
Probabilistic Inference in Language Models
via Twisted Sequential Monte Carlo

Stephen Zhao 1 2 * Rob Brekelmans 2 * Alireza Makhzani 1 2 ** Roger Grosse 1 2 **

Abstract
Numerous capability and safety techniques of
Large Language Models (LLMs), including
RLHF, automated red-teaming, prompt engineer-
ing, and infilling, can be cast as sampling from
an unnormalized target distribution defined by a
given reward or potential function over the full se-
quence. In this work, we leverage the rich toolkit
of Sequential Monte Carlo (SMC) for these prob-
abilistic inference problems. In particular, we use
learned twist functions to estimate the expected fu-
ture value of the potential at each timestep, which
enables us to focus inference-time computation
on promising partial sequences. We propose a
novel contrastive method for learning the twist
functions, and establish connections with the rich
literature of soft reinforcement learning. As a
complementary application of our twisted SMC
framework, we present methods for evaluating the
accuracy of language model inference techniques
using novel bidirectional SMC bounds on the log
partition function. These bounds can be used to
estimate the KL divergence between the infer-
ence and target distributions in both directions.
We apply our inference evaluation techniques to
show that twisted SMC is effective for sampling
undesirable outputs from a pretrained model (a
useful component of harmlessness training and
automated red-teaming), generating reviews with
varied sentiment, and performing infilling tasks.

1. Introduction
A wide range of language model learning and inference
tasks can be viewed as steering a model’s generations to
satisfy a specified property. In particular, traditional rein-

* Joint first authorship, ** Joint senior authorship.
1University of Toronto 2Vector Institute. Correspondence
to: {stephenzhao, makhzani, rgrosse} @cs.toronto.edu,
rob.brekelmans@vectorinstitute.ai.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

forcement learning from human feedback (RLHF) pipelines
(Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022; Bai et al., 2022; Rafailov et al., 2023) prioritize re-
sponses that score highly according to a terminal reward
function reflecting human feedback (Korbak et al., 2022b).
Red-teaming techniques such as prompt-engineering and in-
filling may seek target outputs with low reward or (high prob-
ability of) undesirable responses (Zou et al., 2023; Perez
et al., 2022). In reasoning tasks, we may seek to target
outputs which are likely to be deemed valid by a ‘verifier’
(Cobbe et al., 2021; Anil et al., 2021; Dohan et al., 2022;
Hu et al., 2023). Specific properties of generated responses
might also be enforced (Khalifa et al., 2020; Yang & Klein,
2021; Lew et al., 2023).

We view the above tasks as instances of probabilistic in-
ference: sampling from a target unnormalized density and
estimating its intractable (log) normalization constant. Con-
sider a pretrained base model p0(s1:T |s0) which generates
responses s1:T of maximum length T based on a variable-
length prompt s0. We consider defining the target distri-
bution of interest using the base model modulated by a
potential function ϕ(s1:T) which evaluates full sequences,

σ(s1:T |s0) :=
1

Zσ(s0)
p0(s1:T |s0)ϕ(s1:T), (1)

where Zσ(s0):=
∑
s1:T

σ̃(s1:T |s0) =
∑
s1:T

p0(s1:T |s0)ϕ(s1:T),

where σ̃(s1:T |s0) denotes the unnormalized density. We
refer to Zσ(s0) as the normalization constant or partition
function, which is intractable due to the summation over
s1:T . We drop dependence on s0 to avoid clutter, but note
that each prompt induces a different partition function. In
the context of the aforementioned applications, ϕ(s1:T) may
be derived from a human preference model (for RLHF), an
indication of bad behavior (for automated red-teaming), or a
verifier’s prediction of correctness (for reasoning tasks). We
refer to Table 4 or Korbak et al. (2022b); Dohan et al. (2022);
Phan et al. (2023); Hu et al. (2023) for further examples and
discussion of probabilistic inference in language models.

Twisted Sequential Monte Carlo in Language Models
In this work, we leverage tools from (twisted) Sequen-
tial Monte Carlo (SMC) (Doucet et al., 2001; Del Moral
et al., 2006; Briers et al., 2010; Chopin et al., 2020)

1

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

to perform and evaluate inference in the language mod-
eling setting (Sec. 3). A particular challenge in sam-
pling from Eq. (1) is that the target distribution σ(s1:T)
is non-causal. In order to sample tokens sequentially,
one needs to infer the marginal distribution σ(s1:t) =∑

st+1:T
σ(s1:T) ∝

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T), which
involves an intractable marginalization. To address this
problem, we propose to learn twist functions ψt(s1:t) which
modulate the base model such that p0(s1:t)ψt(s1:t) matches
the target marginals σ(s1:t), up to normalization. The twist
functions can be used to focus each step of language model
generation on promising partial sequences.

Evaluating Inference in Language Modeling Sampling
from the target distribution is closely intertwined with
bounding the log partition function. Similarly to variational
inference or traditional RLHF objectives (Korbak et al.,
2022b), SMC algorithms yield lower bounds on logZσ,
where tighter bounds typically coincide with more accu-
rate target sampling. However, upper bounds may often be
obtained when an exact target sample is available (Grosse
et al., 2015; 2016; Brekelmans et al., 2021). The difference
between upper and lower bounds on logZσ in fact yields an
upper bound on the symmetrized KL divergence between
the distribution of inference samples and the target distribu-
tion (Grosse et al., 2016). For these reasons, we argue in
Sec. 5 that log partition function estimates are a powerful
tool for evaluating language model inference techniques.

Contributions Our probabilistic inference perspective
leads to the following contributions:

• Twisted Sequential Monte Carlo for Language Model-
ing: We view twisted SMC as a general framework for
sampling and evaluation of language models. While
twisted SMC is well-known and Lew et al. (2023)
consider SMC with fixed, few-step-ahead target infor-
mation in the language modeling setting, we propose
to learn intermediate twist functions for target distribu-
tions defined by terminal potential only.

• Contrastive Twist Learning: We develop probabilis-
tic methods for learning intermediate twist functions,
presenting a novel contrastive twist learning (CTL)
method inspired by energy-based modeling and den-
sity ratio estimation in Sec. 4.1. Further, we adapt
existing twisted SMC methods (Lawson et al., 2018;
2022; Lioutas et al., 2022) to the language modeling
setting, and highlight connections with inference tech-
niques inspired by (soft) reinforcement learning (RL).

• Evaluating Inference in Language Models: Finally,
we demonstrate that twisted SMC provides a rich set
of tools for evaluating language model fine-tuning or
controlled generation techniques. We propose a novel
SMC upper bound on logZσ which is applicable when

an exact target sample is available and may be of inde-
pendent interest. We apply these bounds to evaluate in-
ference quality by measuring the KL divergence to the
target σ(s1:T) in both directions, which can be used to
diagnose mode-dropping behavior of methods such as
proximal policy optimization (PPO) (Schulman et al.,
2017) which optimize a mode-seeking divergence.

We describe background on importance sampling and SMC
in Sec. 2, before presenting our framework for twisted SMC
in the language model setting in Sec. 3. We propose methods
to learn the twist functions in Sec. 4 and methods to evaluate
inference in Sec. 5. Our experiments in Sec. 7 showcase the
ability of twisted SMC to improve controlled generation
and lend insights into inference quality in existing methods.

2. Background
Suppose we are given access to an unnormalized density
σ̃(s1:T) which can be efficiently evaluated. We focus on
estimation of the partition function or normalization con-
stant Zσ :=

∑
s1:T

σ̃(s1:T), since unbiased estimators with
low variance yield approximate sampling techniques which
closely approximate the target distribution (Finke, 2015;
Maddison et al., 2017). We review simple importance sam-
pling (SIS) and SMC techniques in this section.

2.1. Simple Importance Sampling

Simple importance sampling (SIS) provides an unbiased
estimator of Zσ by calculating importance weights for any
normalized proposal distribution q(s1:T),

w(si1:T) :=
σ̃
(
si1:T

)
q(si1:T)

, (2)

which is unbiased since Zσ = Eq(s1:T)[w(s1:T)]. The im-
portance weights also yield an an unbiased K-sample esti-
mator of the partition function,

Ẑ SIS
σ :=

1

K

K∑
i=1

w(si1:T) , si1:T ∼ q(s1:T) . (3)

By normalizing the weights in Eq. (2) over K samples from
q(s1:T), we can obtain (biased) estimators of expectations
under σ(s1:T),

Eσ(s1:T)

[
f(s1:T)

]
≈

K∑
k=1

w(sk1:T)∑K
j=1 w(s

j
1:T)

f(sk1:T) (4)

or select an approximate target sample sσ1:T from a categori-
cal distribution with the self-normalized importance weights

sσ1:T ← sω1:T , ω ∼ cat

{ w
(
si1:T

)∑K
j=1 w

(
sj1:T

)}K
i=1

 . (5)

The quality of the approximations in Eq. (3)-(5) depends
crucially on how well the proposal q(s1:T) (which may be

2

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

I liked

this book

the title

This book

I loved

was bad!

but I don't recommend it

Best book

waste of time

ever!

A disappointing experience

was ok

This book

This book not a

(a) Simple Importance Sampling

was amazing!

and I highly

I liked

this book

only the first

I hate

This book

I loved

was bad!

but I don't recommend it

and I will

Best book hands down!

ever!

read it again!

(b) Twisted SMC

Figure 2: Illustrative example of SIS and (Twisted) SMC for sampling book
reviews conditioned on positive sentiment ϕ(s1:T). SIS only performs resampling
after observing the entire sequence, while SMC can kill or clone partial sequences
s1:t based on incremental importance weights induced by twist functions ψt(s1:t).
Green/red indicate high/low importance weights at each intermediate step of SMC,
or at the final step of SIS. For SMC with the base model proposal p0 and the
optimal twists, the incremental weights ψ∗

t /ψ
∗
t−1 (Alg. 1 or Eq. (6)) are directly

correlated with sentiment.

Algorithm 1 (Twisted) SMC Sampling (qSMC)

SMC-PROPOSAL
(
p0, q, {ψt}T−1

t=1 , ϕ,K
)
:

for t = 1, ..., T do
for k = 1, ...,K do

Sample skt ∼ q
(
st
∣∣ sk1:t−1

)
sk1:t ← concat

(
sk1:t−1, s

k
t

)
if t < T then
wkt ←

p0(skt | sk1:t−1)
q(skt | sk1:t−1)

ψt(sk1:t)
ψt−1(sk1:t−1)

else
wkt ←

p0(skt | sk1:t−1)
q(skt | sk1:t−1)

ϕ(sk1:t)
ψt−1(sk1:t−1)

end if
end for
if t < T then
s̄1:K1:t ← s1:K1:t .copy()
for k = 1, ...,K do

ωkt ∼ cat
({

wit∑K
j=1 w

j
t

}K
i=1

)
sk1:t ← s̄

ωkt
1:t

end for
end if

end for
return

{
sk1:T , w

k
T

}K
k=1

Ẑ SMC
σ =

∏T
t=1

1
K

∑K
k=1 w

k
t

learned, Sec. 3.2) matches the target σ(s1:T). While we
discuss evaluation methods in Sec. 5, note that if inference
is exact (i.e., q(s1:T) = σ(s1:T)), then the variance of the
importance weights is zero, as w(s1:T) = Zσ for all s1:T .

2.2. Sequential Monte Carlo
SMC improves inference by decomposing it into easier
subproblems involving a set of unnormalized intermediate
target distributions {π̃t(s1:t)}Tt=1, where π̃t is the unnormal-
ized density of πt = π̃t/Zt. A key observation is that as
long as π̃T (s1:T) = σ̃(s1:T), we obtain an unbiased esti-
mate of the partition function ZT = Zσ, regardless of the
intermediate distributions πt and proposal q(st|s1:t−1).

We begin by defining the incremental importance weights

wt(s1:t) :=
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)
. (6)

SMC maintains a set of K partial sequences, by first sam-
pling from the proposal q(skt |sk1:t−1) in each index k. Op-
tional resampling steps may be performed to clone se-
quences with high incremental importance weights using

sk1:t ← s
ωkt
1:t , ωkt ∼ cat

({
wt(s

i
1:t)∑K

j=1 wt(s
j
1:t)

}K
i=1

)
, (7)

similarly to Eq. (5). Since resampling is performed with
replacement, sequences with high weights may be cloned

multiple times. The resulting s
ωkt
1:t are used as prefixes for

the next step of proposal sampling in index k (see Alg. 1).

We can show that SMC yields an unbiased estimator Ẑ SMC
σ

of the normalization constant Zσ, by considering the ex-
tended state space S := {skt , ωkt }

K,T
k,t=1 of token and in-

dex random variables from the sampling procedure S ∼

qSMC(S) in Alg. 1. Assuming resampling at every step, 1

Zσ = E
[
Ẑ SMC
σ

]
= EqSMC(S)

[
T∏
t=1

1

K

K∑
k=1

wt
(
sk1:t
)]
. (8)

To show Ẑ SMC
σ is unbiased, we view Eq. (8) as performing

simple importance sampling Zσ = EqSMC(S)

[
σ̃SMC(S)
qSMC(S)

]
in the

extended state space, for appropriate definitions of σSMC(S)
and qSMC(S) in App. F or (Andrieu et al., 2010; Maddison
et al., 2017). Intuitively, we may view the average incremen-
tal importance weights at each step as estimating the ratio
Zt/Zt−1 ≈ 1

K

∑K
k=1 wt(s

k
1:t). Eq. (8) composes interme-

diate partition function ratio estimators to obtain an estimate
of the final ZT = Zσ =

∏T
t=1Zt/Zt−1, with Z0 = 1.

With no resampling, SMC reduces to SIS with target
σ(s1:T) = πT (s1:T) and proposal q(s1:T). Using the final-
step SMC weights, we may estimate expectations or draw
approximate samples sσ1:T as in Eq. (4)-(5).

Fig. 2 illustrates the key advantage of SMC resampling over
SIS. While a suboptimal q(s1:T) may produce sequences
with low probability under the target σ(s1:T), SMC resam-
pling with well-chosen intermediate targets πt clones the
most promising partial sequences s1:t at step t. Since later
sampling proceeds from these prefixes, we expect to obtain
final sequences which better cover the high-probability re-
gions of the target distribution. We discuss techniques to
evaluate the quality of SMC or SIS sampling in Sec. 5.

1The decision to resample may be based on an adaptive con-
dition such as Effective Sample Size (ESS) (Chopin et al., 2020).
For R ≤ T , let {tr}Rr=1 index times where resampling oc-
curs and fix t0 = 0 and tR = T . The estimator becomes
Ẑ SMC
σ =

∏R
r=1

1
K

∑K
i=1

(∏tr
t=tr−1+1 wt

(
si1:t
))

, and the final-

step weights used in Eq. (4) or (5) are
∏T
t=tR−1+1 wt

(
si1:t
)
.

3

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

3. Twisted Sequential Monte Carlo for
Language Modeling

A key design choice in the SMC procedure above is the in-
termediate targets {πt}T−1

t=1 , where we assume πT (s1:T) =
σ(s1:T) is always the target distribution. In state-space
models with observation likelihoods or environments with
intermediate rewards, filtering SMC considers target infor-
mation collected from times τ ≤ t to define πt. (Chopin
et al., 2020). Previous work on SMC for language models
(Lew et al., 2023) has considered per-token or few-step-
ahead statistics to define tractable intermediate πt. However,
we are often interested in target distributions which are de-
termined by a terminal potential ϕ(s1:T) only, as in Eq. (1).

In such settings, twisted SMC methods (Briers et al., 2010;
Whiteley & Lee, 2014; Lawson et al., 2022) consider the
full target information (until time T) to define {πt}T−1

t=1 . In
other words, our desired intermediate targets are the true
marginals σ(s1:t) of the target distribution. Intuitively, note
that in order to exactly sample s1:T ∼ σ(s1:T), we need
to ensure partial sequences are distributed according to the
intermediate marginals s1:t ∼ σ(s1:t). In Sec. 3.1, we
will represent the intermediate targets {πt}T−1

t=1 using twist
functions ψt : s1:t → R which modulate the base model to
(approximately) match the target marginals, thereby sum-
marizing future information relevant to sampling at time t.

3.1. Twist Functions
We represent the intermediate target distributions {πt}T−1

t=1

for SMC sampling using the following general form.
Definition 3.1 (Twisted (Intermediate) Targets). Using
approximate twist functions {ψt}T−1

t=1 and the final target ϕ,
we define the twisted intermediate target distributions

πt(s1:t) =

{
1

Zψt
p0(s1:t) ψt(s1:t) t ̸= T

1
Zσ p0(s1:T) ϕ(s1:T) t = T

(9)

For an arbitrary proposal q and the unnormalized targets in
Eq. (9), the incremental importance weights are given by

wt(s1:t) =
p0(st|s1:t−1)

q(st|s1:t−1)

ψt(s1:t)

ψt−1(s1:t−1)
. (10)

While uninformed twist functions ψt may result in πt(s1:t)
which are no closer to the target marginal σ(s1:t) than the
base model p0(s1:t) (for example, in early stages of learn-
ing), the crucial fact is that our final target distribution in
Eq. (9) reflects the target potential ϕ(s1:T). As in Sec. 2.2,
this ensures that, regardless of the intermediate twists, our
resulting importance sampling estimators will be unbiased.

Finally, the optimal twists ψ∗
t (s1:t) recover the intermediate

marginals π∗
t (s1:t) = σ(s1:t) of the target distribution. We

state the sense in which π∗
t and ψ∗

t are optimal in App. A.1,
and prove the following proposition in App. B Prop. B.1.

Proposition 3.2 (Optimal Twists). For a given target dis-
tribution σ(s1:T) in Eq. (1), the optimal twist functions
ψ∗
t (s1:t) (in regions where p0(s1:t) > 0) correspond to

π∗
t (s1:t) = σ(s1:t) =

1

Zψ
∗

t

p0(s1:t) ψ
∗
t (s1:t). (11)

Up to a constant independent of s1:t, the optimal twists are

ψ∗
t (s1:t) ∝

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T). (12)

and satisfy the recursion

ψ∗
t (s1:t) ∝

∑
st+1

p0(st+1 | s1:t)ψ∗
t (s1:t+1). (13)

Since the optimal twist functions are unavailable due to the
need to marginalize over future timesteps, we consider learn-
ing approximate twist functions using methods in Sec. 4.

3.2. Proposal Distribution
For a given set of targets {πt}Tt=1, the importance weights
in Eq. (10) depend crucially on the choice of proposal.

Base Model as Proposal The most straightforward choice
of proposal is the base pre-trained model, q = p0. While we
demonstrate in Sec. 7 that SMC resampling with learned
twists and the base model proposal can closely approximate
the target distribution, this may require large K. We can
achieve greater efficiency using better choices of proposal.

Twist-Induced Proposal For given targets {πt}Tt=1, the
optimal proposal minimizes the variance of the importance
weights (App. A.1). In the language model setting with a ter-
minal potential only, we will in fact be able to sample from
the optimal proposal for the one-step importance weights.

Proposition 3.3. (Twist-Induced Proposal). For a given
set of intermediate twisted targets πt(s1:t) in Eq. (9), the
proposal which minimizes the variance of the one-step in-
cremental importance weights wt is given by

qπt (st|s1:t−1) ∝
πt(s1:t)

πt−1(s1:t−1)
(14)

=
1

Zπt (s1:t−1)
p0(st|s1:t−1)ψt(s1:t).

See proof in App. A.2. For t < T , we can construct a pa-
rameterization of ψt(s1:t) such that the proposal is tractable
to sample in transformer architectures, where the normal-
ization Zπt (s1:t−1) =

∑
st
p0(st|s1:t−1)ψt(s1:t) sums over

the discrete vocabulary of next tokens st ∈ V . However, at
the final step, note that ϕ(s1:T) may require calls to a differ-
ent neural network such as a reward model or classifier.

We thus consider an approximate ψT (s1:T) ≈ ϕ(s1:T) for
the proposal qT (sT |s1:T−1) ∝ p0(sT |s1:T−1)ψT (s1:T) at

4

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

the final timestep. With slight abuse of notation, we let
qπ(s1:T) denote this tractable proposal over full sequences,

qπ(s1:T) :=
(T−1∏
t=1

qπt (st|s1:t−1)
)
qT (sT |s1:T−1) . (15)

Using this proposal, the incremental weights become

wt(s1:t) =

∑
st
p0(st|s1:t−1)ψt(s1:t)

ψt−1(s1:t−1)
t < T

∑
sT
p0(sT |s1:T−1)ψT (s1:T)

ψT−1(s1:T−1)

ϕ(s1:T)

ψT (s1:T)
t = T

, (16)

which are independent of st for t < T .

Variational Proposal As noted in Sec. 2.1, SMC with no
resampling steps reduces to SIS with the full target distri-
bution σ(s1:T). Policy gradient methods (Schulman et al.,
2017; Parshakova et al., 2019; Korbak et al., 2022a; Go
et al., 2023) which directly learn a tractable approximation
q(s1:T) to the target distribution may thus be viewed as a
particularly simple instance of SMC, or inference more gen-
erally (see Korbak et al. (2022b)). We may also evaluate
these inference methods using our proposed tools in Sec. 5.
See Table 5 and App. E for detailed losses and discussion.

Finally, we might also learn a separate proposal q alongside
the twisting targets {πt}T−1

t=1 . This may be useful to approx-
imate the variance-minimizing proposal for multi-step or
adaptive resampling beyond the tractable optimal one-step
proposal in Prop. 3.3 (see Prop. A.5). We discuss training
losses based on multi-step importance weights in App. C.1.

3.3. Conditional Target Distributions
More generally, we may consider conditional target distri-
butions, obtained by conditioning on an observation random
variable oT . This mirrors the standard setting of SMC in
state-space models (Doucet et al., 2001; Briers et al., 2010;
Gu et al., 2015; Heng et al., 2020; Lawson et al., 2022).

Defining ϕ(s1:T , oT) = σ(oT |s1:T) as a probabilistic model
of oT , our target distribution is the posterior σ(s1:T |oT),

σ(s1:T |oT) =
1

Zσ(oT)
p0(s1:T)σ(oT |s1:T) , (17)

where the partition function Zσ(oT) = σ(oT) =∑
s1:T

p0(s1:T)σ(oT |s1:T) is the marginal of the given oT .

Using Prop. 3.2, the optimal twists matching the marginals
σ(s1:t|oT), are conditional likelihoods of oT given s1:t,

ψ∗
t (s1:t, oT) ∝

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T , oT)

= σ(oT |s1:t) ,
(18)

since σ(oT |s1:t) =
∑

st+1:T
σ(oT , st+1:T |s1:t). We pro-

ceed to construct intermediate target distributions and pro-
posals in the previous sections, where ψt(s1:t, oT) and even

qt(st|s1:t−1, oT) may condition on a particular value of oT .
To recover the unconditional setting, we fix a binary ob-
servational variable σ(oT = 1|s1:T) := ϕ(s1:T) (Levine,
2018) and omit explicit conditioning, showing that condi-
tional twist learning generalizes our previous exposition
(see App. B.2 for detailed discussion).

Exact Target Sampling on Simulated Data Assuming
σ(oT |s1:T) is tractable to sample, we may obtain an ex-
act sample from the target posterior for simulated oT us-
ing ancestral sampling. In particular, we obtain a sample
s1:T , oT ∼ p0(s1:T)σ(oT |s1:T) from the joint distribution,
which also factorizes as σ(oT , s1:T) = σ(oT)σ(s1:T |oT).
Using the latter factorization, we may interpret s1:T as an
exact sample from the target posterior for the given oT . We
refer to this as the Bidirectional Monte Carlo (BDMC) trick
(Grosse et al., 2015; 2016), and will use it to draw exact
samples for training in Sec. 4.1.2 or evaluation in Sec. 5.

3.4. Connections with Reinforcement Learning
Twisted SMC shares close connections with (soft) reinforce-
ment learning (Levine, 2018; Piché et al., 2018; Lawson
et al., 2018; Heng et al., 2020; Lioutas et al., 2022), which
we develop with detailed discussion in App. B.3 and App. D.
Here, we briefly mention two distinct RL interpretations of
the SMC twists in relation to the reward function.

Base Model Policy Evaluation Viewing the final
potential ϕ(s1:T) as the reward function, the optimality
condition ψ∗

t (s1:t) =
∑

st+1:T
p0(st+1:T |s1:t)ϕ(s1:T) in

Eq. (12) corresponds to exact policy evaluation of the future
reward under the fixed base model policy p0(st+1:T |s1:t).
Mudgal et al. (2023) adopt this perspective for controlled
decoding, and refer to the twist functions as ‘prefix scorers’.

Soft RL with KL Regularization Alternatively, we may
consider the KL-regularized RL target distributions com-
monly used in language modeling (Levine, 2018; Korbak
et al., 2022b) as a special case of our twisted SMC frame-
work. For a regularization strength β, define the potential as

ϕ(s1:T) = eβr(s1:T). (19)

In this case, intermediate twist functions in Def. 3.1 cor-
respond to Q-values ψt(s1:t) = eβQ(st,s1:t−1), and tak-
ing the log of both sides in the optimal twist condition
Eq. (13) yields a soft Bellman recursion Q∗(st, s1:t−1) =
1
β log

∑
st+1

p0(st+1|s1:t)eβQ
∗(st+1,s1:t) with no intermedi-

ate reward (see App. B.3). From the soft RL perspective,
the twists are analogous to a critic, while the proposal plays
the role of an actor (Levine, 2018; Haarnoja et al., 2018).

4. Learning the Twist Functions
We next consider methods to learn twist functions ψθ

t param-
eterized by neural networks, presenting a novel contrastive
twist learning (CTL) approach in Sec. 4.1. We summarize
twist learning methods from related work in Sec. 4.2.

5

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

4.1. Contrastive Twist Learning
To match our approximate πθ

t to the target marginals, we
propose to minimize T separate KL divergences,

min
θ
LCTL(θ) := min

θ

T∑
t=1

DKL

(
σ(s1:t)

∥∥πθ
t (s1:t)

)
. (20)

While other divergences could be used to learn πθ
t (s1:t),

we argue that the mass-covering behavior of Eq. (20) is a
desirable property for twist learning. Since we separately
match each σ(s1:t), our hope is that suboptimal learning in
early timesteps does not lead to aggressive pruning of partial
sequences that would achieve high final target likelihood.

Using Eq. (9), the negative gradient of Eq. (20) at each t is

Eσ(s1:t)
[
∇θ logψ

θ
t (s1:t)

]
− Eπθ

t (s1:t)

[
∇θ logψ

θ
t (s1:t)

]
, (21)

which allows us to learn from exact target samples of σ(s1:t)
in the first term when they are available.

Note the similarity of the objective in Eq. (20) and gradient
in Eq. (21) to maximum likelihood training of energy-based
models (EBM). Due to the form of the gradient update, we
refer to this method as contrastive twist learning (CTL). We
now proceed to describe approximate techniques for positive
sampling (first term) and negative sampling (second term).

4.1.1. APPROXIMATE NEGATIVE SAMPLING

A common challenge in energy-based modeling is that the
second term in Eq. (21) involves sampling from the target
πt with intractable normalization constant Zψt . We proceed
to estimate the expectation using SIS as in Eq. (4), using a
proposal q(s1:t) such as the base model or the twist-induced
proposal from Sec. 3.2. Note that SMC resampling with
learned intermediate twist functions could also be used.

4.1.2. (APPROXIMATE) POSITIVE SAMPLING

In contrast to traditional EBM settings, we do not necessar-
ily have exact samples available from a ‘data’ distribution.
We describe several settings related to availability of positive
samples, which are explored in our experiments in Sec. 7.

Exact Target Samples If exact posterior samples are
available, for example using the BDMC trick in Sec. 3.3,
we may use them directly in the gradient update in Eq. (21).

Rejection Sampling Rejection sampling can yield exact
target samples sσ1:T if an upper bound on the likelihood ratio
σ̃(s1:T)
q(s1:T)

≤M is known. When the target σ̃(s1:T) is defined
by thresholding or an indicator function p0(s1:T)I(s1:t ∈ C)
or joint distribution p0(s1:T)σ(oT |s1:T), we can clearly take
M = 1 for the base model proposal p0(s1:T). If the base
model yields posterior samples in reasonable time, we can
obtain exact samples for training using rejection sampling,
and use our twist learning procedures to greatly improve
sampling efficiency at generation time.

While an improved proposal q may more efficiently draw
samples meeting the target conditions, exact rejection sam-
pling would require estimating the corresponding M . Ap-
proximate or quasi rejection sampling might be used in this
case, as analysed in Eikema et al. (2022).

Approximate Positive Sampling using SIS or SMC In
cases where exact samples are unavailable and rejection sam-
pling is inefficient or inexact, we leverage SMC sampling
with twist targets {πθ

t }Tt=1 and any proposal q(s1:T) to first
draw a set of K full sequences s1:K1:T . As in Eq. (4), we can
use the normalized SMC weights since the last resampling
step to estimate the expected gradient in the first term of
Eq. (21). Without resampling, we recover SIS estimation.

While both our approximate positive and negative sampling
for estimating the expectations in Eq. (21) rely on SMC
or SIS weights (often with the same proposal), the crucial
distinction is that weights for positive sampling are based
on the true target potential ϕ(s1:T) over full sequences.

Truncation to Partial Sequences For an exact positive
sample, we use its truncation to a partial sequence of length
t (which corresponds to a sample from the desired marginal
σt) to perform the gradient update in Eq. (21). For approx-
imate positive sampling, we use the same set of K final
weights to estimate the expected gradient at each timestep.

4.2. Twist Learning Methods from Related Work
We briefly describe alternative approaches for twist learning,
with detailed discussion in App. C and a summary of the loss
functions for methods used in our experiments in Table 5.

Soft Q-Learning (RL) Enforcing the recursion in Eq. (13)
using a squared error loss is analogous to soft Q-learning
(see App. B.3, C.1.1), and has been used for twisted SMC in
Lioutas et al. (2022). We interpret path consistency losses
(Nachum et al., 2017), which were derived for soft RL and
have been used for language modeling in Guo et al. (2021);
Hu et al. (2023), from an importance sampling perspective
in App. C.1, E.1. Mudgal et al. (2023) consider a similar
squared Bellman error loss, but using the policy evaluation
interpretation in Sec. 3.4 instead of a soft RL interpretation.

SIXO The SIXO loss proposed by Lawson et al. (2022)
learns twist functions using a binary classification task to
distinguish samples from the target marginal σ(s1:t|oT) and
base model p0(s1:t) at each step, which corresponds to noise
contrastive estimation (Gutmann & Hyvärinen, 2010) for
learning energy-based models. See App. C.3.

FUDGE Yang & Klein (2021) learn twists by construct-
ing a binary classification task to instead learn the condi-
tional likelihood σ(oT |s1:t) (Eq. (18)). This may be viewed
as enforcing the T −t step optimality equation in Eq. (12) or
Eq. (18), where rollouts should be obtained using the base

6

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

model p0(st+1:T |s1:t) (see Table 5 or App. C.4). Mudgal
et al. (2023); Deng & Raffel (2023) similarly propose to
enforce the T − t step optimality condition using a squared-
error loss,

∑
t Ep0(st+1:T |s1:t)[(ϕ(s1:T)− ψt(s1:t))2].

5. Evaluating Inference in Language Models
Our SMC framework yields a rich set of tools to evaluate
language model inference techniques using well-studied
quantities such as the log partition function logZσ and KL
divergence to the target distribution. Remarkably, with ac-
cess to a single exact sample from the target distribution, we
show in Prop. 5.1 that we can obtain upper bounds on logZσ
in addition to lower bounds. These bounds can tightly sand-
wich logZσ with increasing K, thereby ensuring reliable
conclusions regarding inference quality.

5.1. Applications of logZσ Estimation

Evaluating Fine-Tuned Models To motivate this section
and present an important application of our SMC methods,
consider evaluating how well a given q(s1:T) matches a
target distribution for controlled generation or fine-tuning.
Assume that q is tractable to sample and evaluate. To cal-
culate the KL divergence to σ in either direction, we also
require an estimate of the log partition function logZσ ,

DKL(q(s1:T) ∥σ(s1:T)) = Eq
[
log

q(s1:T)

p0(s1:T)ϕ(s1:T)

]
+ logZσ

DKL(σ(s1:T) ∥ q(s1:T)) = Eσ
[
log

p0(s1:T)ϕ(s1:T)

q(s1:T)

]
− logZσ

(22)

For DKL(σ ∥ q), note that we also require samples from the
target σ, which may be readily available using the BDMC
trick when σ is defined as a Bayesian posterior (Sec. 3.3).
In such cases, we argue that SMC can be used to accurately
bound the value of logZσ and estimate each KL divergence
above. Estimation of DKL(σ ∥ q) may be particularly im-
portant to diagnose mode-dropping in inference techniques
such as PPO which optimize the mode-seeking DKL(q ∥σ)
during fine-tuning (Korbak et al., 2022b).

Evaluating Twisted SMC Sampling After running SIS
or SMC with K samples, we can sample a single index
as in Eq. (5) to return a single approximate target sample
sσ1:T . However, the marginal distribution of this sample,
which we denote as sσ1:T ∼ qSMC(s1:T), is not tractable due
to the need to sum over all possible sets of K samples.
Nevertheless, we will show below that the tightness of our
logZσ lower or upper bounds in Prop. 5.1 provides upper
bounds on the KL divergences DKL(qSMC(s1:T) ∥σ(s1:T))
or DKL(σ(s1:T) ∥ qSMC(s1:T)), respectively.

Alternatively, we can also use the single-sample KL di-
vergences in Eq. (22) for the twist-induced proposal qπ in
Eq. (15) to evaluate a set of twist functions ψt (Sec. 7.2).

5.2. Bidirectional SMC Bounds on logZσ
Given the importance of logZσ estimation as motivated
above, we propose a bidirectional SMC stochastic upper
bound which is novel (to the best of our knowledge), and
may be of interest outside of the language modeling setting.

Recall from Sec. 2.2 that SMC admits an interpretation as
SIS in an extended state space S := {skt , ωkt }

K,T
k=1,t=1 which

includes all tokens and resampling indices. We derive lower
and upper bounds on logZσ in Prop. 5.1 below, with proof
and detailed description of the extended state space target
σSMC(S) and proposal qSMC(S) distributions in App. F.

Proposition 5.1. (Bidirectional SMC Bounds) The log
partition function logZσ of a target distribution σ(s1:T)
can be lower and upper bounded by

EqSMC(S)

[
log

T∏
t=1

1

K

K∑
i=1

wt
(
si1:t
)]
≤ logZσ

logZσ ≤ EσSMC(S)

[
log

T∏
t=1

1

K

K∑
i=1

wt
(
si1:t
)]
.

(23)

The gap in the lower bound isDKL(qSMC(S) ∥σSMC(S)), and
the gap in the upper bound is DKL(σSMC(S) ∥ qSMC(S)).

The proof in App. F adapts the general approach for ex-
tended state space log partition function bounds from Brekel-
mans et al. (2021) using the probabilistic interpretation of
SMC (Andrieu et al., 2010; Maddison et al., 2017). With no
resampling, the SIS case recovers the Importance Weighted
Autoencoder (IWAE) lower (Burda et al., 2015) and upper
(Sobolev & Vetrov, 2019; Brekelmans et al., 2021) bounds.

Sampling from σSMC for SMC Upper Bounds We now
discuss sampling from σSMC(S) for the expectation in the
upper bound, which requires a single, exact sample from the
target distribution σ(s1:T). This sample may be obtained,
for example, using the BDMC trick in Sec. 3.3. Note that
Sec. 2.2 and Alg. 1 describe sampling from qSMC(S).

Sampling from σSMC(S) differs from sampling from
qSMC(S) by its treatment of the exact target sample. In
particular, the partial sequence corresponding to the exact
target sample is guaranteed to be cloned once at each re-
sampling step. In other indices, resampling proceeds as in
Sec. 2.2, where the exact sample may be cloned additional
times based on its incremental importance weights. Finally,
we sample K − 1 next tokens from the proposal, while the
value of the remaining chain is fixed by the exact target
sample. See App. F and Alg. 2 for detailed discussion.

Tightness of the Bidirectional Bounds Since the bounds
in Prop. 5.1 become exact as K → ∞ for any proposal
(Burda et al., 2015; Maddison et al., 2017), we can use
SMC or IWAE with large K to sandwich the log partition
function when σ samples are available.

7

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

For a given K, the gaps in the logZσ bounds in Prop. 5.1
provide further insight into the quality of twisted SMC
sampling via the marginal distribution of the sample sσ1:T
(Sec. 5.1). The data processing inequality suggests that
DKL(qSMC(s1:T) ∥σ(s1:T)) ≤ DKL(qSMC(S) ∥σSMC(S))
andDKL(σ(s1:T) ∥ qSMC(s1:T)) ≤ DKL(σSMC(S) ∥ qSMC(S))
(Grosse et al., 2015; 2016). Thus, if the difference between
upper and lower bounds on logZσ is small, then we can
conclude that the K-sample SMC or SIS procedures in
Sec. 2.2 yield a single approximate sample sσ1:T whose
distribution qSMC(s1:T) is close to the target σ(s1:T) in
symmetrized KL divergence.2

6. Related Work
In the previous sections, we have discussed related work as it
fit within our SMC framework for language modeling. Note
that Lew et al. (2023) consider SMC sampling for language
models, but do not learn twist functions or proposals.

Decoding from language models to obtain diverse (Holtz-
man et al., 2019; Vilnis et al., 2023) or controlled generation
(Zhang et al., 2023; Dathathri et al., 2019; Krause et al.,
2020; Yang & Klein, 2021; Guo et al., 2021; Qin et al.,
2022; Snell et al., 2022; Hu et al., 2023) is an active area of
research. Our SMC resampling approach may be viewed as
a principled probabilistic extension of best-of-K decoding
methods. Mudgal et al. (2023) propose a K-way argmax
decoding scheme based on ‘prefix scorers’ ψt learned using
Eq. (13), but also consider using these twists as logits for
softmax sampling in the proposal. However, neither of
these decoding schemes are aligned with our proposed
SMC framework, as we discuss in App. D. For example,
greedy argmax decoding with respect to the optimal twists
in Prop. 3.2 does not yield samples from the target σ(s1:T).

Finally, RL-based methods such as PPO maintain both a
policy or proposal network and value network or advantage
estimator during training. From the soft RL perspective in
Sec. 3.4 and App. B.3, the soft values play a similar role as
our twist functions for SMC resampling. Liu et al. (2023)
consider using Monte Carlo Tree Search (MCTS) based on

7. Experiments
We now illustrate empirically how our framework can be
used to evaluate inference through logZσ bounds and KL
divergences between the sampling and target distributions,
providing meaningful quantitative comparison between vari-
ous learning methods. We consider a range of tasks through-
out this section, including toxic story generation (as an ex-
ample of uncovering rare undesirable behavior), generating
reviews with varied sentiment, and infilling. For the toxic-
ity and infilling tasks, we consider the TinyStories model

2Note that the difference between upper and lower bound yields
DKL(σSMC(S) ∥ qSMC(S)) +DKL(qSMC(S) ∥σSMC(S)).

4 8 16 32 128 512 2048
Number of Samples

35

30

25

20

15

10

5

0

Lo
g

Z
Bo

un
d

SIS/IWAE UB (q Proposal)
SIS/IWAE LB (q Proposal)
SMC UB (q Proposal)
SMC LB (q Proposal)
SIS/IWAE UB (p0 Proposal)
SIS/IWAE LB (p0 Proposal)
SMC UB (p0 Proposal)
SMC LB (p0 Proposal)
SMC ESS UB (p0 Proposal)
SMC ESS LB (p0 Proposal)

Figure 3: Comparison of SIS (IWAE) and SMC bounds on logZσ
for base proposal p0 and twist-induced proposal qπ , with twists
learned with CTL. With the twist-induced proposal, both SIS and
SMC bounds are tight; with the base proposal, resampling with
learned twists is needed. Resampling based on ESS instead of
every-step resampling yields similar results.

(Eldan & Li, 2023) as a small-scale model where the gen-
eration is coherent, and use the prompt of ‘Once upon a
time, there was a’. For the toxicity task, we elicit responses
judged to be toxic by the classifier from Corrêa (2023).
For the sentiment task, we consider the GPT2-Medium
model (Radford et al., 2019) and a classifier trained on
Amazon reviews (Li, 2023). Our code is available at https:
//github.com/Silent-Zebra/twisted-smc-lm .

7.1. Comparing SIS and SMC for logZσ Estimation
We first use our logZσ bounds to test how twisted SMC
can improve upon SIS and efficiently sample rare events.
We consider the task of toxic story generation. The target
is defined as σ(s1:T) ∝ p0(s1:T)I[s1:T ∈ C] where C :=
{s1:T |r(s1:T) ≤ η}, r(s1:T) is the non-toxic logit, and the
threshold η = −5 corresponds to a greater than 99% chance
of being toxic. Rejection sampling under p0 yields exact
samples for logZσ UB estimation, but can require hundreds
of thousands of samples. Thus, this setting also allows us to
test the effectiveness of approximate positive sampling for
twist training when target samples are rare.

Fig. 3 demonstrates that training twists with CTL and ap-
proximate positive sampling can significantly improve log
partition function estimation and sampling efficiency. We
first note that both upper and lower bounds tighten as K
increases, as expected, for both SIS and SMC. Using p0 as
proposal, the SIS LB (orange) generally fails to draw any
samples meeting the threshold. By contrast, SMC resam-
pling (red) with p0 proposal eventually achieves tight logZσ
upper and lower bounds, yielding near-exact target samples
(small KL divergence between the distribution over samples
and the target distribution) by the reasoning in Sec. 5.

However, both SMC and SIS with the twist-induced pro-
posal achieve tight estimation and near-exact sampling of
σ with orders of magnitude lower K. Resampling does not
appear to help or hurt these bounds, as the effect of the

8

https://github.com/Silent-Zebra/twisted-smc-lm
https://github.com/Silent-Zebra/twisted-smc-lm

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Proposal q Twist Learning DKL(q ∥σ) DKL(σ ∥ q)

Twisted Contrastive 1.11± 0.05 1.07 ± 0.02

Twisted RL 1.52± 0.09 1.42± 0.03

Twisted SIXO 1.71± 0.06 1.98± 0.04

Twisted FUDGE 3.24± 0.26 2.00± 0.13

DPG – 1.09± 0.05 1.12± 0.03

PPO – 0.98 ± 0.01 1.32± 0.04

Table 1: Toxicity (Sec. 7.2.1)

Proposal q Twist Learning DKL(q ∥σ) DKL(σ ∥ q)

Twisted Contrastive 0.55 ± 0.03 0.47 ± 0.01

Twisted RL 0.94± 0.04 0.81± 0.02

Twisted SIXO 0.73± 0.03 0.59± 0.02

Twisted FUDGE 1.01± 0.07 0.77± 0.07

DPG – 0.72± 0.04 0.57± 0.01

PPO – 1.04± 0.31 0.87± 0.20

Table 2: Sentiment (Sec. 7.2.2)

Proposal qoT Twist Learning EoT [DKL(qoT ∥σoT)] EoT [DKL(σoT ∥ qoT)]

Twisted Contrastive 23.93± 0.34 8.87± 0.05

Twisted RL 31.35± 2.33 14.96± 1.69

Twisted SIXO 20.34± 0.36 7.43± 0.04

Twisted FUDGE 60.93± 2.82 19.85± 0.51

DPG – 13.27 ± 0.44 4.90 ± 0.03

PPO – 19.37± 0.41 14.07± 0.50

Table 3: Infilling (Sec. 7.2.3)

twists has been incorporated in the proposal qπ in Eq. (15).
We conclude that the twist-induced proposal can provide
significant efficiency gains over base model sampling.

7.2. Evaluating Twist-Induced or Variational Proposals
We next use our logZσ bounds to evaluate single-sample in-
ference usingDKL(q ∥σ) andDKL(σ ∥ q) (Sec. 5.1). We con-
sider two SIS proposal-learning methods: PPO (Schulman
et al., 2017) which minimizes DKL(q ∥σ) during training,
and distributional policy gradient (DPG), which minimizes
DKL(σ ∥ q) (Parshakova et al., 2019) (see App. E).

We consider four twist learning methods, including CTL,
soft Q-learning (RL), SIXO (Lawson et al., 2022), and
FUDGE (Yang & Klein, 2021) (see App. C and Table 5).
For each, we measure KL divergences involving the twist-
induced proposal qπ . Thus, these experiments showcase two
complementary applications of SMC: as a novel inference
method yielding a tractable qπ , and as an evaluation method
for any other inference method (such as PPO) using K-
sample bounds on logZσ to estimate the KL divergence.

7.2.1. GENERATING TOXIC STORIES

We consider toxic story generation as in Sec. 7.1, but using
a target σ(s1:T) ∝ p0(s1:T)p(a = 1|s1:T), where p(a =
1|s1:T) denotes the probability of the text being judged as
toxic by a classifier. Compared to the thresholding target,
this task provides a smoother gradient signal for learning
but still allows for exact sampling via rejection sampling.
We train using approximate positive sampling, but provide
an ablation with exact positive sampling results in App. H.3.

We report KL divergences in Table 1. We observe that PPO
performs best with respect to DKL(q ∥σ) while our CTL
method performs best with respect to DKL(σ ∥ q). This is
consistent with the divergences minimized during training.
In App. H.1 we provide a qualitative example of a toxic story
generated with CTL for σ(s1:T) ∝ p0(s1:T)p(a = 1|s1:T)β
with β = 10, a case where no exact samples are available.

7.2.2. GENERATION WITH VARIED SENTIMENT

For the sentiment setting described earlier, we consider a
prompt ‘I bought this’ and target σ(s1:T) ∝ p0(s1:T)p(a =
1|s1:T), where a = 1 indicates a 1-star review and exact
samples are available by rejection sampling. We train using
approximate positive sampling (see App. H.3 for compari-
son with exact). While all methods achieve low KL diver-
gences in Table 2, CTL performs best for both directions.

7.2.3. INFILLING

Finally, we consider a conditional twist learning setting,
where ψθ

t (s1:t, oT) takes input oT that identifies the target
distribution σ(s1:T |oT) (Sec. 3.3). We consider an infilling
task (Lew et al., 2023; Hu et al., 2023), where the observa-
tion variables oT := sT+1:T+c are continuation tokens with
likelihoods σ(oT |s1:T) := p0(sT+1:T+c|s1:T) evaluated un-
der the base model given s1:T . Our target is the posterior
σ(s1:T |oT). Instead of training separate ψθ

t for each oT , we
amortize training a conditional twist network ψθ

t (s1:t, oT).

A second distinctive feature of this setting is that we train
from exact posterior or target samples, which are readily
available using the BDMC trick in Sec. 3.3. In particular,
we may sample sequences of length T + c from the base
model s1:T+c ∼ p0(s1:T+c) = σ(s1:T , oT = sT+1:T+c),
and interpret the prefix s1:T ∼ σ(s1:T |oT = sT+1:T+c) as
a target sample. Note that we do not explicitly control the
continuations tokens oT defining the tasks. We evaluate av-
erage KL divergences over 2000 different oT = sT+1:T+c,
with T = 15 and c = 10, and report results in Table 3.

We find DPG performs best for both directions of the KL
divergence in this setting, likely due to its ability to lever-
age exact positive samples by minimizing DKL(σoT ∥ qoT).
CTL also learns from exact positive samples, but requires
approximate negative sampling and only performs com-
parably to SIXO, which uses exact positive samples and
performs exact negative sampling under p0. Finally, PPO
trains from qoT samples only, and performs relatively poorly
with respect to DKL(σoT ∥ qoT). To correlate these results
with sample quality, we show qualitative results in App. H.1.

Using our KL divergence evaluation methods, we conclude
DPG may be preferable when exact target samples are avail-
able (Sec. 7.2.3, App. H.3), while CTL may be preferable
with approximate positive sampling (Sec. 7.2.1, Sec. 7.2.2).

8. Conclusion
In this work, we have presented twisted SMC as a principled
probabilistic inference framework for solving numerous ca-
pability and safety tasks in LLMs. After discussing different
design choices for twisted SMC and their relation to related
work, we proposed a novel contrastive method for twist
learning. Further, we proposed novel bidirectional SMC
bounds for evaluating LLM inference methods. We demon-
strated the effectiveness of our methods for both sampling
and evaluation across a variety of experimental settings.

9

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Acknowledgments
AM and RG acknowledge support from the Canada CIFAR
AI Chairs program and from Open Philanthropy. SZ thanks
Juhan Bae for helping debug memory issues in the code.
Resources used in this research were provided, in part, by
the Province of Ontario, the Government of Canada, and
companies sponsoring the Vector Institute. We thank the
anonymous reviewers for helpful comments on earlier ver-
sions of this paper.

Impact Statement
This paper is motivated by the social consequences of re-
cent advances in the field of machine learning. Controlled
generation from language models has the potential to im-
prove safety through better steering of generation to human
preferences, more efficient automated red-teaming, and the
ability to estimate or bound probabilities of rare behaviors.
Any such work is inherently a double-edged sword; the
same techniques used to generate samples from a harmless
distribution of text could, with a single sign change, be
repurposed for generating samples from a harmful distri-
bution of text. Thus, better controlled generation (in our
framework, better sampling from target distributions) can
provide benefits in the hands of responsible users but can
also magnify harms in the hands of malevolent users (who
have access to model weights).

Overall, we believe the potential positive social benefits of
our work in evaluation and steering language model output
towards desired target distributions outweigh the potential
negatives stemming primarily from misuse.

References
Andrieu, C., Doucet, A., and Holenstein, R. Particle markov

chain monte carlo methods. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 72(3):
269–342, 2010.

Anil, C., Zhang, G., Wu, Y., and Grosse, R. Learning to
give checkable answers with prover-verifier games. arXiv
preprint arXiv:2108.12099, 2021.

Bae, J., Zhang, M. R., Ruan, M., Wang, E., Hasegawa, S.,
Ba, J., and Grosse, R. B. Multi-rate vae: Train once, get
the full rate-distortion curve. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T.,
et al. Training a helpful and harmless assistant with rein-
forcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Banerjee, A., Guo, X., and Wang, H. On the optimality of

conditional expectation as a bregman predictor. IEEE
Transactions on Information Theory, 51(7), 2005.

Brekelmans, R., Huang, S., Ghassemi, M., Ver Steeg, G.,
Grosse, R. B., and Makhzani, A. Improving mutual in-
formation estimation with annealed and energy-based
bounds. In International Conference on Learning Repre-
sentations, 2021.

Briers, M., Doucet, A., and Maskell, S. Smoothing algo-
rithms for state–space models. Annals of the Institute of
Statistical Mathematics, 62:61–89, 2010.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance
weighted autoencoders. arXiv preprint arXiv:1509.00519,
2015.

Chopin, N., Papaspiliopoulos, O., et al. An introduction to
sequential Monte Carlo, volume 4. Springer, 2020.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Corrêa, N. K. Aira, 2023. URL https://huggingface.
co/nicholasKluge/ToxicityModel.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. In International Conference on Learning Repre-
sentations, 2019.

Del Moral, P., Doucet, A., and Jasra, A. Sequential monte
carlo samplers. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 68(3):411–436, 2006.

Deng, H. and Raffel, C. Reward-augmented decoding: Ef-
ficient controlled text generation with a unidirectional
reward model. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D.,
Lopes, R. G., Wu, Y., Michalewski, H., Saurous, R. A.,
Sohl-Dickstein, J., et al. Language model cascades. arXiv
preprint arXiv:2207.10342, 2022.

Domke, J. and Sheldon, D. R. Importance weighting and
variational inference. Advances in neural information
processing systems, 31, 2018.

Doucet, A., De Freitas, N., Gordon, N. J., et al. Sequential
Monte Carlo methods in practice, volume 1. Springer,
2001.

Eikema, B., Kruszewski, G., Dance, C. R., Elsahar, H.,
and Dymetman, M. An approximate sampler for energy-
based models with divergence diagnostics. Transactions
on Machine Learning Research, 2022.

10

https://huggingface.co/nicholasKluge/ToxicityModel
https://huggingface.co/nicholasKluge/ToxicityModel

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Eldan, R. and Li, Y. Tinystories: How small can lan-
guage models be and still speak coherent english?
arXiv preprint arXiv:2305.07759, 2023. URL https:
//huggingface.co/roneneldan/TinyStories-33M.

Finke, A. On extended state-space constructions for Monte
Carlo methods. PhD thesis, University of Warwick, 2015.

Go, D., Korbak, T., Kruszewski, G., Rozen, J., Ryu, N., and
Dymetman, M. Aligning foundation models for language
with preferences through f -divergence minimization. In
International Conference on Machine Learning, 2023.

Grosse, R. B., Ghahramani, Z., and Adams, R. P. Sandwich-
ing the marginal likelihood using bidirectional monte
carlo. arXiv preprint arXiv:1511.02543, 2015.

Grosse, R. B., Ancha, S., and Roy, D. Measuring the reliabil-
ity of mcmc inference with bidirectional monte carlo. Ad-
vances in Neural Information Processing Systems, 2016.

Gu, S. S., Ghahramani, Z., and Turner, R. E. Neural adaptive
sequential monte carlo. Advances in neural information
processing systems, 28, 2015.

Guo, H., Tan, B., Liu, Z., Xing, E. P., and Hu, Z. Efficient
(soft) q-learning for text generation with limited good
data. arXiv preprint arXiv:2106.07704, 2021.

Gutmann, M. and Hyvärinen, A. Noise-contrastive esti-
mation: A new estimation principle for unnormalized
statistical models. In International conference on ar-
tificial intelligence and statistics, pp. 297–304. JMLR
Workshop and Conference Proceedings, 2010.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning. PMLR, 2018.

Heng, J., Bishop, A., Deligiannidis, G., and Doucet, A.
Controlled sequential monte carlo. Annals of Statistics,
48(5), 2020.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. In International
Conference on Learning Representations, 2019.

Hu, E. J., Jain, M., Elmoznino, E., Kaddar, Y., Lajoie,
G., Bengio, Y., and Malkin, N. Amortizing intractable
inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Khalifa, M., Elsahar, H., and Dymetman, M. A distri-
butional approach to controlled text generation. arXiv
preprint arXiv:2012.11635, 2020.

Khanov, M., Burapacheep, J., and Li, Y. ARGS: Alignment
as reward-guided search. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=shgx0eqdw6.

Korbak, T., Elsahar, H., Kruszewski, G., and Dymetman,
M. Controlling conditional language models without
catastrophic forgetting. In International Conference on
Machine Learning, pp. 11499–11528. PMLR, 2022a.

Korbak, T., Perez, E., and Buckley, C. L. Rl with kl penalties
is better viewed as bayesian inference. arXiv preprint
arXiv:2205.11275, 2022b.

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S.,
Joty, S., Socher, R., and Rajani, N. F. Gedi: Generative
discriminator guided sequence generation. arXiv preprint
arXiv:2009.06367, 2020.

Lawson, D., Tucker, G., Naesseth, C. A., Maddison, C.,
Adams, R. P., and Teh, Y. W. Twisted variational sequen-
tial monte carlo. In Third workshop on Bayesian Deep
Learning (NeurIPS), 2018.

Lawson, D., Raventós, A., Warrington, A., and Linderman,
S. Sixo: Smoothing inference with twisted objectives,
2022.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Lew, A. K., Zhi-Xuan, T., Grand, G., and Mansinghka,
V. K. Sequential monte carlo steering of large language
models using probabilistic programs. arXiv preprint
arXiv:2306.03081, 2023.

Li, Y. Distilbert-base-uncased-finetuned-mnli-amazon-
query-shopping, 2023. URL https://huggingface.
co/LiYuan/amazon-review-sentiment-analysis.

Lioutas, V., Lavington, J. W., Sefas, J., Niedoba, M., Liu,
Y., Zwartsenberg, B., Dabiri, S., Wood, F., and Scibior, A.
Critic sequential monte carlo. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula,
C., Smith, N. A., and Choi, Y. Dexperts: Decoding-
time controlled text generation with experts and anti-
experts. In 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021.

Liu, J., Cohen, A., Pasunuru, R., Choi, Y., Hajishirzi, H.,
and Celikyilmaz, A. Don’t throw away your value model!
making ppo even better via value-guided monte-carlo tree
search decoding. arXiv e-prints, pp. arXiv–2309, 2023.

11

https://huggingface.co/roneneldan/TinyStories-33M
https://huggingface.co/roneneldan/TinyStories-33M
https://openreview.net/forum?id=shgx0eqdw6
https://huggingface.co/LiYuan/amazon-review-sentiment-analysis
https://huggingface.co/LiYuan/amazon-review-sentiment-analysis

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi,
M., Mnih, A., Doucet, A., and Teh, Y. Filtering varia-
tional objectives. Advances in Neural Information Pro-
cessing Systems, 30, 2017.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H.-T., Collins, M., Strohman, T.,
et al. Controlled decoding from language models. arXiv
preprint arXiv:2310.17022, 2023.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Bridging the gap between value and policy based rein-
forcement learning. Advances in neural information pro-
cessing systems, 30, 2017.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Parshakova, T., Andreoli, J.-M., and Dymetman, M. Distri-
butional reinforcement learning for energy-based sequen-
tial models. arXiv preprint arXiv:1912.08517, 2019.

Perez, E., Huang, S., Song, F., Cai, T., Ring, R., Aslanides,
J., Glaese, A., McAleese, N., and Irving, G. Red teaming
language models with language models. In Proceedings
of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 3419–3448, 2022.

Phan, D., Hoffman, M. D., Douglas, S., Le, T. A., Parisi,
A. T., Sountsov, P., Sutton, C., Vikram, S., Saurous, R. A.,
et al. Training chain-of-thought via latent-variable infer-
ence. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Piché, A., Thomas, V., Ibrahim, C., Bengio, Y., and Pal,
C. Probabilistic planning with sequential monte carlo
methods. In International Conference on Learning Rep-
resentations, 2018.

Qin, L., Welleck, S., Khashabi, D., and Choi, Y. Cold
decoding: Energy-based constrained text generation with
langevin dynamics. Advances in Neural Information
Processing Systems, 35:9538–9551, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multi-
task learners. 2019. URL https://huggingface.co/
gpt2-medium.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning,
C. D., and Finn, C. Direct preference optimization: Your
language model is secretly a reward model. arXiv preprint
arXiv:2305.18290, 2023.

Scharth, M. and Kohn, R. Particle efficient importance
sampling. Journal of Econometrics, 190(1):133–147,
2016.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shih, A., Sadigh, D., and Ermon, S. Long horizon tempera-
ture scaling. arXiv preprint arXiv:2302.03686, 2023.

Snell, C. V., Kostrikov, I., Su, Y., Yang, S., and Levine,
S. Offline rl for natural language generation with im-
plicit language q learning. In The Eleventh International
Conference on Learning Representations, 2022.

Sobolev, A. and Vetrov, D. P. Importance weighted hierarchi-
cal variational inference. Advances in Neural Information
Processing Systems, 32, 2019.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. Ad-
vances in Neural Information Processing Systems, 33:
3008–3021, 2020.

Vilnis, L., Zemlyanskiy, Y., Murray, P., Passos, A. T., and
Sanghai, S. Arithmetic sampling: parallel diverse decod-
ing for large language models. In International Confer-
ence on Machine Learning. PMLR, 2023.

Whiteley, N. and Lee, A. Twisted particle filters. The Annals
of Statistics, 42(1):115–141, 2014.

Yang, K. and Klein, D. Fudge: Controlled text generation
with future discriminators. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 3511–3535, 2021.

Zhang, H., Song, H., Li, S., Zhou, M., and Song, D. A
survey of controllable text generation using transformer-
based pre-trained language models. ACM Computing
Surveys, 56(3):1–37, 2023.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,
A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning
language models from human preferences. arXiv preprint
arXiv:1909.08593, 2019.

Zou, A., Wang, Z., Kolter, J. Z., and Fredrikson, M. Uni-
versal and transferable adversarial attacks on aligned lan-
guage models. arXiv preprint arXiv:2307.15043, 2023.

12

https://huggingface.co/gpt2-medium
https://huggingface.co/gpt2-medium

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Appendix

Table of Contents
A Proofs 14

A.1 Proof for Optimal Intermediate Target Distributions . 14

A.2 Proof of Twist-Induced Proposal . 16

A.3 Derivation of CTL Gradient . 17

B SMC with Intermediate Potentials and Connection with Soft Reinforcement Learning 17

B.1 Twisted SMC with Intermediate Potentials . 18

B.2 Conditional Twisted SMC . 20

B.3 Connection with Soft Reinforcement Learning . 21

B.4 Remarks on Parameterization . 23

C Twist Learning Losses 24

C.1 Soft Q-Learning (RL) and Path Consistency Losses from Log Importance Weights 24

C.2 Controlled Decoding Losses via Optimal Twist Identities (Mudgal et al., 2023) 26

C.3 SIXO: Smoothing Inference with Twisted Objectives (Lawson et al., 2022) 27

C.4 FUDGE: Future Discriminators (Yang & Klein, 2021) . 28

D Decoding Strategies using Learned Twists from Mudgal et al. (2023) 30

D.1 Proposal Sampling in Mudgal et al. (2023) . 30

D.2 Blockwise Greedy Decoding in Mudgal et al. (2023) . 31

E Proposal Learning Methods 31

E.1 Path Consistency Learning for Controlled Generation . 32

E.2 Policy Gradient Methods . 32

E.3 Policy Gradient with Mass-Covering / Maximum Likelihood KL Divergence 32

F Bidirectional SMC 35

G Additional Experiment Details 40

G.1 Common Details Across Experiments . 40

G.2 Choices of Twist Parameterization . 41

G.3 Comments on Our Choices of Experiment Settings . 41

G.4 Experiment-Specific Details . 42

H Additional Experimental Results 43

H.1 Qualitative Results . 43

H.2 Infilling with Fewer Tokens . 44

H.3 Approximate vs. Exact Posterior Sampling . 44

13

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Table 4: Examples of Target Posteriors in Language Model Finetuning and Controlled Generation

Type Target References / Examples

Reward σ(s1:T) ∝ p0(s1:T)e±βr(s1:T) RLHF (Ziegler et al., 2019; Ouyang et al., 2022; Korbak et al., 2022b)

Continuation σ(s1:T) ∝ p0(s1:T)p0(sT+1:T+c|s1:T)β Generates tokens based on likelihood of future tokens p(sT+1:T+c|s1:T)
For β = 1, this is in-filling (Lew et al., 2023).
As β →∞, disregard p0(s1:T), focus on argmax of continuation prob.

- similar to adversarial prompt generation (Zou et al., 2023)

Indicator σ(s1:T) ∝ p0(s1:T)I[s1:T ∈ C] Generations s1:T from this target must satisfy the properties of set C.
where I is indicator of set C: - Meeting reward threshold Cr≤η := {s1:T | ± r(s1:T) ≤ η}
I[s1:T ∈ C] = 1 if [s1:T ∈ C] - Containing topical or specific words in s1:T
I[s1:T ∈ C] = 0 if [s1:T /∈ C] - Having certain structure or rhyme (Yang & Klein, 2021),

- Valid output according to verifier (Cobbe et al., 2021; Dohan et al., 2022))

Classifier σ(s1:T) ∝ p0(s1:T)p(y|s1:T)β Class y can be a binary (e.g. toxicity) or multinomial (e.g. 1-5 star reviews)
Bayesian posterior for β = 1: σ(s1:T) = p(s1:T |y) ∝ p0(s1:T)p(y|s1:T)
(Dathathri et al., 2019; Krause et al., 2020; Liu et al., 2021)

Global σ(s1:T) ∝ p0(s1:T)β Tempering on entire sequences (long-horizon) vs. per-token (myopic)
Temperature - yields higher quality generation in Shih et al. (2023)

Distributional σ(s1:T) ∝ p0(s1:T)eβ·T (s1:T) KL minimization subj. expectation constraints on T = {Ti}
argminDKL(q(s1:T)∥p0(s1:T)) s.t. Eq[T] = ηβ

(β = optimal Lagrange multipliers for constraints η)
e.g. gender roles/references (Khalifa et al., 2020)

Intermediate References / Examples

Indicator ϕt(s1:t) = I[st ∈ C] or I[s1:t ∈ C] words of specific length, or specific sets of tokens
(Khalifa et al., 2020; Lew et al., 2023)

Product of
Experts σ(s1:T) ∝

∏M
m=1

∏T
t=1 p0(st|s1:t−1, s

(m)
0) prompt intersection (Lew et al., 2023)

Table 5: Losses for twist (top) and proposal (bottom) learning, where πs(·) indicates an arbitrary sampling distribution. See
App. C for detailed discussion and additional losses.

Name Loss Learning Principle

CTL
∑T
t=1 Eπs(oT)

[
DKL

(
σ(s1:t|oT)

∥∥πθ
t (s1:t|oT)

)]
(Gradient:) −Eπs(oT)

[
Eσ(s1:t|oT)

[
∇θ logψ

θ
t (s1:t, oT)

]
− Eπθ

t (s1:t|oT)

[
∇θ logψ

θ
t (s1:t, oT)

]]
Marginal Matching with MLE

Soft RL
∑T−1
t=1 Eπs(s1:t,oT)

[(
log
∑
st+1

p0(st+1|s1:t)sg
(
ψθ
t+1(s1:t+1, oT)

)
− logψθ

t (s1:t, oT)
)2]

+ Eπs(s1:T ,oT)

[(
log ϕ(s1:T , oT)− logψθ

T (s1:T , oT)
)2]

Twist Consistency / Soft Q-Learning

SIXO
∑T
t=1−

[
Eπs(oT)σ(s1:t|oT)

[
log sigmoid

(
logψθ

t (s1:t, oT)
)]

+ Ep0(s1:t)πs(oT)

[
log
(
1− sigmoid

(
logψθ

t (s1:t, oT)
))]]

Noise Contrastive Estimation

FUDGE
∑T
t=1−Eπs(s1:t,oT)Ep0(st+1:T |s1:t)

[
σ(oT |s1:T) logψθ

t (s1:t, oT) +
(
1− σ(oT |s1:T)

)
log
(
1− ψθ

t (s1:t, oT)
))]

Binary Classification

DPG Eπs(oT)

[
DKL

(
σ(s1:T |oT)

∥∥ qξ(s1:T |oT))] Maximum Likelihood (MLE)

PPO Eπs(oT)

[
DKL

(
qξ(s1:T |oT)

∥∥σ(s1:T |oT))] Variational Inference

A. Proofs
In this section, we present the sense in which the target marginals correspond to the optimal intermediate distributions
in twisted SMC. We defer proof of Prop. 3.2 from the main text to slightly more general version in App. B.1 Prop. B.1,
although Prop. A.4 provides the analogous statement in terms of the intermediate target distributions π∗

t (s1:t) = σ(s1:t)
instead of the optimal twists ψ∗

t .

We also prove Prop. 3.3 from the main text in App. A.2 and derive the gradient of the CTL loss (Eq. (21)) in App. A.3.

A.1. Proof for Optimal Intermediate Target Distributions

In order to achieve sampling from the full joint distribution σ(s1:T), each intermediate target σ(s1:t) must match the
intermediate marginal σ(s1:t). To formalize this notion, we provide the following definition of optimality, justified by the
fact that it yields an exact partition function estimator.

14

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

To do so, we will consider the multi-step importance weights

wt:t+c−1(s1:t+c−1) =

t+c−1∏
τ=t

wτ (s1:τ) =

t+c−1∏
τ=t

π̃τ (s1:τ)

π̃τ−1(s1:τ−1)q(sτ |s1:τ−1)
=

π̃t+c−1(s1:t+c−1)

π̃t−1(s1:t−1)q(st:t+c−1|s1:t−1)

(c-Step SMC Weights)

using a telescoping cancellation in the final equality. The one-step weights correspond to c = 1, denoted simply as wt.

Definition A.1 (Optimal Twisted SMC Sampling). For a given target distribution σ(s1:T) ∝ p0(s1:T)ϕ(s1:T), we refer
to a twisted SMC procedure, SMC({πt}Tt=1, q,K) or SMC(p0, {ψt}Tt=1, q,K) (with πT = σ or ψT = ϕ), as optimal if
c-step importance weights wt:t+c−1(s1:t+c−1) = Zψt+c−1/Z

ψ
t−1 for all 1 ≤ t ≤ T and 0 ≤ c ≤ T − t+ 1.

Note, that the role of ψt and Zψt is specified in Def. 3.1. We assume πT = σ for the goal of estimating Zσ , and show below
that an optimal twisted SMC procedure yields an exact partition function estimator.
Proposition A.2 (Optimal SMC yields Exact Partition Function Estimation). For any optimal twisted SMC procedure,
the resulting estimator of the partition function Zσ has zero bias and zero variance.

Proof. As in Footnote 1 or App. F Alg. 2, consider {tr}Rr=1 index timesteps where resampling occurs and fix t0 = 0 and

tR = T . The SMC estimator of Zσ = ZψT becomes Ẑ SMC
σ =

∏R
r=1

1
K

∑K
i=1

(∏tr
t=tr−1+1 wt

(
si1:t
))

for S ∼ qSMC(S).

Using the optimality definition in Def. A.1, we have wt(s1:t) = Zψt /Z
ψ
t−1 for all partial sequences s1:t. Noting the

telescoping multiplicative cancellation and the fact that wt(si1:t) = Z
ψ
t /Z

ψ
t−1 is constant with respect to indices i ∈ [1,K],

we have the following estimator for a single run of an optimal SMC procedure,

Ẑ SMC
σ =

R∏
r=1

1

K

K∑
i=1

 tr∏
t=tr−1+1

wt
(
si1:t

) =

R∏
r=1

Zψtr
Zψtr−1

=
ZψtR
Zψt0

=
ZψT
Zψ0

= Zσ (24)

as desired, assuming Zψ0 = 1. Since Ẑ SMC
σ = Zσ is independent of S, we conclude Ẑ SMC

σ has zero bias and zero variance.

Note that we could also define optimality in Def. A.1 using the condition that wt:t+c−1(s1:t+c−1) = const for all 1 ≤ t ≤ T
and 0 ≤ c ≤ T − t + 1. Following similar derivations as above would yield Ẑ SMC

σ = const. As we will show in App. F,
Ẑ SMC
σ is unbiased with E[Ẑ SMC

σ] = Zσ . We thus conclude that Ẑ SMC
σ = Zσ with zero variance, and thus Prop. A.2 holds.

With this notion of optimality in mind, we demonstrate the following necessary and sufficient conditions.

Proposition A.3 (Optimality Conditions). The following conditions are necessary and sufficient for twisted SMC optimality,

(i) : π∗
t (s1:t) = σ(s1:t) ∀ 1 ≤ t ≤ T

(ii) : q∗t (st|s1:t−1) = σ(st|s1:t−1) ∀ 1 ≤ t ≤ T .
(25)

Proof. (Necessary) Optimal Twisted SMC =⇒ (i), (ii): We begin by writing the marginalization of the unnormalized
density π̃∗

t+c over prefixes of length t as

π̃∗
t+c(s1:t) =

∑
st+1:t+c

π̃∗
t+c(s1:t+c) =

∑
st+1:t+c

p0(s1:t+c)ψt+c(s1:t+c) = p0(s1:t)
∑

st+1:t+c

p0(st+1:t+c|s1:t)ψt+c(s1:t+c)

The normalization constant of π̃∗
t+c(s1:t) can easily be seen to be Zψ

∗

t+c after summing over s1:t above, which

yields π∗
t+c(s1:t) = π̃∗

t+c(s1:t)/Z
ψ∗

t+c. We now factorize the c-step incremental importance weights (at step t + 1,

see Eq. (c-Step SMC Weights)) using the above identities, which imply that π̃∗
t+c(s1:t+c) = Zψ

∗

t+cπ
∗
t+c(s1:t+c) =

Zψ
∗

t+cπ
∗
t+c(s1:t)π

∗
t+c(st+1:t+c|s1:t) and

wt+1:t+c(s1:t+c) =
π̃∗
t+c(s1:t+c)

π̃∗
t (s1:t)q

∗(st+1:t+c|s1:t)
=
Zψ

∗

t+c

Zψ
∗

t

π∗
t+c(s1:t)

π∗
t (s1:t)

π∗
t+c(st+1:t+c|s1:t)
q∗(st+1:t+c|s1:t)

(26)

15

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

In order to havewt+1:t+c(s1:t+c) = Z
ψ∗

t+c/Z
ψ∗

t in general, we thus require π∗
t+c(s1:t) = π∗

t (s1:t) and π∗
t+c(st+1:t+c|s1:t) =

q∗(st+1:t+c|s1:t) for all t and c ≤ T − t.
(Sufficient) (i), (ii) =⇒ Optimal Twisted SMC: Consider the incremental importance weights using (i) and (ii),

wt(s1:t) =
π̃∗
t (s1:t)

π̃∗
t−1(s1:t−1)qπ

∗
t (st|s1:t−1)

=
Zψt σ(s1:t)

Zψt−1σ(s1:t−1)σ(st|s1:t−1)
=
Zψt
Zψt−1

(27)

which matches the optimality definition in Def. A.1.

Proposition A.4 (Optimal Intermediate Target Distributions). For a given target distribution σ(s1:T) (Eq. (30)), the
following conditions are equivalent, and are necessary for optimality of a twisted SMC procedure involving {π∗

t }Tt=1,

(i) : π∗
t (s1:t) =

∑
st+1

π∗
t+1(s1:t+1) ∀ 1 ≤ t ≤ T − 1 ,

(ii) : π∗
t (s1:t) =

∑
st+1:t+c

π∗
t+c(s1:t+c) ∀ 1 ≤ t ≤ T − 1, 1 ≤ c ≤ T − t ,

(iii) : π∗
t (s1:t) = σ(s1:t) ∀ 1 ≤ t ≤ T .

(28)

Conditions (i) and (iii) directly correspond to the recursions for the optimal twist functions given in Prop. 3.2 and Prop. B.1.

Proof. (i) ⇐⇒ (ii): It is clear that (ii) =⇒ (i) as a special case for c = 1. To show (i) =⇒ (ii), we have

π∗
t (s1:t) =

∑
st+1

π∗
t+1(s1:t+1) =

∑
st+1

∑
st+2

π∗
t+2(s1:t+2) = ... =

∑
st+1:t+c

π∗
t+c(s1:t+c).

(i) =⇒ (iii) : Recursively applying (i) until time T suggests that

π∗
t (s1:t) =

∑
st+1

π∗
t+1(s1:t+1) =

∑
st+1

∑
st+2

π∗
t+2(s1:t+2) = ... =

∑
st+1:T

π∗
T (s1:T) =

∑
st+1:T

σ(s1:T) = σ(s1:t).

(iii) =⇒ (i) : The target marginals clearly satisfy the recursion

σ(s1:t) :=
∑

st+1:T

σ(s1:T) =
∑
st+1

∑
st+2:T

σ(s1:T) =
∑
st+1

σ(s1:t+1).

A.2. Proof of Twist-Induced Proposal
Proposition 3.3. (Twist-Induced Proposal). For a given set of intermediate twisted targets πt(s1:t) in Eq. (9), the proposal
which minimizes the variance of the one-step incremental importance weights wt is given by

qπt (st|s1:t−1) ∝
πt(s1:t)

πt−1(s1:t−1)
(14)

=
1

Zπt (s1:t−1)
p0(st|s1:t−1)ψt(s1:t).

Proof. We seek to minimize the variance of the resulting importance weights, subject to a constraint on the proposal
probabilities summing to 1. Introducing a Lagrange multiplier λ(s1:t−1), we have

min
q(st|s1:t−1)

Eq(st|s1:t−1)

[(
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)

)2]
−
(
Eq(st|s1:t−1)

[(
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)

)])2
+ λ(s1:t−1)

(∑
st
q(st|s1:t−1)− 1

)
Taking δ

δq (·) = 0 implies

0 =

(
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)

)2

− 2q(st|s1:t−1)

(
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)

)
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)2
+ λ(s1:t−1)

16

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

where the derivative in the second term is zero since the q(st|s1:t−1) cancel. Finally, we have

π̃t(s1:t)
2

π̃t−1(s1:t−1)2q(st|s1:t−1)2
= λ(s1:t−1)

q∗(st|s1:t−1) =
1√

λ(s1:t−1)

π̃t(s1:t)

π̃t−1(s1:t−1)
=

1

Zπt (s1:t−1)
p0(st|s1:t−1)ψt(s1:t)

where Zπt (s1:t−1) (or λ) is chosen to enforce normalization.

We focused on the one-step twist-induced proposal in Prop. 3.3. However, this proposal is not optimal for resampling every
c steps (as would also occur, for example, with adaptive resampling).

Proposition A.5 (Multi-Step Twist Induced Proposal (Generalization of Prop. 3.3)). For resampling c-steps ahead, the
optimal proposal (over st+1:t+c−1) which minimizes the variance of the importance weights wt:t+c−1(s1:t+c−1) is given by

qπ(st:t+c−1|s1:t−1) =
p0(st:t+c−1|s1:t−1)ψt+c−1(s1:t+c−1)∑

st:t+c−1

p0(st:t+c−1|s1:t−1)ψt+c−1(s1:t+c−1)
.

The proof follows the same reasoning as in the proof of Prop. 3.3 above, using the multistep weights wt:t+c−1(s1:t+c−1) =
π̃t+c−1(s1:t+c−1)

π̃t−1(s1:t−1)q(st:t+c−1|s1:t−1)
from Eq. (c-Step SMC Weights).

Note that the denominator is not usually tractable for c > 1 in language modeling applications.

A.3. Derivation of CTL Gradient

Lemma A.6 (Derivation of CTL Gradient). For the CTL loss min
θ
LCTL(θ):= min

θ

∑T
t=1DKL

(
σ(s1:t)

∥∥πθ
t (s1:t)

)
, the

(negative) gradient with respect to the parameters θ is given by

−∇θLCTL(θ) =

T∑
t=1

Eσ(s1:t)
[
∇θ logψ

θ
t (s1:t)

]
− Eπθ

t (s1:t)

[
∇θ logψ

θ
t (s1:t)

]
(29)

Proof. Consider expanding the form of πθ
t (s1:t) using Eq. (9), noting that the normalization logZψt is independent of s1:t.

Taking the gradient with respect to θ using the log derivative identity∇θf(θ) = f(θ)∇θ log f(θ), we have

−∇θLCTL(θ) = −∇θ

(
T∑
t=1

Eσ(s1:t)
[
log σ(s1:t)− log p0(s1:t)− logψθ

t (s1:t)
]
+ log

∑
s1:t

p0(s1:t)ψ
θ
t (s1:t)

)

=

T∑
t=1

Eσ(s1:t)
[
∇θ logψ

θ
t (s1:t)

]
−

T∑
t=1

∑
s1:t

p0(s1:t)ψ
θ
t (s1:t)∑

s1:t
p0(s1:t)ψθ

t (s1:t)
∇θ

(
log p0(s1:t) + logψθ

t (s1:t)
)

=

T∑
t=1

(
Eσ(s1:t)

[
∇θ logψ

θ
t (s1:t)

]
− Eπθ

t (s1:t)

[
∇θ logψ

θ
t (s1:t)

])

B. SMC with Intermediate Potentials and Connection with Soft Reinforcement Learning
In the main text, we focused on settings where the target distribution is defined by a potential ϕ(s1:T) depending on full
sequences only, as in Eq. (1). This setting highlights the need for (learned) twist functions to summarize the future expected
value of the potential in the absence of intermediate target information.

In this appendix, we generalize our exposition to show how our twisted SMC framework can accommodate settings with
intermediate potentials, which is evocative of connections with soft reinforcement learning (Levine, 2018). We leverage
intuition from soft RL while introducing our general probabilistic interpretation, by using (sRL)

= to instantiate the soft RL
special case. In particular, soft RL will correspond to the terminal potential

ϕt(s1:t)
(sRL)
= eβ rt(s1:t) (soft RL ϕt Definition)

17

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

which corresponds to ϕ(s1:T) = eβrT (s1:T) if the potential is given at the final step only (as in RLHF, Korbak et al. (2022b)).
However, we defer detailed discussion of soft RL to App. B.3. See Table 4 for several examples of intermediate potentials.

Finally, we formalize a notion of conditional target distributions and twist functions in App. B.2, which generalizes the
exposition in the main text and captures our conditional twist learning experiments in Sec. 7.2.3.

B.1. Twisted SMC with Intermediate Potentials
To generalize the exposition in the main text, we might consider defining the target as

σ(s1:T) :=
1

Zσ
p0(s1:T)

(
T∏
t=1

ϕt(s1:t)

)
(sRL)
=

1

Zσ
p0(s1:T)e

β
∑T
t=1 rt(s1:t) (30)

where Eq. (1) and the main text exposition corresponds to ϕt(s1:t) = 1 for t < T .

Optimal Twists with Intermediate Potentials Using Eq. (30), the marginal distribution σ(s1:t) =
∑

st+1:T
σ(s1:T) over

t tokens becomes

σ(s1:t) =
1

Zσ
p0(s1:t)

(
t∏

τ=1

ϕτ (s1:τ)

) ∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ)

 (31)

(sRL)
=

1

Zσ
p0(s1:t)e

β
t∑

τ=1
rτ (s1:τ)

 ∑
st+1:T

p0(st+1:T |s1:t)e
β

T∑
τ=t+1

rτ (s1:τ)

 (soft RL special case)

As in Prop. 3.2, the goal of the optimal twist functions is to facilitate sampling from the intermediate marginals σ(s1:t) of
the target distribution σ(s1:T).

We consider two different quantities involved in defining the optimal twists, which differ in their treatment of the intermediate
reward. For the soft RL setting, this corresponds to the natural distinction between Q-values and (soft) value functions Vt.

σ(s1:t) =
1

Zσ
p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ϕt(s1:t)

(∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ)︸ ︷︷ ︸
Φ∗
t (s1:t):∝

)
︸ ︷︷ ︸

ψ∗
t (s1:t):∝

(sRL)
=

1

Zσ
p0(s1:t)

eβ t−1∑
τ=1

rτ (s1:τ)

 eβ rt(s1:t)
(∑

st+1:T

p0(st+1:T |s1:t)e
β

T∑
τ=t+1

rτ (s1:τ))
︸ ︷︷ ︸

Φ∗
t (s1:t):∝ eβV

∗
t (s1:t)=︸ ︷︷ ︸

ψ∗
t (s1:t):∝ eβrt(s1:t)+βV

∗
t (s1:t)=

(32)

where :∝ means ‘defined to be proportional to’ and Q∗
t (st, s1:t−1) = rt(s1:t) + V ∗

t (s1:t) in RL notation. See App. B.3 for
detailed derivations in the soft RL special case. In general, Φt captures the expectation of future potentials from t+ 1 : T ,
analogous to the (soft) value function. The twists ψt play a role analogous to a Q-value, estimating both the immediate ϕt
and future value Φt. In particular,

ψ∗
t (s1:t) ∝ ϕt(s1:t)Φ∗

t (s1:t) where Φ∗
t (s1:t) :∝

∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ) (33)

We continue to refer to ψt as the twist functions and focus on probabilistic interpretations based on ψt instead of Φ∗
t (see

App. B.4 for additional discussion).

To show that this notation is consistent with the main text, consider the optimal twists ψ∗
t (s1:t) = ϕt(s1:t)Φ

∗
t (s1:t) with no

intermediate potentials, ϕt(s1:t) = 1 for t < T . For t < T , ψ∗
t (s1:t) = Φ∗

t (s1:t) reflect the future expected potential and
for t = T , the terminal potential is ψ∗

T (s1:T) = ϕT (s1:T), with no future potentials after step T , i.e. ΦT = 1.

18

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Building on Eq. (31)-(32) above, the following generalization of Prop. 3.2 defines the ‘optimal’ twists so as to obtain the
intermediate target marginals σ(s1:t) (see Prop. A.4).

Proposition B.1 (Optimal Twists). For a given target distribution σ(s1:T) in Eq. (30), the optimal twist functions yield
intermediate {πt}T−1

t=1 which match the target marginals. In regions where p0(s1:t) > 0, the optimal twists are given by

π∗
t (s1:t) = σ(s1:t) =

1

Zψ
∗

t

p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ψ∗
t (s1:t) =

1

ZΦ
∗

t

p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ϕt(s1:t)Φ

∗
t (s1:t). (34)

Up to a constant ct independent of s1:t, the optimal twists ψ∗
t are given by

ψ∗
t (s1:t) = ct ϕt(s1:t)

∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ) (35)

where ct is absorbed into the normalization constant Zψ
∗

t . The optimal twists satisfy the recursion

ψ∗
t (s1:t) =

Zψ
∗

t

Zψ
∗

t+1

ϕt(s1:t)
∑
st+1

p0(st+1|s1:t)ψ∗
t+1(s1:t+1). (36)

Proof. Substituting Eq. (35) into Eq. (34), we obtain the desired marginal Eq. (31),

π∗
t (s1:t) =

ct

Zψ
∗

t

p0(s1:t)

t∏
τ=1

ϕτ (s1:τ)

 ∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ)

 = σ(s1:t)

where the final equality follows from absorbing the constant ct into Zψ
∗

t , with 1
Zσ = ct

Zψ
∗

t

and Zσ which normalizes σ̃(s1:t).

We will now use ct =
Zψ

∗
t

Zσ to show the recursion in Eq. (36). Note that Eq. (35) implies

ψ∗
t (s1:t) = ct ϕt(s1:t)

∑
st+1

p0(st+1|s1:t)
(
ϕt+1(s1:t+1)

∑
st+2:T

p0(st+2:T |s1:t+1)

T∏
τ=t+2

ϕτ (s1:τ)︸ ︷︷ ︸
1

ct+1
ψ∗
t+1(s1:t+1)

)

=
Zψ

∗

t

Zψ
∗

t+1

ϕt(s1:t)
∑
st+1

p0(st+1|s1:t)ψ∗
t+1(s1:t+1)

where the second line follows from ct
ct+1

=
Zψ

∗
t /Zσ

Zψ
∗

t+1/Zσ
. This demonstrates Eq. (36).

Remark B.2 (Equivalence Class of ψt and Φt). Note that any rescaling of ψt ← ctψ̄t by a constant with respect to s1:t
will yield the same intermediate marginals πt(s1:t), due to the normalization constant Zψt which scales with ψt. This defines
an equivalence class in the space of functions. The same statement holds for Φt. We express results such as Eq. (35) using
proportionality ∝. We define ψt and Φt as particular members of their equivalence classes whose normalization Zψt and ZΦt
are equal, such that ψt(s1:t) = ϕt(s1:t)Φt(s1:t).

This leads to the following definition of the intermediate twisting targets (we defer the soft RL special case to App. B.3).

Definition B.3 (Twisted Intermediate Targets). Using approximate twist functions {ψt}T−1
t=1 , we define the twisted

intermediate target distributions

πt(s1:t) =

1

Zψt
p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ψt(s1:t) (t < T)

1

Zσ
p0(s1:T)

T∏
t=1

ϕt(s1:t) (t = T)

(Twist Targets (ψ))

19

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

One-Step Twist-Induced Proposal Using Prop. 3.3 and Def. B.3 and noting that ϕt−1(s1:t−1) is independent of st, we
have the optimal one-step proposal

qπt (st|s1:t−1) ∝
πt(s1:t)

πt−1(s1:t−1)
=
Zψt−1

Zψt
p0(st|s1:t−1)

ϕt−1(s1:t−1)ψt(s1:t)

ψt−1(s1:t−1)

=:
1

Zπt (s1:t−1)
p0(st|s1:t−1)ψt(s1:t)

=
p0(st|s1:t−1)ψt(s1:t)∑

st

p0(st|s1:t−1)ψt(s1:t)

(Twist-Induced Proposal (ψ))

where in the second line, we absorb terms which depend only on s1:t−1 (and not st) into the normalization. In the soft RL
special case, we have qπt (st|s1:t−1) ∝ p0(st|s1:t−1)e

βQt(st,s1:t−1) (see Eq. (Twist-Induced Proposal (soft RL)) below).

B.2. Conditional Twisted SMC
To formalize our notion of conditional twists in the infilling experiments (Sec. 7.2.3), we generalize our above framework
to explicitly depend on ‘observation’ random variables {ot}Tt=1. This matches the common setting of SMC in state-space
models (Briers et al., 2010; Gu et al., 2015; Lawson et al., 2022; Chopin et al., 2020). Our derivations in this section also
emphasize that the optimal twist functions in Prop. B.1 learn functions proportional to conditional likelihoods of the future
observation variables given the current sequence (see Eq. (39) below)). We recover the unconditional targets in the main text
for fixed oT = 1.

Consider a target distribution σ(s1:T |o1:T) conditioned on particular observation random variables o1:T := {ot}Tt=1. We
define a probabilistic model over observations σ(ot|s1:t) = ϕt(ot, s1:t) as the intermediate potential,3 which yields the
target posterior

σ(s1:T |o1:T) =

p0(s1:T)

(
T∏
t=1

σ(ot|s1:t)
)

∑
s1:T

p0(s1:T)

(
T∏
t=1

σ(ot|s1:t)
) =

1

Zσ(o1:T)
p0(s1:T)

(
T∏
t=1

ϕt(ot, s1:t)

)
=
p0(s1:T)σ(o1:T |s1:T)

σ(o1:T)
(37)

where we interpret σ(o1:T |s1:T) =
∏T
t=1 σ(ot|s1:t) and Zσ(o1:T) = σ(s1:T) to make the Bayesian posterior explicit in the

last equality. Note, we now seek to estimate a different partition function Zσ(o1:T) for each set of observation variables.

Using our infilling experiments in Sec. 7.2.3 as an example, consider (a sequence of) subsequent tokens oT = sT+1:T+c as
observation variables, where the observation model is simply the base language model σ(oT |s1:T) := p0(sT+1:T+c|s1:T).

Using Eq. (37), the intermediate marginals become

σ(s1:t|o1:T) =
∑

st+1:T

σ(s1:T |o1:T)

=
∑

st+1:T

1

σ(o1:T)
p0(s1:t)p0(st+1:T |s1:t)

(T∏
t=1

σ(ot|s1:t)
)

=
1

Zσ(o1:T)
p0(s1:t)

(
t∏

τ=1

ϕτ (oτ , s1:τ)

) ∑
st+1:T

p0(st+1:T |s1:t)
(T∏
τ=t+1

ϕτ (oτ , s1:τ)
)

=
1

Zσ(o1:T)
p0(s1:t)

(
t∏

τ=1

ϕτ (oτ , s1:τ)

)
σ(ot+1:T |s1:t) , (38)

noting that σ(ot+1:T |s1:t) =
∑

st+1:T
σ(ot+1:T , st+1:T |s1:t) matches the second to last line.

3Note, rescaling ϕt(s1:t, ot = 1) by a constant c with respect to ot, s1:t does not affect the target posterior in Eq. (37). For example,
with terminal potential only: σ(s1:T |oT) = p0(s1:T) ϕT (s1:T ,oT)/c∑

s1:T
p0(s1:T) ϕT (s1:T ,oT)/c

= 1
Zσ(oT)

p0(s1:T)ϕT (s1:T , oT) as long as the scaling factor

is independent of oT and s1:T .

20

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

The optimal twists take a similar form as Prop. B.1, but now as a function of the future observation or conditioning
information. Further, the optimal twists is proportional to the conditional likelihoods (e.g., σ(ot+1:T |s1:t)) of future
observations given s1:t, which marginalize over future tokens (e.g., st+1:T),

Φ∗
t (s1:t,ot+1:T)

ot+1:T∝ σ(ot+1:T |s1:t) =
∑

st+1:T

p0(st+1:T |s1:t)
(T∏
τ=t+1

ϕτ (oτ , s1:τ)
)
,

ψ∗
t (s1:t,ot:T)

ot:T∝ σ(ot:T |s1:t) =
∑

st+1:T

p0(st+1:T |s1:t)
(T∏
τ=t

ϕτ (oτ , s1:τ)
)
,

(39)

where f(x,o)
o∝ g(x,o) denotes proportionality up to a constant which depends on o only: ∃c(o) : f(x,o) = c(o)g(x,o).

These equations can be confirmed by comparing Prop. B.1 with the last two lines in Eq. (38).

The intermediate marginals over partial sequences can finally be rewritten as either

σ(s1:t|o1:T)
o1:T∝ p0(s1:t)

(
t∏

τ=1

ϕτ (oτ , s1:τ)

)
Φ∗
t (s1:t,ot+1:T) ,

= p0(s1:t)

(
t−1∏
t=1

ϕτ (oτ , s1:τ)

)
ψ∗
t (s1:t,ot:T) .

(40)

We discuss the choice of parameterization using ψt versus Φt in App. B.4.

The conditional twist learning formulation matches the setting of Lawson et al. (2022), to which we refer the reader for
additional discussion. We use this conditional perspective to derive classification losses for twist learning in App. C.3-C.4.

Unconditional Targets as a Special Case In cases where we are only learning twists for a single set of conditioning
information such as a single classifier label or a reward model, note that we can omit explicit conditioning information in
ψt(s1:t, ot) and consider setting {ot = 1}Tt=1. With terminal potential only as in the main text, we write σ(oT = 1|s1:T) =
ϕ(s1:T) and the overall target distribution as σ(s1:T) = σ(s1:T |oT = 1) ∝ p0(s1:T)ϕT (s1:T).

To given meaning to this probabilistic interpretation of σ(oT = 1|s1:T) = ϕ(s1:T) with a binary random variable oT , note
that we need to ensure ϕ(s1:T) ∈ [0, 1]. As a result, sampling from the target σ(s1:T |oT = 1) or joint σ(s1:T , oT = 1) is no
easier in this interpretation than in Eq. (1), which is intractable in general. For example, finding ϕmax = maxs1:T ϕ(s1:T)
and dividing ϕ(s1:T)← ϕ(s1:T)/ϕmax to rescale σ(oT = 1|s1:T) is equivalent to being able to perform rejection sampling
with the base model proposal p0(s1:T) (see Sec. 4.1.2).

With this caveat in mind, the formulation in Eq. (37)-Eq. (39) strictly generalizes our exposition in the main text and
App. B.1. With intermediate potentials, we set σ(o1:T = 1|s1:T) =

∏T
t=1 ϕt(s1:t).

Our notation also matches the exposition in Levine (2018) for the soft RL case with a binary observation or ‘optimality’
random variable σ(ot = 1|s1:t−1, st) = eβrt(s1:t−1,st), where the reward is a function of the state xt = s1:t−1 and action
at = st pair (see the MDP interpretation in App. B.3). Levine (2018) do not explicitly discuss the need to rescale the reward
or its relation to rejection sampling.

B.3. Connection with Soft Reinforcement Learning
In this section, we more explicitly describe the soft reinforcement learning setting (Levine, 2018) commonly used in RLHF
(Korbak et al., 2022b) as a special case of our probabilistic framework. Again, we use notation (sRL)

= to indicate that the
expressions in this section correspond to a particular instance of our SMC framework where ϕ(s1:T) = eβr(s1:T).

Summary of Soft RL Notation To summarize the below derivations, we state the relevant assignments for the soft RL
case. We focus on the optimal case for simplicity, but note that approximate versions play identical roles,

ϕt(s1:t) = eβ rt(s1:t) ψ∗
t (s1:t) = eβrt(s1:t)+βV

∗
t (s1:t) = eβQ

∗
t (st,s1:t−1) Φ∗

t (s1:t) = eβV
∗
t (s1:t) (Twist to Soft RL)

where ψ∗
t (s1:t) = ϕt(s1:t)Φ

∗
t (s1:t) or Q∗

t (st, s1:t−1) = rt(s1:t) + V ∗
t (s1:t). In the other direction, we have

rt(s1:t) =
1

β
log ϕt(s1:t) Q∗

t (st, s1:t−1) =
1

β
logψ∗

t (s1:t) V ∗
t (s1:t) =

1

β
logΦ∗

t (s1:t) (Soft RL to Twist)

21

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

MDP Interpretation To draw connections with soft RL, we view language model controlled decoding as a Markov
Decision Process (MDP), where the prompt is drawn from an initial state distribution s0 ∼ ν0, an action policy π(at|xt) =
q(st|s1:t−1) selects the next token at = st given a partial sequence xt = s1:t−1 as the state, and the environment transitions
are deterministic P (xt+1 = s1:t|at = st, xt = s1:t−1) = δ(xt+1 = concat(st, s1:t−1)) append the selected token to update
the state. Discounting may also be included without difficulty. The reward is given by rt(s1:t).

Final Target Distribution We define the target distribution as the solution to the following variational optimization which
solves the regularized MDP described above,

σ(s1:T)
(sRL)
=

1

Zσ
p0(s1:T)e

β
T∑
t=1

rt(s1:t)
= argmax

q(s1:T)
Eq(s1:T)

[T∑
t=1

rt(s1:t)
]
−

1

β
DKL(q(s1:T) ∥ p0(s1:T)) (41)

which corresponds to the choice ϕt(s1:t) = eβ rt(s1:t) as in Eq. (Twist to Soft RL). The soft value is defined as the maximum
value of the above optimization for optimal q∗(s1:T), and corresponds to the scaled log partition function

V ∗
0 (s0) :=

1

β
logZσ =

1

β
log
∑
s1:T

p0(s1:T)e
β

T∑
t=1

rt(s1:t)
= max

q(s1:T)
Eq(s1:T)

[T∑
t=1

rt(s1:t)
]
−

1

β
DKL(q(s1:T) ∥ p0(s1:T)) (42)

which can be confirmed by substituting q(s1:T) = σ(s1:T) from Eq. (41) into the maximization on the right side of Eq. (42).
Although we omit the dependence of Zσ(s0) on the prompt s0 for notational simplicity (see Eq. (1)), note that V ∗

0 := V ∗(s0)
naturally corresponds to the soft value of the prompt as the initial state in the MDP.

Optimal Intermediate Marginals and Soft Value Decomposing the maximization in Eq. (42) into optimizations over
each q(st+1|s1:t), we define the intermediate soft value V ∗

t (s1:t) as the maximum of the expected future regularized reward

V ∗
t (s1:t) =

1

β
logΦ∗

t (s1:t)
(sRL)
=

1

β
log

∑
st+1:T

p0(st+1:T |s1:t) e
β

T∑
τ=t+1

rτ (s1:τ)

(Optimal Intermediate Soft Value)

= max
q(st+1:T |s1:t)

Eq(st+1:T |s1:t)

[T∑
τ=t+1

rτ (s1:τ)
]
−

1

β
DKL(q(st+1:T |s1:t) ∥ p0(st+1:T |s1:t))

= max
q(st+1|s1:t)

Eq(st+1|s1:t)

[
rt+1(s1:t+1) + V ∗

t+1(s1:t+1)
]
−

1

β
DKL(q(st+1|s1:t) ∥ p0(st+1|s1:t))

where, in the third line, we isolate the optimization over q(st|s1:t−1) by (i) assuming optimality at τ < t and (ii) substituting
the optimal value V ∗

t+1(s1:t+1) = maxq(st+2:T |s1:t+1)[...] of the maximization over q(st+2:T |s1:t+1) (i.e. recursively
applying the second line).

The optimal intermediate marginal can be written using either V ∗
t (s1:t) or Q∗

t (st, s1:t−1) form (as in Eq. (32) above, or by
substituting the optimal V ∗

t or Q∗
t into the twist targets below).

Finally, note that twist consistency condition in Prop. 3.2 Eq. (13) or B.1 Eq. (36) implies

V ∗
t (s1:t) =

1

β
log
∑
st+1

p0(st+1|s1:t) eβrt+1(s1:t+1)+βV
∗
t+1(s1:t+1) =

1

β
log
∑
st+1

p0(st+1|s1:t) eβQ
∗
t+1(st+1,s1:t) (43)

which can also be confirmed using Eq. (Optimal Intermediate Soft Value).

Twisted Intermediate Targets We state the approximate twisting targets for both Vt or Qt parameterizations in order to
make connections with soft RL losses in App. C. For approximate Vt(s1:t) or Qt(st, s1:t−1), we have

πt(s1:t)
(sRL)
=

1

ZVt
p0(s1:t)e

β
t−1∑
τ=1

rτ (s1:τ)
eβrt(s1:t)+βVt(s1:t) (t < T) (Twist Targets (Soft RL V))

=
1

ZQt
p0(s1:t)e

β
t−1∑
τ=1

rτ (s1:τ)
eβQt(st,s1:t−1) (t < T) (Twist Targets (Soft RL Q))

where the final twisting target is given by Eq. (41) and the optimal Q-values are defined as

Q∗
t (st, s1:t−1) = rt(s1:t) + V ∗

t (s1:t) (44)

22

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

One-Step Proposal Finally, the optimal one-step proposal (e.g. in Vt form) can be derived either (i) as the twist-induced
proposal from Eq. (Twist Targets (Soft RL V)) and Prop. B.1 or (ii) as the solution to the one-step optimization in the third
line of Eq. (Optimal Intermediate Soft Value). As in Eq. (Twist-Induced Proposal (ψ)),

qπt (st|s1:t−1)
(sRL)
=

p0(st|s1:t−1)e
β(rt(s1:t)+Vt(s1:t))∑

st
p0(st|s1:t−1)eβ(rt(s1:t)+Vt(s1:t))

∝ p0(st|s1:t−1)e
βQt(st,s1:t−1).

(Twist-Induced Proposal (soft RL))

We define the one-step log normalization constant induced by an approximate Vt or Qt as VVt or VQt , respectively,

VVt(s1:t−1) :=
1

β
log
∑
st

p0(st|s1:t−1)e
β(rt(s1:t)+Vt(s1:t)) VQt(s1:t−1) :=

1

β
log
∑
st

p0(st|s1:t−1)e
βQt(st,s1:t−1)

(45)

such that, for example, qπt (st|s1:t−1) = p0(st|s1:t−1)e
βQt(st,s1:t−1)−βVQt (s1:t−1). Note that, by the twist consistency

condition in Eq. (43) or Prop. 3.2 and B.1, at optimality we have V ∗(s1:t−1) = VV ∗
t
(s1:t−1) = VQ∗

t
(s1:t−1).

RLHF Minimizes DKL(q ∥σ) Note that, for a given suboptimal q(s1:T), the value of the variational optimization in
Eq. (41) is a lower bound on the (scaled) log partition function V ∗

0 = 1
β logZσ. Similarly to the standard Evidence Lower

Bound, the gap in this lower bound is given by the KL divergence

1

β
logZσ =

1

β
DKL(q(s1:T) ∥σ(s1:T))︸ ︷︷ ︸

ELBO gap (≥0)

+
(
Eq(s1:T)

[T∑
t=1

rt(s1:t)
]
− 1

β
DKL(q(s1:T) ∥ p0(s1:T))︸ ︷︷ ︸

‘ELBO’: Eq. (41)

)
(46)

In this sense, we consider soft RL or policy gradient methods such as PPO which optimize Eq. (41) as targeting σ(s1:T) by
minimizing DKL(q(s1:T) ∥σ(s1:T)) (Korbak et al., 2022b).

B.4. Remarks on Parameterization
While the twisting targets (Eq. (Twist Targets (ψ))) and twist-induced proposal (Eq. (Twist-Induced Proposal (ψ))) may
equivalently be parameterized using approximate Φt, we focus on the ψt parameterization to match the main text. In
particular, recall that the optimal twists satisfy ψ∗

t (s1:t) = ϕt(s1:t)Φ
∗
t (s1:t) for all t. With no intermediate potential (ϕt = 1

for t < T), our approximate twists estimate ψt(s1:t) ≈ Φ∗
t (s1:t) ∝

∑
st+1:T

p0(st+1:T |s1:t)ϕT (s1:T) for t < T . In this
section, we describe how the presence of intermediate potentials may affect the choice of twist parameterization.

The twist-induced proposal may not be tractable to evaluate at the final timestep, since it may be costly to evaluate
the terminal potential ϕT (s1:T) for all sT ∈ V given a context s1:T−1 (as described in Sec. 3.2). Thus, we learn an
approximate ψT (s1:T) ≈ ϕT (s1:T) for proposal sampling, which can be easily evaluated over |V| next tokens. The final
πT (s1:T) = σ(s1:T) is defined using ϕ(s1:T) in order to preserve unbiased estimation. However, after sampling the proposal
according to ψT , we only need to evaluate ϕ(s1:T) over K full sequences to calculate the importance weights at the final
step (Eq. (16)). See Intermediate Potential Tractable over K Sequences Only paragraph below.

Intermediate Potentials Tractable over |V| Sequences However, in settings where the intermediate potentials ϕt(s1:t)
are tractable to calculate for all st ∈ V given s1:t−1 (e.g. using an indicator function or forward pass in a transformer
architecture, as in Table 4), it may be useful to use a Φt parameterization of the twist targets and twist-induced proposal. This
allows us to use the exact immediate potentials ϕt(s1:t) alongside an estimated Φθ

t , instead of an approximate ψθ
t ≈ ϕtΦ∗

t

which estimates both the immediate ϕt and future expected value of potentials Φ∗
t . Using notation established in Eq. (32)

and Prop. B.1, the twisting targets in Eq. (Twist Targets (ψ)) can be rewritten using a Φθ
t parameterization

πθ
t (s1:t) =

1

Zψt
p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ϕt(s1:t)Φ

θ
t (s1:t) (t < T) (Twist Targets (Φ))

with πT (s1:T) = σ(s1:T) as before. The twist-induced proposal qπt (st|s1:t−1) ∝ p0(st|s1:t−1)ϕt(s1:t)Φ
θ
t (s1:t) and its

normalization constant are tractable in this case, by evaluating both the given ϕt(s1:t) and parameterized Φθ
t (s1:t) in a single

forward pass and normalizing over the discrete vocabulary of next tokens.

23

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Intermediate Potentials Tractable over K Sequences Only In cases where the intermediate potentials are difficult to
evaluate, we would like to limit evaluation of ϕt(s1:t) to only K partial sequences. In this case, parameterizing the twisted
targets πt using ψθ

t or Qθ
t (Eq. (Twist Targets (ψ)), Eq. (Twist Targets (Soft RL Q))) instead of Φθ

t or V θ
t may be preferable

to ensure a tractable twist-induced proposal. Separate parameterizations of the proposal (using ψξ
t) and targets (ϕtΦθ

t) might
also be considered.

In the case of the final timestep described above or in Sec. 3.2, note that we use a learned ψξ
T to parameterize a tractable

variational proposal qT (sT |s1:T−1). In this case, we have no future value ΦT (s1:T) = 1 and only need to evaluate the
terminal potential ϕ(s1:T) for calculating importance weights over K sequences.

C. Twist Learning Losses
In this section, we describe various methods for twist learning beyond our proposed contrastive twist learning (CTL)
procedure from Sec. 4. In App. C.1, we first describe several losses from the soft RL literature from a probabilistic
perspective, building closely on our developments in App. B.1. We then proceed to describe SIXO (Lawson et al., 2022) and
FUDGE (Yang & Klein, 2021) in App. C.3-C.4.

We emphasize losses found in related work or used as experimental baselines using equation tags (e.g. Eq. (SIXO)), where
equations Eq. (RL Baseline), Eq. (SIXO), Eq. (FUDGE) are used in our experiments. We consider settings with intermediate
potentials in App. C.1, but focus on the (ϕt = 1 for t < T) setting in the remainder of the section, as in the main text.

C.1. Soft Q-Learning (RL) and Path Consistency Losses from Log Importance Weights
From the probabilistic perspective of the SMC log importance weights, we can derive several losses for twist learning,
including soft Q-learning and path consistency learning (PCL) (Nachum et al., 2017) losses from the soft RL literature.

A general principle for deriving loss functions would be to minimize the variance of the (log) importance weights under
some sampling distribution πs, which leads to constant importance weights at optimality. To draw connections with previous
work, we also consider minimizing the square of the log weights (as in, for example, Scharth & Kohn (2016)), which at
optimality, ensures that logw = 0 and w = 1 are equal to a particular constant. We will proceed to parameterize the twist
functions using parameters θ and consider loss terms which minimize the variance or square of c-step log weights at time t,

L(t,c)
log Var(θ) := Varπs

[t+c−1∑
τ=t

logwτ (s1:τ)

]
L(t,c)
log Cons(θ) := Eπs

[(t+c−1∑
τ=t

logwτ (s1:τ)

)2]
. (47)

L(t,c)
log Cons(θ) indicates ‘consistency’ in log-weight space for c-step-ahead weights at time t (see Eq. (c-Step SMC Weights)).

We will consider various choices of parameterization and proposal in the following subsections. For example, let
L(t,c)
log Cons(θ; {ψt, qπt }) denote the log-consistency loss corresponding to twisting targets parameterized by ψθ

t and the
twist induced proposal qπt (note, our notation for the one-step weights wt(s1:t) does not make these choices explicit).

For reference, we derive the log importance weights with intermediate potentials and arbitrary q as

logwt(s1:t) = log
π̃t(s1:t)

π̃t−1(s1:t−1)q(st|s1:t−1)
= log

p0(s1:t)

(
t−1∏
τ=1

ϕτ (s1:τ)

)
ψt(s1:t)

p0(s1:t−1)

(
t−2∏
τ=1

ϕτ (s1:τ)

)
ψt−1(s1:t−1)q(st|s1:t−1)

=⇒ logwt(s1:t) = log ϕt−1(s1:t−1) + logψt(s1:t)− logψt−1(s1:t−1)− log
q(st|s1:t−1)

p0(st|s1:t−1)
(48)

Various special cases arise from choices of twist parameterizations and proposals in the following subsections.

C.1.1. SOFT Q-LEARNING AND RL BASELINE

For single-step log-weights, the ψ-parameterization of the targets (Eq. (Twist Targets (ψ)), Eq. (Twist Targets (Soft RL Q)
)), and the twist-induced proposal (Eq. (Twist-Induced Proposal (ψ)), Eq. (Twist-Induced Proposal (soft RL))), we have

logwt(s1:t) = log ϕt−1(s1:t−1) + logψt(s1:t)− logψt−1(s1:t−1)−
(
�������
log

p0(st|s1:t−1)

p0(st|s1:t−1)
+ logψt(s1:t)− log

∑
st

p0(st|s1:t−1)ψt(s1:t)
)

= log ϕt−1(s1:t−1) + log
∑
st

p0(st|s1:t−1)ψt(s1:t)− logψt−1(s1:t−1) (49)

24

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

where the second term logZπt (s1:t−1) = log
∑
st
p0(st|s1:t−1)ψt(s1:t) normalizes the twist-induced proposal (Eq. (14)).

Minimizing the sum of one-step log consistency losses (i.e. squared log weights in Eq. (48)) will yield the familiar soft
Q-learning loss (e.g. Lioutas et al. (2022) Eq. (4)-(5)). Adjusting indexing from Eq. (48) and introducing a stop-gradient
within logZπt (s1:t−1), we have

min
θ
LSOFTQ(θ) := min

θ

T∑
t=1

L(t+1,1)
log Cons(θ; {ψt, q

π
t }) (Soft Q Learning)

= min
θ

T∑
t=1

Eπs(·)
[(

log ϕt(s1:t) + log
∑
st+1

p0(st+1|s1:t)sg
(
ψθ
t+1(s1:t+1)

)
− logψθ

t (s1:t)
)2]

(sRL)
= min

θ

T∑
t=1

Eπs(·)
[(
βrt(s1:t) + log

∑
st+1

p0(st+1|s1:t)eβsg
(
Qθ
t (st+1,s1:t)

)
− βQθ

t (st, s1:t−1)
)2]

In the final line, we rewrite the loss for the soft RL special case, ϕt(s1:t) = eβrt(s1:t) using the substitutions in
Eq. (Twist to Soft RL). Note that the log-normalization term is analogous to an induced soft value VQθ

t
(s1:t−1) =

1
β log

∑
st
p0(st|s1:t−1)e

βQθ
t (st,s1:t−1), so that each squared error loss has the form E[β2(rt + Vt −Qt)2]. Hence, we refer

to this loss as Soft Q-learning loss.

The log-normalization term, which arises from normalizing the twist-induced proposal, is analogous to the ‘target’ value in
deep Q-learning. Lioutas et al. (2022) consider the soft-Q learning loss to SMC sampling in self-driving applications where
interaction with the environment is expensive. Lawson et al. (2018) adopt a similar loss function (using a parameterization
of the value V θ

t) in the setting of state-space models with tractable intermediate rewards.

RL Baseline with no Intermediate Reward The soft Q-learning loss in Eq. (Soft Q Learning) simplifies nicely in the
case of no intermediate rewards, as in the main text (ϕt(s1:t) = 1 for t < T and ΦT = 1).

Written in terms of twist functions, we separate the terms at t < T and t = T for purposes of exposition

min
θ
LRL(θ) := min

θ

T∑
t=1

L(t+1,1)
log Cons(θ; {ψt, q

π
t , ϕt = 1}) (RL Baseline)

= min
θ

T−1∑
t=1

Eπs(·)
[(

log
∑
st+1

p0(st+1|s1:t)sg
(
ψθ
t+1(s1:t+1)

)
− logψθ

t (s1:t)
)2]

+ Eπs(·)
[(

log ϕ(s1:T)− logψθ
T (s1:T)

)2]
For intermediate timesteps, note that Eq. (RL Baseline) enforces the recursion ψθ

t−1(s1:t−1) =
∑
st
p0(st|s1:t−1)ψ

θ
t (s1:t)

in Eq. (13) of the main text, albeit in log space. In App. C.2 below, we consider the one-step squared error loss enforcing
this recursion directly (without logarithms), i.e. Eπs [(ψθ

t−1(s1:t−1)−
∑
st
p0(st|s1:t−1)ψ

θ
t (s1:t))

2] ,

C.1.2. PATH CONSISTENCY LEARNING (FOR TWIST LEARNING)
Using the value parameterization of the targets (Φt or Vt, see Eq. (Twist Targets (Φ)), Eq. (Twist Targets (Soft RL V))), the
one-step log consistency loss with arbitrary proposal q recovers the path-consistency loss (PCL) from Nachum et al. (2017).

Switching to a Φθ
t parameterization of the twisting targets, we substitute ψθ

t (s1:t) = ϕt(s1:t)Φ
θ
t (s1:t) into the log importance

weights in Eq. (48). The log-consistency loss becomes,

min
θ
LPCL(θ) :=min

θ

T∑
t=1

L(t,1)
log Cons(θ; {Φt, any q}) (PCL)

=min
θ

T∑
t=1

Eπs

[(
log ϕt(s1:t) + logΦθ

t (s1:t)− logΦθ
t−1(s1:t−1)− log

q(st|s1:t−1)

p0(st|s1:t−1)

)2
]

(sRL)
= min

θ

T∑
t=1

Eπs

[(
β
(
rt(s1:t) + V θ

t (s1:t)− V θ
t−1(s1:t−1)

)
− log

q(st|s1:t−1)

p0(st|s1:t−1)

)2
]

In particular, substituting the soft RL potential terms from Eq. (Twist to Soft RL), Eq. (PCL) recovers the path consistency
loss from Nachum et al. (2017). Note that we derived PCL from an importance sampling perspective, whereas PCL was
originally derived by enforcing KKT conditions of the soft RL problem.

25

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

We might also consider multi-step losses for various c. Minimizing the square of the multi-step log weights with arbitrary q
recovers the multi-step PCL loss (Nachum et al., 2017),

min
θ
L(t,c)

PCL (θ) :=min
θ
L(t,c)

log Cons(θ; {Φt, any q}) (multi-step PCL)

=min
θ

Eπs

(t+c∑
τ=t

log ϕτ (s1:τ) + logΦθ
t+c(s1:t+c)− logΦθ

t−1(s1:t−1)−
t+c∑
τ=t

log
q(sτ |s1:τ−1)

p0(sτ |s1:τ−1)

)2

=min
θ

Eπs

(t+c−1∑
τ=t−1

log ϕτ (s1:τ) + logψθ
t+c(s1:t+c)− logψθ

t−1(s1:t−1)−
t+c∑
τ=t

log
q(sτ |s1:τ−1)

p0(sτ |s1:τ−1)

)2
 (50)

(sRL)
= min

θ
Eπs

(β t+c∑
τ=t

rτ (s1:τ) + β V θ
t+c(s1:t+c)− β V θ

t−1(s1:t−1)−
t+c∑
τ=t

log
q(sτ |s1:τ−1)

p0(sτ |s1:τ−1)

)2

where we write the ψθ
t parameterization in Eq. (50) explicitly for use in App. D.1. While PCL considers learned a

proposal or policy q with the goal of approximating the solution of a regularized MDP, we leave joint learning of proposals
{qξ(st|s1:t−1)}Tt=1 and SMC target twists {ψθ

t (s1:t)}Tt=1 or {V θ
t (s1:t)}Tt=1 to future work.

In App. E, we describe using PCL to learn the proposal only (Guo et al., 2021), with the values VQt(s1:t) induced from
learned proposal twists Qξ

t (st+1, s1:t) which define {qξQt(st+1|s1:t)}T−1
t=0 (in similar fashion to Eq. (Twist-Induced Proposal

(soft RL)), but without reference to twisting targets).

C.2. Controlled Decoding Losses via Optimal Twist Identities (Mudgal et al., 2023)
In Prop. B.1 (or Prop. 3.2 and Eq. (13) in the main text), we noted that the optimal twists satisfy the following relationships

ψ∗
t (s1:t) =ct ϕt(s1:t)

∑
st+1:T

p0(st+1:T |s1:t)
T∏

τ=t+1

ϕτ (s1:τ) =
ct
ct+1

ϕt(s1:t)
∑
st+1

p0(st+1|s1:t)ψ∗
t+1(s1:t+1)

(ϕt=1)
= ct

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T)
(ϕt=1)
=

ct
ct+1

∑
st+1

p0(st+1|s1:t)ψ∗
t+1(s1:t+1) (51)

We proceed to describe two ‘controlled decoding’ (CD) losses from Mudgal et al. (2023) as using a squared error loss to
enforce the optimality conditions in Eq. (51), for settings with no intermediate potentials (ϕt(s1:t) = 1 for t < T). Mudgal
et al. (2023) also propose two ways to use the learned ‘twists’ at inference time, which we discuss in relation to our proposed
SMC framework in App. D.1.

CD-Q The CD-Q loss from Mudgal et al. (2023) corresponds to minimizing the one-step recursion in Eq. (51) using the
expected squared error under a (possibly off-policy) sampling distribution πs. Assuming no intermediate reward and an
additional squared error loss to approximate the terminal potential ψθ

T (s1:T) ≈ ϕ(s1:T), we have

min
θ
LCD-Q(θ) := min

θ

T−1∑
t=1

Eπs(·)
[(∑

st+1

p0(st+1|s1:t)ψθ
t+1(s1:t+1)− ψθ

t (s1:t)
)2]

+ Eπs(·)
[(
ϕ(s1:T)− ψθ

T (s1:T)
)2]

(CD-Q)

Eq. (CD-Q) enforces the same optimality condition as the Eq. (RL Baseline) loss (i.e. ψθ
t (s1:t) =∑

st+1
p0(st+1|s1:t)ψθ

t+1(s1:t+1)), without log scaling of each term inside the squared error. At optimality, we have
zero-variance one-step importance weights (w(s1:t) = 1 in Eq. (10)) for the twist-induced proposal.

At optimality, we in fact also have ψθ
t (s1:t) =

∑
st+1:T

p0(st+1:T |s1:t)ϕT (s1:T) (as in Eq. (51) and the proof of Prop. B.1).

CD-FUDGE While we might naively like to consider the loss Eπs(·)
[(
ψθ
t (s1:t)−

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T)
)2]

to
enforce Prop. 3.2 or Eq. (51), note that marginalization over multiple steps is not tractable in general.

26

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Instead, the CD-FUDGE loss4 defined as

min
θ
LCD-FUDGE(θ) := min

θ

T∑
t=1

Eπs(s1:t)
[
Ep0(st+1:T |s1:t)

[(
ψθ
t (s1:t)− ϕ(s1:T)

)2]]
(CD-FUDGE)

can be shown to have the same gradient as the desired (but intractable) squared error loss above (Mudgal et al., 2023).

Since the minimizer of the expected squared error (under p0(st+1:T |s1:t)) to a single function ψθ
t (s1:t) (which is independent

of st+1:T) is given by the conditional expectation (Banerjee et al., 2005), we can also see that Eq. (CD-FUDGE) has the
desired minimum ψθ

t (s1:t) =
∑

st+1:T
p0(st+1:T |s1:t)ϕ(s1:T). Note, it is crucial that the inner expectation samples rollouts

under the base model p0(st+1:T |s1:t) to obtain the desired conditional expectation as the minimizer. While it appears that
any prefix sampling distribution can be used, πs = p0 allows for losses to be calculated at all t in a single sampling run.

Mudgal et al. (2023) also propose two decoding-time usages for the learned twist functions ψθ
t : stochastic token-by-token

sampling and argmax decoding of partial sequences. We discuss their inconsistencies with our SMC framework in App. D.

CD-FUDGE for logψθ
t We can also compare Eq. (CD-FUDGE) with the multi-step PCL loss in Eq. (50), choosing ϕt = 1

for t < T and the proposal equal to the base model q = p0 so that the proposal terms cancel. Noting that ψT (s1:T) = ϕ(s1:T)
is fixed to the exact terminal potential and choosing the c = T − t+ 1-step PCL loss for each t, note that Eq. (50) would
reduce to

∑
t E[
(
log ϕ(s1:T) + 0− logψθ

t (s1:t)− 0
)2
]. Deng & Raffel (2023) optimize this loss with reweighting of terms

based on timestep (higher weight for t ≈ T). Eq. (CD-FUDGE) optimizes the squared error of the difference without log
scaling of each term, under appropriate sampling of rollouts. 5

C.3. SIXO: Smoothing Inference with Twisted Objectives (Lawson et al., 2022)
Lawson et al. (2022) adopt a noise-contrastive estimation loss (Gutmann & Hyvärinen, 2010) to learn the target twist
functions using binary classification. For state space models, Lawson et al. (2022) adopt our setting in App. B.2 with
observation variables ot emitted based on the sampling state s1:t (or simply st) and a known likelihood ϕt(ot, st) = σ(ot|st).
As discussed in App. B.4, in these settings with easily evaluable intermediate potentials, it may be preferable to parameterize
Φθ
t (s1:t,ot+1:T) as in Eq. (Twist Targets (Φ)). Lawson et al. (2022) indeed use this parameterization (see their Eq. 5).

Recall from Eq. (38) that the optimal twists or future values amount to conditional likelihoods,

Φ∗
t (s1:t,ot+1:T)

ot+1:T∝ σ(ot+1:T |s1:t) , ψ∗
t (s1:t,ot:T)

ot:T∝ σ(ot:T |s1:t) , (52)

where
o∝ denotes proportionality up to a constant which depends on o only. Using Bayes rule, we have

σ(ot+1:T |s1:t) =
σ(s1:t|ot+1:T)σ(ot+1:T)

p0(s1:t)

ot+1:T∝ σ(s1:t|ot+1:T)

p0(s1:t)
, σ(ot:T |s1:t)

ot:T∝ σ(s1:t|ot:T)
p0(s1:t)

, (53)

noting that σ(ot+1:T) and p0(s1:t) are marginals of σ(s1:t,ot+1:T) by definition. The above reasoning suggests that we
may learn the twists, or likelihood ratio Φ∗

t (s1:t,ot+1:T) ∝ σ(ot+1:T |s1:t) ∝ σ(s1:t|ot+1:T)/p0(s1:t), using a classifier
which seeks to distinguish samples from σ(s1:t|ot+1:T) and p0(s1:t) (Gutmann & Hyvärinen, 2010; Lawson et al., 2022).
In particular, at each t, we classify the event y = 1, indicating that s1:t ∼ σ(s1:t|ot+1:T), or y = 0, indicating that
s1:t ∼ p0(s1:t).
Consider a given ot+1:T , which can be either ot+1:T = 1 in the unconditional case or ot+1:T ∼ πs(ot+1:T) drawn from a
behavioral policy as discussed below. The SIXO loss becomes

LSIXO(o1:T ;θ) = −
T−1∑
t=1

Eσ(s1:t|ot+1:T)

[
log sigmoid

(
logΦθ

t (s1:t,ot+1:T)
)]

+ Ep0(s1:t)
[
log
(
1− sigmoid

(
logΦθ

t (s1:t,ot+1:T)
))]

= −
T∑
t=1

Eσ(s1:t|ot:T)

[
log sigmoid

(
logψθ

t (s1:t,ot:T)
)]

+ Ep0(s1:t)
[
log
(
1− sigmoid

(
logψθ

t (s1:t,ot:T)
))]

= −
T∑
t=1

Eσ(s1:t|ot:T)

[
log

ψθ
t (s1:t,ot:T)

1 + ψθ
t (s1:t,ot:T)

]
+ Ep0(s1:t)

[
log

1

1 + ψθ
t (s1:t,ot:T)

]
(SIXO)

4Note, we reserve the naming convention FUDGE (Yang & Klein, 2021) for a binary cross entropy loss described in App. C.4, as
opposed to the CD-FUDGE squared error loss from Mudgal et al. (2023).

5Note the difference in choice of proposal between Eq. (CD-Q) (twist-induced q = qπt) and Eq. (CD-FUDGE) (base q = p0).

27

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Note that we can perform approximate positive sampling as in Sec. 4 to estimate expectations in the first term.

Exact Conditional Sampling However, we can also use the BDMC trick in Sec. 3.3 to obtain exact target samples for
general observation variables. In order to facilitate tractable sampling, we optimize the Eq. (SIXO) loss over a sampling
distribution πs(o1:T) = σ(o1:T) for all t, such that the objective becomes

Eσ(o1:T)[LSIXO(o1:T ;θ)] = −
T∑
t=1

Eσ(s1:t,ot+1:T)

[
log

ψθ
t (s1:t,ot:T)

1 + ψθ
t (s1:t,ot:T)

]
+ Ep0(s1:t)σ(ot+1:T)

[
log

1

1 + ψθ
t (s1:t,ot:T)

]

With this choice, note that we may sample once from σ(s1:T ,o1:T) =
∏T
t=1 p0(st|s1:t−1)σ(ot|s1:t) using ancestral sampling

and use the appropriate truncations for positive sampling terms involving σ(s1:t,ot+1:T). By shuffling observation variables
across a batch of K samples, we may obtain samples from the product of marginals p0(s1:T)σ(o1:T) or p0(s1:t)σ(ot+1:T)
in the negative sampling term.

In the main text, note that we condition on oT = 1 or oT = sT+1:T+c (for infilling).

Gradient and Comparison with CTL Proceeding with the ψθ
t parameterization for the target σ(s1:T |oT) = σ(s1:T)

with fixed oT and unconditional twists ψθ
t (s1:t), the gradient of Eq. (SIXO) with respect to θ is

−∇θLSIXO(θ) =

T∑
t=1

Eσ(s1:t)
[
∇θ logψ

θ
t (s1:t)−

ψθ
t (s1:t)

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)

]
− Ep0(s1:t)

[
ψθ
t (s1:t)

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)

]

=

T∑
t=1

Eσ(s1:t)
[

1

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)

]
− Ep0(s1:t)

[
ψθ
t (s1:t)

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)

]
(SIXO Gradient)

The SIXO gradient is superficially similar to our CTL gradient in Sec. 4.1, in that it involves∇θ logψ
θ
t under positive and

negatives samples. However, viewing π̃θ
t (s1:t) = p0(s1:t)ψ

θ
t (s1:t) as the unnormalized density of our intermediate twisting

target, we can see that the second term in the SIXO update includes π̃θ
t (s1:t). Rewriting to highlight differences with our

CTL gradient, we have

−∇θLSIXO =

T∑
t=1

(∑
s1:t

σ(s1:t)
1

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)−

∑
s1:t

π̃θ
t (s1:t)

1

1 + ψθ
t (s1:t)

∇θ logψ
θ
t (s1:t)

)

−∇θLCTL =

T∑
t=1

(∑
s1:t

σ(s1:t) ∇θ logψ
θ
t (s1:t)−

∑
s1:t

π̃θ
t (s1:t)

1

Zψt
∇θ logψ

θ
t (s1:t)

)
(SIXO vs. CTL)

To compare the two, first note that the positive sampling gradient in SIXO is scaled by a factor of 1
1+ψθ

t (s1:t)
factor (which

reflects the misclassification probability under ψθ
t). For the negative sampling terms, note that π̃θ

t (s1:t) is divided by a factor
of 1

1+ψθ
t (s1:t)

in the SIXO gradient, instead of the true normalization constant Zψt for the gradient of our CTL loss Eq. (21).

C.4. FUDGE: Future Discriminators (Yang & Klein, 2021)
In contrast to SIXO, the FUDGE method from Yang & Klein (2021) seeks to directly learn a discriminative classifier to
match the conditional likelihood ψ∗

t (s1:t, oT) ∝ σ(oT |s1:t) or ψ∗
t (s1:t,ot:T) ∝ σ(ot:T |s1:t) (see App. B.2).

As before, we define the joint distribution σ(s1:T , oT) = p0(s1:T)σ(oT |s1:T) with ϕ(s1:T , oT) = σ(oT |s1:T). From
Eq. (52) above or App. B.2 Eq. (39), we have

ψ∗
t (s1:t, oT) ∝ σ(oT |s1:t) :=

∑
st+1:T

p0(st+1:T |s1:t)σ(oT |s1:T) (54)

Yang & Klein (2021) consider training a ‘future discriminator’ ψθ
t (s1:t, oT) ≈ σ(oT |s1:t) which, as in Eq. (54) marginalizes

over future tokens to predict the expected probability that a full sequence with prefix s1:t emits oT (e.g., let oT = a be the
probability of a classifier for class a, or the probability that s1:T satisfies a desired attribute indicated by a boolean oT = 1).

28

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

In similar fashion to SIXO in the previous section, we define a binary random variable y such that

σ(y|s1:t, oT) =

{
σ(oT |s1:t) y = 1

1− σ(oT |s1:t) y = 0
pψθ

t
(y|s1:t, oT) =

{
ψθ
t (s1:t, oT) y = 1

1− ψθ
t (s1:t, oT) y = 0

(55)

where we directly parameterize pψθ
t
(y|s1:t, oT) = ψθ

t (s1:t, oT) to be a probability distribution (e.g. using a sigmoid or
softmax activation). For a given observation random variable oT and partial sequence s1:t, we can define the FUDGE loss

T∑
t=1

LFUDGE(s1:t, oT ;θ) :=

T∑
t=1

DKL

(
σ(y|s1:t, oT)

∥∥∥ pψθ
t
(y|s1:t, oT)

)
(FUDGE)

=

T∑
t=1

−
[
σ(y = 1|s1:t, oT) log pψθ

t
(y = 1|s1:t, oT) + σ(y = 0|s1:t, oT) log pψθ

t
(y = 0|s1:t, oT)

]
+ const.

=

T∑
t=1

−Ep0(st+1:T |s1:t)

[
σ(oT |s1:T) logψθ

t (s1:t, oT) +
(
1− σ(oT |s1:T)

)
log
(
1− ψθ

t (s1:t, oT)
))]

+ const.

where, in moving from the second to the third line, we have used the fact that σ(y = 1|s1:t, oT) = σ(oT |s1:t) =∑
st+1:T

p0(st+1:T |s1:t)σ(oT |s1:T) from Eq. (54) and Eq. (55). At the optimum, pψθ
t
(y = 1|s1:t, oT) = σ(y = 1|s1:t, oT)

implies ψθ
t (s1:t, oT) = σ(oT |s1:t), as desired.

While sampling may be done using an arbitrary distribution over prefixes s1:t and observation oT , Eq. (FUDGE) requires
that rollouts be sampled under the base model p0(st+1:T |s1:t) in order to ensure sampling from the appropriate distribution
σ(y = 1|s1:t, oT). This restriction is similar to what we required in Eq. (CD-FUDGE), although the loss in Eq. (FUDGE) is
based on cross entropy classification rather than a squared error. We discuss the choices made in our experiments below.

Yang & Klein (2021) Setting In the original FUDGE paper, Yang & Klein (2021) consider learning from a dataset of
labelled examples (s1:T , oT) or (s1:t, oT) for a binary observation variable oT = 1 which defines the target distribution.

Unconditional Twist Setting For the unconditional twist experiments in Sec. 7.2.1-7.2.2, we sample under the base model
proposal πs(s1:t) = p0(s1:t) where the target distribution conditions on oT = 1 and σ(oT = 1|s1:T) = ϕ(s1:T) = σ(y =
1|s1:T , oT = 1). In particular, we optimize

min
θ

T∑
t=1

Ep0(s1:t)[LFUDGE(s1:t, oT = 1;θ)]

Conditional Twist Setting For conditional twist learning, we can consider amortizing learning the twists ψt(s1:t, oT)
over some distribution of observation variables πs(s1:t, oT). In particular, in our infilling experiments in Sec. 7.2.3, we
consider sampling under the following joint distribution,

πs(s1:t, oT) = p0(s1:t)σ(oT | s1:t) ,

which we can sample from by first sampling from p0(s1:T)σ(oT | s1:T) and then dropping st+1:T subsequence. Therefore,
the overall objective becomes

min
θ

Eπs(s1:t,oT)[LFUDGE(s1:t, oT ;θ)] (56)

= min
θ

T∑
t=1

−Ep0(s1:T)σ(oT | s1:t)

[
σ(oT |s1:T) logψθ

t (s1:t, oT) +
(
1− σ(oT |s1:T)

)
log
(
1− ψθ

t (s1:t, oT)
))]

,

where the expectation p0(s1:T) includes the expectation under p0(st+1:T |s1:t) from Eq. (FUDGE). Note that rollout of
st+1:T |s1:t used to sample from p0(s1:T) should be independent of the rollout used to sample from σ(oT |s1:t).

29

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

D. Decoding Strategies using Learned Twists from Mudgal et al. (2023)
D.1. Proposal Sampling in Mudgal et al. (2023)
As noted in App. C.2 (and in L∗(θ) in Mudgal et al. (2023)), the CD losses can be seen as enforcing the optimality conditions

ψcd∗
t (s1:t) =

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T), ∀t and ψcd∗
t (s1:t) =

∑
st+1

p0(st+1|s1:t)ψcd∗
t+1(s1:t+1) (57)

In RL terms, the twists ψcd∗
t perform policy evaluation for the expected ‘reward’ ϕ(s1:T) of a fixed policy p0(s1:T) in an

unregularized MDP. The notation of Mudgal et al. (2023) (their Eq. (1), (5), our Eq. (57)) indeed corresponds to

ϕ(s1:T) =: rcd(s1:T) σ(s1:T) = p0(s1:T)rcd(s1:T). (CD reward)

However, Mudgal et al. (2023) propose to use the learned twist functions ψθ
t to perform one-step sampling as

qcd
t (st|s1:t−1) ∝ p0(st|s1:t−1)e

β ψθ
t (s1:t) (CD proposal)

We proceed to explain that this scheme does not correspond to sampling from the twist-induced proposal under either of two
different definitions of the target σ(s1:T) and potential ϕ(s1:T) in our SMC framework.

Comparison with Our ϕ(s1:T) = rcd(s1:T) Case: As we have argued above, the CD-Q and CD-FUDGE may be
viewed as learning twist values ψθ

t for a terminal potential ϕ(s1:T) = rcd(s1:T). However, our twist-induced proposal which
minimizes the variance of the one-step importance weights with these SMC targets {πθ

t } would yield

qπt (st|s1:t−1) ∝ p0(st|s1:t−1)ψ
θ
t (s1:t), (Twist-Ind. proposal (ϕ = rcd))

which, compared to Eq. (CD proposal) does not exponentiate or scale ψθ
t and is directly proportional to the expected rcd.

Comparison with Our ϕ(s1:T) = eβrcd(s1:T) Case (Soft RL): The stochastic sampling in Eq. (CD proposal) is also
reminiscent of the twist-induced proposal in the soft RL case of our framework where, in contrast to Eq. (CD reward), the
target is defined via ϕ(s1:T) = eβrcd(s1:T). As in App. B.3,

qπt (st|s1:t−1) ∝ p0(st|s1:t−1)e
β V θ

t (s1:t) (Twist-Ind. proposal (ϕ = eβrcd))

We proceed to write both qcd
t and qπt as the solution to a variational optimization, highlighting similarities in blue, but noting

the different definitions of ϕ in terms of rcd. We assume no intermediate potential or reward, and consider the optimal twists
to emphasize the role of rcd. Using Mudgal et al. (2023) Eq. 2 and Thm 2.1 (for CD) and Eq. (Optimal Intermediate Soft
Value) (for soft RL), we have

qcd∗
t (st|s1:t−1) = argmax

q(st|s1:t−1)

Eq(st|s1:t−1)

[
Ep0(st+1:T |s1:t)

[
rcd(s1:T)

]︸ ︷︷ ︸
ψcd∗
t (s1:t) (for ϕ = rcd)

]
− 1

β
DKL(q(st|s1:t−1) ∥ p0(st|s1:t−1))

(CD proposal optimization)

qπ
∗

t (st|s1:t−1) = argmax
q(st|s1:t−1)

Eq(st|s1:t−1)

[1
β
logEp0(st+1:T |s1:t)

[
eβrcd(s1:T)

]
︸ ︷︷ ︸

V ∗
t (s1:t) (for ϕ = eβrcd)

]
− 1

β
DKL(q(st|s1:t−1) ∥ p0(st|s1:t−1))

(Soft RL proposal optimization)

The second terms of Eq. (CD proposal optimization) and Eq. (Soft RL proposal optimization) match and correspond to
one-step KL divergence regularization of the policy qt(st|s1:t−1). However, the expectation terms differ as we now discuss.

Soft Values Account for Future Regularization Using Eq. (Optimal Intermediate Soft Value) to expand the definition of
the soft value function, we see that Eq. (Soft RL proposal optimization) also implicitly contains an expected terminal reward,

V ∗
t (s1:t) =

1
β logEp0(st+1:T |s1:t)e

βrcd(s1:T) = max
q(st+1:T |s1:t)

Eq(st+1:T |s1:t)
[
rcd(s1:T)

]
− 1

βDKL(q(st+1:T |s1:t) ∥ p0(st+1:T |s1:t))

(58)

30

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

As β → 0 in Eq. (58), this optimization strictly enforces q(st+1:T |s1:t) = p0(st+1:T |s1:t), and the soft value function
recovers the expected reward under the base model Ep0(st+1:T |s1:t)[rcd(s1:T)], which appears in first term Eq. (CD proposal
optimization). On the other hand, the second term in Eq. (CD proposal optimization) uses β > 0 for optimization of the
proposal q(st|s1:t−1) at the current step. This inconsistency in Eq. (CD proposal optimization) (using β = 0 in the first term
and β > 0 in the second term) arises from the fact that Eq. (CD proposal optimization) does not consider the effect of future
regularization, while the MDP formulation in Eq. (Soft RL proposal optimization) does so via the optimization in Eq. (58)
and the log-mean-exp form of the soft value function V ∗

t .

On Mudgal et al. (2023)’s One-Step Proposal and SMC Interpretation As noted in Eq. (57), the twists learned by
Mudgal et al. (2023) correspond to policy evaluation for the reward rcd under the base model p0. However, we have
argued that the one-step proposal in Eq. (CD proposal) (which considers one-step KL regularization of qcd

t to p0) does not
immediately fit within our SMC framework.

In particular, it is not clear that the composition of one-step proposals qcd(s1:t) =
∏t
τ=1 q

cd
τ (sτ |s1:τ−1) =

p0(s1:t)e
β
∑t
τ=1 ψ

cd∗ (s1:τ)−β
∑t
τ=1

1
β log Ep0(sτ |s1:τ−1)e

βψcd∗ (s1:τ)

samples from the marginals σ(s1:t) of a meaningful tar-
get distribution σ(s1:T) at optimality. On the other hand, the soft RL value functions satisfy the optimality condition
V ∗
t (s1:t−1) = 1/β log

∑
st
p0(st|s1:t−1) e

βV ∗
t (s1:t) in Eq. (43), which is the analogue of Eq. (57) for ϕ = eβr (soft RL) but

is not satisfied by substituting ψcd∗ for V ∗
t . This condition facilitates a telescoping cancellation,

∏t
τ=1 q

π∗

t (sτ |s1:τ−1) =

p0(s1:t)e
β
∑t
τ=1 V

∗(s1:τ)−β
∑t
τ=1

1
β log Ep0(sτ |s1:τ−1)e

βV ∗(s1:τ)

∝ p0(s1:t)eβV
∗(s1:t) and yields the marginals of σ(s1:T).

Flexible Inference-Time β Scaling The experiments in Mudgal et al. (2023) evaluate tradeoff curves between expected
reward and DKL

(
qcd(s1:T)

∥∥ p0(s1:T)) for various values of regularization strength β. Since the twists learned by Mudgal
et al. (2023) in Eq. (57) do not depend on β, sampling according to Eq. (CD proposal) or Eq. (CD proposal optimization)
has the benefit of allowing flexible tempering or β-scaling at inference time without additional learning.

Such tradeoff curves are also natural from the perspective of soft-RL (c.f. Eq. (41) and Eq. (46)). While Eq. (58) appears
to require separate twist-learning procedures for each β, flexible inference-time β scaling could be achieved with a single
training run in our framework by learning a conditional twist network ψθ

t (s1:t, β) which considers β in its input and training
loss, or adapting the methods of (Bae et al., 2022) proposed in the context of rate-distortion optimization.

Comparison with Khanov et al. (2024) Khanov et al. (2024) consider softmax decoding similar to Eq. (Twist-Ind.
proposal (ϕ = rcd)). However, instead of V θt (s1:t) as the logit, they use a reward model rT (s1:T) which is trained from full
sequences (ϕ(s1:T) = eβrT (s1:T)), but applied to partial sequences without modification, rT (s1:t). This clearly does not
correspond to a twist or soft value function V ∗

t (s1:t) =
1
β log

∑
st+1:T

p0(st+1:T |s1:t)eβrT (s1:T) ̸= rT (s1:t).

D.2. Blockwise Greedy Decoding in Mudgal et al. (2023)
As an alternative use of the twist functions at inference time and a generalization of best-of-K decoding to partial sequences,
Mudgal et al. (2023) consider a ‘blockwise’ decoding scheme using the learned twist functions ψθ

t . ForK partial completions
of length M (from a prefix s1:t), sampled from the base model, s(k)t+1:t+M ∼ p0(st+1:t+M |s1:t), Mudgal et al. (2023) select

sωt+1:t+M = argmax
k

ψθ
t+M (sk1:t+M) (59)

and proceed with sampling K further continuations with prefix sω1:t+M until the next resampling step or an end-of-string
token is reached. The argmax selection strategy may seem natural from the unregularized RL (as β →∞) or expected
future reward perspective in App. D.1, but does not yield samples from σ(s1:T) with the corresponding optimal twists.
Finally, Khanov et al. (2024) also consider argmax decoding of next tokens using the unmodified rT (s1:t) described above.

Our SMC framework instead would advocate probabilistic resampling based on the approximate twist functions using the
(c- or M -step) importance weights in Sec. 3 in order to match the desired target distribution.

E. Proposal Learning Methods

We next describe methods for learning variational policies or proposals qξ(s1:T) =
∏T
t=1 q

ξ
t (st|s1:t−1) parameterized

by ξ, which can be used for SMC sampling with intermediate targets πθ
t (s1:t) and learned twists ψθ

t (s1:t) or V θ
t (s1:t)

parameterized by θ. Alternatively, such proposals may be used directly in the IWAE bounds on logZσ, which rely on
simple importance sampling over full sequences as in Sec. 2.1 and do not require the definition of intermediate targets πt.

31

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

In App. E.3, we provide a detailed description of the DPG policy gradient method, which can be interpreted as a maximum
likelihood objective for a sequential energy-based model. To distinguish this EBM approach from our CTL method for
twist learning, we emphasize issues which can arise from naive use of a proposal-learning objective to define intermediate
twisting targets for SMC in App. E.3.1.

E.1. Path Consistency Learning for Controlled Generation

Guo et al. (2021) consider learning Q-values to obtain a fine-tuned variational policy which can be directly used as a
sampling distribution for controlled generation. Building on the path consistency learning (PCL) loss in Nachum et al.
(2017) and App. C.1.2, Guo et al. (2021) consider parameterizing the proposal using Qξ

t (st, s1:t−1),

qξt (st|s1:t−1) = p0(st|s1:t−1)e
βQξ

t (st,s1:t−1)−βVQξ (s1:t−1) (60)

where VQξ(s1:t−1) =
1
β log

∑
st
p0(st|s1:t−1)e

βQξ
t enforces normalization.

Guo et al. (2021) define the targets using Q̄ξ
t (st, s1:t−1), a slowly-updated target network based on Qξ

t . Using the implied
form of the soft value V̄ (s1:t−1) :=

1
β log

∑
st
p0(st|s1:t−1)e

βQ̄ξ
t (st,s1:t−1), the single-step PCL loss becomes

LPCL−Q(ξ) = min
ξ

T∑
t=1

Eπs(s1:t)
[(
rt(s1:t) + sg(V̄t(s1:t))− sg(V̄t−1(s1:t−1))−Qξ

t (st, s1:t−1) + VQξ(s1:t−1)
)2]

(61)

where sg(·) indicates stop gradient. Building on the interpretation in App. C.1, we view V̄t(s1:t) and V̄t−1(s1:t−1) as the
twisting targets, with a learned proposal parameterized by Qξ

t as in Eq. (60) (or App. B.4). While the loss in Eq. (61)
is similar in practice to the soft Q-learning loss in App. C.1.1, we emphasize that the latter is motivated from the SMC
perspective with the twisting targets as the primary object of interest and flexibility in the choice of proposal. By contrast,
Guo et al. (2021) are interested in learning a proposal policy and do not consider, for example, resampling according to V̄t.

Guo et al. (2021); Nachum et al. (2017) also consider ‘multi-step’ PCL losses (Eq. (multi-step PCL)) which use observed
reward during rollouts of length λ to limit reliance on estimated intermediate values V̄t(s1:t). The objective in Hu et al.
(2023) also corresponds to a PCL objective.

E.2. Policy Gradient Methods
Traditional RLHF pipelines use a policy gradient method such as PPO to optimize the objective in Eq. (41),

LELBO(ξ) = max
ξ

Eqξ(s1:T)[rT (s1:T)]−
1

β
DKL

(
qξ(s1:T)

∥∥ p0(s1:T)) = min
ξ
DKL

(
qξ(s1:T)

∥∥σ(s1:T)) (62)

where rT (s1:T) = 1
β log ϕ(s1:T) corresponds to our final twist. As in Eq. (46), the gap in this optimization is the mode-

seeking KL divergence DKL

(
qξ(s1:T)

∥∥σ(s1:T)).
Notably, this objective does not make use of exact target samples from σ(s1:T) when they are available. Further, the
mode-seeking behavior has been shown to reduce diversity of fine-tuned models (Stiennon et al., 2020; Go et al., 2023). To
combat this, Go et al. (2023) derive policy gradient methods to optimize arbitrary f -divergences Df

(
qξ(s1:T)

∥∥σ(s1:T))
between the learned variational policy qξ and target σ.

E.3. Policy Gradient with Mass-Covering / Maximum Likelihood KL Divergence
We focus on the case of minimizing the mass-covering KL divergence DKL

(
σ(s1:T)

∥∥ qξ(s1:T)) to train qξ, which constitutes
the distributional policy gradients (DPG) method for language model finetuning (Parshakova et al., 2019; Khalifa et al., 2020;
Korbak et al., 2022a; Go et al., 2023) and has been used to learn SMC proposals in state-space models in (Gu et al., 2015).

In particular, the gradient of DKL

(
σ(s1:T)

∥∥ qξ(s1:T)) = Eσ(s1:T)[log σ(s1:T)− log qξ(s1:T)] is

∇ξDKL

(
σ(s1:T)

∥∥ qξ(s1:T)) = −Eσ(s1:T)[∇ξ log q
ξ(s1:T)

]
= −Eqξ(s1:T)

[
σ(s1:T)

qξ(s1:T)
∇ξ log q

ξ(s1:T)

]
= −Eqξ(s1:T)

[
1

Zσ
σ̃(s1:T)

qξ(s1:T)
∇ξ log q

ξ(s1:T)

] (63)

32

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

We recognize the importance weights w(s1:T) =
σ̃(s1:T)
qξ(s1:T)

from Eq. (3). Go et al. (2023) consider estimating Eq. (63) using

a moving average estimate of the partition function Ẑσ

∇ξDKL

(
σ(s1:T)

∥∥ qξ(s1:T)) ≈ K∑
k=1

1

Ẑσ
w(s

(k)
1:T)∇ξ log q

ξ(s
(k)
1:T), (DPG (general Ẑσ))

Alternatively, the expectation may thus be estimated using SIS with the variational policy qξ(s1:T). Using self-normalized
importance sampling (SNIS) to estimate Eq. (63) as in Eq. (5) corresponds to Ẑσ =

∑K
j=1 w(s

(k)
1:T), with

∇ξDKL

(
σ(s1:T)

∥∥ qξ(s1:T)) ≈ K∑
k=1

w(s
(k)
1:T)∑K

j=1 w(s
(j)
1:T)
∇ξ log q

ξ(s
(k)
1:T). (64)

We use this gradient for DPG proposal learning in the main text experiments, although we use the parameterization described
in Eq. (DPG) below.

DPG as Sequential Maximum Likelihood Objective We now show Eq. (64) is equivalent to a sequential maximum
likelihood EBM objective. Consider minimizing the KL divergence,

DKL

(
σ(s1:T)

∥∥ qξ(s1:T)) = T∑
t=1

Eσ(s1:t−1)DKL

(
σ(st|s1:t−1)

∥∥∥ qξt (st|s1:t−1)
)

(EBM proposal learning)

where qξt (st|s1:t−1) =
p0(st|s1:t−1)ψ

ξ
t (s1:t)∑

st
p0(st|s1:t−1)ψ

ξ
t (s1:t)

. (65)

While this is reminscent of the twist-induced proposal in Prop. 3.3, we emphasize distinctions between energy-based
learning of the proposal (DPG) versus energy-based learning of twist functions (CTL) in App. E.3.1.

The gradient of Eq. (EBM proposal learning) becomes

∇ξDKL

(
σ(s1:T)

∥∥∥ qξ(s1:T)) =

T∑
t=1

Eσ(s1:t−1)

[
Eσ(st|s1:t−1)

[
∇ξ logψ

ξ
t (s1:t)

]
− E

q
ξ
t (st|s1:t−1)

[
∇ξ logψ

ξ
t (s1:t)

]]
. (66)

Starting from Eq. (64), we now seek to recover Eq. (66). Using Eq. (65), we can write

log qξ(s
(k)
1:T) =

T∑
t=1

(
log p0(s

(k)
t |s

(k)
1:t−1) + logψξ

t (s
(k)
1:t)− log

∑
st

p0(st|s(k)1:t−1)ψ
ξ
t (st, s

(k)
1:t−1)

)
∇ξ log q

ξ(s
(k)
1:T) =

T∑
t=1

(
∇ξ logψ

ξ
t (s

(k)
1:t)− E

q
ξ
t (st|s

(k)
1:t−1)

[
∇ξ logψ

ξ
t (st, s

(k)
1:t−1)

])
Substituting into Eq. (64), we recover

∇ξDKL

(
σ(s1:T)

∥∥ qξ(s1:T)) ≈ K∑
k=1

w(s
(k)
1:T)∑K

j=1 w(s
(k)
1:T)

T∑
t=1

(
∇ξ logψ

ξ
t (s

(k)
1:t)− E

qξt (st|s
(k)
1:t−1)

[
∇ξ logψ

ξ
t (st, s

(k)
1:t−1)

])
(DPG)

which is an SNIS estimate of the maximum likelihood EBM gradient in Eq. (66), as desired. Note that the expectation over
qξt (st|s

(k)
1:t−1) can be calculated exactly.

Comparison with CTL Objective The gradient in Eq. (DPG) above appears similar to our CTL objective and gradient in
Sec. 4.1. However, the DPG loss in Eq. (EBM proposal learning) is a single (joint) KL divergence over the entire sequence,
whereas CTL optimizes T separate KL divergences for each intermediate marginal.

For the DPG gradient in Eq. (66), negative sampling is performed using a ‘positive’ prefix s
(k)
1:t−1 ∼ σ(s1:t−1) and an exact

‘negative’ sample from the one-step-ahead qξt (st|s
(k)
1:t−1) (Eq. (65), which we have assumed to be tractable). In practice, we

obtain the prefixes using the truncation of exact samples or approximate positive sampling with the final target weights as in
Eq. (DPG). By contrast, the CTL gradient in Eq. (21) involves approximate negative sampling under each πt(s1:t).

33

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

E.3.1. NAIVE USE OF PROPOSAL LEARNING TO DEFINE TWISTED SMC TARGETS

While we have shown in Prop. 3.3 how one-step proposals {qπt (st|s1:t−1)}Tt=1 can be induced from a given set of twist
functions {ψt(s1:t)}Tt=1 or target distributions {πt(s1:t)}Tt=1, we now emphasize that moving the other direction (inducing
intermediate twisting targets from a proposal learning scheme parameterized by {ψξ

t }Tt=1) does not yield the correct
intermediate targets for resampling (App. A.1), even at optimality in the proposal learning objective.

We focus our arguments on learning with the EBM maximum likelihood objective in Eq. (EBM proposal learning) as an
example. The proposal energies ψξ

t (s1:t) appear to play a role analogous to the twist function ψt(s1:t) in the one-step
proposal induced from twist targets {πt}Tt=1 in Sec. 3.

However, we will show in Prop. E.2 that naive use of ψξ
t to define the following twisting targets (with no intermediate ϕt)

πξ
t (s1:t) =

{
1

Zψt
p0(s1:t) ψ

ξ
t (s1:t) t ̸= T

1
Zσ p0(s1:T) ϕ(s1:T) t = T

(67)

need not lead to an SMC procedure for which πξ
t (s1:t) = σ(s1:t), even if qξt (st|s1:t−1) = σ(st|s1:t−1) for all t. We thus

argue that ψξ
t learned using Eq. (EBM proposal learning) should not be used as target twists in Eq. (67), since they do not

yield the optimal interemdiate target distributions at optimality (App. A.1).

We begin by showing a simple lemma for the one-step conditionals in Eq. (EBM proposal learning).

Lemma E.1. Any twist induced proposal qξt (st|s1:t−1) (induced by ψξ
t (s1:t)) is invariant to rescaling ψξ

t (s1:t) by an
arbitrary constant c(s1:t−1) with respect to s1:t−1,

ψξc
t (s1:t) := c(s1:t−1)ψ

ξ
t (s1:t) (68)

Proof.

qξct (st|s1:t−1) =
p0(st|s1:t−1)ψ

ξc
t (s1:t)∑

st
p0(st|s1:t−1)ψ

ξc
t (s1:t)

=
p0(st|s1:t−1)c(s1:t−1)ψ

ξ
t (s1:t)∑

st
p0(st|s1:t−1)c(s1:t−1)ψ

ξ
t (s1:t)

=
p0(st|s1:t−1)ψ

ξ
t (s1:t)∑

st
p0(st|s1:t−1)ψ

ξ
t (s1:t)

= qξt (st|s1:t−1) .

Proposition E.2. There exist {ψξ∗
t }Tt=1 such that (i) qξ∗t (st|s1:t−1) = σ(st|s1:t−1) and (ii) the SMC targets {πξ∗

t (s1:t)}Tt=1

induced by {ψξ∗
t }Tt=1 via Eq. (67) are different from σ(s1:t).

Proof. To satisfy condition (i) of the current proposition, we define

ψξ∗
τ (s1:τ) :=

{ ∑
sτ+1:T

p0(sτ+1:T |s1:τ)ϕ(s1:T) τ ̸= t

c(s1:t−1)
∑

st+1:T
p0(st+1:T |s1:t)ϕ(s1:T) τ = t

(69)

which for all τ , yields optimal proposals: (i) qξ∗(sτ |s1:τ−1) = σ(sτ |s1:τ−1) ∝ p0(sτ |s1:τ−1)ψ
ξ∗
τ (s1:τ) via Lemma E.1.

However, it is clear that c(s1:t−1) ̸= 1 can break the necessary condition for optimality of SMC sampling that πt(s1:t) =
σ(s1:t) (Prop. A.4). In particular, consider

πξ∗
t (s1:t) =

1

Zψt
p0(s1:t) ψ

ξ∗
t (s1:t) =

1

Zψt
c(s1:t−1)p0(s1:t)

∑
st+1:T

p0(st+1:T |s1:t)ϕ(s1:T)

=
1

Zψt
c(s1:t−1)σ̃(s1:t) ̸= σ(s1:t) (70)

for c(s1:t−1) ̸= 1, which introduces an additional factor which depends on s1:t. Thus, the twist target πξ∗
t (s1:t) induced

from ψξ∗
t (s1:t) in Eq. (69) is not equal to the desired marginal σ(s1:t), despite the fact that all proposals are optimal.

We indeed observed experimentally that resampling based on Eq. (67) after training using Eq. (EBM proposal learning)
could lead to worse SMC logZσ bounds than simply calculating the SIS or IWAE bound with

∏T
t=1 q

ξ
t (st|s1:t−1).

34

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Optimality in CTL Objective implies Optimal Twisted SMC In contrast to Prop. E.2, note that the global optimum of
our CTL objective min

∑T
t=1DKL

(
σ(s1:t)

∥∥∥πψt (s1:t)) (which occurs for the optimal twists {ψ∗
t }T−1
t=1 in Prop. 3.2), results

in both the twist-induced proposal qπ
∗

t (st|s1:t−1) = σ(st|s1:t−1) and the twisting targets π∗
t (s1:t) = σ(s1:t) satisfying the

necessary and sufficient conditions for optimality outlined in App. A.1 Prop. A.3.

E.3.2. SMC WITH NORMALIZED TARGETS INDUCED BY LEARNED PROPOSAL LEADS TO UNIFORM WEIGHTS

The issue in Prop. E.2 arises from the degree of freedom c(s1:t−1) in the normalization constant of the one-step proposal.
To avoid this, we can instead define normalized twisted intermediate targets using

π̃ξ
t (s1:t) =

p0(s1:t)
t∏

τ=1

ψξ
τ (s1:τ)

Zξ
τ (s1:τ−1)

=
t∏

τ=1
qξτ (sτ |s1:τ−1) t ̸= T

p0(s1:T) ϕ(s1:T) t = T

(71)

where Zξ
t (s1:t−1) arises from qξt (st|s1:t−1) :=

1

Zξ
t (s1:t−1)

p0(st|s1:t−1)ψ
ξ
t (s1:t) learned with Eq. (EBM proposal learning).

Crucially, π̃ξ
t in Eq. (71) are automatically normalized for t ̸= T , as the product of normalized proposals. In this case, SMC

resampling with qξ or the twist-induced proposal yields uniform resampling weights,

(for t < T) : wt(s1:t) =
π̃ξ
t (s1:t)

π̃ξ
t−1(s1:t−1)qξ(st|s1:t−1)

=
p0(s1:t)

t∏
τ=1

ψ
ξ
τ (s1:τ)

Z
ξ
τ (s1:τ−1)

p0(s1:t−1)

(
t−1∏
τ=1

ψ
ξ
τ (s1:τ)

Z
ξ
τ (s1:τ−1)

)
1

Z
ξ
t (s1:t−1)

p0(st|s1:t−1)ψ
ξ
t (s1:t)

= 1 (72)

Although we were able to construct well-behaved intermediate twisting targets from a proposal-learning scheme
qξt (st|s1:t−1) ∝ p0(st|s1:t−1)ψ

ξ
t (s1:t), Eq. (72) shows that this does not lead to meaningful intermediate SMC resampling.

In other words, for t < T , the marginal distributions of SMC samples sk1:t with this scheme are simply qξ(s1:t), the same as
we would obtain with no resampling (SIS/IWAE).

F. Bidirectional SMC
In this section, we recall the extended state-space probabilistic interpretation of SMC from (Maddison et al., 2017; Andrieu
et al., 2010). The idea is to define an unnormalized target distribution σSMC(S) and normalized proposal qSMC(S) over
an extended state space S containing all random variables relevant to SMC sampling and importance weighting with K
sequences of length T . Defining σ̃SMC(S) such that its normalization constant matches Zσ, we can use simple importance
sampling (SIS) in this extended state space to show that K-sequence SMC sampling yields an unbiased estimator of Zσ , for
example Zσ = EqSMC(S)[

σ̃SMC(S)
qSMC(S)] (as in Eq. (8)). Our end goal is to use this probabilistic interpretation to derive the lower

and upper bounds on logZσ in Prop. 5.1, following Brekelmans et al. (2021) App. A.

We define the extended state space proposal and target distributions below, noting that our bounds will require sampling
from normalized σSMC(S) or qSMC(S), and evaluating σ̃SMC(S) and qSMC(S). We summarize the algorithm for sampling
σSMC(S) in Alg. 2, using concatenation notation for simplicity (instead of index histories as in the text).

Single-Sequence Target and Proposal We construct our importance sampling bounds with the goal of estimating the (log)
partition function and sampling from a target distribution σ(s1:T) = σ̃(s1:T)/Zσ . We leverage a sequence of intermediate
target distributions, {πt(s1:t) = 1

Zt π̃t(s1:t)}
T
t=1 over partial sequences, with the final target πT (s1:T) = σ(s1:T) and

ZT = Zσ . We assume π̃0(s0) = 1 for all prompts with Z0 = 1. Finally, our bounds and sampling procedures also depend
on a given set of proposal distribution {q(st | s1:t−1)}Tt=1, as in Sec. 2.2.

Extended State Space Random Variables Consider an extended state space S containing KT tokens {skt }
T,K
t=1,k=1 with

skt ∈ V and KT indexing random variables {ωkt }
T,K
t=1,k=1 with ωkt ∈ [1,K], to represent the results of resampling (Eq. (7)),

S :=
{
skt , ω

k
t

}T,K
t=1,k=1

(73)

For ease of notation (and similarly to Maddison et al. (2017); Andrieu et al. (2010)), we call attention to our use of recursive
backtracking index operations to collect sequences {s1:t} based on the results of resampling {ωkt }. We use lists of index

35

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

histories to construct sequences of tokens, with two recursive definitions of histories. Letting + indicate appending of lists,

hk0 := [[[]]] ∀k, hkt := h
ωkt
t−1 + [[[ωkt]]]

h̄k0 := [[[]]] ∀k, h̄kt := hkt−1 + [[[k]]]
(Index Notation)

For example, the history hkt−1 will be used to construct prefix sequences s
hkt−1

1:t−1 (i.e. lists of tokens) for sampling a next
token skt . We denote sequences of tokens with the index history in the superscript and also expand the definition for clarity,

s
hkt
1:t := s

h
ωkt
t−1

1:t−1 + [[[s
ωkt
t]]] = [[[s

h
ωkt
t−1[1]

1 , ..., s
h
ωkt
t−1[t−1]

t−1 , s
ωkt
t]]] = [[[s

ω··
·ω
k
t

1
1 , ..., s

ω
ω
ωkt
t−1

t−2

t−2 , s
ω
ωkt
t−1

t−1 , s
ωkt
t]]]

s
h̄kt
1:t := s

hkt−1

1:t−1 + [[[skt]]] (Sequence Notations)

In the second line, we define s
h̄kt
1:t as a sequence of length t which concatenates the prefix s

hkt−1

1:t with next token skt . The

notation s
h̄kt
1:t represents partial sequences before resampling. By contrast, we will use the notation s

hkt
1:t in the first line of

Eq. (Sequence Notations) to refer to sequences after resampling.

Consider the sequence s
h̄it
1:t in a particular index i ∈ [1,K] before resampling. Resampling at time t may result in choosing

ωkt = i for some k. Using the first line, we see that sh
k
t

1:t = s
h
ωkt
t−1

1:t−1 + [[[s
ωkt
t]]] = s

hit−1

1:t−1 + [[[sit]]] for those indices such that ωkt = i.

Indeed, this matches the definition of sh̄
i
t

1:t = s
hit−1

1:t−1 +[[[sit]]] in the second line (before resampling). Thus, the indexing notation

in Eq. (Sequence Notations) reflects resampling or cloning of sequences sh̄
i
t

1:t into the indices such that ωkt = i, which yields

prefixes sh
k
t

1:t for the next step of sampling (t+ 1) in each index k ∈ [1,K].

Extended State Space Proposal Distribution Sampling from the extended state space proposal corresponds to the
procedure described in Sec. 2.2 and Alg. 1, which we write as6

qSMC

(
{skt , ωkt }

T,K
t=1,k=1

)
:=

T∏
t=1

 K∏
k=1

q

(
skt

∣∣∣∣ shkt−1

1:t−1

) K∏
k=1

q
(
ωkt
∣∣ s1:K1:t

) (SMC Extended Proposal)

where ∀ k, q
(
ωkt = i

∣∣ s1:K1:t

)
:=

π̃t

(
s
h̄it
1:t

)
π̃t−1

(
s
hi
t−1

1:t−1

)
q

(
sit

∣∣∣∣ shit−1
1:t−1

)
K∑
κ=1

π̃t

(
s
h̄κt
1:t

)
π̃t−1

(
s
hκ
t−1

1:t−1

)
q

(
sκt

∣∣∣∣ shκt−1
1:t−1

)
=

wt

(
s
h̄it
1:t

)
∑K
κ=1 wt

(
s
h̄κt
1:t

) (74)

To recount the description above, note that the next token sit in index i is sampled from the proposal, conditioned on the

prefix s
hit−1

1:t−1. We concatenate these tokens s
h̄it
1:t = s

hit−1

1:t−1 + [[[sit]]] (Eq. (Sequence Notations)) and calculate importance
weights. We perform resampling in each index k according to q(ωkt |s1:K1:t), or SNIS with the calculated weights (as in
Eq. (7)). Finally, after resampling, we clone the sequence in the chosen index ωkt into index k and proceed to sample skt+1

with an prefix defined by the indices hkt = h
ωkt
t−1 + [[[ωkt]]].

Worked Example: To make this more concrete, we provide a worked example of the procedure in Fig. 4 (a). At step t = 1,
we resample the token sk=2

t=1 twice (for indices k = 1, 3), with ω1
1 = ω3

1 = 2 (and in index 2, set ω2
1 = 3 to sample s31). We

record the prefix history as, for example, h1
1 = h3

1 = [[[ω1
1]]] = [[[2]]], which corresponds to s

h1
1

1 = s21.

At step 2 in (a), we proceed to sample s12 ∼ q(s2|s
h1

1
1 = [[[s21]]]) (and similarly s32 ∼ q(s2|s

h3
1

1 = [[[s21]]])), whereas s22 ∼
q(s2|s

h1
1

1 = [[[s31]]]). We next evaluate the importance weights over three concatenated sequences: s
h̄1

1
1 = [[[s21]]] + [[[s12]]],

6Note that hkt , sh̄
k
t

1:t , and s
hkt
1:t are deterministically constructed from {skt , ωkt }T,Kt=1,k=1 during sampling, and simply track the quantities

to be calculated when evaluating densities.

36

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

start interleaved

chain from here!

Figure 4: Graphical Models for extended state-
space proposal and target distributions which
result in the bidirectional SMC bounds. We
show density evaluation in the proposal and
target for a fixed set of {skt , ωkt }

3,2
k=1,t=1. We let

the size of the circles reflect the (hypothetical)

importance weights of sequences sh̄
k
t

1:t and ωkt
reflect the (hypothetical) results of resampling
with these weights. In (b), we assume fixed
jT+1 = j3 = 1 as in the text, with ω1

2 = 2.

Algorithm 2 (Twisted) SMC Target Sampling (σSMC)
(blue indicates changes from SMC proposal algorithm; s1:T is an exact
posterior sample)

SMC-TARGET
(
p0, q, {ψt}T−1

t=1 , ϕ,K, {tr}
R−1
t=1 , t0 = 0, tR = T, s1:T

)
:

Initialize j ∼ uniform({1, . . . ,K})
for t = 1, ..., T do

for k = 1, ...,K do
if k = j then
skt ← st

else
Sample skt ∼ q

(
st
∣∣ sk1:t−1

)
end if
sk1:t ← concat

(
sk1:t−1, s

k
t

)
if t < T then
wkt ←

p0(skt | sk1:t−1)
q(skt | sk1:t−1)

ψt(sk1:t)
ψt−1(sk1:t−1)

else
wkt ←

p0(skt | sk1:t−1)
q(skt | sk1:t−1)

ϕ(sk1:t)
ψt−1(sk1:t−1)

end if
end for
if t ∈ {tr}R−1

r=1 then
s̄1:K1:t ← s1:K1:t .copy()
j̄ ← j.copy()
Sample j ∼ uniform({1, . . . ,K})
for k = 1, ...,K do

if k = j then
ωkt ← j̄

else

ωkt ∼ cat

({ ∏tr
t=tr−1+1 w

i
t∑K

j=1

∏tr
t=tr−1+1 w

j
t

}K
i=1

)
end if
sk1:t ← s̄

ωkt
1:t

end for
end if

end for
return

{
sk1:T ,

∏T
t=tR−1+1 w

k
t

}K
k=1

Ž SMC
σ =

∏R
r=1

1
K

∑K
k=1

∏tr
t=tr−1+1 w

k
t

s
h̄2

1
1 = [[[s31]]] + [[[s22]]], and s

h̄3
1

1 = [[[s21]]] + [[[s32]]], emphasizing that sk2 is the final token in each index. Shown in the red circles, we
proceed to resample ω1

2 = 2, ω2
2 = 3, and ω3

2 = 2 at step t = 2.

Finally, we need to backtrack to obtain the history of the indices for the sequence to be cloned in resampling. Namely, for
index 1 where ωk=1

t=2 = 2, we concatenate h
ω1

2
1 + [[[ω1

2]]] = h2
1 + [[[2]]] = [[[3, 2]]] =: h1

2 (i.e. the history for time 2, index 1). This

list of indices specifies the prefix s
h1

2
1:2 = [[[s31, s

2
2]]] at step t = 3, index k = 1. Similar reasoning applies for other indices.

Extended State Space Target We are finally ready to specify the extended state space target distribution. The crucial
difference is to identify a single sequence s

h1
T

1:T of length T (the choice of index 1 is arbitrary). This sequence s
h1
T

1:T will be

evaluated under the unnormalized target distribution π̃T (s1:T) = σ̃(s1:T) or exactly sampled from the target sh
1
T

1:T ∼ σ(s1:T)
in the extended state space target distribution.

37

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

In particular, we begin by sampling a full sequence of indices {jt}Tt=1 uniformly at random Pr(j1, j2, ...jT) = (1/K)T .
Setting ω1

T = jT , we let ωjtt−1 = jt−1 for all t. This implies the following,

ω1
T = jT , ω

jt
t−1 = jt−1 =⇒ h1

T = [[[j1, j2, ...jT]]], hjtt−1 = [[[j1, j2, ...jt−1]]], (75)

and h̄jtt = h
jt+1

t (76)

To show these identities, note that ωjtt−1 = jt−1 and Eq. (Index Notation) imply hjtt−1 = h
ω
jt
t−1

t−2 +[[[ωjtt−1]]] = h
jt−1

t−2 +[[[jt−1]]] =

h̄
jt−1

t−1 , which matches Eq. (76). Applying this recursion again yields hjtt−1 = h
jt−2

t−3 + [[[jt−2, jt−1]]]... = [[[j1, j2, ...jt−1]]].
Taken together, these notations allow us to interleave a true target sample in particular indices {jt}, guaranteeing that at
least one target samples appears at each step.

The extended state space target distribution differs from qSMC in its handling of this sequence, which identified as sh
1
T

1:T with

prefixes s
h
jt
t−1

1:t−1 using Eq. (75). Noting that sampling {jt}Tt=1 amounts to specifying a particular set of ωkt as in Eq. (75)-(76),

σ̃SMC

(
{skt , ωkt }

T,K
t=1,k=1

)
= Pr(j1, j2, ...jT)︸ ︷︷ ︸

(1
K)

T

π̃T

(
s
h1
T

1:T

) T∏
t=1

 K∏
k=1
k ̸=jt

q

(
skt

∣∣∣∣ shkt−1

1:t−1

) K∏
k=1

k ̸=jt+1

q
(
ωkt
∣∣ s1:K1:t

).
(SMC Extended Target)

Note, the normalization constant of σ̃SMC(S) is equal to Zσ since only π̃T (s1:T) = σ̃(s1:T) is unnormalized.

To describe ancestral sampling from Eq. (SMC Extended Target), we first sample {jt}Tt=1 uniformly as above, and place an

exact target sequence in indices sh
1
T

1:T (or, equivalently, sequentially sample sjtt ∼ πt(st|s
h
jt
t−1

1:t−1). At each step, the remaining
K − 1 indices k ̸= jt are sampled from the proposal. For resampling, we fix index jt to hold the exact sample and resample
the remaining K − 1 indices. Note that the resampling weights q

(
ωkt
∣∣ s1:K1:t

)
in Eq. (74) include the exact sample, which

may be cloned additional times into indices other than jt if its importance weights are high. The procedure above simply
ensures that at least one exact sequence is sampled. See Alg. 2 for the pseudocode of the algorithm.

Note that Maddison et al. (2017, Alg. 2) presents a different SMC extended state space target distribution than ours. In their
work, j1 = 1 and they sample j2:T+1, while in ours jT+1 = 1 and we sample j1:T . However, both targets result in the same
log partition function bounds.

Worked Example: In Fig. 2 (c), we use blue circles and arrows to highlight the exact-sample indices h1
T = [[[j1, j2]]] = [[[3, 2]]]

and the target sequence s
h1
T

1:T = [[[s31, s
2
2]]]. Using the recursion ωjtt−1 = jt−1 with jT+1 = j3 = 1 fixed, we may also express

h1
T = [[[j1, j2]]] = [[[3, 2]]] = [[[ω2

1 , ω
1
2]]]. At step 2, note the target sequence is sampled/evaluated an additional time in index 3.

Importance Weights in the Extended State Space Assume we are given a fixed set of {skt , ωkt }
T,K
t=1,k=1, which may be

sampled from either σSMC(S) or qSMC(S). We proceed to show that the unnormalized importance weights in the extended
state space simplify as follows.

Lemma F.1. For the extended state space target σ̃SMC and proposal qSMC above, the simple importance weights in the
extended state space become

σ̃SMC

qSMC

(
{skt , ωkt }

T,K
t=1,k=1

)
=

T∏
t=1

1

K

K∑
k=1

π̃t

(
s
h̄kt
1:t

)
π̃t−1

(
s
hkt−1

1:t−1

)
q
(
skt

∣∣∣ shkt−1

1:t−1

) =

T∏
t=1

1

K

K∑
k=1

wt

(
s
h̄kt
1:t

)
=:

T∏
t=1

1

K

K∑
k=1

wt(s
k
1:t)

(77)

which can be used to obtain unbiased Zσ estimators (Eq. (8)) or bounds on logZσ (Prop. 5.1, with proof below).

38

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Proof. To evaluate the importance weights (with the goal of estimating Zσ), we consider

σ̃SMC

qSMC

(
{skt , ωkt }T,Kt=1,k=1

)
=

(
1
K

)T
π̃T
(
s
h1
T

1:T

)∏T
t=1

[∏K
k=1
k ̸=jt

q

(
skt

∣∣∣∣ shkt−1
1:t−1

)∏K
k=1

k ̸=jt+1

q
(
ωkt
∣∣ s1:K1:t

)]
∏T
t=1

[∏K
k=1 q

(
skt

∣∣∣∣ shkt−1
1:t−1

)∏K
k=1 q

(
ωkt
∣∣ s1:K1:t

)] (78)

(1)
=

(
1

K

)T
π̃T
(
s
h1
T

1:T

) T∏
t=1

1

q

(
sjtt

∣∣∣∣ shjtt−1
1:t−1

)
q
(
ω
jt+1
t

∣∣∣ s1:K1:t

) (79)

where in (1), note that terms in the denominator cancel except for the indices [[[0, j1, ...jT]]] = h1
T . Recalling that ωjt+1

t = jt

from Eq. (76), we expand the resampling weights q(jt|s1:K1:t) for the sequence indexed by sjtt , s
h
jt
t−1

1:t−1, and s
h̄
jt
t

1:t−1,

(2)
=

(
1

K

)T
π̃T
(
s
h1
T

1:T

) T∏
t=1

K∑
k=1

π̃t

(
s
h̄kt
1:t

)

π̃t−1

(
s
hk
t−1

1:t−1

)
q

(
skt

∣∣∣∣∣ shkt−1
1:t−1

)

�������
q

(
sjtt

∣∣∣∣ shjtt−1
1:t−1

) π̃t

(
s
h̄
jt
t

1:t

)

π̃t−1

s
h
jt
t−1

1:t−1

��

����
q

sjtt
∣∣∣∣∣∣ s

h
jt
t−1

1:t−1

(80)

Finally, we obtain a telescoping cancellation of π̃t terms using the indexing identities in Eq. (75)-(76). In particular, since
h̄jtt = h

jt+1

t and h̄
jt−1

t−1 = hjtt−1 with h̄jTT = h1
T , we can simplify the terms in Eq. (80) as

π̃T

(
s
h1
T

1:T

) T∏
t=1

π̃t−1

(
s
h
jt
t−1

1:t−1

)

π̃t

(
s
h̄
jt
t

1:t

) = π̃T

(
s
h̄
jT
T

1:T

)
T∏
t=1

π̃t−1

(
s
h̄
jt−1
t−1

1:t−1

)

π̃t

(
s
h̄
jt
t

1:t

) =

��
���

π̃T

(
s
h̄
jT
T

1:T

)
���

����
π̃T−1

s
h̄
jT−1
T−1

1:T−1

���
��

π̃T

(
s
h̄
jT
T

1:T

) ���
����

π̃T−2

s
h̄
jT−2
T−2

1:T−2

��
���

��
π̃T−1

s
h̄
jT−1
T−1

1:T−1

...

1

����
π̃1

(
s
h̄
j1
1

1:1

) = 1

using the assumption that π̃0(·) = 1. Simplifying from Eq. (80), the final unnormalized importance weights become

σ̃SMC

qSMC

(
{skt , ωkt }T,Kt=1,k=1

)
=

T∏
t=1

1

K

K∑
k=1

π̃t
(
s
h̄kt
1:t

)
π̃t−1

(
s
hkt−1
1:t−1

)
q

(
skt

∣∣∣∣ shkt−1
1:t−1

) =

T∏
t=1

1

K

K∑
k=1

wt
(
s
h̄kt
1:t

)
=:

T∏
t=1

1

K

K∑
k=1

wt(s
k
1:t) (81)

as desired, where we abbreviate the importance weights as wt(sk1:t) for simplicity of notation. Note that we also obtain an
unbiased estimate of the partition function via

Zσ = EqSMC(S)

[
σ̃SMC(S)

qSMC(S)

]
= EqSMC(S)

[
T∏
t=1

1

K

K∑
k=1

wt
(
sk1:t

)]

Proposition 5.1. (Bidirectional SMC Bounds) The log partition function logZσ of a target distribution σ(s1:T) can be
lower and upper bounded by

EqSMC(S)

[
log

T∏
t=1

1

K

K∑
i=1

wt
(
si1:t
)]
≤ logZσ

logZσ ≤ EσSMC(S)

[
log

T∏
t=1

1

K

K∑
i=1

wt
(
si1:t
)]
.

(23)

The gap in the lower bound is DKL(qSMC(S) ∥σSMC(S)), and the gap in the upper bound is DKL(σSMC(S) ∥ qSMC(S)).

39

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Proof. The proof follows directly from Brekelmans et al. (2021) App. A, where it is shown that for σext(S), qext(S) such
that Zσ = Eqext(S)[

σ̃ext(S)
qext(S)], we can construct lower and upper bounds on logZσ

DKL(qext(S) ∥σext(S)) + Eqext(S)

[
log

σ̃ext(S)

qext(S)

]
= logZσ = Eσext(S)

[
log

σ̃ext(S)

qext(S)

]
−DKL(σext(S) ∥ qext(S)) (82)

Eqext(S)

[
log

σ̃ext(S)

qext(S)

]
≤ logZσ ≤ Eσext(S)

[
log

σ̃ext(S)

qext(S)

]
(83)

where the gap in the lower and upper bounds are DKL(qext(S) ∥σext(S)) and DKL(σext(S) ∥ qext(S)), respectively.

Substituting our SMC probabilistic interpretation in Eq. (SMC Extended Proposal) and Eq. (SMC Extended Target), along
with the importance weights in Lemma F.1, into Eq. (83) yields the desired bounds in Eq. (23).

IWAE as a Special Case of our SMC Probabilistic Interpretation Note that we recover IWAE (or SIS over K samples)
from SMC with no intermediate resampling. In particular, this corresponds to ωkt = k for all t < T , with importance
weighting from resampling occurring at the final step

∏K
k=1 q(ω

k
T |s1:K1:T). This yields the 1/K average inside the log in the

IWAE bounds (i.e., SMC with only one resampling step at t = T). While the importance weights are crucial to construct the
bound, note that ‘resampling’ is not necessary at the final step and we may return all K samples along with their weights.

Viewing IWAE as a special case of our SMC probabilistic interpretation is complementary to the interpretations in Domke
& Sheldon (2018); Brekelmans et al. (2021) and also provides upper bounds (Sobolev & Vetrov, 2019).

G. Additional Experiment Details
G.1. Common Details Across Experiments
For all experiments, we use the Adam optimizer with β1, β2 = {0.9, 0.999}. We use custom implementations of SMC. For
PPO, we use the HuggingFace TRL PPO Trainer (https://github.com/huggingface/trl/blob/main/trl/trainer/
ppo trainer.py), modified slightly to accomodate our custom twist parameterizations, as described below. For other
methods, we use Optax (Flax) and custom loss functions. We use HuggingFace models (https://huggingface.co/
models) for the base p0 models and build custom layers on top of those.

For the twist ψθ
t (s1:t), we always parameterize logψθ

t (s1:t) for numerical stability. We choose random normal initializations
centered at mean 0, with low variance,7 such that logψθ

t (s1:t) ≈ 0, ψθ
t (s1:t) ≈ 1 at the beginning of training, which means

the initial sequences generated by the twist-induced proposal approximately come from the base model p0. All methods
are initialized using the same random seeds, and thus start from the same parameter values. See App. G.2 for additional
discussion of choices for the twist parameterization.

For methods that directly learn a proposal (DPG and PPO), we could directly finetune a language model that outputs q(s1:t).
However, in order to ensure consistency in terms of model capacity and ease of learning compared to our twisted proposals,
we instead have these proposal learning methods output a modifier logψθ

t (s1:t) which is added to the base model log
probability log p0(s1:t). Note that using random normal initializations centered at mean 0 with low variance, this scheme
results in initial q samples coming approximately from p0.

For methods that can make use of exact posterior samples, when we have access to them (Sec. 7.2.3, App. H.3), we use them.
This is straightforward for methods like DPG, SIXO, and our CTL (unless we have only a single sample, as we discuss for
infilling in App. G.4). For our RL twist learning, we found the best empirical performance training on a combination of q
and exact σ samples when they were available (as opposed to just q otherwise), and use those results. Similarly, for FUDGE,
when exact σ samples are available, we use them together with p0 samples.

It is not straightforward to compare PPO versus other methods, because of the inner loop in PPO that repeats several clipped
gradient steps on a given set of samples. This means that, for a constant number of samples, PPO makes more gradient
updates than other methods, while for a constant number of gradient updates, PPO sees fewer samples. Ultimately we
decided to normalize based on the number of samples seen; we consider each outer step (including a full PPO inner loop, in
our experiments, 4 gradient steps) as a single “gradient update.” We make this choice since sampling is the main bottleneck
in terms of computational cost, and the number of inner PPO steps is a hyperparameter which we did not tune.

7We specifically use a form of Xavier initialization, taking the variance as 2
ninputs+noutputs

.

40

https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py
https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py
https://huggingface.co/models
https://huggingface.co/models

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

All of our experiments were run on a single GPU, usually on an NVIDIA A40 with 48G memory. All experiments took no
longer than 9 wall-clock hours to run for a single learning method, with infilling (Sec. 7.2.3) experiments taking longest;
most other experiments took no longer than 4 hours.

G.2. Choices of Twist Parameterization
The choice of parameterization for the twist logψθ

t (s1:t) is a design decision, independent of our overall framework. While
one could keep an entirely separate model for each logψθ

t (s1:t), this is likely to be memory-inefficient and learn slowly.
Instead, we use a shared parameterization across s1:t, in the same way that the base language model uses a single architecture
to output probability distributions over tokens at each time step t. We lay out parameterization choices we considered below.

G.2.1. LINEAR HEAD

The simplest choice is to replace the linear head of the base language model with a new linear head, keep the base model
fixed, and only train the linear head. This parameterization incurs very little additional computation cost compared to just
using the base language model. However, we found this to be capacity constrained in our experiments, achieving worse KL
divergences than other parameterizations.

G.2.2. MLP HEAD

Instead of a linear head, we consider a 3-layer fully connected neural network (MLP) with ReLU non-linearities as a head
on top of the base language model. The base model is still kept fixed; only the MLP head is trained. This incurs more
computational cost than a linear head (App. G.2.1), but the additional cost is still small relative to the cost of a forward
pass through the base transformer model. We found this to generally perform well in our experiments, so we use it for the
toxicity threshold experiment in Sec. 7.1 and sentiment in Sec. 7.2.2.

G.2.3. SEPARATE TRANSFORMER FOR THE TWIST

We can also consider an entirely separate transformer that outputs only the twist value. That is, we copy the base model,
and repurpose it to output a twist value logψθ

t (s1:t) instead of logits for next-token probabilities. We then train the entire
network end-to-end. This is significantly more computationally costly than the former approaches, and does not always do
better than just an MLP head (App. G.2.2), so we generally do not recommend using this. Still, we found it to perform well
in toxicity classification in Sec. 7.2.1, so we use it there.

G.2.4. SEPARATE TRANSFORMER FOR THE TWIST, WITH MLP HEAD

This is similar to App. G.2.3, except we also replace the final linear head with a MLP head as in App. G.2.2. The
model outputs logψθ

t (s1:t) and is trained end-to-end. This is the most computationally costly approach outlined here,
and is unnecessary for most of our settings. However, in infilling with 15 generated tokens (Sec. 7.2.3) we found this
parameterization to perform materially better than all others, particularly with DPG (App. E.3), so we use it for all infilling
experiments.

With both this parameterization and App. G.2.3, we increase computation time by a factor of around 2 on the forward pass,
and significantly increase memory and time usage on the backwards pass during training (though sampling is still the main
time bottleneck). Whether this parameterization is worth the potential gain in performance depends on the desired use case.
We emphasize that our overall framework is independent of the choice of parameterization.

G.3. Comments on Our Choices of Experiment Settings
Our settings and evaluation metrics in Sec. 7 are chosen to highlight our scientific findings. In particular, the toxicity
threshold experiment in Sec. 7.1 demonstrates the improvement of SMC over SIS with the base model with CTL learned
twists. In order to highlight this distinction, we have chosen a setting where it is extremely difficult to draw samples satisfying
the threshold using the base model p0 (see SIS/IWAE LB line in Fig. 3).

However, twist-learning in the toxicity threshold setting presents challenges. For approximate positive sampling and a
thresholded target, all importance weights will be 0 if none of our K samples meet the threshold. As noted above, sampling
from p0, or the SMC/twisted proposal for ψθ

t (s1:t) ≈ 1 at initialization, is extremely unlikely to draw samples meeting the
threshold (i.e., within the support of the target) in the setting of Sec. 7.1. As a result, initial iterations of twist learning
receive no learning signal until a thresholded positive sample is drawn from the base model.

To avoid this difficulty for baselines comparisons in Sec. 7.2, we instead focused on settings with ϕ(s1:T) given by
probabilities. Nevertheless, we note that there are no fundamental differences between the settings considered in Sec. 7.1

41

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

and Sec. 7.2. Thus, we may also evaluate single-sample DKL(σ ∥ q) and DKL(q ∥σ) in the setting of Sec. 7.1, or plot logZσ
bounds as a function of K in for the settings in Sec. 7.2.

G.4. Experiment-Specific Details

Details for SIS and SMC Comparison (Sec. 7.1) We generate 10 output tokens, and train twists using Sec. 4.1 with
approximate positive sampling as discussed in Sec. 4.1.2.

Note that using σ(s1:T) ∝ p0(s1:T)I[s1:T ∈ C] where C := {s1:T |r(s1:T) ≤ η} directly runs into numerical issues for
calculating logZσ when s1:T /∈ C and I[s1:T ∈ C] = 0. We instead use ϵ+ I[s1:T ∈ C] everywhere instead of I[s1:T ∈ C],
where ϵ = 10−16. In Fig. 3, this yields a SIS/IWAE logZσ LB ≈ −36 when no samples are drawn that fall in the set C.

We use an MLP head to parameterize the twist, as in App. G.2.2, with 768 hidden units per layer, matching the TinyStories
model’s embedding dimension. We use a batch size (number of SMC particles/samples) of 1000, with a learning rate of
0.0001, and train using CTL for a total of 5000 gradient updates. We did not tune hyperparameters because we found this
setting to work well, and we are not comparing across different learning methods.

For each point on each line on Fig. 3, we run SIS or SMC 20 times, each with a different randomly selected true posterior
sample for the upper bounds. The line shows the average value across these 20 runs, while the shaded area shows 95%
confidence intervals. See also App. G.1 for details common across experiments.

Details for Toxicity (Sec. 7.2.1) We generate 20 output tokens. We parameterize the twist with a separate network as in
App. G.2.3. We use a batch size (number of SMC particles/samples) of 100, and train for a total of 2048 gradient updates.
For each learning method, we used a coarse grid search over learning rates between 0.000001 and 0.001, using the best one
found, which was usually 0.00003 or 0.0001. We run each learning method over 5 different random seeds, reporting the
average KL divergence and 95% confidence intervals over these 5 seeds.

For each KL divergence evaluation, we first get sandwich bounds on logZσ as laid out in Sec. 5, using the learned twists for
the twisted proposal with K = 500 samples. We find SIS/IWAE and SMC bounds to be similarly tight, so use SIS/IWAE
for simplicity. We do this 4 times, providing 4 upper bound estimates and 4 lower bound estimates, and take the average
midpoint as the logZσ estimate for each experiment. We then take the median (across all learning methods and seeds) of
these estimates, and use that as our estimate of logZσ. This is then used as a common value for the KL divergence across
all methods and seeds, which controls for possible noise in logZσ bounds and ensures a fair comparison across methods.
We generally have tight bounds (upper bound ≈ lower bound), which suggest our logZσ estimates are generally accurate,
but note that any inaccuracies in estimating logZσ would only affect the absolute values of the KL divergences, not the
relative differences among different learning methods.

We estimate expectations in Eq. (22) with 2000 samples from q and 2000 exact posterior samples for σ. With 2000 samples,
our estimates have 95% confidence intervals generally between 0.05 and 0.10, suggesting that our estimates of expectations
are unlikely to be off by more than 0.10. The exact posterior samples were collected offline; such a large number of samples
takes several hours to collect, and in practical settings, we would likely only be able to collect a much smaller number of
samples. All our methods still apply with fewer exact posterior samples, but the variance in estimates will be higher. See
also App. G.1 for details common across experiments.

Details for Sentiment (Sec. 7.2.2) We generate 10 output tokens. We parameterize the twist using an MLP head
(App. G.2.2), with 1024 hidden units per layer, matching the GPT2Medium model’s embedding dimension. Other details
are the same as for toxicity above. Collecting exact posterior samples is less time consuming in this case (less than an hour).
See App. G.1 for common experimental details.

Details for Infilling (Sec. 7.2.3) We parameterize the twist using a separate transformer with an MLP head (App. G.2.4),
with 768 hidden units per layer (matching the TinyStories model’s embedding dimension). We make the following
adjustments to the forward pass of the language model for the conditional twist setting. Instead of taking in only s1:T , the
model takes in both s1:T and sT+1:T+c and passes each separately through the body (everything except the head). Thus,
sT+1:T+c can be seen as a second prompt. For sT+1:T+c, we take the embeddings produced after the last conditioning
token sT+c has been processed, broadcast it across time steps 1 : T , and pass that as additional input to the MLP head
(concatenated with embeddings for s1:T at each t ∈ 1...T). This allows the MLP head to produce different output depending
on the conditioning tokens.

42

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Since we are in the conditional target distribution setting (Sec. 3.3), with oT = sT+1:T+c, to compare across learn-
ing methods using a single quantity, we estimate EoT [DKL(qoT ∥σoT)] := EoT [DKL(q(s1:T |oT) ∥σ(s1:T |oT))] and
EoT [DKL(σoT ∥ qoT)] := EoT [DKL(σ(s1:T |oT) ∥ q(s1:T |oT))] where EoT [·] := Ep0(sT+1:T+c)[·] for infilling. Note that,

EoT [DKL(q(s1:T |oT) ∥σ(s1:T |oT))] = EoT
[
Eq(s1:T |oT)

[
log

q(s1:T |oT)
p0(s1:T)ϕ(s1:T , oT)

]]
+ EoT [logZσ(oT)]

EoT [DKL(σ(s1:T |oT) ∥ q(s1:T |oT))] = EoT
[
Eσ(s1:T |oT)

[
log

p0(s1:T)ϕ(s1:T , oT)

q(s1:T |oT)

]]
− EoT [logZσ(oT)]

where for a fixed oT , Eq(s1:T |oT)
[
log q(s1:T |oT)

p0(s1:T)ϕ(s1:T ,oT)

]
and Eσ(s1:T |oT)

[
log p0(s1:T)ϕ(s1:T ,oT)

q(s1:T |oT)

]
may be evaluated as before,

similar to the unconditional setting. In particular, for our experiments, we use 1-sample estimates of these expectations, as
we have a single exact sample from σ(s1:T |oT) by the BDMC trick (Sec. 3.3), and we choose to draw a single sample from
the conditional proposal q(s1:T |oT). We average this over 2000 oT ∼ p0(sT+1:T+c), approximating the outer expectation,
giving us a 2000-sample estimate of 1-sample estimates for the first term in the right hand side of both equations above.
With 2000 samples, our estimates have 95% confidence intervals generally between 0.20 and 0.30.

Note that EoT [logZσ(oT)] is independent of the learning method or proposal q, unlike the first term we discussed above.
Thus, in order to save computation and provide us with a more accurate estimate of EoT [logZσ(oT)], we estimate this term
only once. Specifically, we consider only the learning method with the lowest KL divergence (DPG), and use SIS/IWAE
bounds. For each oT , we estimate logZσ(oT) with K = 500 samples, which gives us relatively tight sandwich bounds,
again taking the midpoint as our estimate. We average this over 1000 oT ∼ p0(sT+1:T+c), giving us a 1000-sample estimate
of EoT [logZσ(oT)], where each logZσ(oT) is itself estimated via 500 samples.

For negative sampling with contrastive twist learning (CTL) in this setting, we need at least 2 negative samples per set of
conditioning tokens oT = sT+1:T+c to perform SIS reweighting; this is in contrast with other twist learning methods which
can generate a single negative sample per oT . For the positive sample, we can use our single exact sample directly, or we
can run the SMC upper bound sampling procedure (“Sampling from σSMC for SMC Upper Bounds” section in Sec. 5.2)
generate more approximate σ samples using the given exact sample. We find the latter to generally perform slightly better
than the former, so adopt that for our infilling experiments.

We use a fixed batch size of 100 across all methods for training twists. To clarify the meaning of this batch size, for methods
other than CTL, we have 100 draws of exact σ samples, each for a different set of conditioning tokens oT = sT+1:T+c,
so we train over 100 different oT at a time using 1 negative sample per oT . For CTL, since we need at least 2 negative
samples per oT , we split the batch size of 100 across the number of different oT and the number of negative samples per
oT , as an additional hyperparameter. We use 25 oT with 4 negative samples per oT for the experiments in Sec. 7.2.3 and
10 oT with 10 negative samples per oT for the experiments in App. H.2. Controlling for batch size in this way is arguably
disadvantageous for CTL compared to other learning methods, as it learns on a smaller number of oT , but this controls
for memory requirements, and we feel is more fair than controlling for the number of oT seen but allowing more negative
samples for CTL relative to other methods. We train for a total of 5500 gradient updates. For each method, we used a coarse
grid search over learning rates between 0.000001 and 0.001, using the best one found, which was usually 0.0001 or 0.00003.
We run each learning method over 5 different random seeds, reporting the average KL divergence and 95% confidence
intervals over these 5 seeds. See also App. G.1 for details common across experiments.

H. Additional Experimental Results
H.1. Qualitative Results
Toxicity Controlled Generation when No Exact Posterior Samples are Available In Sec. 7.2.1 we targeted σ(s1:T) ∝
p0(s1:T)e

β log p(a|s1:T) with β = 1. We can also target β > 1; higher β produces a more peaked distribution of text that is
more likely to be of class a. However, for β ̸= 1 we can no longer generate exact posterior samples and thus cannot upper
bound logZσ . Our twist learning (Sec. 4.1) with approximate positive sampling (Sec. 4.1.2) can learn meaningful twists in
this setting, which we illustrate with a qualitative example of a story (200 tokens upper limit) and β = 10:

“Once upon a time, there was a little girl named Lily. She had a big thumb that she liked to suck on. One day, Lily went to the park to play
with her friends. She was having so much fun until her thumb got stuck in her shoe. She tried to pull it out, but it hurt too much.
Lily started to cry and her friends tried to help her, but they couldn’t get her thumb out either. She was scared and didn’t know what to do.
Her friends tried to help her, but they couldn’t get it out either. Sadly, Lily had to go to the hospital and get a big bandage on her thumb.
She couldn’t play with her friends anymore. From that day on, Lily never went to the park again.”

43

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Table 6: Qualitative Results - Reviews Very Likely to be of a Particular Rating

Class (Rating) Text Generated Using Twisted SMC
1-star “I bought this sucker for my wife to use on her python that she sent me last year. It was terrible!”

2-star “I bought this throat raiser for combating dental caries. I didn’t really like it. I didn’t like”

3-star “I bought this a few months back, and I enjoyed it every time I held it. I’m giving 3 stars”

4-star “I bought this product a few months ago and have really enjoyed it. Only reason I gave it 4 stars is because”

5-star “I bought this phone recently, and I’ve been loving it! Gorgeous design, outstanding battery life, fantastic camera”

Table 7: Qualitative Results - Infilling Examples

Proposal Prompt (s0) Generated Tokens (s1:T) Conditioning Tokens (sT+1:T+c)
DPG Once upon a time, there was a little girl named Mia. She had a big heart. Mia loved to help others and make them feel safe. Mia liked to

SIXO Once upon a time, there was a girl named Mia. Mia was very kind and compassionate. She always helped her others and make them feel safe. Mia liked to

CTL Once upon a time, there was a girl named Mia. She had a thin, pink dress. Mia liked to others and make them feel safe. Mia liked to

The story is coherent and follows the general style of the TinyStories base model, while having a high probability (≈ 88%)
of being toxic according to the toxicity classifier, likely due to the presence of negative words such as ‘suck’, ‘hurt’, ‘cry’,
and ‘scared’. This supports the ability of our methods to control outputs based on the chosen posterior distribution.

Sentiment Controlled Generation when No Exact Posterior Samples are Available As above, we also consider
σ(s1:T) ∝ p0(s1:T)eβ log p(a|s1:T), where β > 1, except now p(a|s1:T) is based on the sentiment classifier in Sec. 7.2.2. In
Table 6 we provide qualitative examples showing 20 tokens produced with twisted SMC with 500 particles, for β = 100,
using twists trained with Sec. 4.1. These illustrate our framework’s ability to learn reviews that embody each rating class.8

Infilling In Table 7 we compare qualitative results on an example set of conditioning tokens for DPG, SIXO, and CTL
(in that order, to reflect increasing KL divergence). The qualitative results correlate with the quantitative measures of KL
divergence; the lowest KL divergence (DPG) corresponds to infilled tokens that respect grammar and the topic. SIXO, which
has higher KL divergence, fails to respect grammar. CTL generates incorrect grammar and is less on-topic, corresponding to
the highest KL divergence among these methods.

H.2. Infilling with Fewer Tokens
We consider the same setting as Sec. 7.2.3 but only generating 2 tokens, conditioned on 1 token. We show KL divergence
evaluations in Table 8. Our evaluation reveals interesting differences among learning methods, even in this easier setting
where most methods achieve low KL divergence in both directions. DPG and RL learns best, while FUDGE learns notably
slower. PPO suffers on DKL(σ ∥ q), though this may be unsurprising since PPO does not make use of exact σ samples.

H.3. Approximate vs. Exact Posterior Sampling
In our toxicity and sentiment experiments, we train using approximate σ samples to reflect the more common real-world
setting where the amount of exact samples needed for training are not available. However, here we run an additional ablation
experiment for insight into the effect of positive versus approximate sampling. We use rejection sampling (Sec. 4.1.2) to
generate exact posterior samples for training. This is much slower than generating approximate samples, so is not a practical
strategy for training; we investigate this solely for understanding.

We provide a comparison of KL divergences (evaluated the same way as in the main paper) when training using exact versus
approximate σ samples for a selection of methods that performed well in our previous experiments and are able to make use
of σ samples. Toxicity (Sec. 7.2.1) results are in Table 9 and sentiment (Sec. 7.2.2) results are in Table 10. The first two
columns of KL divergences are for exact σ samples. The next two are for training on the same number of samples, but using
approximate positive sampling (Sec. 4.1.2). Overall, for a constant number of samples, having exact σ samples improves
performance for most methods. Note however that there is an additional time cost required for rejection sampling to generate
exact samples, so the exact σ training requires significantly more wall-clock time for any given number of samples.

We also plot the single-sample KL divergence in both directions as a function of training time for exact vs. approximate
sampling, on toxicity and sentiment experiments, in Fig. 5. The approximate sampling results match those in the main
paper (with different colors). The exact σ sample results cut off earlier because the time cost required for rejection sampling
reduces the number of gradient updates that can be made for a given amount of wall-clock time.

8The results are slightly incoherent; this is a result of the base GPT2-Medium model often being incoherent. Qualitatively, we find that
these generations are more coherent than the uncontrolled ones from p0.

44

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Table 8: KL Divergences (averaged over conditioning tokens drawn from the base model) for Infilling Experiments
(Sec. 7.2.3) with 2 Output Tokens and 1 Conditioning Token

Proposal qoT Twist Learning EoT [DKL(qoT ∥σoT)] EoT [DKL(σoT ∥ qoT)]

Twisted Contrastive 0.47± 0.10 0.25± 0.01

Twisted RL 0.42± 0.10 0.15± 0.01

Twisted SIXO 0.47± 0.11 0.25± 0.02

Twisted FUDGE 2.62± 0.33 0.90± 0.02

DPG – 0.16 ± 0.07 0.14 ± 0.01

PPO – 0.52± 0.04 1.09± 0.34

Table 9: KL Div. for Toxicity Experiments (Sec. 7.2.1), comparing exact σ samples versus approximate positive sampling.

Exact σ Samples Same # of Approx. σ Samples
Proposal q Type of Twist Learning DKL(q ∥σ) DKL(σ ∥ q) DKL(q ∥σ) DKL(σ ∥ q)

Twisted Contrastive 2.54± 0.02 2.68± 0.09 2.99± 0.18 3.22± 0.09

Twisted RL 3.23± 0.10 3.24± 0.04 3.48± 0.15 3.49± 0.13

Twisted SIXO 2.37± 0.06 2.52± 0.05 2.70± 0.17 3.05± 0.22

DPG – 1.51± 0.01 1.50± 0.01 2.35± 0.15 2.48± 0.10

Table 10: KL Div. for Sentiment Experiments (Sec. 7.2.2), comparing exact σ samples versus approximate positive sampling.

Exact σ Samples Same # of Approx. σ Samples
Proposal q(s) Type of Twist Learning DKL(q ∥σ) DKL(σ ∥ q) DKL(q ∥σ) DKL(σ ∥ q)

Twisted Contrastive 0.71± 0.02 0.64± 0.02 0.70± 0.02 0.60± 0.01

Twisted RL 1.28± 0.05 0.94± 0.02 2.09± 0.08 1.76± 0.07

Twisted SIXO 0.68± 0.02 0.60± 0.01 0.86± 0.02 0.68± 0.01

DPG – 0.70± 0.02 0.58± 0.01 0.89± 0.03 0.69± 0.00

0 4 16 64 256 1024
Number of Gradient Updates

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

KL
 D

iv
er

ge
nc

e

Twisted Proposal (Contrastive, Exact) DKL(q||)
Twisted Proposal (Contrastive, Exact) DKL(||q)
Twisted Proposal (Contrastive) DKL(q||)
Twisted Proposal (Contrastive) DKL(||q)
Twisted Proposal (RL, Exact) DKL(q||)
Twisted Proposal (RL, Exact) DKL(||q)
Twisted Proposal (RL) DKL(q||)
Twisted Proposal (RL) DKL(||q)
Twisted Proposal (SIXO, Exact) DKL(q||)
Twisted Proposal (SIXO, Exact) DKL(||q)
Twisted Proposal (SIXO) DKL(q||)
Twisted Proposal (SIXO) DKL(||q)
DPG Proposal (Exact) DKL(q||)
DPG Proposal (Exact) DKL(||q)
DPG Proposal DKL(q||)
DPG Proposal DKL(||q)

(a) Toxicity (Sec. 7.2.1)

0 4 16 64 256 1024
Number of Gradient Updates

1

2

3

4

5

6

7

8

KL
 D

iv
er

ge
nc

e

Twisted Proposal (Contrastive, Exact) DKL(q||)
Twisted Proposal (Contrastive, Exact) DKL(||q)
Twisted Proposal (Contrastive) DKL(q||)
Twisted Proposal (Contrastive) DKL(||q)
Twisted Proposal (RL, Exact) DKL(q||)
Twisted Proposal (RL, Exact) DKL(||q)
Twisted Proposal (RL) DKL(q||)
Twisted Proposal (RL) DKL(||q)
Twisted Proposal (SIXO, Exact) DKL(q||)
Twisted Proposal (SIXO, Exact) DKL(||q)
Twisted Proposal (SIXO) DKL(q||)
Twisted Proposal (SIXO) DKL(||q)
DPG Proposal (Exact) DKL(q||)
DPG Proposal (Exact) DKL(||q)
DPG Proposal DKL(q||)
DPG Proposal DKL(||q)

(b) Sentiment (Sec. 7.2.2)

Figure 5: Training comparison for Exact versus Approximate σ (positive) sampling, as described in App. H.3. Having
access to exact target samples makes learning lead to lower KL divergences in a more reliable manner.

45

	Introduction
	Background
	Simple Importance Sampling
	Sequential Monte Carlo

	Twisted Sequential Monte Carlo for Language Modeling
	Twist Functions
	Proposal Distribution
	Conditional Target Distributions
	Connections with Reinforcement Learning

	Learning the Twist Functions
	Contrastive Twist Learning
	Approximate Negative Sampling
	(Approximate) Positive Sampling

	Twist Learning Methods from Related Work

	Evaluating Inference in Language Models
	Applications of Z Estimation
	Bidirectional SMC Bounds on Z

	Related Work
	Experiments
	Comparing SIS and SMC for Z Estimation
	Evaluating Twist-Induced or Variational Proposals
	Generating Toxic Stories
	Generation with Varied Sentiment
	Infilling

	Conclusion
	 Appendix
	Proofs
	Proof for Optimal Intermediate Target Distributions
	Proof of Twist-Induced Proposal
	Derivation of CTL Gradient

	SMC with Intermediate Potentials and Connection with Soft Reinforcement Learning
	Twisted SMC with Intermediate Potentials
	Conditional Twisted SMC
	Connection with Soft Reinforcement Learning
	 Remarks on Parameterization

	Twist Learning Losses
	 Soft Q-Learning (RL) and Path Consistency Losses from Log Importance Weights
	Soft Q-Learning and RL Baseline
	Path Consistency Learning (for Twist Learning)

	Controlled Decoding Losses via Optimal Twist Identities mudgal2023controlled
	SIXO: Smoothing Inference with Twisted Objectives lawson2022sixo
	FUDGE: Future Discriminators yang2021fudge

	Decoding Strategies using Learned Twists from mudgal2023controlled
	Proposal Sampling in mudgal2023controlled
	Blockwise Greedy Decoding in mudgal2023controlled

	Proposal Learning Methods
	Path Consistency Learning for Controlled Generation
	Policy Gradient Methods
	Policy Gradient with Mass-Covering / Maximum Likelihood KL Divergence
	Naive Use of Proposal Learning to define Twisted SMC Targets
	 SMC with Normalized Targets Induced by Learned Proposal Leads to Uniform Weights

	Bidirectional SMC
	Additional Experiment Details
	Common Details Across Experiments
	Choices of Twist Parameterization
	Linear Head
	MLP Head
	Separate Transformer for the Twist
	Separate Transformer for the Twist, with MLP Head

	Comments on Our Choices of Experiment Settings
	Experiment-Specific Details

	Additional Experimental Results
	Qualitative Results
	Infilling with Fewer Tokens
	Approximate vs. Exact Posterior Sampling

