is impossible to en-
sure coverage unless rt is meaninglessly large. A reasonable
objective is then asking our empirical (marginal) coverage
rate to be approximately 1− α, which amounts to showing∣∣∣∣∣ 1T

T∑
t=1

1 [rt ≤ r∗t ]− α

∣∣∣∣∣ = o(1), (9)

and this is beautifully equivalent to characterizing
the cumulative subgradients of the pinball loss,5∣∣∣∑T

t=1 ∂l
(α,∗)
t (rt)

∣∣∣ = o(T ). One catch is that there

are trivial predictors6 satisfying Eq.(9) (Bastani et al., 2022),
so one needs an extra measure to rule them out. Such a
“secondary objective” can be the regret bound on the pinball
loss,

T∑
t=1

l
(α,∗)
t (rt)−

T∑
t=1

l
(α,∗)
t (u) = o(T ), (10)

which motivates using OCO algorithms to select rt.

How does nonstationarity enter the picture? Since the pro-
posal of OCP in (Gibbs & Candes, 2021), the main emphasis
is on problems with distribution shifts, which traditional con-
formal prediction methods based on exchangeability and
data splitting have trouble dealing with. For example, the
popular ACI algorithm (Gibbs & Candes, 2021) essentially
uses constant-LR OGD – as we have shown, this is incon-
sistent with minimizing the standard regret Eq.(10), and the
“right” OCO performance metric that justifies it could be a
nonstationary one (e.g., the discounted regret). In a similar
spirit, (Gibbs & Candès, 2022; Bhatnagar et al., 2023) apply
dynamic and strongly adaptive OCO algorithms, effectively
analyzing the subinterval variants of Eq.(9) and Eq.(10).

Another key ingredient of OCP is assuming the optimal
radius maxt r

∗
t ≤ D for some D > 0, which is often rea-

sonable in practice and important for the coverage guarantee.
As opposed to prior works (Bastani et al., 2022; Bhatnagar

5At the singular point r∗t , define ∂l
(α,∗)
t (r∗t ) = α− 1.

6Alternating between rt = ∞ and rt = 0 independent of data.

et al., 2023) that require knowing D at the beginning to
initialize properly, we seek an adaptive algorithm agnostic
to this oracle knowledge.

Our goal Overall, we aim to show that without knowing
D, applying Algorithm 1 leads to discounted adaptive ver-
sions of the marginal coverage bound Eq.(9) and the regret
bound Eq.(10). This offers advantages over the ACI-like ap-
proach that tackles similar sliding window objectives using
constant-LR OGD. Along the way, we demonstrate how the
structure of OCP allows controlling the iterate stability of
Algorithm 1 (or generally, FTRL algorithms), which then
makes the proof of coverage fairly easy. Due to the limited
space, experiments are presented in Appendix D.

3.2. Main result

Beyond pinball loss From now on, define ACP as the
OCP algorithm that uses Algorithm 1 to select rt (see Ap-
pendix C.1 for pseudocode). We make a major generaliza-
tion: instead of using subgradients of the pinball loss Eq.(8)
to update Algorithm 1, we use subgradients g∗t ∈ ∂f∗t (rt),
where f∗t (r) is any convex function minimized at r∗t , and
right at rt = r∗t we have g∗t ≤ 0 without loss of generality.
This includes the pinball loss l(α,∗)t (r) as a special case. No-
tably, f∗t (r) does not need to be globally Lipschitz, which
unleashes the full power of our base algorithm. Put together,
ACP takes a confidence hyperparameter ε and a sequence
of discount factors λ1:T determined by our objectives. We
assume maxt r

∗
t ≤ D, but D is unknown by ACP .

Strength of FTRL The key to our result is Lemma 3.1
connecting the prediction to the discounted coverage metric

S∗
t := −

t∑
i=1

t−1∏
j=i

λj

 g∗i . (11)

If λt = 1 for all t and we use the pinball loss to define
g∗1:T , then |S∗

T | /T recovers Eq.(9). The point is that if
λt = λ < 1, then just like the intuition throughout this
paper, Eq.(11) is essentially a sliding window coverage
metric. Associated algorithms would gradually forget the
past, which intuitively counters the distribution shifts.

Lemma 3.1 (Abridged Lemma C.2). ACP guarantees for
all t ∈ N+,

|S∗
t | ≤ O

(√
V ∗
t log(rt+1ε−1) ∨G∗

t log(rt+1ε
−1)
)
,

where V ∗
t and G∗

t are defined on the OCP loss gradients
using Eq.(3), and O(·) is in the regime of rt+1 ≫ ε.

The proof of this lemma is a bit involved, but the high
level idea is very simple: if we use a FTRL algorithm
(rather than OGD) as the OCO subroutine for OCP, then
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the radius prediction is roughly rt+1 ≈ ψ(S∗
t /
√
V ∗
t ) for

some prediction function ψ (if the algorithm is not “adap-
tive enough” then the denominator is

√
Ht instead), which

means S∗
t ≈

√
V ∗
t ψ

−1(rt+1) = O(
√
Ht). Dividing both

sides by Ht yields the desirable coverage guarantee. In
comparison, the parallel analysis using OGD can be much
more complicated (e.g., the grouping argument in (Bhatna-
gar et al., 2023)) due to the absence of S∗

t in the explicit
update rule. Such an analytical strength of FTRL seems to
be overlooked in the OCP literature.

We also note that although the above lemma depends only
logarithmically on rt+1, without any problem structure the
latter could still be large (exponential in t), which invalidates
this approach. The remaining step is showing that if the
underlying optimal radius r∗t is time-uniformly bounded by
D, then even without knowing D, we could replace rt+1

in the above lemma by O(D). Intuitively it should make
sense; materializing it carefully gives us the final result.

Theorem 5. Without knowing D, ACP guarantees that for
all T ∈ N+, we have the discounted coverage bound

|S∗
T | ≤ O

(√
V ∗
T log(Dε−1) ∨G∗

T log(Dε−1)

)
,

and the discounted regret bound from Theorem 3.

To interpret this result, we focus on the coverage bound,
since the discounted regret bound has been discussed ex-
tensively in Section 2. First, consider the pinball loss and
the undiscounted setting λt = 1, where our bound can
be directly compared to prior works. For OGD, (Gibbs
& Candes, 2021, Proposition 1) shows that the learning
rate η = D/

√
T (as suggested by regret minimization)

achieves |S∗
T | = O(

√
T ), while (Bhatnagar et al., 2023,

Theorem 2) shows that ηt = D/
√
Vt (i.e., ADAGRAD)

achieves |S∗
T | = O(α−2T 3/4 log T ). Although the latter

is empirically strong, the theory is a bit unsatisfying as
one would expect the gradient adaptive approach to be a
“pure upgrade” (plus, the bound blows up as α→ 0). Our
Theorem 5 is in some sense the “right fix”, as essentially,
|S∗

T | = Õ(
√
V ∗
T ) ≤ Õ(

√
T ). This is primarily due to the

strength of FTRL over OGD, which we hope to demonstrate.
Besides, our algorithm also improves the regret bound of
these baselines while being agnostic to D.

All these algorithms can be extended to the sliding window
setting (e.g., the algorithm from (Gibbs & Candes, 2021)
becomes constant-LR OGD, which is the version actually
applied in practice), and the above comparison still roughly
holds. There is just one catch: OGD algorithms make cover-
age guarantees on “exact sliding windows” [T −H +1 : T ]
of length H , whereas our algorithm bounds the coverage
on a slightly different “exponential window” of effective
length HT , Eq.(11). Nonetheless, all these algorithms also
guarantee the same type of discounted regret bounds, which

are still comparable like in Section 2.

Adaptivity in OCP Next, we discuss the benefits of gradi-
ent adaptivity more concretely in OCP. Suppose again that
λt = 1 and we use the pinball loss. Then, instead of the
non-adaptive bound |S∗

T | = O(
√
T ), we have

|S∗
T | = Õ

(√
V ∗
T

)
= Õ


√√√√α2

T∑
t=1

1[rt > r∗t ] + (α− 1)2
T∑

t=1

1[rt ≤ r∗t ]

 .

Since asymptotically the miscoverage rate is α, we have∑T
t=1 1[rt ≤ r∗t ] ≈ αT , which means the bound is roughly

Õ
(√

α(1− α)T
)

. That is, the gradient adaptivity in OCO
translates to the target rate adaptivity in OCP.

In terms of the sample complexity, it is then straightforward
to see that the OGD baseline requires at least ε−2 rounds
to guarantee an empirical marginal coverage rate within
[α − ε, α + ε], while our algorithm requires at least αε2

rounds. Very concretely, in the typical setting of α = 0.05
(i.e., we want 95% confidence sets), our algorithm only
requires 1

20 as many samples compared to the OGD baseline.
Besides the coverage bound, such an α-dependent saving
applies to the regret bound as well.

4. Experiment
Finally, we demonstrate the practicality of our algorithm in
OCP experiments. Our setup closely builds on (Bhatnagar
et al., 2023). Except our own algorithms, we adopt the im-
plementation of the baselines and the evaluation procedure
from there. Details are deferred to Appendix D.

Setup We consider image classification in a sequential
setting, where each image is subject to a corruption of time-
varying strength. Given a base machine learning model that
generates the Ct function (by scoring all the possible labels),
the goal of OCP is to select the radius parameter rt, which
yields a set of predicted labels. Ideally, we want such a set
to contain the true label, while being as small as possible.
The targeted miscoverage rate α is selected as 0.1.

We test three versions of our algorithm: MAGL-D is our
Algorithm 1 with ε = 1 and λt = 0.999; MAGL is its
undiscounted version (λt = 1); and MAGDIS is a much
simplified variant of Algorithm 1 that basically sets ht = 0.
We are aware that a possible complaint towards our approach
is that the algorithm is too complicated, but as we will
show, this simplified version presented as Algorithm 5 also
demonstrates strong empirical performance despite losing
the performance guarantee.

The baselines we test are summarized in Table 1, following
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Method Avg. Coverage Avg. Width LCE100 Runtime
Simple OGD 0.899 125.0 0.11 1.00± 0.03
SF-OGD 0.899 124.5 0.09 1.05± 0.03
SAOCP 0.883 119.2 0.10 11.07± 0.19
SplitConformal 0.843 129.5 0.47 1.57± 0.04
NExConformal 0.892 123.0 0.14 2.22± 0.02
FACI 0.889 123.4 0.12 2.98± 0.07
FACI-S 0.892 124.7 0.11 2.17± 0.07
Alg. 1: MAGL-D 0.884 118.5 0.08 1.06± 0.03
Alg. 2: MAGL 0.894 122.1 0.09 1.05± 0.02
Alg. 5: MAGDIS 0.888 122.1 0.07 1.02± 0.04

Table 1. Performance of different methods. Baselines are colored in black, while our algorithms are colored in blue. The best performer in
each metric is bolded and the second-best is underlined. The runtime, plus/minus its standard deviation, is normalized by the mean of
Simple OGD’s runtime; averages are take over ten trials per algorithm.

the implementation of (Bhatnagar et al., 2023). In particular,
SF-OGD (Bhatnagar et al., 2023) is equivalent to ADAGRAD
with oracle tuning: by definition it requires knowing the
maximum possible radius D to set the learning rate, and in
practice, D is estimated from an offline dataset (which is
a form of oracle tuning from the theoretical perspective).
To test the effect of such tuning, we create another baseline
called “Simple OGD”, which is simply SF-OGD with its
estimate of D set to 1. We emphasize that despite its name,
Simple OGD is still a gradient adaptive algorithm.

Four metrics are evaluated, and we define them formally
in Appendix D. First, the average coverage measures the
empirical coverage rate over the entire time horizon. Sim-
ilarly, the average width refers to the average size of the
prediction set, also over the entire time horizon. Ideally we
want the average coverage to be close to 1− α = 0.9, and
if that is satisfied, lower average width is better. Different
from these two, the local coverage error (LCE100) mea-
sures the deviation of the local empirical coverage rate (over
the “worst” sliding time window of length 100) from the
target rate 0.9 – this is arguably the most important metric
(due to the distribution shifts), and lower is better. Finally,
we also test the runtime of all the algorithms, normalized by
that of Simple OGD.

Result The results are summarized in Table 1. Among
all the algorithms tested, our algorithms achieve the lowest
local coverage error (LCE100). In terms of metrics on the
entire time horizon, our algorithms also demonstrate com-
petitive performance compared to the baselines: although
the average coverage is worse than that of Simple OGD
and SF-OGD, the average width is lower. In addition, our
algorithms run almost as fast as Simple OGD and SF-OGD,
and importantly, they are significantly faster than SAOCP
(Bhatnagar et al., 2023) which is an aggregation algorithm
that minimizes the strongly adaptive regret.

By comparing the three versions of our algorithm, as one

would expect, the discounted version (MAGL-D) improves
the undiscounted version (MAGL). Remarkably, the much
simplified MAGDIS achieves competitive performance de-
spite the lack of performance guarantees.

5. Conclusion
This work revisits the classical notion of discounted regret
using recently developed techniques in adaptive online learn-
ing. In particular, we propose a discounted “simultaneously”
adaptive algorithm (with respect to both the loss sequence
and the comparator), with demonstrated practical benefits
in online conformal prediction. Along the way, we propose
(i) a simple rescaling trick to minimize the discounted re-
gret; and (ii) a FTRL-based analytical strategy to guarantee
coverage in online conformal prediction. More broadly, we
show that the adaptive OCO theory can help designing better
regularization mechanisms for continual / lifelong learning,
where forgetting is necessary.

Moving forward, we hope the present work can help revive
the community’s interest in the discounted regret. For non-
stationary online learning, it is a simpler metric to study
than the alternatives, while offering certain practical advan-
tages (Appendix A). We leave the online selection of the
discount factors as an important open question. In addition,
there are recent works (Cutkosky et al., 2023; Ahn et al.,
2024) suggesting the connection between discounting and
deep learning optimization (e.g., ADAM), which could be
an exciting direction for future research.
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Appendix
Organization Appendix A surveys the related topic of dynamic and strongly adaptive regret. Appendix B and C contain
the details of discounted online learning and the OCP application, respectively. Details of the experiments are presented in
Appendix D.

A. Dynamic and Strongly Adaptive Regret
This section surveys the recent predominant approach in nonstationary online learning, namely the aggregation-type
algorithms that minimize either the dynamic regret or the strongly adaptive regret. We discuss the main idea behind these
algorithms, as well as the possible practical concerns.

Definition For clarity, let us assume the diameter of the domain X is at most D.

• Generalizing the undiscounted static regret, the Zinkevich-style dynamic regret (Zinkevich, 2003; Zhang et al., 2018a;b;
Zhao et al., 2020; Baby & Wang, 2021; 2022; Jacobsen & Cutkosky, 2022; Lu & Hazan, 2023; Zhang et al., 2023)
allows the comparator u ∈ X to be time-varying. Formally, the goal is to upper-bound

RT (l1:T , u1:T ) :=

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut),

for all comparator sequences u1, . . . , uT . If the losses are G-Lipschitz, then a typical dynamic regret bound has the
form

RT (l1:T , u1:T ) ≤ Õ
(
G
√
DPuT

)
,

where Pu :=
∑T−1

t=1 ∥ut − ut+1∥ is called the path length of the u1:T sequence.

• Alternatively, the (strongly) adaptive regret (Hazan & Seshadhri, 2009; Daniely et al., 2015; Adamskiy et al., 2016; Jun
et al., 2017; Cutkosky, 2020; Lu & Hazan, 2023) generalizes the undiscounted static regret to subintervals of the time
horizon. Formally, for a time interval I ⊂ [1 : T ], we define

RI(lI , u) :=
∑
t∈I

lt(xt)−
∑
t∈I

lt(u),

and with G-Lipschitz losses, the typical goal is to show that simultaneously on all time intervals I,

RI(lI , u) ≤ Õ
(
DG

√
|I|
)
,

regardless of the specific loss sequence and the comparator. Note that the name “strongly adaptive” is due to historical
reasons; in general it is narrower that the recent concept of adaptive online learning in the literature. The latter (adopted
in this work) refers to achieving instance-dependent performance guarantees.

Hidden in the above definitions is an implicit dependence on the nonstationarity of the environment. Taking the dynamic
regret for example,7 the standard follow-up reasoning is bounding the total loss of the algorithm,

∑T
t=1 lt(xt), through the

oracle inequality,
T∑

t=1

lt(xt) ≤ inf
u1:T

[
T∑

t=1

lt(ut) + Õ
(
G
√
DPuT

)]
.

Although the dynamic regret bound holds for all comparator sequences u1:T , the only important ones are those with low
total loss,

∑T
t=1 lt(ut). In this way, the path length Pu of the “important comparator sequence” essentially measures the

variation of the loss sequence l1:T .

7For the strongly adaptive regret, a similar argument can be made using the length |I| of “important time intervals”, where the
environment is almost stationary and a time-invariant comparator u ∈ X induces low loss.
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Algorithm Due to the intricate connections between these two performance metrics (Zhang et al., 2018b; Cutkosky, 2020;
Baby & Wang, 2021), all known algorithms that minimize either of them share the same two-level compositional design
philosophy:

1. The low level maintains a class of “base online learning algorithms” in parallel, each targeting a different “nonstationarity
level” of the environment that is possibly correct.

2. The high level aggregates these base algorithms, in order to adapt to the true nonstationarity level unknown beforehand.

Within this procedure, a particularly important consideration is the range of targeted nonstationarity levels. This determines
the amount of base algorithms maintained at the same time, thus affects the overall statistical and computational performance.

Practical concern Following the above reasoning, we argue that minimizing either the dynamic regret or the strongly
adaptive regret requires targeting a wide range of nonstationarity levels, which is sometimes impractical. For example, in the
dynamic regret, the path length Pu of the “important comparator sequence” can take any value from Θ(1) to Θ(T ), whose
ratio grows with T . From the computational perspective, the consequence is that the standard model selection approach
on an exponentially spaced grid of Pu requires maintaining O(log t) base algorithms in the t-th round,8 making the entire
algorithm slower over time. Furthermore, excessively conflicting beliefs Pu = Θ(1) and Pu = Θ(T ) are maintained
simultaneously, with the former advocating convergence and the latter on the exact contrary. As we demonstrate shortly, this
may cause “statistical failures”: even in periodic environments where Pu = Θ(T ) is the only “correct belief”, the algorithm
may still be deceived by the possibility of Pu = Θ(1) and converge to trivial time-invariant decisions.

Possible example of failure Consider a 1D OCO problem inspired by time series forecasting, where the loss functions
l1:T are the quadratic loss with respect to a ground truth z1:T sequence. That is,

lt(x) = (x− zt)2 .

Let the ground truth be a unit square wave with period 2H: zt = (−1)⌊(t−1)/H⌋. Furthermore, we set the domain
X = [−2, 2], such that the Lipschitz constant G = 6.

Consider any algorithm with an optimal Pu-dependent dynamic regret bound, or an optimal strongly adaptive regret bound
for 1D OCO (with bounded domain and Lipschitz losses). Then, as a consequence, the algorithm also guarantees a sublinear
static regret bound,

T∑
t=1

lt(xt) ≤ min
u∈X

T∑
t=1

lt(u) + o(T ).

Suppose the time horizon T is a multiple of 2H . Then,

T∑
t=1

lt(u) =
T

2
(u− 1)

2
+
T

2
(u+ 1)

2
= T (u2 + 1),

which means that the optimal fixed comparator is u = 0. It suggests that the xt sequence generated by the algorithm
converges to the trivial time-invariant prediction 0 in the long run, even though the ground truth zt does not converge.
(Technically, the algorithm can do better by “learning” the periodicity of the ground truth and “changing the direction”
accordingly, e.g., always predicting a nonzero xt of the same sign as zt. However, since the algorithm is designed for
adversarial environments which are not necessarily periodic, such a strategic behavior is unlikely to hold.) To be more
specific, we expect the xt sequence to track the ground truth zt sequence, but less and less responsively as t increases (which
could be called “degradation”), and eventually xt converges to 0.

We performed preliminary numerical experiments to validate this hypothesis. The expected degradation is clearly observed
on the algorithm from (Jacobsen & Cutkosky, 2022), but for the structurally simpler meta-expert algorithm from (Zhang
et al., 2018a), the degradation of the xt sequence is not significant given the scale of our preliminary experiments. We defer
a thorough investigation of this problem to future works.

8A notable exception is (Lu & Hazan, 2023), which shows that log log t computation per round is achievable at the expense of slightly
larger regret bounds.
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Takeaway Back to our main argument, we aim to show that for a nonstationary online learning algorithm, it could be
impractical to simultaneously maintain a wide range of beliefs on the correct nonstationarity level (of the environment). In
some sense, this is on the contrary of a common perception of the field (i.e., the adaptivity to the true nonstationarity level is
always better). Our study of discounted algorithms is partially motivated by this idea: such discounted algorithms only
target one nonstationarity level, which is specified by the given discount factor.

B. Detail of Section 2
Appendix B.1 contains omitted proofs from Section 2, excluding the analysis of our main algorithm. Appendix B.2
introduces the undiscounted algorithm from (Zhang et al., 2024) and its guarantees; these are applied to our reduction from
Section 2.2. Appendix B.3 proves our main result, i.e., discounted regret bounds that adapt simultaneously to l1:T and u.

B.1. Preliminary proofs

We first prove an auxiliary lemma.

Lemma B.1. For all λ ∈ (0, 1), λ
1

1−λ ≤ e−1. Moreover, limλ→1− λ
1

1−λ = e−1.

Proof of Lemma B.1. For the first part of the lemma, taking log on both sides, it suffices to show

1

1− λ
log λ ≤ −1.

This holds due to log λ ≤ λ− 1. The second part is due to limλ→1−(1− λ)−1 log λ = −1.

The following theorem characterizes non-adaptive OGD.

Theorem 6. If the loss functions are all G-Lipschitz and the diameter of the domain diam(X ) is at most D, then OGD with
learning rate ηt = DG−1H

−1/2
t guarantees for all T ∈ N+,

sup
l1:T ,u

Rλ1:T

T (l1:T , u) ≤
3

2
DG

√
HT .

Furthermore, if the discount factor λt = λ for some λ ∈ (0, 1), then OGD with a time-invariant learning rate ηt =
DG−1

√
1− λ2 guarantees for all T ≥ 1

2 (1− λ)
−1,

sup
l1:T ,u

Rλ
T (l1:T , u) ≤

3

2

DG√
1− λ2

≤ 3

2
√
1− e−1

DG
√
HT .

Proof of Theorem 6. We start with the first part of the theorem. The standard analysis of gradient descent centers around the
descent lemma (Orabona, 2023a, Lemma 2.12),

⟨gt, xt − u⟩ ≤
1

2ηt
∥xt − u∥2 −

1

2ηt
∥xt+1 − u∥2 +

ηt
2
∥gt∥2 .

Applying convexity and taking a telescopic sum,

Rλ1:T

T (l1:T , u)

=

T∑
t=1

(
T−1∏
i=t

λi

)
[lt(xt)− lt(u)]

≤
T∑

t=1

(
T−1∏
i=t

λi

)
⟨gt, xt − u⟩

≤
T∑

t=1

(
T−1∏
i=t

λi

)(
1

2ηt
∥xt − u∥2 −

1

2ηt
∥xt+1 − u∥2 +

ηt
2
∥gt∥2

)
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=
1

2η1
∥x1 − u∥2

(
T−1∏
i=1

λi

)
+

1

2

T∑
t=2

(
1

ηt
− λt−1

ηt−1

)(T−1∏
i=t

λi

)
∥xt − u∥2 +

T∑
t=1

ηt
2

(
T−1∏
i=t

λi

)
∥gt∥2 . (12)

Now, consider the second sum on the RHS. Notice that Ht = λ2t−1Ht−1 + 1,

1

ηt
− λt−1

ηt−1
=
G

D

(√
Ht − λt−1

√
Ht−1

)
=
G

D

(√
λ2t−1Ht−1 + 1−

√
λ2t−1Ht−1

)
≥ 0.

Therefore, we can apply the diameter condition ∥xt − u∥ ≤ D (and the Lipschitzness ∥gt∥ ≤ G as well), and use a
telescopic sum again to obtain

Rλ1:T

T (l1:T , u) ≤
D2

2η1

(
T−1∏
i=1

λi

)
+
D2

2

T∑
t=2

(
1

ηt
− λt−1

ηt−1

)(T−1∏
i=t

λi

)
+
G2

2

T∑
t=1

ηt

(
T−1∏
i=t

λi

)

=
D2

2ηT
+
G2

2

T∑
t=1

ηt

(
T−1∏
i=t

λi

)

=
1

2
DG

√
HT +

1

2
DG

T∑
t=1

H
−1/2
t

(
T−1∏
i=t

λi

)
.

To proceed, define

SumT :=

T∑
t=1

H
−1/2
t

(
T−1∏
i=t

λi

)
.

We now show that SumT ≤ 2
√
HT by induction.

• When T = 1, we have H1 = 1 and Sum1 = H
−1/2
1 = 1, therefore Sum1 ≤ 2

√
H1.

• When T > 1, starting from the induction hypothesis SumT−1 ≤ 2
√
HT−1,

SumT = H
−1/2
T + λT−1SumT−1 ≤ H−1/2

T + 2λT−1

√
HT−1.

Applying HT = λ2T−1HT−1 + 1,

SumT ≤ (λ2T−1HT−1 + 1)−1/2 + 2
√
λ2T−1HT−1 ≤ 2

√
λ2T−1HT−1 + 1 = 2

√
HT ,

where the inequality is due to the concavity of square root.

Combining everything above leads to the first part of the theorem.

As for the second part (time-invariant λ < 1), we follow the same procedure until Eq.(12). The learning rate ηt is independent
of t; denote it as η = DG−1

√
1− λ2. Then,

Rλ
T (l1:T , u) ≤

λT−1

2η
∥x1 − u∥2 +

1− λ
2η

T∑
t=2

λT−t ∥xt − u∥2 +
η

2

T∑
t=1

λT−t ∥gt∥2

≤ D2λT−1

2η
+
D2(1− λ)

2η

T∑
t=2

λT−t +
ηG2

2

T∑
t=1

λT−t

=
D2λT−1

2η
+
D2(1− λ)

2η

1− λT−1

1− λ
+
ηG2

2

1− λT

1− λ

≤ DG

2
√
1− λ2

+
DG
√
1− λ2

2(1− λ)
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≤ 3

2

DG√
1− λ2

. (1− λ2 ≤ 2(1− λ))

Following the definition of HT , in the case of time-invariant λ < 1,

HT =
1− λ2T

1− λ2
.

Due to Lemma B.1, if T ≥ 1
2 (1− λ)

−1, we have λ2T ≤ e−1, therefore

1√
1− λ2

≤
√

HT

1− e−1
.

Combining the above completes the proof.

Accompanying the upper bounds, the following theorem characterizes an instance-dependent discounted regret lower bound.

Theorem 7. Consider any combination of time horizon T ∈ N+, discount factors λ1:T , Lipschitz constant G > 0, and
variance budget V ∈

(
0, G2HT

]
, where HT is defined in Eq.(2). Furthermore, consider any nonzero u ∈ X that satisfies

−u ∈ X . For any OCO algorithm that possibly depends on these quantities, there exists a sequence of linear losses
lt(x) = ⟨gt, x⟩ such that ∥gt∥ ≤ G for all t ∈ [1 : T ],

V =

T∑
t=1

(
T−1∏
i=t

λ2i

)
∥gt∥2 ,

and
max

[
Rλ1:T

T (l1:T , u),R
λ1:T

T (l1:T ,−u)
]
≥ 1√

2
∥u∥
√
V .

Proof of Theorem 7. The proof is a mild generalization of the undiscounted argument, e.g., (Orabona, 2023a, Theorem 5.1).
We provide it here for completeness.

We first define a random sequence of loss gradients. Let ε1, . . . , εT be a sequence of iid Rademacher random variables: εt
equals ±1 with probability 1

2 each. Also, let

L =

√
V∑T

t=1

∏T−1
i=t λ2i

.

Then, we define the loss gradient sequence g̃1:T as g̃t = Lεt
u

∥u∥ . Notice that L ≤ G.

Now consider the regret with respect to l̃1:T , the random linear losses induced by the random gradient sequence g̃1:T .

Rλ1:T

T

(
l̃1:T , u

)
=

T∑
t=1

(
T−1∏
i=t

λi

)
⟨g̃t, xt − u⟩ =

T∑
t=1

(
T−1∏
i=t

λi

)
L

∥u∥
⟨u, xt⟩ εt −

T∑
t=1

(
T−1∏
i=t

λi

)
L ∥u∥ εt.

Rλ1:T

T

(
l̃1:T ,−u

)
=

T∑
t=1

(
T−1∏
i=t

λi

)
⟨g̃t, xt + u⟩ =

T∑
t=1

(
T−1∏
i=t

λi

)
L

∥u∥
⟨u, xt⟩ εt +

T∑
t=1

(
T−1∏
i=t

λi

)
L ∥u∥ εt.

Therefore,

E
[
max

[
Rλ1:T

T (l̃1:T , u),R
λ1:T

T (l̃1:T ,−u)
]]

= E

[
T∑

t=1

(
T−1∏
i=t

λi

)
L

∥u∥
⟨u, xt⟩ εt

]
+ E

[
max

[
−

T∑
t=1

(
T−1∏
i=t

λi

)
L ∥u∥ εt,

T∑
t=1

(
T−1∏
i=t

λi

)
L ∥u∥ εt

]]

=

T∑
t=1

(
T−1∏
i=t

λi

)
L

∥u∥
E [⟨u, xt⟩ εt] + L ∥u∥E

[∣∣∣∣∣
T∑

t=1

(
T−1∏
i=t

λi

)
εt

∣∣∣∣∣
]
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= L ∥u∥E

[∣∣∣∣∣
T∑

t=1

(
T−1∏
i=t

λi

)
εt

∣∣∣∣∣
]

≥ 1√
2
L ∥u∥

√√√√ T∑
t=1

(
T−1∏
i=t

λ2i

)
(Khintchine inequality (Haagerup, 1981))

=
1√
2
∥u∥
√
V .

Finally, note that the above lower-bounds the expectation. There exists a loss gradient sequence g1:T with gt ∈
{Lu/∥u∥ ,−Lu/∥u∥}, such that max

[
Rλ1:T

T (l1:T , u),R
λ1:T

T (l1:T ,−u)
]
≥ 1√

2
∥u∥
√
V .

The next theorem, presented in Section 2.2, analyzes gradient adaptive OGD.

Theorem 2. If the diameter of X is at most D, then OGD with learning rate ηt = DV
−1/2
t guarantees for all T ∈ N+ and

loss sequence l1:T ,

sup
u

Rλ1:T

T (l1:T , u) ≤
3

2
D
√
VT .

Proof of Theorem 2. As shown in (Orabona, 2023a, Chapter 4.2), applying OGD with the undiscounted gradient-dependent
learning rate

ηt =
D√∑t

i=1 ∥ĝi∥
2

(13)

to surrogate linear losses ⟨ĝt, ·⟩ guarantees the undiscounted regret bound

T∑
t=1

⟨ĝt, xt − u⟩ ≤
3

2
D

√√√√ T∑
t=1

∥ĝt∥2.

For the discounted setting, we follow the rescaling trick from Section 2.2. First, consider the effective prediction rule when
ĝt is defined according to Eq.(5).

xt+1 = ΠX

xt − D√∑t
i=1 ∥ĝi∥

2
ĝt



= ΠX

xt − D√∑t
i=1

(∏i−1
j=1 λ

−2
j

)
∥gi∥2

(
t−1∏
i=1

λ−1
i

)
gt



= ΠX

xt − D√∑t
i=1

(∏t−1
j=i λ

2
j

)
∥gi∥2

gt

 ,
which is exactly the prediction rule this theorem proposes. As for the regret bound, we have

T∑
t=1

⟨ĝt, xt − u⟩ ≤
3

2
D

√√√√ T∑
t=1

∥ĝt∥2 =
3

2
D

√√√√ T∑
t=1

(
t−1∏
i=1

λ−2
i

)
∥gt∥2.

Plugging it into Eq.(6) and using the definition of VT from Eq.(3) complete the proof.
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Remark B.1 (Failure of OGD). As mentioned in Section 2.2, one might suspect that OGD with an even better learning rate
than Theorem 2 (i.e., possibly using the oracle knowledge of ∥u∥) can further improve the regret bound to O(∥u∥

√
VT ),

matching the lower bound (Theorem 7). We now explain where this intuition could come from, and why it is misleading.

Consider the undiscounted setting (λt = 1). For any scaling factor α, it is well-known that OGD with learning rate
η = αG−1T−1/2 achieves the undiscounted regret bound O

(
(α+ ∥u∥2 α−1)G

√
T
)

(Orabona, 2023a, Chapter 2.1),

which becomes O(∥u∥G
√
T ) if the oracle tuning α = ∥u∥ is allowed. This might suggest that the remaining suboptimality

of Theorem 2 can be closed by a similar oracle tuning, i.e., setting

ηt =
∥u∥√
Vt
. (14)

However, such an analogy misses a key point: the aforementioned nice property of “α-scaled OGD” only holds with
time-invariant learning rates, and therefore, it can be found that OGD with the time-varying learning rate Eq.(14) does not
yield the O(∥u∥G

√
VT ) bound we aim for, let alone the impossibility of oracle tuning. Broadly speaking, it is known (but

sometimes overlooked) that OGD has certain fundamental incompatibility with time-varying learning rates, but this can
be fixed by an extra regularization centered at the origin (Orabona & Pál, 2018; Fang et al., 2022; Jacobsen & Cutkosky,
2022). Such a procedure encodes the initialization into the algorithm, which essentially makes it similar to FTRL.

B.2. Algorithm from (Zhang et al., 2024)

In this subsection we introduce the algorithm from (Zhang et al., 2024) and its guarantee. Proposed for the undiscounted
setting (λt = 1), it achieves a scale-free regret bound that simultaneously adapts to both the loss sequence and the comparator.

Following the polar-decomposition technique from (Cutkosky & Orabona, 2018), the main component of this algorithm
is a subroutine (a standalone one dimensional OCO algorithm) that operates on the positive real line [0,∞). We present
the pseudocode of this subroutine as Algorithm 2. Technically it is a combination of (Zhang et al., 2024, Algorithm 1
+ part of Algorithm 2) and (Cutkosky, 2019, Algorithm 2). Except the choice of the Φ function which uses an unusual
continuous-time analysis, everything else is somewhat standard in the community. Here is an overview of the idea.

• The core component is the potential function Φh,ε(v, s) that takes two input arguments, the observed gradient variance
v and the observed gradient sum s. For now let us briefly suppress the dependence on auxiliary parameters h and ε.
At the beginning of the t-th round, with the observations of past gradients g1:t−1, we “ideally” (there are two twists
explained later) would like to define its summaries (sometimes called sufficient statistics)

vt =

t−1∑
i=1

g2i , st = −
t−1∑
i=1

gi,

and predict xt = ∂2Φ(vt, st), i.e., the partial derivative of the potential function Φ with respect to its second argument,
evaluated at the pair (vt, st). This is the standard procedure of the “potential method” (Cesa-Bianchi & Lugosi, 2006;
McMahan & Orabona, 2014; Mhammedi & Koolen, 2020) in online learning, which is associated to a well-established
analytical strategy (McMahan & Orabona, 2014). Equivalently, one may also interpret this procedure as Follow the
Regularized Leader (FTRL) (Orabona, 2023a, Chapter 7.3) with linearized losses: the potential function Φ is essentially
the convex conjugate of a FTRL regularizer (Zhang et al., 2022, Section 3.1).

A bit more on the design of Φ: the intuition is that h is typically much smaller than v and s, so if we set h = 0
(rigorously this is not allowed since the prediction would be a bit too aggressive; but just for our intuitive discussion
this is fine), then the potential function is morally

Φ(v, s) ≈ ε
√
v

(
2

∫ s
2
√

v

0

erfi(u)du− 1

)
,

which is associated to the prediction function

∂2Φ(v, s) ≈ ε · erfi
(

s

2
√
v

)
= ε

∫ s/
√
4v

0

exp(u2)du.
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Algorithm 2 ((Zhang et al., 2024, Algorithm 1 and 2) + (Cutkosky, 2019, Algorithm 2)) Undiscounted 1D magnitude
learner on [0,∞).

Require: Hyperparameter ε > 0 (default ε = 1).
1: Initialize parameters v1 = 0, s1 = 0, h1 = 0. Define the following (h, ε)-parameterized potential function Φh,ε(v, s)

with two input arguments v and s.

Φh,ε(v, s) := ε
√
v + 2hs+ 16h2

(
2

∫ s

2
√

v+2hs+16h2

0

erfi(u)du− 1

)
.

2: for t = 1, 2, . . . do
3: If ht = 0, define an unprojected prediction x̃t = 0; otherwise, define

x̃t = ∂2Φht,ε(vt, st)

= ε · erfi

(
st

2
√
vt + 2htst + 16h2t

)
− εht√

vt + 2htst + 16h2t
exp

[
s2t

4(vt + 2htst + 16h2t )

]
.

4: Predict xt = Π[0,∞) (x̃t), the projection of x̃t to the domain [0,∞).
5: Receive the loss gradient gt ∈ R.
6: Clip the gradient by defining gt,clip = Π[−ht,ht] (gt), and let ht+1 = max (ht, |gt|).
7: Define a surrogate loss gradient g̃t,clip ∈ R, where

g̃t,clip =

{
gt,clip, gt,clipx̃t ≥ gt,clipxt,
0, else.

8: Update vt+1 = vt + g̃2t,clip, st+1 = st − g̃t,clip.
9: end for

The use of the erfi function might seem obscure, but essentially it is rooted in a recent trend (Drenska & Kohn, 2020;
Zhang et al., 2022; Harvey et al., 2023) connecting online learning to stochastic calculus: we scale the OCO game
towards its continuous-time limit and solve the obtained Backward Heat Equation. Prior to this trend, the predominant
idea was using (McMahan & Orabona, 2014; Orabona & Pál, 2016; Mhammedi & Koolen, 2020)

Φ(v, s) ≈ ε√
v
exp

(
s2

constant · v

)
, (15)

∂2Φ(v, s) ≈ ε
constant · s

v3/2
exp

(
s2

constant · v

)
.

It can be shown that the erfi prediction rule is quantitatively stronger, and quite importantly, it makes the hyperparameter
ε “unitless” (Zhang et al., 2024, Section 5). In contrast, in the more classical potential function Eq.(15), ε carries
the unit of “gradient squared”, which means the algorithm requires a guess of the time-uniform Lipschitz constant
maxt ∥gt∥ at the beginning of the game. Due to the discussion in Section 2.2 (right after introducing the rescaling
trick), this suffers from certain suboptimality (Remark B.4) when applied with rescaling.

• Although most of the heavy lifting is handled by the choice of Φ, a remaining issue is that with h ̸= 0, the prediction
xt = ∂2Φ(vt, st) is not necessarily positive, which violates the domain constraint [0,∞). To fix this issue, we adopt
the technique from (Cutkosky & Orabona, 2018; Cutkosky, 2020) which has become a standard tool for the community:
predict xt = Π[0,∞)(x̃t) which is the projection of x̃t = ∂2Φ(vt, st) to the domain [0,∞), and update the sufficient
statistics (vt+1, st+1) using a surrogate loss gradient g̃t,clip (Line 7 of Algorithm 2) instead of gt,clip (the clipping will
be explained later; for now we might regard gt,clip = gt, the actual gradient).

The intuition behind Line 7 is that, if the unprojected prediction x̃t = ∂2Φ(vt, st) is already negative and the actual
loss gradient gt,clip encourages it to be “more negative”, then we set g̃t,clip = 0 in the update of the (vt+1, st+1) pair to

20



Discounted Adaptive Online Learning: Towards Better Regularization

avoid this undesirable behavior (unprojected prediction drifting away from the domain). In other situations, it is fine to
use gt,clip directly in the update of (vt+1, st+1), therefore we simply set g̃t,clip = gt,clip.

Rigorously, (Cutkosky, 2020, Theorem 2) shows that for all comparator u ∈ [0,∞), ⟨gt,clip, xt − u⟩ ≤ ⟨g̃t,clip, x̃t − u⟩.
That is, as long as the unprojected prediction sequence x̃1:T guarantees a good regret bound (in an improper manner,
i.e., violating the domain constraint), then the projected prediction sequence x1:T also guarantees a good regret bound,
but properly.

• Another twist is related to updating the auxiliary parameter h, which was previously ignored. Due to the typical
limitation of FTRL algorithms, we have to guess the range of gt (i.e., a time-varying Lipschitz constant Gt such that
∥gt∥ ≤ Gt) right before making the prediction xt, and ht serves as this guess. (Cutkosky, 2019) suggests using the
range of past loss gradients ht = maxi∈[1:t−1] |gi| to guess that |gt| ≤ ht. Surely this could be wrong: in that case
(|gt| > ht), we clip gt to [−ht, ht] before sending it to the (vt+1, st+1) update.

We also clarify a possible confusion related to “guessing the Lipschitzness”. We have argued that if an algorithm
requires guessing the time-uniform Lipschitz constant maxt ∥gt∥ at the beginning of the game, then it does not serve
as a good base algorithm A in our rescaling trick. The use of ht is different: it is updated online as a guess of ∥gt∥,
which is fine (to apply with rescaling).

In terms of the concrete guarantee, the following theorem characterizes the undiscounted regret bound of Algorithm 2. The
proof is a straightforward corollary of (Zhang et al., 2024, Lemma B.2) and (Cutkosky, 2020, Theorem 2), therefore omitted.
Theorem 8 ((Cutkosky, 2020; Zhang et al., 2024)). Algorithm 2 guarantees for all time horizon T ∈ N+, loss gradients
g1:T and comparator u ∈ [0,∞),

T∑
t=1

gt(xt − u) ≤ ε

√√√√ T∑
t=1

g2t + 2GS + 16G2 + uS +

T∑
t=1

|gt − gt,clip| |xt − u| ,

where G = maxt∈[1:T ] |gt| and

S = 8G
(
1 +

√
log(2uε−1 + 1)

)2
+ 2

√√√√ T∑
t=1

g2t + 16G2
(
1 +

√
log(2uε−1 + 1)

)
.

Remark B.2 (Iterate stability). The above bound has an iterate stability term
∑T

t=1 |gt − gt,clip| |xt − u|, which can be
further upper-bounded by (u+maxt∈[1:T ] xt)GT . Similar characterizations of stability have appeared broadly in stochastic
optimization before (Orabona & Pál, 2021; Ivgi et al., 2023; Orabona, 2023b). For the general adversarial setting we
consider, (Cutkosky, 2019) suggests using artificial constraints to trade maxt xt for terms that only depend on g1:T and u.
We do not take this route because (i) it makes our discounted algorithm more complicated but does not seem to improve
the performance; and (ii) even without artificial constraints, the prediction magnitude is indeed controlled in our main
application (online conformal prediction), and possibly in the downstream stochastic setting as well (following (Orabona,
2023b)).

Given the above undiscounted 1D subroutine, we can extend it to Rd following the standard polar-decomposition technique
(Cutkosky & Orabona, 2018). Overall, the algorithm becomes the λt = 1 special case of Algorithm 3 (our main algorithm
presented in Section B.3). This is as expected, since the discounted setting is a strict generalization. The following theorem
is essentially (Zhang et al., 2024, Theorem 2 + the discussion after that).
Theorem 9 ((Zhang et al., 2024)). With λt = 1 for all t, Algorithm 3 from Section B.3 guarantees for all T ∈ N+, loss
gradients g1:T and comparator u ∈ Rd,

T∑
t=1

⟨gt, xt − u⟩ ≤ O
(
∥u∥

√
VT log(∥u∥ ε−1) ∨ ∥u∥GT log(∥u∥ ε−1)

)
+

T∑
t=1

∥gt − gt,clip∥ ∥xt − u∥ ,

where VT and GT are defined in Eq.(3), and O(·) is in the regime of large VT (VT ≫ GT ) and large ∥u∥ (∥u∥ ≫ ε).
Furthermore, if the comparator u = 0, we have

T∑
t=1

⟨gt, xt⟩ ≤ O
(
ε
√
VT

)
+

T∑
t=1

∥gt − gt,clip∥ ∥xt∥ .
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B.3. Analysis of the main algorithm

This subsection presents our main discounted algorithm and its regret bound. We start from its 1D magnitude learner.

Theorem 3. Given any hyperparameter ε > 0, Algorithm 1 guarantees for all time horizon T ∈ N+, loss sequence l1:T ,
comparator u ∈ [0,∞) and stability window length τ ∈ [1 : T ],

Rλ1:T

T (l1:T , u) ≤ ε
√
VT + 2GTS + 16G2

T + u (S +GT )+

(
max

t∈[T−τ+1:T ]
xt

)
GT +

(
T−1∏

t=T−τ

λt

)(
max

t∈[1:T−τ ]
xt

)
GT−τ ,

where
S = 8GT

(
1 +

√
log(2uε−1 + 1)

)2
+ 2
√
VT + 16G2

T

(
1 +

√
log(2uε−1 + 1)

)
.

Proof of Theorem 3. The proof mostly follows from carefully checking the equivalence of the following two algorithms:
(i) Algorithm 1 (the discounted algorithm) on a sequence of loss gradients g1:T , and (ii) Algorithm 2 (the undiscounted
algorithm) on the sequence of scaled surrogate gradients,

(∏t−1
i=1 λ

−1
i

)
gt;∀t ∈ [1 : T ]. Since the quantities in Algorithm 1

and 2 follow the same notation, we separate them by adding a superscript D on quantities in Algorithm 1, and ND in their
Algorithm 2 counterparts.

We show this by induction: suppose for some t ∈ [1 : T ], we have

sDt =

(
t−2∏
i=1

λi

)
sND
t , vDt =

(
t−2∏
i=1

λ2i

)
vND
t , hDt =

(
t−2∏
i=1

λi

)
hND
t .

Such an induction hypothesis holds for t = 1. Then, from the prediction rules (and the fact that all the discount factors are
strictly positive), the unprojected predictions x̃Dt = x̃ND

t , and the projected predictions xDt = xND
t .

Now consider the gradient clipping. Since gND
t =

(∏t−1
i=1 λ

−1
i

)
gDt ,

gND
t,clip = Π[−hND

t ,hND
t ]

(
gND
t

)
= c−1Π[−chND

t ,chND
t ]

(
cgND

t

)
(∀c > 0)

=

(
t−1∏
i=1

λ−1
i

)
Π[−λt−1hD

t ,λt−1hD
t ]

(
gDt
)

(c =
∏t−1

i=1 λi)

=

(
t−1∏
i=1

λ−1
i

)
gDt,clip.

Then, due to xDt = xND
t and x̃Dt = x̃ND

t , we have g̃ND
t,clip =

(∏t−1
i=1 λ

−1
i

)
g̃Dt,clip.

Finally, consider the updates of sDt+1, vDt+1 and hDt+1, as well as their Algorithm 2 counterparts.

sDt+1 = λt−1s
D
t − g̃Dt,clip =

(
t−1∏
i=1

λi

)
sND
t −

(
t−1∏
i=1

λi

)
g̃ND
t,clip =

(
t−1∏
i=1

λi

)(
sND
t − g̃ND

t,clip

)
=

(
t−1∏
i=1

λi

)
sND
t+1 .

Similarly,

vDt+1 =

(
t−1∏
i=1

λ2i

)
vND
t+1 ,

hDt+1 = max
(
λt−1h

D
t ,
∣∣gDt ∣∣) = max

[(
t−1∏
i=1

λi

)
hND
t ,

(
t−1∏
i=1

λi

)∣∣gND
t

∣∣] =

(
t−1∏
i=1

λi

)
hND
t+1 .

That is, the induction hypothesis holds for t + 1, and therefore we have shown the equivalence of the considered two
algorithms.
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As for the regret bound of Algorithm 1, combining the reduction Eq.(6) and the regret bound of Algorithm 2 (Theorem 8
from Appendix B.2) immediately gives us

Rλ1:T

T (l1:T , u) ≤ ε
√
VT + 2GTS + 16G2

T + uS +

(
T−1∏
t=1

λt

)
T∑

t=1

(
t−1∏
i=1

λ−1
i

)
|gt − gt,clip| |xt − u| ,

where
S = 8GT

(
1 +

√
log(2uε−1 + 1)

)2
+ 2
√
VT + 16G2

T

(
1 +

√
log(2uε−1 + 1)

)
.

The remaining clipping error term can be bounded similarly as (Cutkosky, 2019, Theorem 2). For any τ ∈ [1 : T ],

T−τ∑
t=1

(
t−1∏
i=1

λ−1
i

)
|gt − gt,clip| |xt − u| ≤ max

t∈[1:T−τ ]
|xt − u|

T−τ∑
t=1

(
t−1∏
i=1

λ−1
i

)
|gt − gt,clip|

= max
t∈[1:T−τ ]

|xt − u|
T−τ∑
t=1

(
t−1∏
i=1

λ−1
i

)
(ht+1 − λt−1ht) (from Algorithm 1)

= max
t∈[1:T−τ ]

|xt − u|
T−τ∑
t=1

[(
t−1∏
i=1

λ−1
i

)
ht+1 −

(
t−2∏
i=1

λ−1
i

)
ht

]

= max
t∈[1:T−τ ]

|xt − u|

[(
T−τ−1∏
i=1

λ−1
i

)
hT−τ+1 − h1

]

≤
(

max
t∈[1:T−τ ]

xt + u

)(T−τ−1∏
i=1

λ−1
i

)
hT−τ+1.

Similarly,

T∑
t=T−τ+1

(
t−1∏
i=1

λ−1
i

)
|gt − gt,clip| |xt − u| ≤

(
max

t∈[T−τ+1:T ]
xt + u

)[(T−1∏
i=1

λ−1
i

)
hT+1 −

(
T−τ−1∏
i=1

λ−1
i

)
hT−τ+1

]
.

Finally, multiplying
∏T−1

t=1 λt and using GT = hT+1 and GT−τ = hT−τ+1 complete the proof.

As for the extension to Rd following (Cutkosky & Orabona, 2018), we present the pseudocode as Algorithm 3. There is
a small twist: when applying Algorithm 1 as the 1D subroutine, in its Line 6 we set gt,clip = gt, and ht+1 is given by
the meta-algorithm. That is, the gradient clipping is handled on the high level (Algorithm 3) rather than the low level
(Algorithm 1).

Algorithm 3 Discounted adaptivity on Rd.

1: DefineA1d as a minor variant of Algorithm 1 (with hyperparameter ε), where its Line 6 is replaced by: “Set gt,clip = gt,
and receive a hint ht+1.”

2: Define AB as the algorithm from Theorem 2, on the d-dimensional unit L2 norm ball (with D = 2).
3: Initialize h1 = 0.
4: for t = 1, 2, . . . do
5: Query A1d for its prediction yt ∈ R.
6: Query AB for its prediction wt ∈ Rd; ∥wt∥ ≤ 1.
7: Predict xt = wtyt, receive the loss gradient gt ∈ Rd and the discount factor λt ∈ (0,∞).
8: Update ht+1 = max (λt−1ht, ∥gt∥), and define gt,clip = gtλt−1ht/ht+1 (if ht+1 = 0 then gt,clip = 0).
9: Send ⟨gt,clip, wt⟩ and gt,clip as the surrogate loss gradients to A1d and AB, respectively.

10: Send the discount factor λt to A1d and AB.
11: Send the hint ht+1 to A1d.
12: end for

Algorithm 3 induces our main theorem (Theorem 4). The proof combines the undiscounted regret bound (Theorem 9) and
our rescaling trick. It is almost the same as the above proof of Theorem 3, therefore omitted.
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Remark B.3 (Importance of forgetting). Different from the undiscounted algorithm in (Zhang et al., 2024), the above
discounted generalization rapidly forgets the past observations (which could be misleading for the future). Such an idea might
even be useful in stochastic convex optimization as well, in particular regarding functions with spatially inhomogeneous
Lipschitzness. An example is the quadratic function, which is both strongly convex and smooth. Globally it is not Lipschitz,
but near its minimizer the Lipschitz constant is small. When optimizing such a function, if an optimization algorithm
internally estimates the Lipschitz constant from its historical observations, then this estimate could be overly conservative as
the iterates move closer to the minimizer. An intuitive solution is to gradually forget the past, just like the idea of discounted
online learning algorithms. Rigorously characterizing this intuition could be an exciting direction, which we defer to future
works.

Remark B.4 (Benefit of (Zhang et al., 2024)). We used (Zhang et al., 2024) as the base algorithm in our scaling trick, but
there are other options (Mhammedi & Koolen, 2020; Jacobsen & Cutkosky, 2022). The problem of such alternatives is
that, they still need an estimate of the time-uniform Lipschitz constant at the beginning of the game, due to certain unit
inconsistency (discussed in Appendix B.2, e.g., Eq.(15)). In the undiscounted setting, they guarantee

T∑
t=1

⟨gt, xt − u⟩ ≤ O
(
∥u∥

√
VT log(∥u∥T ) ∨ ∥u∥GT log(∥u∥T )

)
+

T∑
t=1

∥gt − gt,clip∥ ∥xt − u∥ ,

as opposed to Theorem 9 in this paper. After the scaling trick, the T dependence in this bound will be transferred to the
obtained discounted regret bound, such that the latter also depends on the end time T . In other words, such a discounted
regret bound is not “lifetime consistent”.

C. Detail of Section 3
This section presents omitted details of our OCP application. First, we present the pseudocode of ACP in Appendix C.1,
with the notations (relevant quantities are with the superscipt ∗) from the OCP setting. All the concrete proofs are presented
in Appendix C.2.

C.1. Pseudocode of the OCP algorithm

The pseudocode of ACP is Algorithm 4. This is equivalent to directly applying Algorithm 1, our main 1D OCO algorithm,
to the setting of Section 3.

In particular, the problem structure of OCP allows removing the surrogate loss construction (Line 7 of Algorithm 1), which
makes the algorithm slightly simpler. To see this, notice that the surrogate loss g̃t,clip there is only needed (i.e., does not
equal gt,clip) when the unprojected prediction x̃t < 0 and the projected prediction xt = 0. In the OCP notation, this means
that our radius prediction rt = 0 ≤ r∗t , therefore the subgradient g∗t evaluated at rt satisfies g∗t ≤ 0. Back to the notation of
Algorithm 1, we have gt ≤ 0, therefore after clipping gt,clip ≤ 0. Putting things together,

gt,clip (x̃t − xt) ≥ 0.

That is, the condition in Algorithm 1 that triggers g̃t,clip = 0 is impossible, therefore g̃t,clip always equals gt,clip.

C.2. Omitted proofs

Moving to the analysis, we first prove the key lemma connecting the prediction magnitude of ACP to the coverage metric
S∗
t , Eq.(11). This is divided into two steps.

• First (Lemma C.1), we approximate the prediction rule of ACP , such that rt+1 characterizes the discounted sum of
clipped gradients

S∗
t,clip = −

t∑
i=1

t−1∏
j=i

λj

 g∗i,clip, (16)

which is an internal quantity of Algorithm 4.

• The second step (Lemma C.2) is connecting S∗
t,clip to the unclipped version S∗

t , Eq.(11). This is the version presented
in the main paper.
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Algorithm 4 The proposed OCP algorithm ACP .

Require: Hyperparameter ε > 0 (default ε = 1).
1: Initialize S∗

0,clip = 0, V ∗
0,clip = 0, G∗

0 = 0.
2: for t = 1, 2, . . . do
3: If G∗

t−1 = 0, define the unprojected prediction r̃t = 0. Otherwise,

r̃t = ε · erfi

 S∗
t−1,clip

2
√
V ∗
t−1,clip + 2G∗

t−1S
∗
t−1,clip + 16

(
G∗

t−1

)2


−
εG∗

t−1√
V ∗
t−1,clip + 2G∗

t−1S
∗
t−1,clip + 16

(
G∗

t−1

)2 exp


(
S∗
t−1,clip

)2
4
(
V ∗
t−1,clip + 2G∗

t−1S
∗
t−1,clip + 16

(
G∗

t−1

)2)
 .

4: Predict rt = Π[0,∞) (r̃t).
5: Receive the OCP loss gradient g∗t ∈ R and the discount factor λt−1 ∈ (0,∞).
6: Clip g∗t by defining

g∗t,clip = Π[−λt−1G∗
t−1,λt−1G∗

t−1]
(g∗t ) .

7: Compute running statistics of past observations,

S∗
t,clip = −

t∑
i=1

t−1∏
j=i

λj

 g∗i,clip, V ∗
t,clip =

t∑
i=1

t−1∏
j=i

λ2j

∥∥g∗i,clip∥∥2 , G∗
t = max

i∈[1:t]

t−1∏
j=i

λj

 ∥g∗i ∥ .
8: end for

Lemma C.1. Consider S∗
t,clip from Eq.(16). ACP (Algorithm 4) guarantees for all t,

∣∣S∗
t,clip

∣∣ ≤ 2
√
V ∗
t,clip

(
1 +

√
log (1 + 2rt+1ε−1)

)
+ 13G∗

t

(
1 +

√
log (1 + 2rt+1ε−1)

)2
,

where V ∗
t,clip and G∗

t are internal quantities of Algorithm 4.

Proof of Lemma C.1. Throughout this proof we will consider the internal variables of Algorithm 4. The superscript ∗ are
always removed to simplify the notation. Assume without loss of generality that internally in Algorithm 4, Gt ̸= 0 for the
considered t. Otherwise, all the gradients g1, . . . , gt are zero, which makes the statement of the lemma obvious.

To upper-bound St,clip, the analysis is somewhat similar to the control of Fenchel conjugate in (Zhang et al., 2024,
Lemma B.1), although the latter serves a different purpose. Consider the input argument of the erfi function in the definition
of rt+1. There are two cases.

• Case 1: St,clip < 2
√
Vt,clip + 2GtSt,clip + 16G2

t .
With straightforward algebra,

S2
t,clip − 8GtSt,clip − 4

(
Vt,clip + 16G2

t

)
< 0,

St,clip ≤ 4Gt +
√
16G2

t + 4 (Vt,clip + 16G2
t ) ≤ 2

√
Vt,clip + 13Gt.

• Case 2: St,clip ≥ 2
√
Vt,clip + 2GtSt,clip + 16G2

t .
Since Gt ̸= 0, Algorithm 4 predicts rt+1 = Π[0,∞)(r̃t+1), where

r̃t+1 = ε · erfi

(
St,clip

2
√
Vt,clip + 2GtSt,clip + 16G2

t

)
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− εGt√
Vt,clip + 2GtSt,clip + 16G2

t

exp

[
S2
t,clip

4(Vt,clip + 2GtSt,clip + 16G2
t )

]
.

Due to a lower estimate of the erfi function (Zhang et al., 2024, Lemma A.3), for all x ≥ 1, erfi(x) ≥ exp(x2)/2x.
Then,

erfi

(
St,clip

2
√
Vt,clip + 2GtSt,clip + 16G2

t

)
≥
√
Vt,clip + 2GtSt,clip + 16G2

t

St,clip
exp

[
S2
t,clip

4(Vt,clip + 2GtSt,clip + 16G2
t )

]
,

and simple algebra characterizes the multiplier on the RHS,√
Vt,clip + 2GtSt,clip + 16G2

t

St,clip
− 2Gt√

Vt,clip + 2GtSt,clip + 16G2
t

=
Vt,clip + 16G2

t

St,clip

√
Vt,clip + 2GtSt,clip + 16G2

t

≥ 0.

Therefore,

rt+1 ≥ r̃t+1

≥ ε

2
erfi

(
St,clip

2
√
Vt,clip + 2GtSt,clip + 16G2

t

)
+ ε exp

[
S2
t,clip

4(Vt,clip + 2GtSt,clip + 16G2
t )

]

×

(√
Vt,clip + 2GtSt,clip + 16G2

t

2St,clip
− Gt√

Vt,clip + 2GtSt,clip + 16G2
t

)

≥ ε

2
erfi

(
St,clip

2
√
Vt,clip + 2GtSt,clip + 16G2

t

)
.

Due to another estimate of erfi−1 (Zhang et al., 2024, Lemma A.4), for all x ≥ 0 we have erfi−1(x) ≤ 1+
√

log(x+ 1).
Then,

St,clip ≤ 2
√
Vt,clip + 2GtSt,clip + 16G2

t · erfi
−1
(
2rt+1ε

−1
)

≤ 2
√
Vt,clip + 2GtSt,clip + 16G2

t

(
1 +

√
log (1 + 2rt+1ε−1)

)
.

Similar to the algebra of Case 1,

St,clip ≤ 2
√
Vt,clip

(
1 +

√
log (1 + 2rt+1ε−1)

)
+ 13Gt

(
1 +

√
log (1 + 2rt+1ε−1)

)2
.

Combining the two cases, we have

St,clip ≤ 2
√
Vt,clip

(
1 +

√
log (1 + 2rt+1ε−1)

)
+ 13Gt

(
1 +

√
log (1 + 2rt+1ε−1)

)2
.

That is, St,clip is now bounded from the above by Õ(
√
Vt,clip).

On the other side, we now consider bounding St,clip from below. This is a classical induction argument similar to (Zhang
et al., 2024, Lemma 4.1). Consider any time index i ∈ [1 : t],

• If Si−1,clip ≤ 0, then according to the prediction rule of Algorithm 4, we have ri = 0 regardless of the value of Gi−1.
Then, due to the structure of OCP, we have gi ≤ 0, thus gi,clip ≤ 0 and Si,clip = λi−1Si−1,clip−gi,clip ≥ λi−1Si−1,clip.

• If Si−1,clip > 0, then Si,clip ≥ λi−1Si−1,clip − |gi,clip| ≥ −Gi.

Combining these two and using an induction from S0,clip = 0, we have St,clip ≥ −Gt.

Summarizing the above completes the proof.
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The following lemma is the full version of Lemma 3.1 presented in Section 3; we further use V ∗
t,clip ≤ V ∗

t there.

Lemma C.2. ACP guarantees for all t,

|S∗
t | ≤ 2

√
V ∗
t,clip

(
1 +

√
log (1 + 2rt+1ε−1)

)
+ 14G∗

t

(
1 +

√
log (1 + 2rt+1ε−1)

)2
,

where V ∗
t,clip and G∗

t are internal quantities of Algorithm 4.

Proof of Lemma C.2. Given Lemma C.1, the remaining task is connecting |S∗
t,clip| to |S∗

t |. To this end,

|S∗
t | ≤

∣∣S∗
t,clip

∣∣+ t∑
i=1

t−1∏
j=i

λj

∣∣g∗i − g∗i,clip∣∣ ,
and the sum on the RHS is at most G∗

t following the proof of Theorem 3.

The next lemma exploits the bounded domain assumption.

Lemma C.3. If maxtr∗t ≤ D, then without knowing D, ACP guarantees for all t,

|S∗
t | ≤ 2

√
V ∗
t,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 15G∗

t

(
1 +

√
log (1 + 2Dε−1)

)2
,

where V ∗
t,clip and G∗

t are internal quantities of Algorithm 4.

Proof of Lemma C.3. Consider S∗
t,clip defined in Eq.(16). We now use induction to show that

∣∣S∗
t,clip

∣∣ ≤ 2
√
V ∗
t,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 14G∗

t

(
1 +

√
log (1 + 2Dε−1)

)2
,

and after that, we complete the proof using |S∗
t | ≤

∣∣∣S∗
t,clip

∣∣∣+G∗
t , just like Lemma C.2.

Concretely, note that such a statement on
∣∣∣S∗

t,clip

∣∣∣ trivially holds for t = 1. Then, suppose it holds for any t. In the t+ 1-th
round, there are two cases.

• Case 1: rt+1 ≤ D.
Due to Lemma C.1, we have∣∣S∗

t,clip

∣∣ ≤ 2
√
V ∗
t,clip

(
1 +

√
log (1 + 2rt+1ε−1)

)
+ 13G∗

t

(
1 +

√
log (1 + 2rt+1ε−1)

)2
≤ 2
√
V ∗
t,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 13G∗

t

(
1 +

√
log (1 + 2Dε−1)

)2
.

∣∣S∗
t+1,clip

∣∣ ≤ λt ∣∣S∗
t,clip

∣∣+ ∣∣g∗t+1,clip

∣∣
= 2
√
λ2tV

∗
t,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 13λtG

∗
t

(
1 +

√
log (1 + 2Dε−1)

)2
+
∣∣g∗t+1,clip

∣∣
≤ 2
√
V ∗
t+1,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 14G∗

t+1

(
1 +

√
log (1 + 2Dε−1)

)2
.

• Case 2: rt+1 > D.
In this case, rt+1 > r∗t+1 so the OCP gradient g∗t+1 ≥ 0, and the clipped gradient g∗t+1,clip ≥ 0. Meanwhile, in order to
have rt+1 > D ≥ 0, we must have S∗

t,clip ≥ 0 from the prediction rule. Then, due to the same signs of g∗t+1,clip and
S∗
t,clip, we have∣∣S∗

t+1,clip

∣∣ = ∣∣λtS∗
t,clip − g∗t+1,clip

∣∣
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≤ λt
∣∣S∗

t,clip

∣∣ ∨ ∣∣g∗t+1,clip

∣∣
≤ 2
√
λ2tV

∗
t,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 14λtG

∗
t

(
1 +

√
log (1 + 2Dε−1)

)2
≤ 2
√
V ∗
t+1,clip

(
1 +

√
log (1 + 2Dε−1)

)
+ 14G∗

t+1

(
1 +

√
log (1 + 2Dε−1)

)2
.

Combining the two cases, the induction statement holds in the t+ 1-th round. Finally we use |S∗
t | ≤

∣∣∣S∗
t,clip

∣∣∣+G∗
t .

With everything above, Theorem 5 is a simple corollary.
Theorem 5. Without knowing D, ACP guarantees that for all T ∈ N+, we have the discounted coverage bound

|S∗
T | ≤ O

(√
V ∗
T log(Dε−1) ∨G∗

T log(Dε−1)

)
,

and the discounted regret bound from Theorem 3.

Proof of Theorem 5. The regret bound trivially applies. The coverage bound follows from Lemma C.3 and the fact that
V ∗
t,clip ≤ V ∗

t . Then we consider the asymptotic regime of D ≫ ε.

D. Detail of Experiment
This section presents details of our experiment. Our setup builds on the great work of (Bhatnagar et al., 2023).

Setup We test our OCP algorithm (Algorithm 4, which is based on OCO Algorithm 1 and 2) in the context of classifying
altered images that arrive in a sequential manner. Given a parameterized prediction set Ct(·) dependent on the label provided
by a base ML model, at each time step our algorithms predict the radius rt that corresponds to the uncertainty of the base
model’s prediction, resulting in the prediction set Ct(rt). We adopt the procedure, code, and base model from (Bhatnagar
et al., 2023). Given a sequence of images, we expect that if images are increasingly “corrupted” by blur, noise, and other
factors, the prediction set size must increase to account for the deviation from the base model’s training distribution. We
hypothesize that the rate of such a distribution shift also affects the OCP algorithms’ performance, thus we test the cases
where the corruption levels shift suddenly versus gradually.

Our algorithms are specifically designed to not use knowledge of the maximum magnitude D of the optimal radius r∗t (i.e.,
the maximum uncertainty level). In some prediction scenarios, it is conceivable that D is impossible to know a priori and
thus cannot be used as a hyperparameter. In contrast, certain algorithms from the literature use an empirical estimate of D
from an offline dataset, which amounts to “oracle tuning”. These include the Strongly Adaptive Online Conformal Prediction
(SAOCP) and Scale-Free Online Gradient Descent (SF-OGD) proposed by (Bhatnagar et al., 2023). In our study, we create a
modified version of SF-OGD called “Simple OGD”, that does not use such an oracle tuning. The only hyperparameter that
we set is the learning rate, which we set to 1 for Simple OGD. Note that despite the name, Simple OGD is also gradient
adaptive, which differs from the ACI algorithm from (Gibbs & Candes, 2021).

Baselines We perform OCP for ten different algorithms:

1. MAGL-D: We test our Algorithm 1 with ε = 1 and discount factor λt = 0.999, which we name MAGL-D (Magnitude
Learner with Lipschitz Constant Estimate and Discounting).

2. MAGL: We test Algorithm 2, the undiscounted algorithm that uses the running estimate of the Lipschitz constant, ht,
with ε = 1. We name this algorithm MAGL (Magnitude Learner with Lipschitz constant estimate).

3. MAGDIS: We also test Algorithm 5 with ε = 1 and λt = 0.999, which is a simplified version of Algorithm 1 that
essentially sets ht = 0, does not clip gt, and initializes vt > 0. We name this algorithm MAGDIS (Magnitude Learner
with Discounting).

Using the implementation from (Bhatnagar et al., 2023), we also obtain results for SAOCP, SF-OGD, Simple OGD, Standard
Split Conformal Prediction (SCP) (Vovk et al., 2005), Non-Exchangeable SCP (NExCP) (Barber et al., 2023), Fully-Adaptive
Conformal Inference (FACI) (Gibbs & Candès, 2022), and FACI-S (Bhatnagar et al., 2023).
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Algorithm 5 Modified 1D magnitude learner on [0,∞).

Require: Hyperparameter ε > 0.
1: Initialize parameters v1 > 0, s1 = 0.
2: for t = 1, 2, . . . do
3: Define the unprojected prediction x̃t,

x̃t = ε · erfi
(

st
2
√
vt

)
.

4: Predict xt = Π[0,∞) (x̃t), the projection of x̃t to the domain [0,∞).
5: Receive the 1D loss gradient gt ∈ R and the discount factor λt−1 ∈ (0,∞).
6: If gtx̃t < gtxt, define a surrogate loss gradient g̃t = 0. Otherwise, g̃t = gt.
7: Update vt+1 = λ2t−1vt + g̃2t , st+1 = λt−1st − g̃t.
8: end for

Metrics We choose a targeted coverage rate of 90% for all experiments, which means α = 0.1. To quantify the algorithms’
performance, we follow the definitions from (Bhatnagar et al., 2023) to evaluate the coverage (local and average), prediction
width (local and average), worst-case local coverage error (LCEk), and runtime. They are defined as follows.

• First, let Yt be the true label of the t-th image, and for brevity, let Ĉt ← Ct(rt) be the t-th prediction set over the labels.
Then, errt is the indicator function of miscoverage at time t:

errt := 1
[
Yt /∈ Ĉt

]
,

where errt = 1 if the prediction set Ĉt does not include the true label Yt.

• Local Coverage Over any sliding window, k, the local coverage is defined as:

LocalCoverage(t) :=
1

k

t+k−1∑
i=t

(1− erri) .

For all trials, we used an interval length of k = 100.

• Average Coverage The average coverage is similarly defined, but averaged over the total time steps T . For all
experiments, T = 6011.

Avg.Coverage :=
1

T

T∑
i=0

(1− erri) .

• Local Width The local width is the cardinality of Ĉt, averaged over the length k time window:

LocalWidth(t) :=
1

k

t+k−1∑
i=t

∣∣∣Ĉt

∣∣∣ .
It is compared to the “best fixed” local width defined as follows. If we let C∗

t ← Ct(r∗t ) denote the optimal prediction
set had we known the optimal radius r∗t beforehand, then the best fixed local width LocalWidth∗(t) is defined as the
1− α quantile of {|C∗

i | ; i ∈ [t : t+ k − 1]}.

• Average Width Similarly, the average width is defined as:

Avg.Width :=
1

T

T∑
t=1

∣∣∣Ĉt

∣∣∣ .
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• Local Coverage Error (LCE) The LCE over the sliding window of length k is defined as:

LCEk := max
τ,τ+k−1⊆[1,T ]

∣∣∣∣∣α− 1

k

τ+k−1∑
t=τ

errt

∣∣∣∣∣ .
Essentially, it means the largest deviation of the empirical miscoverage rate (evaluated over sliding time windows of
length k) from the targeted miscoverage rate α.

Main results Our main results are shown in Figure 1 and Table 1 (Section 4). The purpose of Figure 1 is to demonstrate the
dependence of the local coverage and the local width on (1) sudden and (2) gradual distribution shifts (i.e., the time-varying
corruption level).9 The purpose of Table 1 is to summarize the performance of our algorithms and compare them to the
baselines; the results there correspond to the case of sudden distribution shift.
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Figure 1. The local coverage (first row), local width (second row), and corresponding corruption level (third row) of our algorithms.
Results are obtained using corrupted versions of TinyImageNet, with time-varying corruption level (distribution shift). (Left) Results
for sudden changes in corruption level. (Right) Results for gradual changes in corruption level. The distribution shifts every 500 steps.
Moving averages are plotted with a window size of 100 time steps (k = 100).

Figure 1 justifies the validity of our algorithms. Specifically, the local coverage of our algorithms fluctuate around the target
coverage of 0.9 for both sudden and gradual distribution shifts. Similarly, the local width approximately replicates the best
fixed local width, LocalWidth∗(t), as shown in Figure 1 (middle row).

Hyperparameter sensitivity We also test the algorithms’ sensitivities to the offline estimate of D, which we denote
as Dest. The baselines SAOCP and SF-OGD require this parameter to initialize, while Simple OGD and all three of our
algorithms do not. To this end, we rerun the experiments above and change the ratio of Dest to the true value D. The
following settings are tested:

Dest

D
=
{
10−3, 10−2, 10−1, 100, 101, 102, 103

}
.

We plot the influence of Dest on the average coverage and the average width in Figure 2. For these experiments, we use the
case when image corruptions are sudden. Coverage being much larger or much less than 0.9 is not a desirable behavior;
given satisfactory coverage, lower width is desirable.

As Dest/D increases, both the average coverage and average width increase for SAOCP and SF-OGD. In the opposite
direction, the average coverage and average width also decrease as Dest/D decrease for SAOCP and SF-OGD. When
Dest = D, Simple OGD and SF-OGD have approximately equivalent performance. This is not to say that using an offline

9For better visibility, a 1D Gaussian filter is applied to the local width and the local coverage plots, same as in (Bhatnagar et al., 2023).
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Figure 2. The average coverage (first row) and average width (second row) as a function of the estimated maximum radius, Dest relative
to the true radius D. The performance of SF-OGD and SAOCP (Bhatnagar et al., 2023) are sensitive to Dest/D. Averages are taken over
the entire time horizon, where the total time steps T = 6011.

estimate of Dest/D does not improve performance. The catch is that, for the particular experimental dataset, setting the
learning rate to 1 in Simple OGD coincidentally just happens to be a well-picked learning rate, given the true value of the
maximum radius magnitude D. In contrast, our magnitude learners remain fixed under variations in Dest/D, since they do
not need Dest to initialize. The baselines SCP, NExCP, FACI, and FACI-S are not presented in Figure 2 as to better highlight
the performance of SAOCP, OGD, and our magnitude learners. Benchmarks on these additional baselines can be found in
(Bhatnagar et al., 2023).
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Figure 3. The runtime per time step of each algorithm, normalized to the runtime of Simple OGD. The runtime of SAOCP is longest due to
it being a meta-algorithm that initializes SF-OGD on each time step.

Runtime We also measure the time for each algorithm to complete a single prediction. Runtime results are provided in
Figure 3. The results are normalized relative to the runtime of Simple OGD. Note the runtime standard deviations in Table 1.
Accounting for standard deviations, the runtime differences between Simple OGD, SF-OGD, MAGL, and MAGDIS are
negligible. The runtime of SAOCP is longest due to it being a meta-algorithm that initializes SF-OGD on each time step, c.f.,
Appendix A.
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