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Abstract
In contrast to the prevailing interpretation of Low-
Rank Adaptation (LoRA) as a means of simulat-
ing weight changes in model adaptation, this pa-
per introduces an alternative perspective by fram-
ing it as a control process. Specifically, we con-
ceptualize lightweight matrices in LoRA as con-
trol modules tasked with perturbing the original,
complex, yet frozen blocks on downstream tasks.
Building upon this new understanding, we con-
duct a thorough analysis on the controllability of
these modules, where we identify and establish
sufficient conditions that facilitate their effective
integration into downstream controls. Moreover,
the control modules are redesigned by incorpo-
rating nonlinearities through a parameter-free at-
tention mechanism. This modification allows for
the intermingling of tokens within the controllers,
enhancing the adaptability and performance of the
system. Empirical findings substantiate that, with-
out introducing any additional parameters, this
approach surpasses the LoRA algorithms across
all assessed datasets and rank configurations.

1. Introduction
Large-scale deep neural networks, in particular Transform-
ers (Vaswani et al., 2017), have demonstrated unprecedented
performance in areas such as computer vision (Dosovitskiy
et al., 2020), natural language processing (Vaswani et al.,
2017) and speech recognition (Radford et al., 2023). The
prevailing methodology for attaining optimal model perfor-
mance typically entails pre-training with an extensive text or
image corpus, followed by subsequent fine-tuning on a com-
pact task-specific dataset. For example, the Vision Trans-
former (ViT) (Dosovitskiy et al., 2020) is first pre-trained
on the Imagenet-21K (Deng et al., 2009) or JFT (Sun et al.,
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2017) dataset, and then undergoes fine-tuning to facilitate
adaptation on various downstream tasks.

The downside of such an approach is that the large models
often consist of millions or even billions of parameters, lead-
ing to the exhaustive consumption of GPU memories during
the full-tuning process. To alleviate this issue, a series of
parameter-efficient fine tuning (PEFT) algorithms (Bapna
et al., 2019; Houlsby et al., 2019; Jia et al., 2022; Lian et al.,
2022) have been proposed in recent studies. One such exam-
ple is the Low-Rank Adaptation (LoRA) (Hu et al., 2021),
which integrates pairs of additional trainable low-rank ma-
trices whilst keeping the original model fixed during the
training process.

Despite its broad success in practical scenarios, the under-
lying mechanism of these PEFT algorithms remains under-
explored. For instance, the general rationale behind LoRA
algorithms is often framed as “the change in weights during
model adaptation has a low intrinsic rank” (Aghajanyan
et al., 2020; Hu et al., 2021). Consequently, to accurate
replicate weight changes, low-rank matrices should be ap-
plied to all parameters within the model, given that they are
all trainable in model adaptation. Yet, empirical results fre-
quently suggest that it is sufficient to apply LoRA solely to
specific matrices within each block, such as only the Query
matrices QK .

In particular, we notice the recent AdaptFormer algo-
rithm (Chen et al., 2022) opens the gate for a new direction.
Unlike traditional approaches where LoRA matrices are
nested within the attention blocks, AdaptFormer positions
these low-rank matrices in parallel to the feed-forward layer.
This arrangement allows for an alternative interpretation of
PEFT algorithms in this paper: the LoRA matrices should
not be merely regarded as the weight differences after model
adaptation, but rather as control modules designed to perturb
the original model.

Such an interpretation draws parallels to classical control
theory (Bishop, 2011; Kwakernaak & Sivan, 1972), wherein
light-module controls are frequently positioned to steer
a complex system towards desired states. In the field of
robotics (Slotine & Li, 1987; Lewis et al., 2003), for exam-
ple, a controller may be employed to govern the movements
of a robotic arm, orchestrating its precise positioning and
motion to accomplish specific tasks. Analogously, transfer
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learning for large models could be performed in a similar
way: a series of lightweight modules (e.g., low-rank matri-
ces) can be designed to control the ViT model, aiming to
achieve minimal adaptation loss.

Following this new interpretation, we study the controlla-
bility of these low-rank modules in a general setting of the
continuous-time analogue of multi-layer models (E, 2017;
Haber & Ruthotto, 2017). Specifically, we establish suffi-
cient conditions by necessitating the controller to span the
space with full rank at any given time. Adhering to these
conditions, we illustrate that the existing (almost) linear
controls employed by AdaptFormer may face challenges in
achieving full controllability, particularly when dealing with
large datasets. Moreover, when considering transformers
that incorporate attention mechanisms, our analysis indi-
cates that there exist cases where the absence of cross-patch
dynamics may lead to the failures of control.

These theoretical analyses further motivate us to devise
new nonlinear controllers tailored for transformers on down-
stream tasks. To achieve this goal, we delve into the un-
derlying mechanism of the original ViT model and propose
a new nonlinear control featuring a parameter-free atten-
tion mechanism. Such a design allows the patches to be
intermingled within controllers, thereby contributing to an
enhancement in the overall controllability of the low-rank
modules. Empirical findings consistently support that, with-
out introducing any additional parameters, this approach
outperforms the existing LoRA-like algorithms by a large
margin on all assessed datasets and rank configurations.

In summary, our contributions encompass two key aspects.
(1) Following the control-oriented perspective, we establish
sufficient conditions for the controllability of perturbation
functions. We scrutinize existing algorithms from this con-
trol viewpoint and demonstrate that they may fail to meet
these conditions in certain cases. (2) In response to this, we
redesign the controller module to align with the transformer
architecture by incorporating a cross-patch attention mech-
anism. Numerical verification confirms that the proposed
algorithm satisfies the controllability condition, and its ef-
fectiveness is further demonstrated across multiple datasets.

2. Related Works
Parameter-Efficient Fine-Tuning With the emergence
of large-scale deep neural networks, transfer learning (Pan
& Yang, 2009) with pre-trained models has become the de
facto approach for adaptation on downstream tasks. Full-
tuning the entire model often necessitates substantial GPU
memories and suffers from the slow training process. Conse-
quently, recent studies in transfer learning have concentrated
on optimizing pre-trained models by selecting a limited sub-
set of parameters or introducing extra lightweight parame-

ters. In particular, the prompt-based algorithms (Radford
et al., 2018; Brown et al., 2020) advocate for the incor-
poration of extra trainable tokens to guide the behavior
of language models. While this tuning method has also
found applications in vision-related downstream tasks (Jia
et al., 2022), its drawback lies in the significant drop in
accuracy after increasing the prompt number to specific val-
ues, as demonstrated in (Chen et al., 2022). The LoRA
algorithm (Hu et al., 2021), inspired by the studies of
Adapter (Houlsby et al., 2019; Karimi Mahabadi et al.,
2021), offers an alternative solution by injecting low-rank
matrices into the original attention block. Subsequently, the
AdaptFormer (Chen et al., 2022) shifts the perturbation to
the feed-forward layer and places it in parallel to the original
ViT block. This departs from the setting in LoRA, where
low-rank matrices are nested within the attention module.
Neural architecture search methods have also been utilized
in the following studies (Zhang et al., 2022; Chavan et al.,
2023), in order to search a PEFT architecture to maximize
the downstream performance. Compared with LoRA-like
algorithms, these search methods typically require more
training time to identify a proper architecture for each spe-
cific downstream task.

Control for Machine Learning Control theory (Franklin
et al., 2002; Ogata, 2010) focuses on the analysis and design
functions to regulate the behavior of dynamical systems.
A cohort of recent studies have utilized machine learning
methods to solve the classical control problems, such as
the stability analysis (Chang et al., 2019; Dai et al., 2021).
But using control to solve practical machine learning prob-
lems remains a relatively less explored area. In particular,
the early works (E, 2017; Haber & Ruthotto, 2017; Chang
et al., 2018) consider the machine learning process, espe-
cially learning with ResNet (He et al., 2016), as a function
approximation via a control system. Following this under-
standing, a series of studies (Li et al., 2017; Li & Hao,
2018; Zhang et al., 2019; Kerimkulov et al., 2021) has been
working on providing an optimal control viewpoint in the
development and understanding of optimization methods
for deep learning tasks. In addition to this optimal control
view, the controllablity analysis (Ogata, 2010) defines the
ability to match arbitrary input and target states, with certain
admissible manipulations. It leads to a connection to the
classical studies on the expressive ability of continuous-time
neural networks (Raghu et al., 2017; Lu et al., 2017). As
such, some universal approximation results of deep ResNets
have been established based on the controllability analy-
sis (Cheng et al., 2023; Ruiz-Balet & Zuazua, 2023; Li
et al., 2022; Cuchiero et al., 2020).

In particular, the controllability analysis of transfer learning
with PEFT algorithms has not been explored in the existing
literature.
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3. A Control Formulation of PEFT Algorithms
We present a control-oriented view for parameter-efficient
fine-tuning algorithms in this part, followed by discussions
on the principles guiding practical controller design.

3.1. Preliminary and Notations

We begin by revisiting the widely-used Vision Transformer
(ViT). Given an image x0 ∈ RC×H×W , the ViT model first
splits and embeds the sample image into a series of visual
tokens x′

0 ∈ Rm×d, where m denotes the number of tokens
and d refers to the length of each token. Subsequently, an ad-
ditional class-token xcls ∈ R1×d is concatenated with these
tokens, followed by the addition a positional embedding
into each token to form x1 ∈ R(m+1)×d.

These visual tokens are then fed into a set of transformer
layers, with the t-th block defined as:

xt+ 1
2
= MHSA(LN(xt)) + xt, (1)

xt+1 = FFN(LN(xt+ 1
2
)) + xt+ 1

2
, (2)

for t ∈ [1, · · · , T−1]. Here MHSA, FFN and LN denote the
multi-head self-attention, feed-forward network and layer
normalization, respectively.

The encoded class-token xcls
T will go through a linear layer

to conduct the final prediction.

3.2. Dynamics of Controlled ViT Systems

To leverage a pre-trained Vision Transformer (ViT) for
downstream tasks without incurring the computational bur-
den associated with full-tuning, a suite of parameter-efficient
fine-tuning (PEFT) algorithms has been developed in prior
research. In broad terms, these studies concentrate on train-
ing specific parts of the original network or incorporating
additional lightweight parameters, thereby customizing the
pre-trained model for targeted downstream tasks.

In particular, the LoRA algorithm (Hu et al., 2021) endeav-
ors to find a sequence of functions {gt} to be applied to the
ViT blocks:

xt+1 = ft (xt, θt, gt(xt, ut)) .

Here gt can be construed as a control function that takes the
original xt as input and contains some new parameters ut.
The purpose of this function is to introduce perturbations to
the original attention parameter θt, which remains constant
throughout the learning process.

For efficiency concerns, LoRA employs the linear func-
tion gt(xt, ut) = xtut, and imposes the constraint that the
weight matrix ut possesses the low-rank property:

ut = AtBt, At ∈ Rd×d′
, Bt ∈ Rd′×d, d′ ≪ d.

From a control perspective, the controls within LoRA are
integrated into the attention blocks, and analyzing such con-
trols tends to be non-trivial. In contrast, the subsequent
AdaptFormer (Chen et al., 2021) relocates the low-rank ma-
trices to the Feed-Forward Network (FFN) layer, positioning
them in parallel with the original ViT block. The controlled
dynamics can be expressed as:

xt+1 = ft(xt, θt) + gt(xt, ut).

A notable advantage of this approach is that the control func-
tion gt is no longer embedded within the original ft. This
decoupling of the control module significantly simplifies the
control analysis. As such, we shall adhere to this additive
formulation throughout the paper, but consider more general
controller designs for gt.

The overall goal is to design and optimize the parameters of
gt such that the terminal loss on downstream tasks could be
minimized:

min
{ut,θT }

1

N

N∑
i=1

L(xPred,i, yi) (3)

s.t. xt+1,i = ft(xt,i, θt) + gt(xt,i, ut), t ∈ [1, · · · , T − 1]

xPred,i = fT (x
cls
T,i, θT )

3.3. Principles of Controller Design

In general, the control function gt can take arbitrary forms,
linear or nonlinear. But for practical implementations, de-
sign of such a control module should adhere to two princi-
ples: efficiency and controllability.

For efficiency considerations, the parameter number of the
control module should be significantly smaller than the orig-
inal block. This ensures the introduction of extra blocks
does not offset our gains from freezing the original ViT
blocks. In practice, this reduces the consumption of GPU
memories and often accelerates the whole training process.

On the other hand, the controllability defines whether our
control blocks possess the capability to steer the ViT system
to the desired states.This condition becomes more challeng-
ing when operating with constraints imposed by limited
parameters.

Due to its inherent low ranks, the AdaptFormer algorithm
naturally functions as a parameter-efficient method during
the downstream adaptation process. This characteristic en-
ables effective adaptation to specific tasks without the need
to tune an excessive number of parameters. But the question
remains whether these controlling blocks possess sufficient
controllability to steer the ViT system to the desired states.
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4. Controllability Analysis
In this section, we present the controllability analysis for
the fine-tuning of pre-trained, multi-layer models within
a continuous-time context. This analysis aims to provide
mathematical perspectives in designing effective controllers
for PEFT algorithms.

4.1. A Sufficient Condition for Controllability

We begin by considering a general multi-layer pre-trained
model incorporating skip connections between layers (He
et al., 2016). The model’s dynamics are described as fol-
lows:

xt+1 = xt + ht(xt), t = 0, · · · , T − 1, xt ∈ RD (4)

where x0 is the input, xT is the output of the model, and ht

denotes the map represented by the t-th layer of the model.
Since the parameters of the original model are frozen in the
tuning process, we simply use ht(x) to represent the original
dynamics. Viewing the layer index t as a temporal variable
transforms our model into a continuous-time analogue, as
explored in prior studies (E, 2017; Haber & Ruthotto, 2017):

ẋ(s) = h(x(s), s), s ∈ [0, S], (5)

where the time s is the continuous analogue of the layer
index t. Let φ : x(0) → x(S) denote the input-output
relation of dynamics (5). In this framework, we consider
the effect of introducing a small scale control function to
perturb the model dynamics:

˙̃x(s) = h(x̃(s), s) + εg(x̃(s), u(s)), x̃(0) = x(0) (6)

where g : U × RD → RD is the controller with the control
parameter u ∈ U , and ε > 0 is a scaling factor. In the
following discussion, we will assume U to be a compact set.
Notice that compared to the general case in (3) where the
controller gt can have different structures across layers, here
we are considering the special case where the controller g
keeps the same structures, but with different control param-
eters u across layers. This resembles the setting adopted in
current PEFT algorithms.

Let φε,u : x̃(0) → x̃(S) denote the perturbed input-output
map, which is effectively the feature map of the perturbed
model in the deep transformer case. Ideally, we hope a good
controller should enable us to adjust the feature map of the
perturbed model across a specific dataset. Specifically, for a
given set of data samples X = {xi}Ni=1 ⊂ RD, we expect
a good controller to be able to perturb the effect of φ over
X arbitrarily, at least on a small scale. This leads us to the
concept of local controllability that we now define:

Definition 4.1. We say the system (5) with controller
g(u, x) is locally controllable over a dataset X =

{xi}Ni=1 ⊂ RD, if there exists ε > 0 such that the set

{(φε,u(x1), · · · , φε,u(xN )) | u ∈ L∞([0, S],U)}

is an open neighborhood of (φ(x1), · · · , φ(xN )) in (RD)N .

Intuitively, suppose the feature map for the downstream task
differs from the pre-trained model in a small scale, then
a controller meeting Definition 4.1 enables the perturbed
feature map to generate the required output features over X ,
regardless of the distribution of perturbation over the data
points in X .

Assume that there is a partition 0 = s0 < · · · < sL = S of
[0, S], such that h(x, s) is C2 on each [si, si+1]×Ω, where
Ω is the domain of data. Then, the following theorem gives
a sufficient condition on g for the local controllability over
X to hold:
Theorem 4.2. Assume that g(u, x) is locally Lipschitz con-
tinuous in both u and x. Also, assume that g(0, x) ≡ 0,
and for any u and x, there exists v such that g(v, x) =
−g(u, x)(image set of g is symmetric). For given dataset
X = {xi}Ni=1 ⊂ RD, suppose that the set

{(g(x1(s), u), · · · , g(xN (s), u) ∈ (RD)N ) | u ∈ U} (7)

spans (RD)N for each s ∈ [0, S], where xi(s) denotes the
state of the original dynamics(5) at time s with initial value
xi. Then, the original system with controller g is locally
controllable over X .

Proof Idea. Set x̃i(s) = xi(s)+εzi(s), then an asymptotic
analysis gives that there exists a uniform constant C > 0,
such that the solution z̃i(s) of

˙̃zi(s) = ∇⊤
x h(s, xi(s)) · z̃(s) + g(u(s), xi(s)), z̃i(0) = 0

(8)
satisfies ∥zi(s) − z̃i(s)∥ ≤ Cε for all initial value xi, s ∈
[0, S] and u(·) ∈ L∞([0, S],U). By the theory of linear
ODE, the solution of (8) at the terminal time T is given by

z̃i(S) = µi(S)

∫ S

0

µ−1
i (s)g(u(s), x(s))ds, (9)

where µi(t) ∈ Rd×d is a fundamental solution matrix of the
homogeneous equation of (8), i.e.

µ̇i(s) = ∇⊤
x h(xi(s), s) · µi(s), µ(0) = Id. (10)

Therefore, z̃i(S) depends linearly on g(u(s), xi(s)) for
each s ∈ [0, S]. We then split the time interval [0, S] into
N small subintervels [sj , sj+1], i = 0, · · · , N . When N is
large enough, for any given perturbation vector V ∈ (RD)N ,
since µ(s) is continuous in s and g satisfies the condition
in the theorem, one can choose piece-wise constant u such
that the integration of

(µ(S)µ−1(s)g(u(s), x1(s)), · · · , µ(S)µ−1(s)g(u(s), xN (s)))

(11)
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over each [sj , sj+1] is along the same direction with Vj .
This yields that (z̃1(S), · · · , z̃i(S)) can take any value in
a some neighborhood of the origin in (RD)N . Since zi(S)
differs from z̃i(S) with only O(ε), we conclude that the
local controllability holds for small ε.

Remark 4.3. The full proof of Theorem 4.2 is given in the
appendix. The insight of Theorem 4.2 is actually straightfor-
ward: suppose the controller allows all the directions over
(RD)N to be admissible for perturbation at each time hori-
zon, then one has the freedom to perturb the final outputs of
the dynamics arbitrarily in a small scale.

4.2. Insights on the benefits of nonlinear controller

While the theorem provides just a sufficient condition for
local controllability in a continuous-time setting, it yields
valuable insights into the controller design. Observations
drawn from the condition in Theorem 4.2 reveal that the
linear controller is unable to satisfy the condition in Theo-
rem 4.2 when the dataset X is large. In particular, we have
the following Proposition.
Proposition 4.4. Suppose g(u, x) = A(u)x+B(u) which
is linear in x, then the condition in Theorem 4.2 cannot hold
when N > D + 1.

A recent study (Luo et al., 2023) demonstrates that it is em-
pirically safe to eliminate the ReLU function from Adapt-
Former, resulting in a linear controller. But the above Propo-
sition indicates that the expressive ability of the linear con-
troller is highly related to the original dynamics, where
it can be possibly compromised if the original dynamics
exhibit near-linear behavior across a specific dataset. On
the other hand, nonlinear controllers can have the potential
to satisfies the condition in Theorem 4.2 for more general
datasets X , which is an implication of a strong controllabil-
ity. This observation then motivates us to consider nonlinear
controllers for PEFT algorithms.

Moreover, in the case when the original dynamics function
h(x, s) is linear in x, the effect of a linear controller does not
add any nonlinear characteristics to the original dynamics.
Consequently, the controllability as defined in Definition 4.1
cannot be achieved.

5. Nonlinear Controller Design
Motivated by the above insights suggesting potential bene-
fits of nonlinear controllers, we now turn to the design of a
practical nonlinear controller for ViT.

5.1. Cross-Patch Attention is What You Need

Linear control nevertheless offers a straightforward pertur-
bation mechanism on the frozen ViT blocks and are often
simple to design and analyze. However, as explored in Sec-

tion 4.2, the linear controller alone cannot ensure robust
controllability for general models; its effectiveness depends
on the complexity and nonlinearity inherent in the original
dynamics.

Nonlinear control, on the other hand, holds the promise of
employing a more complex perturbation mechanism, but
the form of such a nonlinear control should be meticulously
designed. As an example, the pioneering work AdaptFormer
attempts to incorporate nonlinearities by considering gt =
σ(xtAt)Bt, where σ represents an activation function such
as ReLU. But subsequent research demonstrates (Luo et al.,
2023) that such an activation function has minimal effects
in practice, and the performance of AdaptFormer closely
resembles that of its linear counterpart.

To get more insights on the design of nonlinearity, let us
delve into the original ViT system. In the dynamics of ViT,
the state x = (x1, · · · , xm)T ∈ Rm×d is consisting of a
sequence of tokens. Note each ViT block comprises two
consecutive components: MHSA and FFN. In particular,
each head within the MHSA block conducts an attention
mechanism via:

Attn(Q,K, V ) = Softmax
(
QKT

√
d

)
V. (12)

A key insight for this attention module is that the tokenized
patches are intermingled to generate the new tokens. The fol-
lowing FFN block merely offers a patch-independent linear
transformation. Yet, such a “cross-patch attention” (CPA)
mechanism is missing in the design of algorithms like Adapt-
Former: each tokenized patch is projected downward and
upward through linear transformations, with no inclusion
of a token mixture process. Such a token-wise controller
design can limit the controllability over general models and
data, as shown in the following proposition.
Proposition 5.1. Suppose the controller has the form:

g(u, x) = (g̃(u, x1), · · · , g̃(u, xm))T (13)

which is token-wise applied to x, then the condition in The-
orem 4.2 cannot hold when there exists some patch xj1

i1
and

xj2
i2

of xi1 and xj1 in X , such that xj1
i1

= xj2
i2

.

In addition, if the original dynamics h(s, x) are also ap-
plied token-wise, there exists cases where the controllability
defined in Definition 4.1 is compromised. This observa-
tion indicates the necessities of cross-patch information in
tuning states that sharing common patches in the original
dynamics.

5.2. Nonlinear Controller Design

The above Proposition motivates us to devise a nonlinear
control mechanism well-suited for the transformer. In par-
ticular, the key step in designing an effective nonlinear con-
troller lies in how to introduce the CPA mechanism, while
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Figure 1. ViT with nonlinear controls.

at the same time minimizing the introduction of additional
parameters.

This paper explores the utilization of the LoRA matrices
as the base, and proposes a series of heads with minimal
parameters. The objective is to ensure the intermingling of
tokens from different patches through the implementation
of these heads.

In particular, we explore both linear and nonlinear heads,
as depicted in Figure 1. For linear heads, a straightforward
approach is to direct the controller to output the LoRA re-
sults. Regarding nonlinear heads, we examine the following
mechanism:

xp(j′) = CPA(x) =
∑
j

exp⟨xp(i), xp(j)⟩∑
m exp⟨xp(i), xp(m)⟩

xp(j),

(14)

where xp(j) denotes the j-th patch of x. Note in the above
CPA design, we refrain from introducing a linear transfor-
mation for x to obtain Q,K, V , and we also omit the scaling
factor

√
d. This deliberate omission allows the attention to

be performed in a parameter-free manner, with only matrix
multiplication for x being necessary to compute attention.

The nonlinear output is subsequently combined with the
linear output to generate the overall control, resulting in the
following control formulation:

Control(x) = LoRA(x) + CPA (LoRA(x)) (15)

And dynamics of controlled-ViT can be depicted as:

xt+ 1
2
= MHSA(LN(xt)) + xt, (16)

xt+1 = FFN(LN(xt+ 1
2
)) + Control(xt+ 1

2
) + xt+ 1

2
.

(17)

Let us make a few comments to the control design. The
nonlinear head (14) within the controller has no parameters,

ensuring that the total number of parameters in our approach
remains identical to the previous work. From a control
perspective, incorporating such a head introduces both the
nonlinearities and cross-patch information to the controller.

From the machine learning aspect, such a parameter-free
head allows the patches to be mixed up to generate the new
tokens, akin to the standard attention mechanism. Note the
control is applied in parallel to the FFN layer in the above
formulation, following the pioneering work (Chen et al.,
2022). Alternatively, it could be applied to the entire ViT
block, and we observe only very minimal differences in
practical scenarios.

Finally, while proving this controller’s effectiveness in gen-
eral cases is challenging, we provide numerical demonstra-
tions that illustrate its satisfaction of the sufficient condition
on ViT examples, as later discussed in Section 6.2.

5.3. Multi-Head Controller

One may consider the attention shares the weight of LoRA
matrices in the above formulation (14), namely:

Q = K = V = AtBt. (18)

This allows the controller to utilize the existing parameters
of LoRA and refrains from introducing extra parameters.

A simple extension of this parameter-sharing mechanism is
to increase the head numbers, in order to boost the complex-
ity of controller. In Figure 1, we consider such a scenario
by utilizing a multi-head controller. Note such a setting
introduces extra parameters and we limit the head number
to 2 in this paper for efficiency concerns.

6. Experiment
In this part, we evaluate the effectiveness of the nonlinear
controllers by conducting a series of experiments on vision
datasets.

6.1. Preliminary

Experimental Settings. For fair comparison, we mir-
ror the experimental settings in AdaptFormer (Chen et al.,
2022). This involves utilizing the same pretrained Vi-
sion Transformer (ViT) backbone, choosing identical down-
stream tasks, and configuring parameters based on the spec-
ifications provided in their original study.

Competing Algorithms. The proposed Attention-
augmented Nonlinear Control Algorithm, denoted as ANC,
is compared with a few commonly used tuning algorithms:
(1) Full-Tuning: all parameters are trainable; (2) Linear
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Probing: appending an additional trainable linear layer
on top of the pre-trained model while keeping the rest
parameters fixed; (3) Visual Prompt Tuning (VPT) (Jia et al.,
2022): concatenating a set of trainable tokens with existing
image tokens; (4) Low-Rank Adaptation (LoRA) (Hu et al.,
2021): injecting trainable low-rank matrices to WQ and
WV ; (5) AdaptFormer (Chen et al., 2022): a vision-specific
LoRA algorithm by perturbing the FFN layer with (almost)
linear controls.

6.2. A Toy Example On the Controllability

We commence with a numerical verification of the condi-
tion outlined in Theorem 4.2 through a small-size example.
In particular, we consider a scenario wherein the original
model is a randomly initialized 10-layer ViT model. The
state x encompasses 4 tokens in dimension 5. Subsequently,
we introduce our controller defined as follows:

g(u, x) := Ax+ b+ CPA(Ax+ b),

and proceed to numerically evaluate the conditions outlined
in Theorem 4.2 at each layer of the model.

We randomly generate 20 tokens x1, · · · , x20 as the in-
put dataset X , and 4000 samples {uj = (Aj , bj) | j =
1, · · · , 4000}, as the control parameters. Subsequently, at a
fixed layer t ∈ {1, · · · , 10}, we compute the vectors

(g(uj , x
1
t ), · · · , g(uj , x

20
t ))

for each j = 1, · · · , 4000. The generated vectors are nor-
malized and stacked into a 4000 × 400 matrix. Next, we
compute the singular values and contrast them with the
singular values of the matrix obtained using the linear con-
troller. The comparison of the 5-th transformer block is
presented in Figure 2.
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Figure 2. Comparison between the singular value of the matrix
obtained by our controller (left) and the linear controller (right) at
the 5-th transformer block.

At each block in the model, all singular values with an in-
dex greater than 30 become zero in the case of the linear
controller, indicating that the condition in Theorem 4.2 can-
not be satisfied. In contrast, for our controller, the singular
values exhibit a much slower decay, with a minimum value
around 0.04. This signifies that the condition in Theorem 4.2
holds for our controller.

6.3. Experiments on Vision Benchmarks

With the above observation, we now proceed to validate our
approach on various vision benchmarks, including CIFAR-
100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011)
and Food-101 (Bossard et al., 2014).

Table 1 reports the performance of all algorithms, with the
same pre-trained ViT backbone. Notably, the Full-Tuning
algorithm consistently achieves the highest levels of test
accuracy across all three datasets, establishing itself as a
practical upper limit for LoRA-like algorithms. In contrast,
the linear-probing algorithm experiences a considerable de-
cline in accuracy ranging from 18.07% to 30.76% across
these datasets, indicating that the mere insertion of a linear
layer may not yield satisfactory results. This observation
also highlights the necessities of perturbing the lower levels
of a ViT model to enhance performance.

The PEFT algorithms on the other hand surpass the linear-
probing algorithm by a large margin. In particular, we
compare the LoRA, AdaptFormer and ANC algorithm with
the same number of parameters in Table 1. Note the LoRA
algorithm needs to set a low-rank perturbation to both WQ

and WV , hence its rank would be half of the other two al-
gorithms with equivalent parameter counts. The findings
reveal that the Attention-augmented Nonlinear Control algo-
rithm (ANC) consistently outperforms all competing PEFT
algorithms across diverse datasets and for all rank configura-
tions. As an illustration, on the Food-101 dataset, the perfor-
mance demonstrates a notable improvement from 85.70%
of LoRA-16 to 88.06% of ANC-32, achieved without intro-
ducing any additional parameters. The gap to Full-Tuning
could be decreased from 4.39% to 2.03% in this case, where
PEFT algorithms only need to tune a small fraction (0.78%)
of parameters.

Table 1. Comparison of algorithm performance. We reuse the data
reported in AdaptFormer and present single-run results, while
repeated experiments for ANC are provided in Appendix B.3. [†]
lr for the full-tuning algorithm is decreased by 0.1 to maximize
performance of full-tuning on the CIFAR-100 dataset.

Algorithm # Params(M) CIFAR-100 SVHN Food-101
Full-Tuning 86.04 87.90† 97.67 90.09
Linear-Probing 0.07 69.83 66.91 69.74
VPT 0.08 82.44 94.02 82.98
LoRA-16 0.67 85.31 96.29 85.70
AdaptFormer-32 0.67 85.42 96.45 86.21
ANC-32 0.67 86.69 96.94 88.06
LoRA-32 1.26 85.42 96.42 86.09
AdaptFormer-64 1.26 85.90 96.89 87.61
ANC-64 1.26 87.06 97.03 88.33
LoRA-64 2.44 85.88 96.58 86.42
AdaptFormer-128 2.44 86.12 96.92 87.78
ANC-128 2.44 87.17 97.11 88.50

By examining the training curves in Figure 3, we notice the
ANC-64 algorithm consistently obtains the lowest training
loss during the learning process. The terminal training loss

7
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is 19.23% smaller than AdaptFormer-64. Its superior fitting
capability is reflected in a relatively higher test accuracy, as
demonstrated in Table 1, notwithstanding the models shar-
ing identical parameter counts. This observed phenomenon
persists across all datasets and rank configurations, sug-
gesting the superior approximation ability of this nonlinear
control in practical applications.
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Figure 3. Comparison of training loss for different algorithms on
the CIFAR-100 dataset. Similar results on SVHN and Food-101
are available in Appendix B.2.

6.4. Multi-Head Controller Experiment

The incorporation of a nonlinear transformation in the ANC
algorithm allows the perturbations to be performed in a
more complex way, where different patches could be mixed
together through a parameter-free attention mechanism. But
the reuse of AtBt as Q,K, V nevertheless limits its com-
plexity. To address this limitation, we may increase the
head numbers by adopting a multi-head controller, as il-
lustrated in Figure 1. Note such an approach is no longer
parameter-free, and we generally need to increase the num-
ber of training variables to boost the complexity.

Table 2. Algorithm performance of multi-head controllers. 2H
denotes the 2-Head controller.

Algorithm CIFAR-100 SVHN Food-101
ANC-32 86.69 96.94 88.06
ANC-32-2H 87.14 (+0.45) 97.03 (+0.09) 88.43 (+0.37)
ANC-64 87.06 97.03 88.33
ANC-64-2H 87.35 (+0.29) 97.12 (+0.09) 88.65 (+0.32)
ANC-128 87.17 97.11 88.50
ANC-128-2H 87.52 (+0.35) 97.18 (+0.07) 89.01 (+0.51)

Table 2 presents the performance of utilizing such a multi-
head control strategy. The results reveal that increasing
the head number can further boost the overall performance
across all datasets and ranks. Notably, this control strategy
enables a smaller performance gap to the full-tuning algo-
rithm. For instance, ANC-128-2H attains a test accuracy
level of 87.52%, while the full-tuning algorithm achieves
87.90% on the CIFAR-100 dataset. It is noteworthy that the

former algorithm only needs to tune 4.82% of the whole
parameters, whereas the latter requires full-tuning all 86.04
million trainable variables.

Moreover, by comparing algorithms with the same number
of parameters (e.g., ANC-32-2H and ANC-64), it becomes
evident that augmenting nonlinearity exhibits a marginally
superior performance compared to increasing the rank. Con-
sequently, elevating the rank is no longer the exclusive av-
enue for enhancing the performance of PEFT algorithms.

6.5. Ablation Studies on Nonlinearity

This paper explores the architectural design by leveraging
LoRA matrices as the foundation, supplemented with the
incorporation of a Cross-Patch Attention (CPA) head to in-
troduce nonlinearity. This departure from prevailing method-
ologies, which typically introduce nonlinearity through ac-
tivation functions between At and Bt. We highlight the
necessities of token intermingling by contrasting with the
following algorithms: (1) the standard AdaptFormer utiliz-
ing a ReLU function; (2) a purely linear control method
achieved by excluding the ReLU function; (3) a nonlinear
control by injecting a sigmoid function into AdaptFormer.

Table 3. Ablation study on the forms of nonlinearity
Algorithm CIFAR-100 SVHN Food-101
ANC-64 87.06 97.03 88.33
AdaptFormer-64 85.90 96.89 87.61
Linear-64 86.01 96.85 87.68
AdaptFormer-64-Sigmoid 84.61 95.99 85.80

Table 3 indicates that the incorporation of the nonlinear
ReLU function yields marginal impact on the final perfor-
mance of AdaptFormer, in comparison with its linear coun-
terpart. Moreover, the incorporation of a sigmoid function
leads to performance declines across all datasets, notably
resulting in a significant decrease of 1.4% on the CIFAR-
100 dataset. Consequently, the form of nonlinearity has
to be meticulously designed, in order to outperform the
pure linear controls. The attention-augmented algorithm
consistently outperforms both linear controls and nonlinear
controls employing activation functions. Note the rank is
set to 64 in Table 3, but the observed phenomenon persists
across all rank configurations.

7. Conclusion
This paper bridges the controllability analysis with recent
investigations into PEFT algorithms. Specifically, we re-
cast the LoRA-like algorithms as a control problem and
conduct a comprehensive analysis of the controllability of
low-rank modules, thereby establishing sufficient condi-
tions for downstream controls. The controller modules are
further redesigned by introducing nonlinearities through a
parameter-free attention mechanism, enabling token inter-

8
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mingling within the controllers. Empirical results demon-
strate that this approach outperforms the existing LoRA-like
algorithms across all evaluated datasets and rank configura-
tions, without introducing additional parameters.

Impact Statement
This paper aims to bridge parameter-efficient algorithms
with control theory. There are minor potential societal con-
sequences of our work, none which we feel must be specifi-
cally highlighted here.
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A. Proof for Theorems and Propositions
A.1. Proof of Theorem 4.2

Set x̃i(s) = xi(s) + εzi(s) and substitute it into the perturbed dynamics (6), we have:

ẋi(s) + εżi(s) = h(x̃i(s), s) + εg(x̃i(s), u(s)). (19)

Subtracting the original dynamics, and expand with respect to ε gives:

żi(s) = ∇⊤
x h(xi(s), s) · zi(s) + g(u(s), xi(s)) + δi(s), z(0) = 0. (20)

Since h is piece-wise C2, g is locally Lipschitz, U is compact, we deduce that there exists constant C, which depends only
on g, h such that ∥δi(s)∥ ≤ Cε for all xi and s ∈ [0, S]. Therefore, if we denote z̃ as the solution of the following linear
ODE:

żi(s) = ∇⊤
x h(xi(s), s) · zi(s) + g(x(s), u(s)), z(0) = 0, (21)

then the difference between z(s) and z̃(s) is in O(ε). Let µ(s) ∈ Rd×d be a fundamental solution matrix of the homogeneous
equation of (8), i.e.

µ̇(s) = ∇⊤
x h(x(s), s) · µ(s), µ(0) = Id, (22)

By the theory of linear ODE, the solution of (8) is given by

z(s) = µ(s)

∫ t

0

µ−1(s)g(x(s), u(s))ds

For the proof of Theorem 4.2, we need the following technical lemma. The lemma states that the spatial average of
trajectories can be realized via average in time.

Lemma A.1. Let xk(·) : [0, S] → RD, k = 1, · · · , xN be the N different trajectories of the original ODE. Suppose
γ(x, s) : [0, S] × RD → RD is a continuous map satisfies that for any s ∈ [0, S], there exists λ1, · · · , λm ∈ R and
u1, · · · , um ∈ U , such that |λ1|+ · · ·+ |λm| ≤ 1 and

γ(xk(s), s) =

m∑
i=1

λig(xk(s), u(s)), for all k = 1, · · · , N.

Then, for any δ > 0, there exists a trajectory u(·) : [0, S] → U such that

|
∫ S

0

µ−1
k (s)γ(xk(s), s)ds−

∫ S

0

µ−1
k (s)g(xk(s), u(s))ds| < δ, for all k = 1, · · · , N,

where µk(·) denotes the trajectory of (22) where the trajectory x(·) is given by xk(·).

Proof of lemma. Let M1 := supk,s ∥h(xk(s), s)∥, M2 := supk,s,u ∥g(xk(s), u(s))∥, M3 := sups,k ∥µk(s)
−1∥2. Since f

is piece-wise C1, g is continuous, U is bounded, we have that M1,M2,M3 < ∞. Let Lg and L For integer N > 0, we split
the interval [0, S] into N subintervals [tj−1, tj ], j = 1, · · ·N , where tj = j

N S. At each tj , there exists λj,1, · · · , λj,mj
∈ R

and uj,1, · · · , uj,mj ∈ U , such that |λk,1|+ · · ·+ |λj,mj | ≤ 1 and

γ(xk(tj), tj) =

mj∑
i=1

λj,ig(xk(tj), uj,i), for all k = 1, · · · , N.

For convenience, let βl :=
∑l

i=1 λj,i for l = 0, · · · ,mk, and let βmk+1
= 1. Then, we define

u(s) = uj,i, for s ∈ [tj−1 + βl−1(tj − tj−1), tj−1 + βl(tj − tj−1)), l = 1, · · · ,mj ,
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and u(s) = 0 for s ∈ [tj−1 + βmj
(tj − tj−1), tj ]. Then, we have:∣∣∣∣∣

∫ tj

tj−1

µ−1
k (s)γ(xk(s), s)ds−

∫ tj

tj−1

µ−1
k (s)g(xk(s), u(s))ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tj

tj−1

µ−1
k (s)(γ(xk(s), s)ds− γ(xk(tk−1), tk−1))ds

∣∣∣∣∣+
∣∣∣∣∣
∫ tj

tj−1

µ−1
k (s)(γ(xk(tj−1), tj−1)ds− g(xk(s)), u(s))ds

∣∣∣∣∣
≤(tj − tj−1)M3 · ω(γ,

S

N
(1 +M1)) +

∣∣∣∣∣
∫ tj

tj−1

µ−1
k (s)(γ(xk(tj−1), tj−1)ds− g(xk(s), u(s)))ds

∣∣∣∣∣
(23)

where ω(f, δ) = sup{|f(x)− f(y)| : |x− y| ≤ δ} denotes the modulus of continuity of a function. For the second term in
the last line, we have the estimate∣∣∣∣∣

∫ tj

tj−1

µ−1
k (s)(γ(xk(tj−1), tj−1)ds− g(xk(s), u(s)))ds

∣∣∣∣∣
≤

mk∑
l=1

mk∑
p=1

∣∣∣∣∣λj,l

∫ tj−1+βp(tj−tj−1)

tj−1+βp−1(tj−tj−1)

µ−1
k (s)(g(xk(tj−1), uj,l))ds− λj,p

∫ tj−1+βl(tj−tj−1)

tj−1+βl−1(tj−tj−1)

µ−1
k (s)g(xk(s), uj,l)ds

∣∣∣∣∣
≤(tj − tj−1) ·

mk∑
l=1

mk∑
p=1

λj,lλj,p(M3ω(g,
M2S

N
) +M2ω(µ

−1
k ,

S

N
))

=(tj − tj−1) · (M3ω(g,
M2S

N
) +M2ω(µ

−1
k ,

S

N
))

(24)
Combining (23) and (24), we have

|
∫ S

0

µ−1
k (s)γ(xk(s), s)ds−

∫ S

0

µ−1
k (s)g(xk(s), u(s))ds| ≤ S(M3ω(γ,

S

N
(1+M1))+M3ω(g,

M2S

N
)+M2ω(µ

−1
k ,

S

N
)).

(25)
Since γ, g and µ−1

k are continuous, the lemma is proved when N goes to infinity.

Proof of Theorem 4.2 . By the assumption of the theorem, for any s ∈ [0, S], there exists an r(s) > 0 such that the ball
with radius r(s)

Br(s) := {x ∈ RNd | ∥x∥ < r(s)}

is contained in the set

C(s) := {
m∑
i=1

λi (g(x1(s), ui), g(x2(s), ui), · · · , g(xN (s), ui)) | m ∈ Z+, |λ1|+ · · ·+ |λm| ≤ 1}.

Therefore, for any vector V = (v1, · · · , vN ) ∈ RND(where vi ∈ RD) with unit norm, one can construct a continuous
function γ(x, s) such that

(µ1(S)µ
−1
1 (s)γ(x1(s), s), µ2(S)µ

−1
2 (s)γ(x2(s), s), · · · , µN (S)µ−1

N (s)γ(xN (s), s))

is a.e. non-zero for s ∈ [0, S] and is along the same direction with V . Therefore, the vector(
µ1(S)

∫ T

0

µ−1
1 (s)γ(x1(s), s)ds, · · · , µN (S)

∫ T

0

µ−1
N (s)γ(xN (s), s)ds

)
= cV.

for some positive constant c. According to Lemma A.1, this implies that(
µ1(S)

∫ S

0

µ−1
1 (s)g(x1(s), u(s), )ds, · · · , µN (S)

∫ S

0

µ−1
N (s)g(xN (s), u(s))ds

)
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can be arbitrarily close to cV when u(·) varies. Since V is arbitrary and z(S) = µ(S)
∫ S

0
µ−1(s)g(x(s), u(s))ds is the

leading term of φε,u − φ, we deduce that there exists ε > 0 such that the set

{(φε,u(x1), · · · , φε,u(xN )) | u ∈ L∞([0, S])}

is an open neighborhood of (φ(x1), · · · , φ(xN )).

A.2. Proof for Proposition 4.4

Proof. When the dataset X is fixed, the expression

A(u)x+B(u) =
∑

1≤i,j≤D

Aij(u)(Eijx) +Bi(u)ei

is a linear combination of no more than D2 +D fixed vectors, where Eij are the (i, j)-th matrix unit and ei are the standard
basis vectors for Rd. Therefore, the space spanned by (7) is at most in D2 +D dimension. Then, when N > D+1, N ×D
will surpass D2 +D and the condition in Theorem 4.2 cannot hold.

A.3. Proof of Proposition 5.1

Proof. For convenience, suppose that the first token x1
1 and x1

2 of x1 and x2 are the same. Since g is token-wise applied,
this implies that the first token of g(x1, u) and g(x2, u) will always be the same.

Therefore, the set in (7) will be restricted to a subspace with co-dimension at least d.
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Figure 4. Train loss on the SVHN (left) and Food-101 (right) dataset.

B. Additional Experiments
B.1. Experimental Settings

In general, the experimental configurations adhere to the settings employed in the prior AdaptFormer (Chen et al., 2022)
study. A plain Vision Transformer (ViT-Base) model serves as the underlying architecture, pre-trained on the ImageNet-21K
dataset (Deng et al., 2009) with MAE (He et al., 2022). The down-projection layer weights in the controls are initialized
using Kaiming Norm (He et al., 2015), while the up-projection layer weights are set to 0. Analogously, all biases in the
controls are initialized to 0.

The Stochastic Gradient Descent (SGD) algorithm with a momentum of 0.9 is employed for optimizing the controls during
the training process. Its batch-size is set to 128 and the learning rate is set to 0.05. All experiments are conducted on the
Nvidia-3090.
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B.2. Training Loss for SVHN and Food-101 Datasets

We report the training curves on the CIFAR-100 dataset in Figure 3. For completeness, the corresponding curves for the
SVHN and Food-101 datasets are depicted in Figure 4. The observed results indicate that the ANC algorithm consistently
achieves the lowest training losses on these two datasets.

B.3. Repeated Experiments for ANC

Table 4. Repeated experiments on the ANC algorithm.
Algorithm CIFAR-100 SVHN Food-101
ANC-32 86.68 ± 0.03 96.96 ± 0.03 88.08 ± 0.05
ANC-64 87.06 ± 0.02 97.04 ± 0.02 88.33 ± 0.03
ANC-128 87.18 ± 0.03 97.12 ± 0.02 88.50 ± 0.05
ANC-32-2H 87.15 ± 0.03 97.05 ± 0.02 88.42 ± 0.04
ANC-64-2H 87.35 ± 0.03 97.12 ± 0.02 88.66 ± 0.04
ANC-128-2H 87.51 ± 0.07 97.18 ± 0.02 89.03 ± 0.05

We present the algorithm performance on a single-run in Table 1. In particular, we set the seed as 42 whenever possible. As
such, the up and down projections in all LoRA-like algorithms are initialized with the same value, so that the only difference
lies in the control architecture. This approach effectively mitigates the impact of divergent initializations across different
algorithms.

For completeness, we repeat the ANC experiments thrice with different seeds, and report its performance in Table 4. The
results demonstrate that the performance of ANC remains generally stable across different seed values, exhibiting minimal
variances.
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