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Abstract
Adversarial Training (AT), which adversarially
perturb the input samples during training, has
been acknowledged as one of the most effec-
tive defenses against adversarial attacks, yet suf-
fers from inevitably decreased clean accuracy.
Instead of perturbing the samples, Sharpness-
Aware Minimization (SAM) perturbs the model
weights during training to find a more flat loss
landscape and improve generalization. However,
as SAM is designed for better clean accuracy,
its effectiveness in enhancing adversarial robust-
ness remains unexplored. In this work, consid-
ering the duality between SAM and AT, we in-
vestigate the adversarial robustness derived from
SAM. Intriguingly, we find that using SAM alone
can improve adversarial robustness. To under-
stand this unexpected property of SAM, we first
provide empirical and theoretical insights into
how SAM can implicitly learn more robust fea-
tures, and conduct comprehensive experiments to
show that SAM can improve adversarial robust-
ness notably without sacrificing any clean accu-
racy, shedding light on the potential of SAM to
be a substitute for AT when accuracy comes at
a higher priority. Code is available at https:
//github.com/weizeming/SAM_AT.

1. Introduction
The existence of adversarial examples (Goodfellow et al.,
2014; Szegedy et al., 2013) has raised serious safety con-
cerns on the deployment of deep neural networks (DNNs).
To defend against attacks of crafting adversarial examples,
a variety of defense methods (Papernot et al., 2016; Xie
et al., 2019; Cohen et al., 2019; Chen et al., 2023a) has been
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proposed. Adversarial training (AT) (Madry et al., 2017),
which adds adversarial perturbations to the training sam-
ples in the training loop, has been acknowledged as one of
the most effective adversarial defense paradigms (Athalye
et al., 2018). Despite this success, AT suffers from an in-
trinsic limitation that decreases the clean accuracy, leading
to a fundamental trade-off between accuracy and robust-
ness (Tsipras et al., 2018; Zhang et al., 2019). A critical
drawback of AT is that the perturbation of training samples
makes the training distribution deviate from the natural data
distribution.

Instead, Sharpness-Aware Minimization (SAM) (Foret
et al., 2020) perturbs model weights yet keeps using the
original samples during training. SAM is a novel training
framework that regularizes the sharpness of the loss land-
scape by weight perturbation to improve generalization abil-
ity. So far, SAM has achieved remarkable success in modern
machine learning (Bahri et al., 2021; Andriushchenko and
Flammarion, 2022; Chen et al., 2023b) and many of its
follow-up variants have been proposed (Kwon et al., 2021;
Du et al., 2021; Chen et al., 2022). However, as SAM
was originally designed for better natural generalization, its
impact on adversarial robustness remains unexplored.

In this paper, considering the duality between SAM and
AT, i.e. perturbing samples (AT) and perturbing weights
(SAM), we explore whether SAM can also achieve better ad-
versarial robustness. Surprisingly, we find that using SAM
alone can notably improve adversarial robustness compared
to standard optimization methods like Adam, which is an
unexpected benefit of SAM. As illustrated in Table 1, SAM
can achieve both higher robust and clean accuracy than
standard training. Compared to the improvement in clean
accuracy, the enhancement of robust accuracy (evaluated by
AutoAttack (Croce and Hein, 2020b)) is significantly promi-
nent (from 3.4% to 25.4%). By contrast, though AT can
exhibit better robustness, their decrease in natural accuracy
is unaffordable in practical deployment. Motivated by this
intriguing observation, we raise the two following questions
and attempt to answer them:
(1) Why can SAM improve adversarial robustness, and
(2) Under what condition can SAM be deployed as a
substitution for AT.

1

https://github.com/weizeming/SAM_AT
https://github.com/weizeming/SAM_AT


On the Duality Between Sharpness-Aware Minimization and Adversarial Training

Table 1. Examples of clean accuracy and robust accuracy with
AutoAttack (AA.) comparison on standard training, SAM, and AT.
The robustness is evaluated under ℓ2 norm ϵ = 32/255. More
details in Section 5.

Method Clean Acc. AA. Rob. Acc.

Adam 76.0 3.4
SAM 78.7 25.4

ℓ∞-AT 58.3 52.4
ℓ2-AT 64.2 57.5

To study the two questions above, we first provide an intu-
itive understanding of why SAM can improve adversarial
robustness without sacrificing natural accuracy. Specifically,
we show that weight perturbation during training can help
the model implicitly learn the robust features (Tsipras et al.,
2018). To verify this notion, we also provide theoretical
insights to support our intuitive understanding. Following
the popular data distribution based on robust and non-robust
features decomposition (Tsipras et al., 2018), we show that
both SAM and AT can improve the robustness of the trained
models by biasing more weight on robust features. To
sum up, we answer the raised question (1) by concluding
that SAM can improve adversarial robustness by implicitly
learning robust features.

Furthermore, we conduct extensive experiments across dif-
ferent tasks, data modalities, and model architectures to eval-
uate the robustness improvement of using SAM, where we
show that under various settings, SAM exhibits consistently
better robustness than standard training methods while still
maintaining higher natural performance. Besides, though
AT can achieve higher robustness than SAM, it inevitably
sacrifices natural performance which may be unaffordable
for real-world applications. Therefore, we answer the raised
question (2) with the conclusion that SAM can be used as
a substitute for AT when accuracy is more important but
better robustness is preferred.

To summarize, our main contributions in this paper are:

1. We uncover an intriguing property of SAM that it can
notably enhance adversarial robustness while maintain-
ing natural performance compared to standard training,
which is an unexpected benefit.

2. We provide empirical and theoretical insights to under-
stand how SAM can enhance adversarial robustness by
showing that both input and weight perturbation can
encourage the model to learn robust features.

3. We conduct extensive experiments to show the effec-
tiveness of SAM in terms of enhancing robustness with-
out sacrificing natural performance. We also suggest
that SAM can be considered a lightweight substitute
for AT when accuracy comes at a higher priority.

2. Background and Related Work
2.1. Sharpnes-Aware Minimization (SAM)

To improve generalization ability in traditional machine
learning algorithms, (Hochreiter and Schmidhuber, 1994;
1997) respectively attempt to search for flat minima and
penalize sharpness in the loss landscape, which obtains good
results in generalization (Keskar et al., 2016; Neyshabur
et al., 2017; Dziugaite and Roy, 2017). Inspired by this, a
series of works focus on using the concept of flatness or
sharpness in loss landscape to ensure better generalization,
e.g. Entropy-SGD (Chaudhari et al., 2019) and Stochastic
Weight Averaging (SWA) (Izmailov et al., 2018). Sharpness-
Aware minimization (SAM) (Foret et al., 2020) also falls
into this category, which simultaneously minimizes loss
value and loss sharpness as described in (1).

The objective of SAM is to minimize the sharpness around
the parameters, which can be formulated as

min
w

E(x,y)∼D max
∥ϵ∥≤ρ;x,y

L(w + ϵ) + λ∥w∥22, (1)

where D is the data distribution, L is the loss function, w
is the parameters of the model, ∥w∥22 is the regularization
term and ρ controls the magnitude of weight perturbation.
To solve the inner maximization process, one-step gradient
descent is applied.

So far, SAM has become a powerful tool for enhancing the
natural accuracy performance of machine learning models.
There are also many applications of SAM in other fields of
research like language models (Bahri et al., 2021) and de-
centralized SGD (Zhu et al., 2023), showing the scalability
of SAM to various domains. In addition, many improve-
ments of the algorithm SAM spring up, like Adaptive SAM
(ASAM) (Kwon et al., 2021), Efficient SAM (ESAM) (Du
et al., 2021), LookSAM (Liu et al., 2022), Sparse SAM
(SSAM) (Mi et al., 2022), Fisher SAM (Kim et al., 2022)
and SAM-ON (Mueller et al., 2023), which add some mod-
ifications on SAM and further improve the generalization
ability of the model. However, while these existing works
focus on the natural generalization goal, the effectiveness
of SAM on adversarial robustness remains unexplored.

2.2. Adversarial Robustness and Adversarial Training

The adversarial robustness and adversarial training have
become popular research topics since the discovery of ad-
versarial examples (Szegedy et al., 2013; Goodfellow et al.,
2014), which uncovers that DNNs can be easily fooled
to make wrong decisions by adversarial examples that are
crafted by adding small perturbations to normal examples.
The malicious adversaries can conduct adversarial attacks
by crafting adversarial examples, which cause serious safety
concerns regarding the deployment of DNNs. So far, nu-
merous defense approaches have been proposed (Xie et al.,

2



On the Duality Between Sharpness-Aware Minimization and Adversarial Training

2019; Bai et al., 2019; Cohen et al., 2019; Chen et al., 2024),
among which Adversarial Training (AT) (Madry et al., 2017)
has been considered the most promising defense method
against adversarial attacks. AT can be formulated as the
following optimization problem:

min
w

E(x,y)∼D max
∥δ∥≤ϵ

L(w;x+ δ, y), (2)

where D is the data distribution, ϵ is the margin of perturba-
tion, w is the parameters of the model and L is the loss func-
tion (e.g. the cross-entropy loss). For the inner maximiza-
tion process, the Projected Gradient Descent (PGD) (Madry
et al., 2017) attack is commonly used to generate the adver-
sarial example:

xt+1 = ΠB(x,ϵ)(x
t + α · sign(∇xℓ(θ;x

t, y))), (3)

where Π projects the adversarial example onto the perturba-
tion bound B(x, ϵ) = {x′ : ∥x′−x∥p ≤ ϵ} and α represents
the step size of gradient ascent.

Though improves adversarial robustness effectively, adver-
sarial training has exposed several defects such as com-
putational overhead (Shafahi et al., 2019), class-wise fair-
ness (Xu et al., 2021; Wei et al., 2023b) and robust overfit-
ting (Rice et al., 2020; Wang et al., 2023; Wei et al., 2023a)
among which the decreased natural accuracy (Tsipras et al.,
2018; Zhang et al., 2019) has become the major concern.
One explanation for this drawback of AT is perturbing the
samples during training leads the training sample distribu-
tion to deviate from the natural data (Ilyas et al., 2019).

In the context of adversarial robustness, several works also
attempt to introduce a flat loss landscape in adversarial train-
ing (Wu et al., 2020; Yu et al., 2022a;b). The most represen-
tative one is Adversarial Weight Perturbation (AWP) (Wu
et al., 2020), which simultaneously adds perturbation on
examples and feature space to apply SAM and AT. How-
ever, AWP also suffers from a decrease in natural accuracy
which is even lower than AT in some cases, which we as-
sume is because perturbing both the inputs and parameters
significantly raises the difficulty of robust learning. We
compare SAM and AWP in our experiment section. Besides
this thread of work, the adversarial robustness derived from
SAM alone has not been explored.

3. Empirical Understanding
In this section, we provide an intuitive explanation to empiri-
cally understand how SAM improves adversarial robustness
by demonstrating the duality between SAM and AT. Specifi-
cally, considering the arithmetical duality of the input and
parameters to get the output in a specific layer, we can as-
sume that the robustness against weight perturbation may
also lead to robustness against input perturbation.

We start by rewriting the optimization objective of SAM
and AT in a unified form and omit the regularization term
λ∥w∥22 as follows:

min
w

E(x,y)∼D max
||ϵ||<ρ

L(w + ϵ;x, y) (SAM) (4)

and

min
w

E(x,y)∼D max
∥δ∥≤ϵ

L(w;x+ δ, y) (AT) (5)

To illustrate their relation, we first emphasize that both tech-
niques involve adding perturbation to make the output
more robust w.r.t. input or weight changes since they both
utilize one or more step gradient optimization to solve the in-
ner maximization problem. However, as AT explicitly adds
these perturbations to input examples x and transforms them
into adversarial examples xadv, the adversarial sample dis-
tribution learned through forward-backward passes deviated
from the natural distribution, leading to an inevitable de-
crease when evaluating natural performance in the original
distribution. By contrast, SAM applies weight perturbation
to achieve this robustness but keeps the original samples
during learning, which can implicitly bias more weight on
robust features (Ilyas et al., 2019).

To be more formalized, we illustrate our understanding with
a middle linear layer in a model, which extracts feature z
from input x: z = Wx. During AT, we add perturbations
directly to the input space, resulting in x← x+δ. However,
in SAM, the perturbation is not directly applied to the input
space, but to the parameter space as W ← W + δ. This
leads to Wx + Wδ for input perturbation and Wx + δx
for parameter perturbation. If the weight W can keep Wx
more robust against small perturbations around it in the sub-
sequent layers, it will be also beneficial to improve sample
robustness around x.

Besides, we discuss the attack (perturbation) strength of
AT and SAM. For SAM, the perturbation is relatively more
moderate, as its perturbations are conducted in the weight
space and do not change the original input. On the other
hand, in order to achieve the best robustness by eliminating
the non-robust features (Ilyas et al., 2019), AT applies larger
and more straightforward perturbations to the input space,
leading to better robustness but a loss in natural accuracy,
which is not the original goal of SAM, but it is the goal of
AT.

In summary, our intuitive analysis suggests that SAM ap-
plies small perturbations implicitly to the feature space to
maintain good natural accuracy performance, while AT uti-
lizes direct input perturbations, which may result in a severe
loss in natural accuracy. We provide more theoretical evi-
dence to support these claims in the next section.
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4. Theoretical Insights
In this section, we provide a theoretical analysis of SAM and
the relation between SAM and AT. Following the robust/non-
robust feature decomposition (Tsipras et al., 2018), we in-
troduce a simple binary classification model, in which we
show the implicit similarity and differences between SAM
and AT. We first present the data distribution and hypothesis
space, then present how SAM and AT work in this model
respectively, and finally discuss their relations.

4.1. A Binary Classification Model

Following a series of theoretical work on adversarial robust-
ness (Tsipras et al., 2018; Ilyas et al., 2019; Xu et al., 2021),
we consider a similar binary classification task that the input-
label pair (x, y) is sampled from x ∈ {−1,+1} × Rn+1

and y ∈ {−1,+1}, and the distribution D is defined as
follows.

y
u.a.r∼ {−1,+1}, x1 = { +y, w.p. p,

−y, w.p. 1− p,

x2, . . . , xn+1
i.i.d∼ N (ηy, 1),

(6)

where p ∈ (0.5, 1) is the accuracy of feature x1, constant
η > 0 is a small positive number. In this model, x1 is called
the robust feature, since any small perturbation can not
change its sign. However, the robust feature is not perfect
since p < 1. Correspondingly, the features x2, · · · , xn+1

are useful for identifying y due to the consistency of sign,
hence they can help classification in terms of natural accu-
racy. However, they can be easily perturbed to the contrary
side (change their sign) since η is a small positive, which
makes them called non-robust features (Ilyas et al., 2019).

Now consider a linear classifier model which predicts the la-
bel of a data point by computing fw(x) = sgn(w · x), and
optimize the parameters w1, w2, · · · , wn+1 to maximize
Ex.y∼D1(fw(x) = y). Note that value w1 as the coefficient
of the robust feature x1, may have a strong correlation with
the robustness of the model. Specifically, larger w1 indicates
that the model biases more weight on the robust feature x1

and less weight on the non-robust features x2, · · · , xn+1,
leading to better robustness. Therefore, we consider the
weight of parameter w1 among all features as an indica-
tion of how many robust features are learned in the model.
Therefore, we define the robust feature weight WR of a
given model as

WR =
w1

w2 + w3 + · · ·+ wn+1
(7)

to measure the weight of robust features involved in the
model prediction. We use the following lemma to justify the
fundamental relationship between WR and the adversarial
robustness of the model:

Theorem 4.1. The robust accuracy (RA) of this model,
defined as

RA = Ex,y∼D min
||δ||<ϵ

1{fw(x+ δ) = y}. (8)

is a monotonic increasing function of WR under condition
ϵ < η and 0 < WR < WAT

R (defined in (11)).

In the following, we derive and compare the robust fea-
ture weight WR of the trained model under standard train-
ing (ST), AT, and SAM respectively. To make our de-
scription clear, we denote the loss function L(x, y, w) as
1 − Pr(fw(x) = y) and for a given ϵ > 0, we define the
loss function of SAM LSAM as max|δ|≤ϵ L(x, y, w + δ).

4.2. Standard Training (ST)

We first show that under standard training, the robust fea-
ture weight learned in this model can be derived from the
following theorem:

Theorem 4.2 (Standard training). In the model above, under
standard training, the robust feature weight WR is

W ∗
R =

ln p− ln(1− p)

2nη
. (9)

Therefore, W ∗
R can be regarded as the measurement WR

returned by standard training with this model.

4.3. Adversarial Training (AT)

Now we consider when AT is applied to train the model.
Recall that in this case, the loss function is no longer the
standard one but the expected adversarial loss

E
(x,y)∼D

[
max

||δ||∞≤ϵ
L(x+ δ, y;w)

]
. (10)

Similar to standard training, we can derive the robust feature
weight from the following theorem:

Theorem 4.3 (Adversarial training). In the classification
problem above, under adversarial training with perturba-
tion bound ϵ < η, the robust feature weight

WAT
R =

ln p− ln(1− p)

2n(η − ϵ)
. (11)

We can see that WR has been multiplied by η
η−ϵ > 1, which

has increased the dependence on the robust feature x1 of the
classifier. This shows the adversarially trained model pays
more attention to robust features compared to the standard-
trained one, which improves adversarial robustness.
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4.4. Sharpness-Aware Minimization (SAM)

Now we consider the situation of SAM. Recall that the
optimizing objective of SAM is

E
(x,y)∼D

[
max
|δ|≤ϵ

L(x, y;w + δ)

]
. (12)

We first explain why SAM could improve the adversarial
robustness by proving that the measurement WR trained
with SAM WSAM

R is also larger than W ∗
R, which is stated

as follows:

Theorem 4.4 (Sharpness-aware minimization). In the clas-
sification problem above, the robust feature weight for SAM
training WSAM

R satisfies that

WSAM
R > W ∗

R. (13)

From Theorem 4.3 and 4.4 we can see that both WAT
R and

WSAM
R are greater than W ∗

R, which indicates both SAM
and AT encourages the trained model to learn more robust
features. However, the qualitative relation is not sufficient
to quantify how much robustness SAM achieves compared
to adversarial training, and we attempt to step further by
quantitatively estimating the WSAM

R in the following theo-
rem:

Theorem 4.5. In the classification problem above, suppose
that ϵ > 0 is small, we have

WSAM
R ≈W ∗

R +
2

3
W ∗

Rϵ
2. (14)

4.5. Relation between SAM and AT

We further discuss the distinct attack (perturbation) strength
between AT and SAM. Recall that in our empirical under-
standing in Section 3, the perturbation of SAM is more
moderate and implicit than AT. Therefore, to reach the
same robustness level (which is measured by the robust
feature weight WR), SAM requires a much larger perturba-
tion range, while for AT, less perturbation over x is enough.
Theoretically, the following theorem verifies our statement:

Theorem 4.6. Denote the perturbation range ϵ of AT and
SAM as ϵAT and ϵSAM , respectively. Then, when both
methods return the same robust feature weight WR, we have
the following relation between ϵAT and ϵSAM :

2 +
3

ϵ2SAM

≈ 2η

ϵAT
(15)

From theorem 4.6, we can identify the different perturba-
tion strengths of AT and SAM. It can be easily derive from
Theorem 4.6 that ϵSAM is larger than ϵAT when (15) holds,
since we assume η is a small positive, ϵ is small in Theo-
rem 4.5 and ϵAT < η in Theorem 4.3. Therefore, to gain

the same weight w1 on robust features x1, ϵAT only need
to be chosen much smaller than ϵSAM . On the other hand,
under the same perturbation bound ϵAT = ϵSAM , the model
trained under AT has larger WR than SAM, hence it focuses
on more robustness yet decreases more natural accuracy.

All proofs can be found in Appendix A. While we acknowl-
edge that WR is only analyzed under a simple model and
cannot be directly generalized to multiple-layer networks,
we believe the insights delivered from WR can be general-
ized to DNNs. To sum up, we can conclude that AT utilizes
explicit and direct perturbations for eliminating non-robust
features, while SAM leverages implicit and moderate per-
turbations to learn robust features. This is consistent with
our empirical understanding in Section 3 and we also verify
these claims with experiments in the following section.

5. Experiment
In this section, we conduct extensive experiments to show
the effectiveness of SAM in improving robustness while
maintaining natural performance, across multiple tasks, data
modalities, and various settings. We start with the classic im-
age classification task, seconded by semantic segmentation
(vision) and text classification (language).

5.1. Image Classification

5.1.1. EXPERIMENTAL SETTINGS

Training configurations. We mainly consider the vanilla
SAM (Foret et al., 2020) optimizer with the perturba-
tion hyper-parameter ρ from the range {0.1, 0.2, 0.3, 0.4}.
In addition, we also explore two distinct variants of
SAM including Adaptive Sharpness-Aware Minimization
(ASAM) (Kwon et al., 2021) and Efficient Sharpness-aware
Minimization (ESAM) (Du et al., 2022). Following Pang
et al. (2020) and Wei et al. (2023b), we set the weight decay
as 5e-4 and momentum as 0.9 and train 100 epochs with
the learning rate initialized as 0.1 for SGD and 1e-3 for
Adam, and is divided by 10 at the 75th and 90th epochs,
respectively. For AT, we consider both ℓ2 and ℓ∞ norms.

Datasets and models. We examine the robustness of SAM
on CIFAR-{10,100} (Krizhevsky et al., 2009) and TinyIma-
geNet (Chrabaszcz et al., 2017) datasets. We mainly conduct
our experiment with PreActResNet-18 (PRN-18) (He et al.,
2016b). To demonstrate the scalability of SAM, we also
include the Wider ResNet (WRN-28-10) (Zagoruyko and
Komodakis, 2016) and the vision transformer architecture
(DeiT)(Touvron et al., 2021). To evaluate the corruption
robustness of various models, we also use the CIFAR-10C
dataset (Hendrycks and Dietterich, 2019), a common corrup-
tions dataset for CIFAR10 with 1000 randomly selected ex-
amples from CIFAR-10C and level-3 of perturbation sever-
ity for each corruption types (fog, snow, etc).
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Table 2. Natural and robust accuracy evaluation on CIFAR-10 dataset.

Method Natural FGSM ℓ∞-PGD ℓ2-PGD ℓ2-AA. StAdv FAB Pixle Average
Accuracy ϵ = 1

255 ϵ = 1
255 ϵ = 32

255 ϵ = 32
255 Robustness

SGD 94.5 63.4 37.9 41.5 31.7 35.2 44.8 10.0 37.8
Adam 93.9 44.3 17.4 20.7 13.9 20.4 24.7 7.6 21.3

SAM (ρ = 0.1) 95.4 63.3 46.2 48.7 43.6 39.3 49.2 13.4 43.4
SAM (ρ = 0.2) 95.5 66.7 51.3 53.4 48.1 44.2 53.4 13.2 47.2
SAM (ρ = 0.3) 95.4 66.6 51.2 53.5 47.8 46.1 53.8 13.7 47.5
SAM (ρ = 0.4) 94.7 69.6 56.4 58.6 51.8 54.9 57.6 14.3 51.9

AT (ℓ∞-ϵ = 8
255 ) 84.5 81.9 81.8 79.7 79.5 82.0 79.5 26.9 73.0

AT (ℓ2-ϵ = 128
255 ) 89.2 84.1 84.1 84.8 84.8 80.4 84.8 32.0 76.4

Table 3. Natural and robust accuracy evaluation on CIFAR-100 dataset.

Method Natural FGSM ℓ∞-PGD ℓ2-PGD ℓ2-AA. StAdv FAB Pixle Average
Accuracy ϵ = 1

255 ϵ = 1
255 ϵ = 32

255 ϵ = 32
255 Robustness

SGD 76.5 30.9 13.3 17.0 11.4 14.5 16.9 1.8 15.1
Adam 76.0 20.5 5.3 5.8 3.4 7.4 8.4 1.3 7.4

SAM (ρ = 0.1) 77.7 36.3 20.3 24.1 19.6 20.9 24.5 3.4 21.3
SAM (ρ = 0.2) 78.8 38.1 22.9 25.6 20.2 23.7 25.2 3.7 22.8
SAM (ρ = 0.3) 78.7 40.2 25.5 28.1 22.6 26.4 27.5 4.3 24.9
SAM (ρ = 0.4) 78.7 41.8 29.5 31.8 25.4 29.4 30.0 5.4 27.6

AT (ℓ∞-ϵ = 8
255 ) 58.3 55.1 55.0 53.8 52.4 50.6 52.7 7.3 46.7

AT (ℓ2-ϵ = 128
255 ) 64.2 56.6 56.6 58.1 57.5 52.2 58.2 10.5 49.9

Attacks for robustness evaluations. We assess the model’s
resistance through a multifaceted approach to thoroughly
explore its robustness against different threat models. We
apply the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015) with a perturbation bound of ℓ∞-ϵ = 1/255,
and a 10-step Projected Gradient Descent (PGD) attack
under ℓ∞ and ℓ2 norms with bounds of ϵ = 1/255 and
32/255, respectively. Moreover, we incorporate the Au-
toAttack (AA.) (Croce and Hein, 2021) to ensure a reli-
able evaluation. Besides, we also consider other popular
attacks like StAdv (Xiao et al., 2018), FAB (Croce and Hein,
2020a) (10 steps under ℓ2-ϵ = 32/255). For black-box as-
sessment, we utilize Pixle (Pomponi et al., 2022), a strong
pixel-rearranging black-box attack, constrained to a maxi-
mum of five iterations. The attacks are mostly implemented
by the torchattacks (Kim, 2020) framework to ensure
a reliable assessment. For corruption robustness (Hendrycks
and Dietterich, 2019), which measures the robustness of
DNNs against a wide range of real-world disturbances like
noise, blur, or weather variations, we evaluate models on
RobustBench (Croce et al., 2021), a standardized bench-
mark designed to evaluate the general robustness. We ran
all experiments three times independently to report the av-
erage result and omitted the standard deviations since they
are small (less than 0.5%) and do not affect our claims.

5.1.2. EXPERIMENTAL RESULTS

Comparison with standard training. As shown in Ta-
bles 2 to 4, all models trained with SAM exhibit significantly
better natural accuracy and robustness compared to those
trained with standard training (ST). In particular, higher ro-
bustness is achieved by using larger values of ρ with SAM.
Taking the CIFAR-100 dataset as an example, the model
trained with ρ = 0.4 demonstrates even multiple robust
accuracy than ST, and its natural accuracy is still higher
than that of ST. Compared to the improvement in natural
accuracy (approximately 2%), the increase of robustness is
more significant (more than 10% in average). Moreover,
on large datasets like Tiny-ImageNet, SAM still surpasses
ST by a large margin. Therefore, we conclude that SAM
with a relatively larger weight perturbation bound ρ is a
promising technique for enhancing adversarial robustness
without sacrificing natural accuracy. Notably, our results are
consistent with concurrent work showing that the robustness
of SGD is better than Adam (Ma et al., 2023).

Comparison with AT. Regarding adversarially trained
models, although there remains a large gap between the ro-
bustness obtained by SAM and AT, all adversarially trained
models exhibit significant lower natural accuracy than stan-
dard training and SAM. Particularly, as demonstrated in
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Table 4. Comparison on Tiny ImageNet.

Config Natural AA. StAdv

SGD 57.4 2.5 3.4
SAM (ρ = 0.4) 57.9 10.3 13.3
SAM (ρ = 0.5) 57.7 10.4 12.7

ℓ∞-AT(ϵ = 8/255) 32.3 27.7 25.1
ℓ2-AT(ϵ = 128/255) 41.6 32.8 30.2

Table 5. Comparing SAM and AT with small ϵ on CIFAR-100
dataset.

Method Config Natural AA. Pixle

Standard SGD 76.5 11.4 1.8
Adam 76.0 3.4 1.3

SAM ρ = 0.4 78.7 25.4 5.4
ρ = 0.5 77.8 30.1 8.1

ℓ∞-AT

ϵ = 1/255 72.1 58.6 4.7
ϵ = 2/255 69.4 56.8 4.2
ϵ = 4/255 64.3 55.7 6.3
ϵ = 8/255 58.3 52.4 7.3

ℓ2-AT

ϵ = 16/255 74.3 57.9 5.7
ϵ = 32/255 72.5 57.2 5.2
ϵ = 64/255 69.0 57.3 8.2
ϵ = 128/255 64.2 57.5 10.5

Tables 5 and 6, even training with extremely small pertur-
bation bound like ϵ = 1/255 decreases natural accuracy
at 3.8% for CIFAR-100 and 0.9% for CIFAR-10 datasets,
respectively. The larger perturbation bound ϵ used in AT,
the worse natural accuracy is obtained by the corresponding
model. Therefore, a key benefit of using SAM instead of AT
is that there is no decrease in clean accuracy. Additionally,
note that AT requires significant computational overhead.
Specifically, for 10-step PGD, all AT experiments require 10
times more computational cost compared to ST. Moreover,
the cutting-edge efficient SAMs (Liu et al., 2022; Chen et al.,
2022) are even faster than FastAT (Wong et al., 2020).

Scalability to various architectures. Table 6 presents the
results for three distinct models: PRN-18, WRN, and DeiT.
Regardless of the architecture, SAM consistently improved
robustness against natural, adversarial, and StAdv attacks
compared to standard SGD. On PRN-18, SAM yielded im-
pressive gains on both AA and StAdv attacks, boosting
robustness by 11.9% and 4.1%, respectively. Similar trends
were observed with WRN, achieving robustness improve-
ments of 2.4% and 4.7% for AA and StAdv attacks. Notably,
even for DeiT, where SGD performance was lower, SAM
still offered significant gains in robustness. These results
convincingly demonstrate the broad applicability and scala-
bility of SAM in enhancing robustness across diverse model
architectures.

Table 6. Comparison of different model architectures on CIFAR-
10 dataset with ϵ = 1/255.

Model Method Natural AA. StAdv

PRN-18
SGD 94.5 31.7 35.2
SAM 95.4 43.6 39.3
ℓ∞-AT 84.5 81.4 82.0

WRN
SGD 95.2 39.6 38.3
SAM 95.6 42.0 43.0
ℓ∞-AT 87.2 79.7 76.6

DeiT
SGD 69.2 21.3 11.2
SAM 69.4 24.2 19.6
ℓ∞-AT 62.2 51.9 54.2

Variants of SAM. As shown in Table 7, ASAM and ESAM
generally outperform standard optimizers (SGD and Adam)
in terms of robustness, demonstrating the effectiveness
of adaptive momentum for adversarial defense. Notably,
ESAM achieved the highest robustness against StAdv at-
tacks (49.6% at ρ = 0.4), while SAM yielded the best
robustness against the AA attack (58.4% at ρ = 0.5). These
results highlight the robustness of various SAMs against
adversarial threats.

Table 7. Comparison of variants of SAM on CIFAR-10 dataset.

Method Config Natural AA. StAdv

Standard SGD 94.5 31.7 35.2
Adam 93.9 13.9 20.4

SAM
ρ = 0.3 95.4 57.8 46.1
ρ = 0.4 94.7 51.8 54.9
ρ = 0.5 94.5 58.4 55.8

ESAM
ρ = 0.3 95.2 53.1 48.2
ρ = 0.4 94.7 51.6 49.6
ρ = 0.5 94.4 53.6 49.3

ASAM
ρ = 0.3 95.4 39.9 34.7
ρ = 0.4 95.5 40.4 35.6
ρ = 0.5 95.7 44.2 36.6

Corruption Robustness. Unlike robustness against ad-
versarial attacks, common corruption robustness captures a
wider spectrum of realistic disturbances beyond artificially
crafted perturbations, showcasing how models can handle
varied and unexpected environmental changes. We eval-
uated SAM and AT on corrupted images in CIFAR-10C
and calculated the average accuracy across 9 different com-
mon corruptions. We present these experimental results
in Table 8, with detailed accuracy for each corruption type
available in Table 13 in Appendix B.

Unlike in adversarial attack scenarios where SAM cannot
outperform AT in terms of robustness, models trained with
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Table 8. Accuracy on common corruptions from CIFAR-10C.

Method Natural Corruption (Avg.)

SGD 94.5 34.91
Adam 93.9 29.60

SAM (ρ = 0.3) 95.4 32.60
ASAM (ρ = 0.3) 95.4 36.69
ESAM (ρ = 0.3) 95.2 36.29

ℓ∞-AT(ϵ = 8/255) 84.5 15.67
ℓ2-AT(ϵ = 128/255) 89.2 23.13

SAM have demonstrated significantly superior robustness
compared to AT. As shown in the table, ℓp-norm-AT per-
forms even worse than standard training (15.67% for ℓ∞-AT
with ϵ = 8/255, compared to 34.91% for SGD). In contrast,
SAM achieves similar results on corrupted images without
significant performance degradation, showcasing the stabil-
ity of SAM in realistic perturbation scenarios. Surprisingly,
we found that variants of SAM can perform even better on
corrupted images compared to standard training (with an
accuracy increase of around 2%), highlighting the potential
of the SAM method for addressing real-world robustness
issues.

Comparison with AWP. Adversarial Weight Perturbation
(AWP) (Wu et al., 2020) is an adversarial training method
designed for better adversarial robustness by introducing a
double-perturbation mechanism that adversarially perturbs
both inputs and weights during training. Specifically, AWP
can be regarded as a combination of SAM and AT. As AWP
also leverages the weight perturbation paradigm, we provide
a comparison with AWP and SAM to showcase that SAM
still outperforms AWP in terms of natural accuracy.

The experimental results are shown in Table 9. Similar
to the comparison between SAM and AT, we can see that
although AWP outperforms both SAM and AT in terms of
adversarial robustness, the natural accuracy with SAM is
still higher than AWP even though weight perturbation was
incorporated in it, indicating the importance of using natural
data instead of adversarial examples for training to maintain
the natural accuracy.

Table 9. Comparison of SAM, AT, and AWP on CIFAR-10.

Method Natural AA.

SAM (ρ = 0.1) 95.4 43.6
SAM (ρ = 0.4) 94.7 51.8

ℓ∞-AT (ϵ = 8/255) 84.5 79.5
ℓ∞-AWP (ϵ = 8/255) 82.0 80.1

ℓ2-AT (ϵ = 128/255) 89.2 84.8
ℓ2-AWP (ϵ = 128/255) 89.7 86.3

5.2. Semantic Segmentation

Experimental settings. We train DeepLabv3 (Chen et al.,
2017) with randomly initialized ResNet-50 (He et al., 2016a)
backbone on the Stanford background dataset (Gould et al.)
with Cross-Entropy loss for 30000 iterations. For experi-
ments on VOC2012 dataset (Everingham et al.), we use mo-
bilenetv2 (Sandler et al., 2018) backbone, and the weights
are initialized with pre-trained on ImageNet. The learning
rate is initialized as 0.01 with a polynomial decay scheme.
For the optimizer, the weight decay is set to 1e-4, and the
momentum is set to 0.9. We use the mean Intersection
over Union (mIoU) (Everingham et al., 2015) to evaluate
the segmentation results, where the IoU is calculated for
each class at the pixel level as

IoU =
TP

TP + FN+ FP
× 100%, (16)

where TP, FN and FP represent true positive, false negative
and false positive, respectively. The mIoU is then the mean
value across all the classes in the dataset. For SAM, we
select ρ from {0.01, 0.02, 0.03, 0.04, 0.05}.

Table 10. Comparing SAM and AT for semantic segmentation on
Stanford background dataset, mIoU is used for evaluation.

Method Config Natural ℓ∞-PGD ℓ2-PGD

Standard SGD 64.0 57.3 57.0
Adam 62.2 57.1 56.8

SAM

ρ = 0.01 64.3 58.2 58.0
ρ = 0.02 64.8 58.7 57.6
ρ = 0.03 64.5 58.3 58.0
ρ = 0.04 64.6 57.9 57.6
ρ = 0.05 64.6 57.8 57.4

ℓ∞-AT

ϵ = 1/255 59.9 59.0 59.2
ϵ = 2/255 58.2 57.7 57.8
ϵ = 4/255 55.3 54.9 55.1
ϵ = 8/255 57.5 55.1 54.9

Experimental results. The experiment results are summa-
rized in Table 10 and Table 11, where we use a 10-step
PGD attack under ℓ∞-ϵ = 1/255 and ℓ2-ϵ = 1 for robust-
ness evaluation, respectively. As shown in the table, models
trained using SAM consistently achieve better segmentation
performance than ST and significantly better than AT, and
exhibit notably better robustness than ST, showcasing the
robust generalization ability of SAM in various visual tasks.
We also observed that the mIoU decrease of segmentation
tasks is not as significant as the accuracy decrease of clas-
sification under adversarial attacks, which we assume is
because the segmentation task is a highly interpretive task
and many low-level features also play an important role in
the segmentation results (Ren and Malik, 2003; Zhu et al.,
2021), making segmentation models inherently more robust
than classification models.
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Table 11. Comparing SAM and AT for semantic segmentation on
VOC2012 dataset, mIoU on the validation set is used for evalua-
tion.

Method Config Natural ℓ∞-PGD ℓ2-PGD

Standard SGD 66.9 37.7 47.1
Adam 65.2 28.9 36.9

SAM

ρ = 0.01 67.9 38.9 48.6
ρ = 0.02 67.7 40.2 50.1
ρ = 0.03 68.3 38.8 49.9
ρ = 0.04 67.5 39.1 49.1
ρ = 0.05 68.6 40.4 50.6

ℓ∞-AT ϵ = 1/255 50.8 50.2 50.4
ϵ = 2/255 49.2 48.7 49.0

ℓ2-AT
ϵ = 64/255 60.3 56.9 58.4
ϵ = 128/255 56.5 54.3 55.2
ϵ = 255/255 53.7 52.3 52.8

5.3. Text Classification

Language models are also shown to be vulnerable against
adversarial attacks (Morris et al., 2020; Wei et al., 2024).
While adversarial attack (Zou et al., 2023; Dong et al., 2023;
Wei et al., 2023c; Zhang and Wei, 2024) and defense (Xie
et al., 2023; Piet et al., 2023; Mo et al., 2024; Wang et al.,
2024) on Large Language Models (LLMs) have become
emergent research topics recently, it is worth noting that
adversarial training on LLMs may not be helpful and practi-
cal (Jain et al., 2023), further underscoring the potential of
deploying SAM a defense for language models.

Experimental settings. In this part, we explore the
effectiveness of SAM in enhancing the robustness of
text sequence classification models against adversarial at-
tacks. Utilizing the Rotten Tomatoes dataset (Pang and
Lee, 2005) for sentiment analysis, we study the word-
level adversarial robustness of models trained with dif-
ferent methods. Specifically, we consider two popular at-
tacks: the Improved Genetic Algorithm (IGA) (Wang et al.,
2021) and the Particle Swarm Optimization (PSO) (Zang
et al., 2020), both of which are officially supported by
the TextAttack framework (Morris et al., 2020). For
the model under test, we selected the widely recognized
distilbert-base-uncased model from Hugging
Face’s transformers library (Sanh et al., 2019), fine-tuning
it for 3 epochs on the target dataset. The optimization for
ST was performed using the AdamW optimizer with a learn-
ing rate of 5e-5, and the SAM optimization strategy was
applied with the same base learning rate for AdamW and
ρ = 0.05. We also compare SAM with AT which incorpo-
rates adversarial examples identified in various adversarial
attacks into the training dataset. Adversarial attacks such
as IGA, PSO, and Textfooler (Jin et al., 2020) have been

chosen for data augmentation purposes. The official imple-
mentation in TextAttack provides specific details for training
in this regard.

Experimental results. The experimental results, summa-
rized in Table 12, show the nuanced performance differences
between SAM and ST. Although both SAM and ST achieved
comparable natural accuracy (84.6% v.s. 84.4%), the dis-
tinction in attack success rates (ASR) is pronounced, e.g.
a reduced ASR of 17.1% under SAM compared to 22.7%
under ST, indicating a significant improvement in adver-
sarial robustness. As for AT, adding adversarial examples
to the training set has been found to lower natural accu-
racy without significantly improving adversarial robustness.
On average, the ASR for models trained with AT is 2.9%
higher with PSO attack and 2.6% higher with IGA attack,
indicating that adversarially trained models hurt overall per-
formance against adversarial attacks, although they may be
effective at defending specific types of attacks.

Table 12. Accuracy and ASR comparison between SAM and ST
for text sequence classification.

Method Natural PSO IGA
Accuracy (↑) ASR (↓) ASR (↓)

ST (AdamW) 84.4 22.7 84.1

SAM 84.6 17.1 74.5

AT (w/IGA) 84.0 22.1 71.7
AT (w/PSO) 83.8 16.9 86.8

AT (w/Textfooler) 83.6 21.1 72.9

These findings suggest that incorporating SAM can notably
improve the adversarial robustness of text classification mod-
els without compromising natural performance, offering a
promising avenue for future research and application to
secure AI models against adversarial threats.

6. Conclusion
In this paper, we reveal the duality relationship between
Sharpness-Aware Minimization (SAM) and Adversarial
Training (AT) and show that using SAM alone can improve
adversarial robustness. We first intuitively illustrate that
both SAM and AT can learn robust features by demonstrat-
ing the duality between weight and sample perturbations,
and provide theoretical justifications to support these in-
sights. We further conduct extensive experiments under
various settings to show that SAM can improve robustness
without sacrificing natural performance, while AT inevitably
hurts natural generalization. These results uncover the scal-
ability and practicality of using SAM to improve robustness
without compromising accuracy on clean data. Based on
this, we propose that SAM can be used as a lightweight
alternative to AT when accuracy is a priority and improved
robustness is preferred.
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Impact Statement
This work sheds light on how Sharpness-Aware Minimiza-
tion (SAM), previously known for its clean accuracy im-
provements, can unexpectedly enhance the security of deep
learning models by boosting their adversarial robustness.
This finding presents a potential alternative to Adversar-
ial Training (AT), a widely used but accuracy-sacrificing
defense. By offering improved security without compro-
mising clean accuracy, our work could significantly impact
the deployment of reliable machine learning models in sen-
sitive domains like healthcare, finance, and autonomous
systems. However, responsible development and deploy-
ment practices are crucial, as robust models can also be
misused. We emphasize the need for continued research
into diverse defense mechanisms, fairness, interpretability,
and theoretical underpinnings to ensure a secure and ethical
future for machine learning.
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A. Proofs
In this section, we provide all the proof for the theorems. To start with, we introduce a property of our model in the data
distribution, which has been proved and used in a series of previous works (Tsipras et al., 2018; Ilyas et al., 2019; Xu et al.,
2021):

Lemma (Tsipras et al., 2018) In the presented model and data distribution, given w1, the optimal solution for the
optimization objective will assign equal weight to all the non-robust features, i.e. w2 = w3 = · · · = wn+1.

The conclusion is proved in Lemma D.1 in Tsipras et al. (2018). Based on this lemma, since we only focus on the ratio
WR = w1

w2+w3+···+wn+1
, we can further assume w2 = w3 = · · · = wn+1 = 1 without loss of generalization.

A.1. Proof for Theorem 4.1

Proof. As x1 has been chosen to be in ±1, the perturbation over x1 has no influence on it, and we can just ignore it.
Therefore, to attack the classifier by a bias δ, to make the accuracy as small as possible, an intuitive idea is to set δ which
minimizes the expectation of xi(i = 2, · · · , n + 1), which made the standard accuracy smaller. In fact, the expected
accuracy is monotonically increasing about each δi(i = 2, · · · , n+ 1). Thus, choosing δ = (0,−ϵ, · · · ,−ϵ) can be the best
adversarial attack vector for any w > 0. In this situation, this equals x′

i(i = 2, · · · , n+ 1) ∼ N (η − ϵ, n).

Thus, RA can be rewritten to be

RA = Ex,y∼DP(w1x1 +

n+1∑
i=2

xi − nϵ > 0)

= pΦ((w1 + (η − ϵ)n)/
√
n) + (1− p)Φ((−w1 + (η − ϵ)n)/

√
n),

(17)

where Φ(·) is the cumulative distribution function of a standard normal distribution.

Since WR is obviously a monotonic increasing function of w1, we only need to prove that RA in the above equation is a
monotonic increasing function of w1. To show this, we take a partial derivative of w1 in RA:

∂RA

∂w1
= p exp(−(w1 + (η − ϵ)n)2/2n)/

√
2πn− (1− p) exp(−(w1 − (η − ϵ)n)2/2n)/

√
2πn. (18)

Simplifying this, we get
∂RA

∂w1
= g(w1) · (1−

1− p

p
exp(2w1(η − ϵ))), (19)

where g(w1) = p√
2πn

exp(−(w1 + (η − ϵ)n)2/2n) is positive . When 0 < WR < WAT
R , or equivalantly 0 < w1 <

ln p−ln(1−p)
2(η−ϵ) , we can easily know that (1− 1−p

p exp(2w1(η− ϵ))) > 0, which implies that ∂RA

∂w1
> 0, and further means that

RA is a monotonic increasing function of WR.

A.2. Proof for Theorem 4.2

Proof. Due to symmetry, we only need to calculate the case of y = 1 without loss of generality. From the distribution, we
can easily derive that x2 + · · ·+ xn+1 ∼ N (ηn, n).

Thus, since w2 = w3 = · · ·wn+1 = 1 are assumed to be fixed, we can know that the best parameter w1 satisfies

w∗
1 =argmax

w1

Ex.y∼D1fw(x)=y

=argmax
w1

pPr(x2 + · · ·+ xn+1 > −w1) + (1− p) Pr(x2 + · · ·+ xn+1 > w1)

=argmax
w1

p√
2πn

∫ ∞

−w1

e−(t−ηn)2/2ndt+
1− p√
2πn

∫ ∞

w1

e−(t−ηn)2/2ndt

:=argmax
w1

u(w1).

(20)

14



On the Duality Between Sharpness-Aware Minimization and Adversarial Training

Then, the best parameter w1 can be derived by du/dw1 = 0. The derivative is

du
dw1

=
p√
2πn

e−(w1+ηn)2/2n − 1− p√
2πn

e−(w1−ηn)2/2n = 0. (21)

Solving this, we get the optimal value of w1 is

w∗
1 =

ln p− ln(1− p)

2η
. (22)

Therefore, W ∗
R under the optimal value of w is

W ∗
R =

ln p− ln(1− p)

2nη
. (23)

A.3. Proof for Theorem 4.3

Proof. As x1 has been chosen to be in ±1, the perturbation over x1 has no influence on it, and we can just ignore it.
Therefore, to attack the classifier by a bias δ, to make the accuracy as small as possible, an intuitive idea is to set δ which
minimizes the expectation of xi(i = 2, · · · , n + 1), which made the standard accuracy smaller. In fact, the expected
accuracy is monotonically increasing about each δi(i = 2, · · · , n + 1). Thus, choosing δ = (0,−ϵ, · · · ,−ϵ) can be the
best adversarial attack vector for any w > 0. In this situation, this equals x′

i(i = 2, · · · , n+ 1) ∼ N (η − ϵ, n). Therefore,
similar to equation (20), we can derive the train accuracy which is

v(w) = pΦ((w + (η − ϵ)n)/
√
n) + (1− p)Φ((−w + (η − ϵ)n)/

√
n). (24)

Here Φ(·) is the cumulative distribution function of a standard normal distribution. Now we only need to solve equation
dv/dw = 0. Through simple computation, this derives that

p exp(−(w1 + (η − ϵ)n)2/2n)/
√
2πn = (1− p) exp(−(w1 − (η − ϵ)n)2/2n)/

√
2πn. (25)

Solving this equation, we finally get the optimal value for w1 to be

wAT
1 =

ln p− ln(1− p)

2(η − ϵ)
. (26)

Therefore, WAT
R under the optimal value of w1 is

WAT
R =

ln p− ln(1− p)

2n(η − ϵ)
. (27)

A.4. Proof for Theorem 4.4

Proof. Define the expected clean accuracy function

u(w) =
p√
n
Φ((w + ηn)/

√
n) +

(1− p)√
n

Φ((−w + ηn)/
√
n), (28)

where Φ(·) is the cumulative distribution function of a standard normal distribution and w ∈ R. The derivative is

du(w)
dw

=
p√
2πn

e−(w+ηn)2/2n − 1− p√
2πn

e−(w−ηn)2/2n

=
1√
2πn

e−(w2+η2n2)/n
(
pe−wη − (1− p)ewη

)
.

(29)
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From the theorem 4.2 for standard training, we know u(w) has only one global minimum w∗
1 = ln p−ln(1−p)

2η for which
du(w)

dw |w=w∗
1
= 0. Thus, from (29) we know that du(w)

w < 0 if w > w∗
1 and du(w)

w > 0 if w < w∗
1 .

In the SAM algorithm where we set λ = 0 and with ϵ given, we know that

wSAM
1 = argmax

w
min

δ∈[−ϵ,ϵ]
u(w + δ). (30)

It is easy for us to know that state that

min
δ∈[−ϵ,ϵ]

u(wSAM
1 + δ) = min

{
u(wSAM

1 − ϵ), u(wSAM
1 + ϵ)

}
. (31)

If u(wSAM
1 − ϵ) > u(wSAM

1 + ϵ), then wSAM
1 + ϵ > w∗

1 . Since du(w)
dw is continuous and locally bounded, there exists

δ0 > 0 such that u(wSAM
1 − ϵ− δ0) > u(wSAM

1 + ϵ) and u(wSAM
1 + ϵ− δ0) > u(wSAM

1 + ϵ) Thus, we have

min
{
u(wSAM

1 − ϵ− δ0), u(w
SAM
1 + ϵ− δ0)

}
> min

{
u(wSAM

1 − ϵ), u(wSAM
1 + ϵ)

}
. (32)

Therefore
min

δ∈[−ϵ,ϵ]
u
(
(wSAM

1 − δ0) + δ
)
> min

δ∈[−ϵ,ϵ]
u(wSAM

1 + δ), (33)

which means that wSAM
1 is not the optimal value we want. Similarly we can disprove that u(wSAM

1 − ϵ) < u(wSAM
1 + ϵ).

Thus, u(wSAM
1 − ϵ) = u(wSAM

1 + ϵ).

From this, we know that ∫ w∗
1

wSAM
1 −ϵ

du(w)
dw

dw = −
∫ wSAM

1 +ϵ

w∗
1

du(w)
dw

dw. (34)

Using (29), we have ∫ w∗
1

wSAM
1 −ϵ

e−w2(
pe−wη − (1− p)ewη

)
dw

=−
∫ wSAM

1 +ϵ

w∗
1

e−w2(
pe−wη − (1− p)ewη

)
dw.

(35)

If wSAM
1 ≤ w∗

1 , define h = wSAM
1 + ϵ− w∗

1 . Thus, h ≤ ϵ ≤ −wSAM
1 + ϵ+ w∗

1 . In (35), we have∫ 0

−h

e−(w∗
1+w)2

(
pe−(w∗

1+w)η − (1− p)e(w
∗
1+w)η

)
dw

≤
∫ w∗

1

wSAM
1 −ϵ

e−w2(
pe−wη − (1− p)ewη

)
dw

=−
∫ wSAM

1 +ϵ

w∗
1

e−w2(
pe−wη − (1− p)ewη

)
dw

=−
∫ h

0

e−(w∗
1+w)2

(
pe−(w∗

1+w)η − (1− p)e(w
∗
1+w)η

)
dw

=

∫ 0

−h

e−(w∗
1−w)2

(
− pe−(w∗

1−w)η + (1− p)e(w
∗
1−w)η

)
dw.

(36)

Since w∗
1 > 0, we can know that e−(w∗

1+w)2 > e−(w∗
1−w)2 > 0 for w ∈ [−h, 0).

For the function r(v) :=
(
pe−vη − (1− p)evη

)
is monotonically decreasing and has one zero point w∗

1 , thus pe−(w∗
1+w)η −

(1− p)e(w
∗
1+w)η > 0 and −pe−(w∗

1−w)η + (1− p)e(w
∗
1−w)η > 0 for w ∈ [−h, 0]. And

pe−(w∗
1+w)η − (1− p)e(w

∗
1+w)η −

(
− pe−(w∗

1−w)η + (1− p)e(w
∗
1−w)η

)
=
(
pe−w∗

1η − (1− p)ew
∗
1η
)
(ewη + e−wη)

=0.

(37)
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Therefore, ∀w ∈ [−h, 0),

e−(w∗
1+w)2

(
pe−(w∗

1+w)η − (1− p)e(w
∗
1+w)η

)
> e−(w∗

1−w)2
(
− pe−(w∗

1−w)η + (1− p)e(w
∗
1−w)η

)
. (38)

Combining this with (36), we reach a contradiction.

Thus, wSAM
1 > w∗

1 . Applying this to the definition of WSAM
R and W ∗

R, we can easily obtain the result that

WSAM
R > W ∗

R. (39)

□

A.5. Proof for Theorem 4.5

Proof. We proceed our proof from (35). Since we have proven that wSAM
1 > w∗

1 , we suppose that h = w∗
1−wSAM

1 + ϵ < ϵ.
Therefore, we can derive from (35) and the definition of h that

0 =

∫ 0

−h

e−(w∗
1+w)2(pe−(w∗

1+w)η − (1− p)e(w
∗
1+w)η)dw

−
∫ 0

−h

e−(w∗
1−w)2(−pe−(w∗

1−w)η + (1− p)e(w
∗
1−w)η)dw

−
∫ 2ϵ−h

h

e−(w∗
1+w)2(−pe−(w∗

1+w)η + (1− p)e(w
∗
1+w)η)dw.

(40)

Since we only focus on h, we consider omitting the o(h) terms in the calculation. To be more specific, o(w2) term in the
integral symbol

∫ 0

−h
can be omitted, and o(w) or o(h) term for w and h in the integral symbol

∫ 2ϵ−2h

h
can also be omitted.1

Combined with the proof in (37) and the definition of w∗
1 , and abandoning the high order terms, we can calculate the

right-hand side as follows.

RHS =

∫ 0

−h

(
e−(w∗

1+w)2 − e−(w∗
1−w)2

)
·
(
pe−(w∗

1+w)η − (1− p)e(w
∗
1+w)η

)
dw

+

∫ 2ϵ−h

h

e−(w∗
1+w)2

(
− pe−(w∗

1+w)η + (1− p)e(w
∗
1+w)η

)
dw

≈
∫ 0

−h

e−(w∗
1 )

2(
1− 2w∗

1w − 1− 2w∗
1w + o(w)

)
·
(
pe−w∗

1η(1− wη)− (1− p)ew
∗
1η(1 + wη)

)
dw

−
∫ 2ϵ−2h

0

e−(w∗
1 )

2

(1− 2w∗
1h) ·

(
− pe−w∗

1η(1− hη) + (1− p)ew
∗
1η(1 + hη)

)
dw

≈4e−(w∗
1 )

2

w∗
1

∫ 0

−h

w2η
(
− pe−w∗

1η − (1− p)ew
∗
1η
)
dw − e−(w∗

1 )
2

∫ 2ϵ−2h

0

ηh
(
pe−w∗

1η + (1− p)ew
∗
1η
)
dw

≈4

3
e−(w∗

1 )
2

w∗
1

(
pe−w∗

1η + (1− p)ew
∗
1η
)
h3 − 2e−(w∗

1 )
2

(ϵ− h)ηh
(
pe−w∗

1η + (1− p)ew
∗
1η
)

≈2

3
e−(w∗

1 )
2(
pe−w∗

1η + (1− p)ew
∗
1η
)
η
(
2w∗

1h
2 − 3(ϵ− h)

)
.

(41)

Since RHS = 0, by solving the last equality in (41) we get that

ϵ− h

h
=

2

3
w∗

1h = o(1). (42)

Thus, the calculation and the abandoning of high-order terms in the calculation above are valid. Since h→ ϵ, we have

ϵ− h =
2

3
w∗

1h
2 ≈ 2

3
w∗

1ϵ
2. (43)

1The validity of abandoning these high order terms can be seen from the result of the calculation, which shows that h−ϵ
h

→ 0.
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Therefore, we obtain that wSAM
1 ≈ w∗

1 +
2
3w

∗
1ϵ

2.

Applying the definition of WSAM
R and W ∗

R to this result, we finally reach the conclusion that

WSAM
R ≈W ∗

R +
2

3
W ∗

Rϵ
2. (44)

A.6. Proof for Theorem 5

Proof. When both methods derives the same robust feature weight WR (with different perturbation strength ϵSAM and ϵAT ),
denoting the standard training optimal parameter W ∗

R = (ln p− ln(1− p))/2nη, we have

WR = WSAM
R ≈W ∗

R(1 +
2

3
ϵ2SAM ), (45)

which is the result of (44), and
WR = WAT

R =
η

η − ϵAT
w∗

R, (46)

which is the result of (27) and (23). Thus, combining two equations, we have

η

η − ϵAT
≈ 1 +

2

3
ϵ2SAM . (47)

Solving this as an equation of η, we get relationship

2

3
ϵ2SAM ϵAT + ϵAT ≈

2

3
ηϵ2SAM . (48)

By dividing both sides with ϵAT ϵ
2
SAM , the relation in the theorem can be simply derived. This ends the proof.

B. Detailed Experimental Results

Overall experimental results for general robust accuracy are shown in Table 13.

Table 13. General robust accuracy on CIFAR-10C dataset.

Method Natural Brightness Fog Frost Gaussian Impulse Jpeg Shot Snow Speckle
Accuracy Blur Noise Noise Noise

SGD 94.5 63.7 26.3 30.8 19.2 40.6 32.4 26.5 41.9 32.8
Adam 93.9 54.8 21.9 25.4 15.9 35.7 28.1 21.5 38.0 25.1

SAM (ρ = 0.1) 95.4 63.1 26.2 29.2 20.6 37.0 31.7 23.0 42.7 28.3
SAM (ρ = 0.2) 95.5 61.5 20.2 27.5 16.6 40.2 27.2 26.1 38.1 30.2
SAM (ρ = 0.3) 95.4 61.0 24.8 28.6 19.1 40.3 28.2 23.7 40.2 27.5
SAM (ρ = 0.4) 94.7 59.5 22.4 31.8 17.0 37.7 30.0 29.7 41.7 35.3

ASAM (ρ = 0.3) 95.4 68.9 28.7 34.0 18.2 41.9 34.0 25.9 45.9 32.7
ESAM (ρ = 0.3) 95.2 64.3 28.1 32.9 20.9 39.3 32.8 30.0 44.2 34.1

AT (ℓ∞-ϵ = 8
255 ) 84.5 16.1 12.5 11.6 15.5 18.2 16.7 17.3 16.2 16.9

AT (ℓ2-ϵ = 128
255 ) 89.2 25.8 14.6 18.7 21.5 25.3 25.4 26.3 25.2 25.4
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