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Abstract
Deep Reinforcement Learning (DRL) agents have
demonstrated impressive success in a wide range
of game genres. However, previous research
primarily focuses on optimizing DRL compe-
tence rather than addressing the challenge of
prolonged player interaction. In this paper, we
propose a practical DRL agent system for fight-
ing games, named Shūkai, which has been suc-
cessfully deployed to Naruto Mobile, a popular
fighting game with over 100 million registered
users. Shūkai quantifies the state to enhance gen-
eralizability, introducing Heterogeneous League
Training (HELT) to achieve balanced competence,
generalizability, and training efficiency. Further-
more, Shūkai implements specific rewards to align
the agent’s behavior with human expectations.
Shūkai’s ability to generalize is demonstrated by
its consistent competence across all characters,
even though it was trained on only 13% of them.
Additionally, HELT exhibits a remarkable 22%
improvement in sample efficiency. Shūkai serves
as a valuable training partner for players in Naruto
Mobile, enabling them to enhance their abilities
and skills.

1. Introduction
Deep Reinforcement Learning (DRL) has demonstrated
its capability in sequential decision-making, ranging from
robotics (Schulman et al., 2015; Haarnoja et al., 2018), dia-
logue systems (Ouyang et al., 2022; Touvron et al., 2023),
and games (Mnih et al., 2015; Silver et al., 2017; Vinyals
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et al., 2019). Games (Mnih et al., 2015; Moravčı́k et al.,
2017; Silver et al., 2017; Brown & Sandholm, 2018; Vinyals
et al., 2019), in particular, provide a cost-effective and nat-
ural environment for training DRL agents due to the ease
of data generation. However, previous work (Berner et al.,
2019; Jaderberg et al., 2019; Ye et al., 2020b) primarily fo-
cuses on enhancing agent competence to professional levels
and often overlooks the necessity of improving the human
player experience in commercial applications (Csikszentmi-
halyi, 2000; Bakker et al., 2011; Cheng et al., 2016).

In gaming, DRL’s potential extends beyond achieving high
competence. The integration of DRL agents as adversaries
in Player versus Environment (PvE) settings promises a
richer gaming experience by offering dynamic and unpre-
dictable interactions (Shafer, 2012). However, this inte-
gration is remarkably challenging. The computational de-
mands of training DRL agents in modern games with exten-
sive character pools are formidable. For instance, training
scenarios can escalate in complexity with the increase in
character matchups, as seen in cases requiring substantial
resources (Silver et al., 2017; Vinyals et al., 2019; Ye et al.,
2020a). Furthermore, the sole pursuit of surpassing human
performance in DRL agents may not necessarily enhance
the player experience and restricts the practical deployment
of DRL agents in games (Cheng et al., 2016; Bakker et al.,
2011). For example, players with lower competitive skill
levels may find it frustrating to face overly strong agents.
The inability to overcome such opponents can rapidly dimin-
ish a player’s interest in the game. Therefore, it is imperative
to ensure that DRL agents exhibit varying levels of competi-
tiveness, aligning with the diverse skill levels of players and
providing an enjoyable gaming experience.

To address these challenges, this paper proposes a DRL
agent system called Shūkai, which is specifically designed
for fighting games. Shūkai utilizes a unified DRL model
capable of managing a diverse roster of characters, thereby
significantly reducing the complexity inherent in large-scale
character sets. Shūkai significantly reduces the complex-
ity associated with extensive character rosters and keeps
a promising generalization ability. To counter potential
overfitting due to training on a subset of characters (Be-
jani & Ghatee, 2021; Cobbe et al., 2019), our approach
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includes measures to enhance the generalizability of the
unified model. Notably, Shūkai features Heterogeneous
League Training (HELT), a novel method that amalgamates
agents of diverse structures, broadening the policy space and
achieving a balance between competitive performance (com-
petence) and policy generalization. Aligning agent behavior
with human expectations is achieved through meticulously
designed rewards, promoting a human-like gaming expe-
rience. A behavior evaluation system, informed by expert
insights, is utilized to identify and align the behavioral nu-
ances of DRL agents with human players.

Shūkai has been extensively evaluated and deployed in
Naruto Mobile, a renowned fighting game featuring over
400 characters and attracting more than 100 million regis-
tered players. The generalization of Shūkai is evidenced by
its consistent competence across all characters, despite being
trained on only 13% of them. HELT also presents 22% im-
provement in terms of sample efficiency. Moreover, Shūkai
serves as a training partner for players in Naruto Mobile,
beneficial for players to improve their abilities. The human-
agent alignment of Shūkai has positively impacted player
engagement, as evidenced by significant improvements in
player retention rates through the A/B test. Specifically,
the game has experienced a significant next-day retention
rate of over 50%, a 7-day retention rate of over 20%, and a
30-day retention rate of over 10%. It has also experienced a
maximum growth rate of 5% and an average growth rate of
4%. These enhancements in player retention hold significant
importance for a commercial game with a user base in the
millions. These improvements demonstrate the real-world
impact of DRL and give an example of the ground of DRL.

In summary, our contributions are threefold. i) We present
a practical DRL agent system, Shūkai, introducing HELT
to improve agents’ ability to generalization, and design
rewards that align agents with human-player. ii) Shūkai
demonstrates robust generalizability and improved training
efficiency in Naruto Mobile. The interaction with human
players and the alignment of agent behavior with player
expectations are comprehensively validated. iii) This work
marks a further step in the deployment of DRL systems in
a large-scale commercial fighting game. To the best of our
knowledge, this is the first example of a DRL system being
deployed in a large-scale commercial fighting game.

2. Preliminaries
In this section, we first introduce the commercial fighting
game Naruto Mobile and then discuss the problem formula-
tion.

2.1. Naruto Mobile

Naruto Mobile is an online fighting game developed by Ten-
cent Games with over 100 million registered users. Naruto

Mobile has a large-scale character pool with more than 400
characters (ninjas). Each ninja has its special unique char-
acteristics. Figure 1 shows the interface of Naruto Mobile.
Each episode of Naruto Mobile consists of two adversarial
ninjas. Players of Naruto Mobile can choose a ninja from
the character pool and use the ninja to fight against oppo-
nents. The winning condition for all players is to defeat their
opponents, and the episode terminates when the condition is
satisfied or the timeout. For more details of Naruto Mobile,
readers can find in Appendix A.

Fighting games such as Naruto Mobile can be considered as
a Markov decision process (Sutton & Barto, 2018). At each
time step, the agent records various pieces of information
in their observation, including basic information, skill infor-
mation, current skill information (referring to the activated
skills), hit information (including the hitbox and hurt box),
element information (describing entities with motion logic
independent of characters, such as the behavior of skills),
and buff information (referring to temporary enhancement
effects).

Character

Energy

Move

Substitution

Punch

SkillsHit Box Hurt Box

Scroll

Summon

Figure 1. The interface of Naruto Mobile. The player selects a
ninja from the character pool to fight against the opponent. The
winning condition is to defeat the opponent. Each ninja has three
skill buttons and a punch button, controlled by a virtual joystick.
The hitbox and hurt box serve as fundamental game mechanics
in Naruto Mobile, although they are not visible to the players.
The substitution consumes energy and can be used to counter
enemy attacks, creating opportunities for counterattacks. Scrolls
and summons are additional skills with special effects, such as
providing buffs.

In the state design, all this information is categorized into
distinguishable categories to effectively model both the self
and opponents (Figure 3). This differentiation involves the
utilization of ID information, which provides directed ref-
erences to characters, skills, actions, etc., and attribution
information, which represents the numerical values of enti-
ties (e.g., health points, cooldown values of skills, remaining
time and location of the hurt box, etc.). The action space
is categorized into movement, skills, and skill direction
(specifically included to cater to skills that require specific
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orientations), ensuring the versatility of the model. For more
details about the state, please refer to Appendix C.1.

2.2. Problem Formulation

Considering the opponent as a component of the environ-
ment, the MDP for Naruto Mobile’s training agent is for-
malized as a six-element tuple ⟨S,A, P,R, T, γ⟩. Here, S
represents the state space and A denotes the action space. R
is defined as the reward function, P encapsulates the state
transition probabilities, T signifies the time horizon, and
γ is the discount factor. At each discrete time step t, the
agent observes the current state of the environment, denoted
as st ∈ S. The agent’s policy π, a mapping from states
to actions, selects an action at based on the current state,
formalized as at ∼ π(·|st). The state then transitions to
the next state st+1 ∼ P (·|st, at), and the agent receives a
reward rt+1.

The state value function V and the action function Q are
always leveraged to optimize policy. They are defined as:

Vπ(s) = Eπ[

T∑
k=0

γkRt+k+1|St = s],

Qπ(s) = Eπ[

T∑
k=0

γkRt+k+1|St = s,At = a].

The advantage function A(s, a) = Q(s, a)− V (s) is used
to measure the quality of action a compared to the average
quality.

3. Method
The application of the DRL agent system to Naruto Mobile
presents several key challenges. Naruto Mobile features a
large-scale character pool with over 400 characters, which is
uncommon in other fighting games. While it may seem nat-
ural to assign a separate model to each character, deploying
over 400 models in the game is unfeasible.

An intuitive approach is to use a unified model to control
multiple characters, but this introduces another challenge.
As the number of characters increases, the number of poten-
tial matchups between different characters also grows. In
the case of 400 characters, the possible matchups reach up
to 16 × 104, which is not favorable to training efficiency.
To address this issue, one possible solution is to train on a
subset of characters. However, this approach may lead to
overfitting of the model to the subset (Cobbe et al., 2019),
making the generalizability of the model decrease, resulting
in the failure to adapt to unfamiliar characters who are out
of the training subset.

Therefore, the tricky challenge in designing the DRL agent
system for Naruto Mobile lies in striking a balance between

training efficiency, model competence, and generalization
ability.

To address these challenges, Shūkai applies different learn-
ing techniques such as heterogeneous neural network archi-
tecture, a unified model for controlling multiple characters,
quantifying the network input to enhance the generalizabil-
ity, and Heterogeneous League Training (HELT) to improve
the training efficiency and competence.

3.1. Heterogeneous Agents

To use a unified model to control multiple characters while
generalizing to the characters out of the training subset,
it is necessary to enable the network to learn more gener-
alized knowledge rather than focusing on finding optimal
responses within a subset of characters. A feasible approach
is to imperfectize the network’s input to enhance the model’s
generalization ability (Schaul et al., 2015; Dosovitskiy &
Koltun, 2016; Finn et al., 2017).

As mentioned in Section 2.2, in Narotu Mobile, all the in-
formation from the client is divided into two parts, the ID
information directly refers to characters, skills, actions, etc.,
and the attribution information represents the numerical
values of game entities. Based on ID information and attri-
bution information, three heterogeneous networks for agents
are employed:

• Full-ID-State (FIS): Modeling self and opponent uti-
lizing ID information and attribution information.

• Quantitative-State (QS): Modeling self with the ID
information and attribution information while model-
ing the opponent only with the attribution information.

• Full-Quantitative-state (FQS): Modeling self and op-
ponent utilizing only attribution information, without
any ID information.

Quantitative states essentially refer to the utilization of in-
complete information to construct representation. By em-
ploying quantitative states, the network shifts its focus from
finding optimal decisions for specific actions of a designated
character to learning knowledge about the game itself, thus
enhancing its generalization ability. These agents with dif-
ferent structures will be applied in Heterogeneous League
Training.

3.2. Heterogeneous League Training

To balance the competence and generalization ability of
the DRL model, while considering training efficiency,
Shūkai introduce Heterogeneous League Training (HELT).
HELT adopts a similar organizational structure to AlphaS-
tar (Vinyals et al., 2019), utilizing the main agent, main
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Figure 2. Illustration of HELT. As time progresses, the main agent
undergoes continuous training. Once it meets the win rate condi-
tion or reaches the timeout, a copy of the main agent is added to
the policy pool. The main agent’s objective is to defeat all oppo-
nents. Simultaneously, the main exploiter engages in battles with
the main agent to discover its weaknesses. After meeting the win
rate condition or reaching the timeout, the main exploiter is reset,
and its copy is added to the policy pool. The league exploiter fights
with all agents, and once the win rate condition or timeout is met,
its copy is also added to the policy pool, with a 25% probability of
being reset. More details can find in Appendix C.1

exploiter, and league exploiter to construct the league. The
main agent serves as the primary training agent, tasked
with defeating all opponents within the league. The main
exploiter engages exclusively in battles against the contem-
porary main agent, with the primary objective of identifying
weaknesses in the contemporary main agent. The league
exploiter is employed to enhance the diversity within the
league, ensuring that the main agent encounters a wide range
of opponents.

However, all the agents are homogeneous in AlphaStar,
which may lead to overlapping exploration among agents
within the league, resulting in reduced diversity. This reduc-
tion in diversity can have implications for the competence
and generalization ability of the main agent and ultimately
hinder the efficiency of training (Lanctot et al., 2017). In
Shūkai’s setting, the league of HELT consists of three dis-
tinct types of agents, differing primarily both in their net-
work structure and in their mechanism for selecting oppo-
nent mixture. Different structures mentioned in Section 3.1
are used in HELT.

The illustration of HELT is shown in Figure 2. Firstly,
the QS agent or the FQS agent serves as the main agent
to enhance generalizability. The main agents leverage the
PFSP (Vinyals et al., 2019) mechanism that adapts the mix-
ture probabilities proportionally to the win rate of each
opponent against the agent. Secondly, the main exploiter
shares the same structure (not the parameters) as the main
agent and exclusively plays against the contemporary main
agent. By engaging in battles against the contemporary main
agent, the main exploiter assists in exploring overlooked
aspects and helps the main agent uncover potential areas of
improvement. Thirdly, the FIS agent serves as the league ex-
ploiter. The FIS agent utilizes ID information, enabling it to

learn optimal responses for all characters within the training
subset. As a result, it can quickly improve the competence
of the league exploiter, thereby enhancing the overall train-
ing efficiency. When any agent achieves a winning rate of
80% or encounters a timeout in the settings, it will load its
copy into the league. After loading the current copy into
the league, the main exploiter will reset, whereas the league
exploiter has a 25% probability of resetting. The main agent
never reset.

Due to the structural differences between the league ex-
ploiter and the main agent, their exploration directions
differ, thereby expanding the diversity within the policy
space (Lanctot et al., 2017). This diversity better assists the
main agent in learning generalized knowledge. Also, the
FIS agent can quickly improve its competence cause it can
find the best response to the characters in the training subset.
Therefore, the league exploiter with the FIS structure will
provide more valuable data to the main agent resulting in
accelerating the training efficiency. The opponent policy
selecting mechanism is PFSP (Vinyals et al., 2019), readers
can find the details in Appendix C.2.

3.3. Agent-Human Alignment

Deploying Shūkai into Naruto Mobile presents another key
challenge of aligning with human players’ expectations.
The goal of the DRL agent system is to assist players in
improving their abilities, so it is essential to provide an
agent that offers a certain level of challenge while still being
beatable. To achieve this alignment, we introduce additional
action masks to constrain the behavior of the DRL agent. In
Shūkai, we reduce the frequency of agent predictions to align
with the reaction speed of human players. We also designed
a mechanism that controls the execution probability of the
action to generate different levels of Shūkai.

To enhance the human-like behavior of the DRL agent, we
collected a significant amount of player gameplay data and
discovered that players of Naruto Mobile primarily fall into
three archetypes ⟨balanced, cautious, aggressive⟩. Ag-
gressive players tend to favor proactive attacks, cautious
players lean towards defensive counterattacks, and balanced
players adapt their actions based on the current situation.
Based on these observations, we designed three different
types of reward functions to align with the behavioral styles
of human players.

• Balanced. The agent will trade off the opponent’s re-
maining health point, its health point, and the available
resources. It aims to strategically defeat the opponent
at the right moment and in a suitable manner.

• Cautious. The agent will prioritize its resources and
remaining health points, aiming to minimize damage
taken while winning the game.
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Figure 3. The learning structure of FIS, QS, and FQS. FIS uses both ID and attribution information (numerical information) to model self
and opponent. QS uses ID information to model self and only attribution information to model opponent. FQS models self and opponent
only with attribution information. In this figure, the red dashed box contains FIS, the blue dashed box contains QS, and the green dashed
box contains FQS. These features are processed by the network and then concatenated with the environment feature, the concatenated
features are used to predict actions by the policy.

• Aggressive. The agent will focus on the opponent’s
remaining health points. The objective of the agent is
to defeat the opponent as quickly as possible.

These reward functions can be used as modular compo-
nents and integrated into HELT. By utilizing HELT with
these reward functions, we can facilitate the development of
multi-style agents. Also, we can prevent DRL agents from
making confusing or seemingly illogical actions that players
may find off-putting. This helps to maintain the illusion
of human-like behavior and avoid detection by the players.
Please check Section 5 for the agent-human alignment.

3.4. Policy Improvement

In Section 2.2, by modeling the fighting game as a Markov
process, we can leverage reinforcement learning algorithms
to optimize the agent’s strategies. We use the Proximal Pol-
icy Optimization (PPO) algorithm (Schulman et al., 2017)
in our system. PPO trains a value function Vϕ(st) with
a policy πθ(at|st), the utilization of importance sampling
makes it highly feasible to apply reinforcement learning
algorithms in distributed scenarios.

In the training process, the trajectories are sampled from
multiple policies, which can exhibit significant deviations
from the current policy πθ. Our updated objectives have
remained consistent with PPO (Schulman et al., 2017):

Lπ(θ) = Et[min(ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât)],

where ρt(θ) = πθ(st|at)/πold(st|at) is the importance
sampling weight and Ât is the advantage estimation (Sutton
& Barto, 2018) that is calculated by Generalized Advantage

Estimation (GAE) (Schulman et al., 2015). More details
can be found in Appendix C.5.

4. Experiments
4.1. Experimental Setup

In this section, we present the experimental results of HELT,
using Naruto Mobile as the evaluation platform. For clarity,
we define the HELT agent as the final version of the main
agent, while the league agents consist of the main agent,
main exploiter, and league exploiter. The terms ‘FIS agent’,
‘QS agent’, and ‘FQS agent’ refer to the FIS, QS, and FQS
network structures, respectively, when they serve as the
main agent. The familiar characters refer to the characters
who are in the training subset, and the unfamiliar characters
refer to the characters who are out of the training subset.

Naruto Mobile has over 400 characters, making it impracti-
cal to train them all simultaneously. To manage this, we cat-
egorized the characters into four distinct levels (S,A,B,C)
based on their in-game strength and expert prior. We con-
structed a training subset by selecting 15 characters from
the S-level, 15 from the A-level, 10 from the B-level, and 10
from the C-level. In total, 50 characters have been chosen
across the four levels (13% of all characters).

In our experimental setup, all agents were trained using
4 NVIDIA T4 GPUs and 3000 CPU cores. The league
training consisted of a main agent, a main exploiter, and a
league exploiter. A total of 12 GPUs and 9000 CPU cores
were utilized for each league training session. The training
process comprised 10 rounds, the first 7 rounds lasting 6
hours each, and the final 3 rounds lasting 12 hours each.
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Figure 4. (a) Competence of different structures serve as the main agent in HELT, FIS agent outperforms other agents. (b) Generalizability
of different structures serves as the main agent in HELT, the competence of the FIS agent dropped by 36%, while the competence of the
QS and FQS agents remained stable. (c) Training efficiency of HELT. After 70 hours of training, HELT achieved a 22% improvement in
competence compared to the QS network with homogeneous league training (HOLT).

4.2. Results

To demonstrate the specific competence of HELT, we con-
structed an ”oracle agent” that had access to all information,
including cheat information from the client. Additionally,
the oracle agent features an expanded character pool, allow-
ing it to choose any character regardless of whether it was
in HELT’s character pool and training a longer time than
HELT agents. HELT agents with different structures are
evaluated by having them compete against the oracle agent,
the competence results are presented in Figure 4(a), and the
generalizability results are presented in Figure 4(b). Each
evaluation consisted of 2500 matches. The characters in the
character pool were uniformly sampled (all the matchups
have been sampled). The competence of the model can be
represented by its Elo score (Elo, 1978), with a higher Elo
score indicating a higher level of competence.

Competence. The competence result is shown in Fig-
ure 4(a). The FIS agents outperformed agents with other
structures. This finding suggests that utilizing ID infor-
mation to model the opponent can significantly enhance
competence when dealing with familiar characters. By in-
corporating this approach, the agents can effectively learn
and adapt to the unique characteristics and optimal strate-
gies of different characters in the training subset, resulting
in improved overall competence.

In contrast, the FQS and QS agents, which quantify the
states, did not perform satisfactorily when facing familiar
characters. Particularly, the FQS network exhibited the
worst competence. This suggests that quantifying the states
can lead to a decrease in competence, and the higher the de-
gree of quantization, the more pronounced the competence
decline.

Generalizability. Figure 4(b) displays the result of gener-
alizability, the results indicate an interesting phenomenon:
when facing the unfamiliar characters, the competence of
the FIS agent dropped by 36%, while the competence of
the QS and FQS agents remained stable, with negligible
competence decline. This result can be attributed to the FIS
agent’s over-reliance on ID information for modeling differ-
ent characters, which reduced its generalization capability.
Conversely, appropriately quantifying the states allowed the
QS and FQS agents to effectively learn the patterns of game-
play. The excellent generalization performance of QS and
FQS agents is crucial in real-game scenarios where targeted
training for all characters is not feasible. Therefore, when
dealing with a large-scale character pool, a purely ID-based
FIS structure may not be the optimal choice.

Training Efficiency. To compare the improvement in train-
ing efficiency brought by HELT, we trained a HELT agent
with a QS network as the main agent and compared it with
a QS network that constructs homogeneous league train-
ing (Vinyals et al., 2019). During the training process, the
training resources and settings for both models are the same.
Specifically, each agent had access to the same number
of GPUs and CPUs and set the same number of training
epochs and time limits to ensure a fair comparison. The
result is shown in Figure 4(c). By comparing the training
results, we observed a significant competence difference.
After 70 hours of training, the HELT system achieved a 22%
improvement in competence compared to the QS network
with homogeneous league training. This indicates that the
HELT system can converge faster and reach a higher level
of competence within the same training time.

The above experimental results indicate that by quantify-
ing states, DRL agents can enhance generalization while
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maintaining competence. The introduction of HELT can
improve training efficiency and enhance the competence of
DRL agents, thereby mitigating key challenges in imple-
menting DRL systems in real-world applications to games.
Due to the considerations of both competence and general-
ization, the QS network has been chosen as the main agent
for training in the practical deployment.

5. Real-world application of Shūkai
5.1. Human Evaluation

The main application of Shūkai in the Naruto Mobile is to
serve as a player’s training partner. The primary purpose is
to enhance the gaming abilities and skills of players through
fighting with Shūkai. Therefore, ensuring a satisfying player
gaming experience is of paramount importance, and the
competence of DRL agents needs to be challenging while
still beatable (Bakker et al., 2011). We classify Shūkai
into three levels: beginner, intermediate, and advanced,
based on the number of frames for delay prediction and
the probability of action execution. The higher the level of
the agent, the lower the delay in frame prediction and the
higher the probability of executing actions.
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Figure 5. The competence of three different levels of Shūkai com-
pete against human players in-game matches. The Elo scores of
different level agents after 30 days are represented in the rightmost
column. After 30 days, Shūkai beginner and Shūkai intermediate
experience a decrease in Elo score, indicating Shūkai can help
players to enhance their abilities. Shūkai advanced maintain its
Elo score, suggesting advanced Shūkai is challenging even for the
skillful player.

The ranking system of Naruto Mobile uses Elo scores, rang-
ing from 0 to 2599. Shūkai are primarily deployed in the
score range of 0-1299. Within this range, we deploy Shūkai
beginner for scores 0-600, Shūkai intermediate for scores
600-999, and Shūkai advanced for scores 999-1299. Shūkai
has been online in Naruto for over a year and has partici-

pated in more than 500 million player-agent matches. We
conducted a competence analysis using a sample of 40 mil-
lion game matches from player gameplay data, collected
over time. The results are displayed in the Figure 5.

In each match, players have a certain probability of being
matched with either Shūkai or other human players as op-
ponents. With players having different skill levels, talents,
and experiences, using human players’ performance against
each other as a baseline could introduce certain inconsisten-
cies. We ultimately chose to focus on Shūkai’s Elo score
change trend. This aim to showcase Shūkai’s impact within
specific score ranges during 30 days, rather than individual
player performance changes.

According to the Figure 5, Shūkai beginner achieved Elo
scores surpassing their respective rating brackets. This can
be attributed to the novice players’ initial lack of proficiency
which needs competence improvement. After 30 days,
Shūkai beginner experienced a 9% decrease in Elo score,
providing evidence of player skill enhancement through
the utilization of Shūkai. Similarly, Shūkai intermediate fol-
lowed a similar pattern to Shūkai beginner. With the training
provided by Shūkai intermediate, players demonstrated an
improvement in skill level for 30 days. Conversely, the Elo
scores of the Shūkai advanced increased after 30 days. How-
ever, the difference in Elo scores from the highest player
rating was less than 10%, suggesting that though Shūkai
advanced provided a challenge within that rating bracket,
they were not unbeatable. The results also demonstrate the
generalizability of Shūkai due to the inclusion of charac-
ters selected by players that were not exclusively from the
training subset which is the same as the experiment.

5.2. Agent-Human Alignment

To discuss the consistency between DRL agents and human
players, we have designed a scoring system for detecting in-
game behaviors based on human expert priors. This scoring
system can score based on the semantic-level behavior of
human players or DRL agents in the game, such as the
rationality of using skills in a certain situation, etc. Figure 6
displays the differences in cumulative distribution function
(CDF) between human players and different DRL agents
across Five metrics. The x-axis represents the reward scores,
while the y-axis represents the probabilities. Higher reward
scores indicate better behaviors.

Metrics. Substitution indicates the release of ultimate de-
fensive skills, Special represents the release of the highest
damage-dealing skill, Blitz indicates a preference for taking
the initiative at the beginning of the game, Counter indi-
cates a tendency to counter-attack at the beginning of the
game, and Attack represents regular attacks without using
skills. Agents that were induced with behavior through three
types of rewards mentioned in Section 3.3, over 120,000
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Figure 6. A comparison of the cumulative distribution function (CDF) between human players and different agents across different metrics.
The x-axis represents the reward scores, while the y-axis represents the probabilities. Higher reward scores indicate better behaviors.
Agents that were induced with behavior through three types of rewards mentioned in Section 3.3, over 120,000 game instances have been
collected for comparison with human players.

game instances have been collected for comparison with
human players. These players, with Elo scores of 1500 or
above, exhibit their experience and expertise in the Naruto
Mobile game.

The result in Figure 6(d) indicates that DRL agents are
generally more cautious than human players. However, dif-
ferent reward functions still have an impact on the behavior
of the DRL agents. The aggressive agent receives lower
rewards in the Counter metric compared to the cautious
agent, while the balanced agent falls in between the two.
The results in Figure 6(a) describes Shūkai are more precise
in releasing defensive skills compared to human players,
which is why they consistently outperform in Figure 6(d).
In Figure 6(e), Shūkai do not prioritize regular attacks. This
can be attributed to the Shūkai’s precise skill releases (Fig-
ure 6(b)).

In conclusion, Shūkai exhibit more precise skill releases
but tend to be more cautious than humans. However, this
also demonstrates that we can induce different behavioral
styles in the agents through special reward functions, which
can guide us in designing agents with specific styles. The
evaluation system works to effectively observe the gap be-
tween human players and DRL agents, helping design more
human-like agents to enhance the gaming experience. Over-
all, Shūkai still has some gap compared to human players in
terms of high reward scores, indicating the need for further
improvement in our algorithms to encourage more advanced
exploration by the agents. Additional detailed data can be
found in the Appendix E.

6. Related Work
6.1. DRL for Games

With the development of DRL, there are several suc-
cessful applications in different domains such as robotic
(Andrychowicz et al., 2017), autonomous vehicles (Aradi,
2020), and video games. DQN (Mnih et al., 2015) proposed
trying its hand at Atari games using DRL from pixel input.
AlphaGo (Silver et al., 2016; 2017; 2018) solved the game of
Go with self-play. Researchers have discovered the ability of
self-play to solve game problems, which has sparked interest
among researchers to apply it in the field of game theory. ap-
plied similar methods to card games. (Moravčı́k et al., 2017;
Zha et al., 2021; Zhao et al., 2022) applied similar methods
to card games such as Texas Hold’em and DouDizhu (a pop-
ular Chinese card game). AlphaStar (Vinyals et al., 2019)
and OpenAI Five (Berner et al., 2019) used reinforcement
learning to train game AI in two famous games, StarCraft
II and Dota 2. Jaderberg et al. (2019) achieved human per-
formance in Capture the Flag. Subsequently, the AI they
designed in the MOBA game King of Glory demonstrated
outstanding performance. Subsequently, the AI designed
by (Ye et al., 2020b) and (Ye et al., 2020a) in the MOBA
game King of Glory demonstrated outstanding performance.
Additional discussion can be found in the Appendix B.

6.2. DRL for Fighting Games

In the field of game AI for fighting games, there are numer-
ous notable precedents, primarily focused on the applica-
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tion scenario of FightICE(Khan et al., 2022). Kim & Ahn
(2018) combined genetic algorithms and Monte Carlo Tree
Search (MCTS) to find general solutions that address the
constraints of game AI while maintaining competitiveness.
Ishii et al. (2018) introduced the concept of aligning with
user personas in game AI, which has gained significant at-
tention in recent research. Kim et al. (2020) introduced
a reinforcement learning approach combined with MCTS
to enhance the performance of the game AI and proposed
novel evaluation metrics to ensure the stability of game AI.
Oh et al. (2021) introduced self-play curriculum learning
and three types of rewards to further enhance AI personas
and performance. Halina & Guzdial (2022) introduced a
diversity-based deep reinforcement learning approach for
generating a set of agents with similar difficulty but utilizing
diverse strategies. Ishii et al. (2018) and Halina & Guzdial
(2022) share similarities with our research, but the core at-
tention of HELT lies in addressing the training efficiency
and generalization issues caused by a large pool of charac-
ters. Additionally, we introduce multi-style rewards to align
with players and ensure a satisfactory gaming experience.

7. Conclusions
In this paper, we propose a practical DRL agent system
called Shūkai to address key challenges in its deployment
to the fighting game Naruto Mobile, focusing on achieving
a balance between training efficiency, model competence,
and generalizability. This is achieved by utilizing a unified
model to control multiple characters simultaneously, quanti-
fying input states to enhance generalization, and introducing
HELT to accelerate training efficiency. Experimental results
demonstrate the powerful capabilities of Shūkai, which has
been adopted by Naruto Mobile since 2022 for player train-
ing, aiding in skill improvement. Furthermore, we present
the concept of aligning DRL agent behavior with human
players, analyzing the differences between DRL agents and
human players through reward and practical evaluations.
This is crucial for the practical application of DRL agents
in commercial games. With the integration of Shūkai, the
game has witnessed a notable 5% maximum increase in the
retention rate and an average improvement of 4%.

8. Future Work
Shūkai has been employed by Naruto Mobile to train its
agents and have achieved great results. Our future work lies
in extending the principles of Shūkai and applying them to
more games and domains. We have successfully deployed
Shūkai to two new fighting games that are currently un-
der development at Tencent. Additionally, Shūkai is also
planned to be used in Arena Breakout, a first-person shooter
game published by Tencent.

We will continue to promote the practical implementation
of reinforcement learning and further its theoretical devel-
opment, enabling reinforcement learning to better empower
the real world.
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Impact Statement
This paper presents work that aims to advance the field of
Machine Learning. This work marks a further step in the
deployment of DRL systems in a large-scale commercial
fighting game. To the best of our knowledge, this is the first
example of a DRL system being employed by a commercial
fighting game.

Reinforcement learning has seen applications and advance-
ments in various domains as a means to solve sequential
decision-making problems. We aim to promote the coexis-
tence of better reinforcement learning methods with human
applications. In the Introduction section, we mentioned that
most previous work focused on training stronger and more
competitive agents. However, as game players, we don’t
necessarily want to compete against unbeatable agents. It is
based on this understanding that we introduced Shūkai. To
address the training and generalization challenges posed by
a large character pool, we proposed HELT and conducted
initial explorations of human-agent alignment. It’s impor-
tant to emphasize that this is a practical implementation of
reinforcement learning. While our focus was on Naruto
Mobile in this paper, the HELT approach and the concept
of human-agent alignment can be applied to reinforcement
learning in general, regardless of whether it’s within a game
or in other contexts.

Returning to games, having controllable anthropomorphic
agents in the game ecosystem benefits both players and
game developers. It was observed that human players are
enthusiastic about immersing themselves in the story and be-
coming part of it. This means that highly anthropomorphic
agents can help players derive more enjoyment from their
gaming experience, thereby promoting player engagement
and social exploration within the game. This represents a
positive influence. For game developers, having controllable
anthropomorphic agents can contribute to the creation of
better activities and gameplay designs, ultimately producing
superior games.
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A. Naruto Mobile
A.1. Introduction of Naruto Mobile

Naruto Mobile is an online fighting game published by Tencent Games with over 100 million registered users. Naruto Mobile
has a large-scale character pool with more than 400 characters(ninjas). Each ninja has its special unique characteristics.
Players of Naruto Mobile can choose a ninja from the character pool and use the ninja to fight against other characters. The
winning condition for all players is to defeat their opponents. In every episode, two players choose a character of their own,
and they control their character against the other player(i.e., the opponent). The episode will terminate when a player’s
health drops to 0 or the game time ends. Our objective is to create an AI system for Naruto Mobile that is seamlessly
integrated into the game and actively participates in battles against players. This AI system will be consistently deployed,
ensuring its continuous presence and engagement within the game environment. Besides, the system is required to have
sufficient generalization capabilities to be able to control all characters through only one model.

Each ninja is controlled using a virtual joystick to manage movement and direction. They possess a basic attack, two primary
skills, one ultimate skill, one summoning skill, and one defensive skill. Furthermore, certain skills have a mechanism that
allows for multiple subsequent activations after their initial release. Additionally, ninjas have the option to choose different
scroll items to enhance the diversity of their combat strategies.

A.2. Hitbox and Hurt Box

The hurt box and hitbox play crucial roles in determining the outcome of attacks. The hurt box represents the vulnerable
area around a character’s body where they can take damage. It acts as an invisible or transparent box that detects incoming
attacks. When an opponent’s attack connects with the hurt box, the character will suffer damage. The size and shape of the
hurt box can vary based on the character’s stance, animation, and the specific move being executed.

On the other hand, the hitbox represents the area around a character’s attacks where they can deal damage to the opponent.
Similar to the hurt box, it is an invisible or transparent box that detects potential hits. When a hitbox overlaps with the hurt
box of the opponent’s character, it registers as a successful hit, causing damage. The size and shape of the hitbox can vary
depending on the specific move being executed.

Both the hurt box and hitbox are integral components of the hit detection system in fighting games. They determine whether
an attack successfully lands on an opponent, resulting in damage, or if it misses. Precise placement and sizing of the hitbox
and hurt box are essential for balanced and fair gameplay, as they directly impact the effectiveness and reliability of attacks
and defensive maneuvers.

A.3. Different Information in Naruto Mobile

Information

ID

Attribution

Who to control

If         against       ，

and       release

Who to Fight

What are used

Self Opponent

HP:90 HP:80

Skill1 cd：
2s

Skill1 cd：
1s

…, …

Figure 7. ID information and attribution information
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All the information from the client is divided into distinguishable categories to model both self and opponents effec-
tively(Figure 7). This differentiation involves the utilization of ID information, which provides directed references to
characters, skills, actions, etc., and general numerical information, which represents less explicit inputs to the network.

From Figure 7, it was observed that the ID formation represents the figuration that which character is being controlled,
which character is fighting with, and what skills are used. The attribution information is the specific numerical value of the
entity.

A.4. MDP of Naruto Mobile

Considering the opponent as a component of the environment, the Markov Decision Process (MDP) framework for Naruto
Mobile’s training agent is formalized as a six-element tuple ⟨S,A, P,R, T, γ⟩. Here, S represents the state space and
A denotes the action space. R is defined as the reward function, P encapsulates the state transition probabilities, T
signifies the time horizon, and γ is the discount factor. At each discrete time step t, the agent observes the current state
of the environment, denoted as st ∈ S. The agent’s policy π, a mapping from states to actions, selects an action at
based on the current state, formalized as at ∼ π(·|st). The state then transitions to the next state st+1 ∼ P (·|st, at), and

the agent receives a reward rt+1. The state value function is Vπ(s) = Eπ[
T∑

k=0

γkRt+k+1|St = s], and the action value

function is Qπ(s) = Eπ[
T∑

k=0

γkRt+k+1|St = s,At = a] are always leveraged to optimize policy. The advantage function

A(s, a) = Q(s, a)− V (s) is used to measure the quality of action a compared to the average quality.

The reward function rt is defined based on the variations in health points rtHP and the game’s outcome. rHP
t is defined as:

rHP
t = HP self

t+1 −HP self
t +HP oppo

t −HP oppo
t , (1)

Where the HP self is the health points of the agent, and HP oppo is the health points of the opponent. Then the reward
function rt is defined as:

rt =

{
rHP
t , t < T

7 · rHP
t , t = T

(2)

The agent is constructed by a neural network with parameter θ, i.e., the policy πθ(at|st). The optimization goal of the RL
algorithm is to find an optimal policy π∗ to maximize the cumulative reward:

π∗ = argmax
πθ

E(st,at)∼πθ
[

n∑
t=0

γtr(st, at)] (3)

A.5. Action Representation of Naruto Mobile

The action space of Naruto Mobile is composed of three action heads, each represented by a one-hot vector. When predicting
an action, the network simultaneously predicts all the action heads. These action heads are then passed through an action
mask processing and delivered to the client for execution. Table 1 shows the action head.

B. Related Work
B.1. Policy Improvement in Multi-agent Competition

Multi-agent environment means there exists more than one agent in the environment. These agent needs to cooperate
or compete to achieve their goals. In the competition setting, agents defeat other agents to win. Every agent has to
improve their policy to make sure that is un-exploitable. There exists plenty of research to achieve un-exploitable. Naive
self-play is a common approach to policy improvement, it essentially does best response in an iterated way. Self-play only
focuses on finding the best response to the opponent’s latest strategy, which would lead to circular behaviors in in-transitive
games. To address the limit of self-play, Fictitious Play (FP) (Brown, 1951) was proposed. FP maintains a belief over the
historical action that the opponent has played, the learning agent then takes the best response to this empirical distribution.
Generalized Weakened Fictitious Play (GWFP) (Leslie & Collins, 2006) was proposed to weaken the constraint of FP,
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Table 1. Action representation of Naruto Mobile
Action Space Action Head Action Name Key mapping

Move Action ud None JoyStick (left hand)
Up

Down
Action lr None

Left
Right

Skill Skill None Substitute Fight buttons (right hand)
Punch Summon
Skill1 Scroll
Skill2 Subskill1
Skill3 Subskill2

Direction Direction Direction1 Direction5 Joystick skill
Direction2 Direction6
Direction3 Direction7
Direction4 Direction8

which was accomplished by allowing approximate best response and perturbed average strategy updates while preserving
the convergence guarantee under certain conditions.

The methods mentioned above are in the formulation of Norm-formal Game (NFG). To expand NFG to Extensive-form
Game (EFG) while utilizing modern machine learning, two variants of FP are implemented by Fictitious Self-play (FSP)
(Heinrich et al., 2015). The first variant introduces full-width extensive-form fictitious (XFP). It is realization equivalent to a
normal-form fictitious play and therefore inherits its convergence guarantees. The second variant is FSP based on the first
variant but leveraging reinforcement learning (RL) to do the best response and supervised learning (SL) to average strategy
update. With the development of deep learning, Heinrich & Silver (2016) leverages the neural networks to implement the
RL and SL of FSP. Prioritized Fictitious self-play (PFSP) (Vinyals et al., 2019) calculates weight based on winning rate and
selects opponents based on weight to avoid the waste of computing resources.

Double Oracle (DO) (McMahan et al., 2003) is also an iterated best response method, different from self-play, it best
responds to the opponent’s Nash equilibrium at each iteration. Although DO can guarantee the convergence, it will traverse
the entire policy space in the worst case. Policy Space Response Oracle (PSRO) (Lanctot et al., 2017) is a generalization of
DO on meta-games. DO focuses on the action at each iteration, but PSRO focuses on policy space for every agent. Thus,
PSRO can generalize all previous methods by setting different forms of the distribution of policy space.

B.2. DRL Application in Games

With the development of deep reinforcement learning (DRL), there are several successful applications in different domains
such as robotic (Andrychowicz et al., 2017), autonomous vehicles (Aradi, 2020), and video games. Video games are the
most suitable scene serving as DRL environment owing to their data accessibility and timely feedback. Leveraging DRL
to develop game AI in video games has been stimulating researchers’ interest. DQN (Mnih et al., 2015) proposed trying
its hand at atari games using DRL from pixel input. Subsequently, AlphaGo (Silver et al., 2016), efficiently combined the
policy and value networks with MCTS and defeated the world champion of Go. Without human knowledge, AlphaGo Zero
(Silver et al., 2017) defeated AlphaGo solely through self-play to improve policy. Silver et al. (2018) generalizes AlphaGo
Zero to AlphaZero which can achieve superhuman competence in chess, shogi, and Go through self-play. The result of
AlphaZero shows the power of DRL and self-play.

After tackling the simple perfect-information game, researchers’ interest began to focus on more complex game scenarios
such as poker, Dota2, and StarCraft II. These environments have more complex state-action space. DeepStack (Moravčı́k
et al., 2017) defeated with statistical significance professional poker players in heads-up no-limit Texas hold ’em which
combines recursive reasoning, decomposition, and learned intuition through self-play. DouZero (Zha et al., 2021) and
DouZero+ (Zhao et al., 2022) are proposed to solve DouDizhu through enhancing traditional Monte-Carlo methods with deep
neural networks, action encoding, parallel actors, and opponent modeling. For real-time strategy (RTS) games, AlphaStar
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(Vinyals et al., 2019) achieved the grandmaster level in StarCraft II through league training with PFSP. And for the sub-genre
of RTS games, Multi-player Online Battle Arena (MOBA) games are also challenging. OpenAI Five (Berner et al., 2019) is
the first AI system to defeat the world champions in a famous MOBA game as known as Dota2. OpenAI Five leveraged
existing reinforcement learning techniques, scaled to learn from batches of approximately 2 million frames every 2 seconds.
Ye et al. (2020b) tackled MOBA game from the perspectives of both system and algorithm. They further proposed a MOBA
AI learning paradigm that methodologically enables playing full MOBA games with deep reinforcement learning (Ye et al.,
2020a).

In this paper, we focus on the Fighting game which is an imperfect-information two-player zero-sum game called Naruto
Mobile. Naruto Mobile has a large pool of characters and complex state-action space, with a high demand for real-time
feedback. We design an AI system with heterogeneous league training to tackle these challenges. Our system trained on
only 15% of the characters but achieves high-level player competence across all characters. In particular, our system is
consistently deployed in the game and engages in battles with players.

B.3. Generalization in Reinforcement Learning

Previous research has extensively investigated the challenges of generalization in reinforcement learning. One line of work
focuses on addressing the problem of overfitting, where an RL agent fails to generalize its learned policy to unseen states
or tasks. Approaches such as experience replay (Mnih et al., 2015) and regularization techniques (Houthooft et al., 2016)
have been proposed to mitigate this issue. Another direction of research explores the concept of transfer learning in RL,
aiming to enable knowledge transfer from one task to another. Methods like domain adaptation (Sun et al., 2017) and
meta-learning (Finn et al., 2017; Lan et al., 2024) have been employed to facilitate better generalization across tasks. He et al.
(2023; 2024) discusses the capacity loss problem in reinforcement learning to ensure better stability and generalization of
the network. Additionally, recent studies have investigated the role of model-based RL algorithms (Hafner et al., 2019) and
intrinsic motivation (Pathak et al., 2017) in enhancing generalization capabilities. Li et al. (2023) and Lyu et al. (2024a;b;c)
discuss the generalization caused by vector input and vision input.There are some methods that employ causal inference
and language models to enhance the multi-task generalization of DRL (Peng et al., 2023b;a), and some object-oriented
generalization works (Yi et al., 2022; 2023). In addition, there is also some work on network pruning that can be considered
for enhancing the generalization of models in reinforcement learning (Wang et al., 2023). Despite these efforts, the problem
of achieving robust and reliable generalization in RL remains a challenging and active research area.

C. Details about HELT
C.1. Learning Architecture

Figure 8 shows the learning architecture of Naruto Mobile. The input of the QS network comprises three components:
self-modeling, opponent-modeling, and env information. Self-modeling still utilizes the ID information. Opponent modeling
of the QS network only with attribution information, thereby liberating the QS network from the constraints of the opponent’s
character pool and enhancing the generalizability of the QS network.

Env information incorporates spatial and relative characteristics of the two agents, in addition to their health and time
attributes. All of these features are encoded through fully connected layers and concatenated. The agent’s actions,
encompassing movement direction and optional skills, are generated through fully connected layers. The purpose of the QS
network is to improve generalization while ensuring strength. The QS agent is expected to be able to serve as a universal
model to control a part of characters against all characters.

The FQS network is similar to the QS network and does not use any ID information, only the attributes information. FQS
agent is expected to obtain models that can be used across all characters.

Different from the QS and FQS networks, FIS uses full ID information to model all the entities whether self-modeling or
opponent-modeling. The advantage is that FIS can find the optimal model to defeat the opponent. The disadvantage is that
when facing an opponent FIS has never seen before, the competence will decrease.
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Figure 8. The structure of FIS, QS, and FQS. while the purple dashed line and the red dashed line are activated, the structure is FIS. When
the purple dashed line is activated and the red dashed line deactivated, the structure is QS. While the purple dashed line and the red dashed
line are both deactivated, the structure is FQS.

C.2. Opponent Policy Selecting

Prioritized fictitious self-play(PFSP) In this paper, our PFSP algorithm is similar to AlphaStar. Giving a learning agent A,
we sample the frozen opponent O from a candidate set S with probability

f(P[A beats O])∑
S∈S f(P[A beats S])

(4)

Where f : [0, 1] → [0,∞] is the weighting function.

In this paper, we apply fhard(x) = (1− x)p as the hard weighting to encourage focusing on the hardest opponents; and
fvar(x) = x(1 − x) as the var weighting to encourage focusing on the opponents around the same level. Note that not
only do we dynamically utilize PFSP based on win rates during the training process, but we also employ PFSP weights to
streamline the model pool when determining opponents for each iteration.

C.3. Populating the League

Same as Alphastar, throughout the training process, we employed three distinct types of agents that primarily differed in
their opponent distribution during training, the snapshotting procedure used to create a new player, and the probability
of resetting to the previous parameters. Due to the lack of high-quality player data in Nurotu Mobile, we have designed
different resetting mechanisms to optimize our exploitation.

Main agents are trained with a proportion of 100% PFSP against all past players in the league. Although Alphastar leverages
different proportions of PSFP and SP, applying heterogeneous agents ensures diversity among agents within the entire
league. When timeout hours or the main agent defeats all agents in the league in more than 80% of games, a copy of the
main agent is added as a new agent to the league. The main agent never reset.

League exploiters are trained with PFSP and their frozen copies are added to the league when they beat all agents in the
league in more than 80% of games or after a timeout. At the beginning of the next iteration, the league exploiters have a
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Figure 9. Population the league.

25% probability that the agent is reset. Owing to the lack of high-quality player data, the league exploiter randomly selects a
model from the models of the previous three iterations to serve as the current model. This mechanism allows the league
exploiter to balance convergence speed and the ability to explore diversity effectively. The league exploiter has a reset
probability of 0 for the first three generations of training.

Main exploiters always play against main agents. To address the issue of low win rates during the initial stages of training
for the main exploiters, they are trained by PFSP with fvar in the first three iterations. Main agents are added to the league
when the main agents are defeated in more than 80% of games, or after a timeout. The reset mechanism is similar to the
league exploiter, but the main exploiter will reset at every start of the iteration. The primary objective of main exploiters is
to identify and expose weaknesses within the main agents, thereby facilitating their enhancement and fortification.

C.4. Opponent Character Selecting

The opponent character selecting strategy is accomplished by Wang (2024). The idea is based on regret matching (RM). For
details, readers can refer (Wang, 2024).

Given a match between i and j, the return to j is defined as:

rst(i, j) =

{
1, j wins
0, otherwise

Once the result of the match comes out, exponential smoothing is applied to the return value and this averaged result serves
as an updated win rate:

pst(wini>j) = r̄st(i, j) = r̄st−1(i, j) ∗ γ + rst(i, j) ∗ (1− γ)

where γ ∈ [0, 1] is the smoothing factor.

Then the expected utility is defined as the overall win rate, which can be calculated as:

E(pst) = pst(winall) =
∑
i,j∈I

pst(wini>j)wst−1(i, j)

The regret is defined as the difference between the smoothed win rate and the expected win rate:

∆pst(i, j) = r̄st(i, j)− E(pst)
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and the regret matrix is updated as:

Rst(i, j) = max(Rst−1(i, j) + ∆pst(i, j), 0)

Finally, new weights for selecting combinations in next match is updated as:

wst(i, j) =

{
1

N2 , if
∑

i,j∈I Rst(i, j) = 0,
Rst (i,j)∑

i,j∈I Rst (i,j)
∗ (1− η) + 1

N2 ∗ η otherwise

where η is a weight factor.

C.5. Policy Improvement

In Section 2.2, by modeling the fighting game as a Markov process, we can leverage reinforcement learning algorithms to
optimize the agent’s strategies. We use the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) in our
system. PPO trains a value function Vϕ(st) with a policy πθ(at|st), the utilization of importance sampling makes it highly
feasible to apply reinforcement learning algorithms in distributed scenarios.

Policy updates. In our large-scale distributed system, the trajectories are sampled from multiple sources of policies, which
can exhibit significant deviations from the current policy πθ. While the method proposed by (Ye et al., 2020b) demonstrates
superior competence in MOBA games, we have discovered that the original Proximal Policy Optimization (PPO) algorithm
is more effective for fighting games. Hence, our update objectives have remained consistent with PPO:

Lπ(θ) = Et[min(ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât)] + βLE(θ) (5)

Where ρt(θ) =
πθ(st|at)
πold(st|at)

is the important weighting and Ât is the advantage estimation that is calculated by Generalized
Advantage Estimation (GAE) (Schulman et al., 2015). LE is the entropy of policy which enhances the exploration.

Value updates. Same as AlphaStar, we use full information to decrease the variance of value estimation:

V πθ (st) = Ea∼πθ
[r(st, a) + γV πθ (st+1)] (6)

We use GAE to estimate the advantage function Â:

Aπθ (st, at) =r(st, at) + γV πθ (st + 1)− V πθ (St),

Â =

T∑
t=0

γλtAt+1,
(7)

and the value loss can be expressed as follows:

LV (ϕ) = Ea∼πθ
[

T∑
k=t

γk−tr(sk, ak)− V (st)]
2. (8)

D. Experimental Details
D.1. Experimental Setting

In Table 2, we list the parameters used in the experiments. All the parameters are the same for three heterogeneous agents.
During the training process, the main agent, league exploiter, and main exploiter are initialized with different structures.
These three types of league agents maintain the same policy pool. After each agent completes an iteration, its copy is added
to the overall policy pool. We evaluate the policies in the policy pool pairwise, and based on the evaluation results, we use
the PFSP to select the next round of strategies from the policy pool. Main exploiters will reset at every start of the iteration
and league exploiters will reset at the same moment with a probability of 25%. The main agents never reset. The three
league agents are trained asynchronously, and each agent will undergo 10 training iterations. The maximum duration for
each iteration is limited to 12 hours.
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Table 2. Eperimental Parameters

Parameter Value Parameter Value

n-steps 100 Batch size 5120

γ 0.995 Actor number 1000

λ 0.95 Env number per actor 10

Learning rate 2e-4 Learner number 2

CPU core num 9000 GPU per Learner 0.5

D.2. The Characters Selecting of Training Subset

In Naruto Mobile, characters are categorized into ranks (S, A, B, C) based on their relative strength and skill mechanics by
professional human experts. Taking this ranking system into consideration, higher-ranked characters are generally more
powerful than lower-ranked ones. Building upon this foundation, we further selected characters suitable for our training
based on their popularity within each rank, using expert priors. We will include these details in the appendix section of our
paper for easy reference and further discussion.

D.3. Ablation Study

We need to do ablation studies to figure out where the HELT’s competence and generalization ability come from. For the
generalization ability, we can take another look at Figure 4(a) and Figure 4(b), we can observe that while the ID-based
FIS structure can lead to competence improvements, quantifying the states can enhance generalization, especially when it
comes to opponent modeling. By quantifying opponent modeling while ensuring competence, we can improve the overall
generalization capability.
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Figure 10. Ablation studying of different components for QS agent. (a) Impact of different league agents. (b) Impact of different opponent
policy select strategies. (c) Impact of different character select strategies

For competence, we conducted ablation experiments on different components using the QS agent as the focus of our study.
This analysis aimed to observe the competence improvements brought by each component. Figure 10(a) displays the impact
of different league agents on the model’s competence. We can observe that although the same-structure league exploiter
contributes to around a 20% competence improvement, the primary source of competence in HELT comes from the league
exploiter with the FIS structure. The inclusion of the FIS agent increases the overall diversity of strategies, significantly
enhancing the competence of the QS agent. Figure 10(b) showcases the impact of different opponent policy selection
strategies on the competence of the QS agent. From the Figure 10(b), we can observe that the competence differences
caused by different opponent policy selection methods are not significant. The strategy used in AlphaStar, PFSP+SP, shows
similar competence to pure PFSP in our environment. Therefore, we primarily adopt the PFSP opponent policy selection in
our study.

Figure 10(c) displays the impact of different character selection strategies on the competence of the QS agent. We compared
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the strategies of random selection, uniform selection, and HELT’s methodAppendix C.2. HELT’s method encourages
stronger characters to be trained more frequently, which results in the highest competence improvement.

Based on the above analysis, HELT’s method can improve generalization while maintaining competence, which are both
crucial factors for practical implementation and online gaming.

D.4. Evaluating in Publication Platform

Shūkai primarily focuses on catering to the needs of commercial fighting games by aligning with player expectations,
enhancing game content, and driving continuous game development. HELT is primarily developed to tackle the challenges
of generalization and training efficiency that arise from the large character pool in commercial games. With its expansive
roster of over 400 characters, Naruto Mobile is more challenging than FightingICE (Khan et al., 2022), which features
only 4 characters. As a result, our paper significantly focuses on deploying reinforcement learning systems in commercial
fighting games. In contrast, FightingICE (Khan et al., 2022) places more emphasis on competition, aiming to ensure the
generation of stronger agents. Nevertheless, we still plan to evaluate HELT on the FightingICE platform to demonstrate
its computational efficiency and generalization. However, since the framework we used is primarily tailored for game
customization, we need to invest more time in integrating with FightingICE. We will release the performance of HELT on
FightingICE in the future.

E. Agent-Human Alignment with Extra Metrics
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Figure 11. A comparison of the cumulative distribution function (CDF) between human players and different agents across different
metrics.

The error rate refers to the probability of making an error or failing to successfully perform a particular action or skill in a
game. In the context of using substitution in Naruto Mobile, the error rate would indicate the likelihood of failing to execute
the substitution properly.

Based on the previous discussion, it has been observed that our intelligent agents exhibit fewer errors compared to human
players. To further analyze this, we compared the release of Skill 1 and Skill 2 between human players and the intelligent
agents, considering the same character.
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