
Subgoal-based Demonstration Learning for Formal Theorem Proving

Xueliang Zhao 1 Wenda Li 2 Lingpeng Kong 1

Abstract
Large language models (LLMs) present a promis-
ing pathway for advancing the domain of formal
theorem proving. In this paper, we aim to improve
the performance of LLMs in formal theorem prov-
ing by thoroughly examining the structure and
organization of demonstrative in-context exam-
ples. We introduce a subgoal-based demonstra-
tion learning framework, specifically designed to
enhance the efficiency of proof search in LLMs.
First, drawing upon the insights of subgoal learn-
ing from reinforcement learning and robotics, we
propose the construction of distinct subgoals for
each demonstration example and refine these sub-
goals in accordance with the pertinent theories of
subgoal learning. Second, we build upon recent
advances in diffusion models to predict the opti-
mal organization, simultaneously addressing two
intricate issues that persist within the domain of
demonstration organization: subset selection and
order determination. Our integration of subgoal-
based learning has notably increased proof accu-
racy from 38.9% to 44.1% on the miniF2F bench-
mark. Furthermore, the adoption of diffusion
models for demonstration organization can lead to
an additional enhancement in accuracy to 45.5%,
or a 5× improvement in sampling efficiency com-
pared to previously established methods.

1. Introduction
With the ongoing investigation into the complex reasoning
abilities of large language models (LLMs), there has been
a surge of interest in employing them for mathematical
problem solving. This has led to an expanding body of
research that underscores the remarkable potential of LLMs
in this domain (Lewkowycz et al., 2022; Wu et al., 2022a;
Jiang et al., 2023).

1The University of Hong Kong 2University of Edinburgh. Cor-
respondence to: Xueliang Zhao <xlzhao22@connect.hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

In this context, we pay particular attention to the problem
of formal theorem proving (Polu & Sutskever, 2020). Not
only due to its extensive applications in various scientific
domains, such as software verification (Klein et al., 2009)
and research-level mathematics (Castelvecchi et al., 2021),
but also stems from its advantage of leveraging interactive
proof assistants (Paulson, 2000) to automatically validate
proofs generated by models, thereby eliminating the need
for human proof checking. This significantly facilitates the
generation of machine-verifiable proofs via LLMs.

The complexity of automated theorem proving comes from
the necessity of searching through a vast space of possible
logical statements and proof methods, to determine the truth-
value of a given theorem. LLMs reduce the difficulty of the
searching problem by factorizing the formal proof automa-
tion task into two in-context learning (§5.2) problems (Wu
et al., 2022a; Jiang et al., 2023; First et al., 2023). Given a
mathematical statement, an LLM first generates its informal
proof as a draft. It then generates a formal sketch based
on this draft, which is ready for an off-the-shelf prover to
verify its correctness automatically.1 In both of these steps,
the quality of the demonstrative in-context examples either
written by humans or generated by machines is the key to
the performance of the system.

In this paper, we seek to improve the efficacy of LLMs in
formal theorem proving by delving deeper into the format
and the organization of these demonstrative in-context ex-
amples. We present a subgoal-based demonstration learning
framework, comprising two main components. First, we
restructure an informal proof into a subgoal-based proof
(Figure 1(a)), drawing upon the insights of subgoal learning
from reinforcement learning and robotics, where studies
show that breaking down complex tasks into smaller yet
more uniformed subgoals enhances the learning efficiency
of the agents (Eysenbach et al., 2019; Zhang et al., 2021).
To construct subgoal-based proofs that can be easily pro-
cessed and handled by LLMs, we start with human-written
informal proofs and then iteratively refine them through
interaction with ChatGPT (OpenAI, 2022), guided by the
subgoal learning theory (§2.1). Second, a recent study (Wu
et al., 2022b) points out that the selection and the ordering of

1In practice, the informal proof often serves as inline comments
in the formal sketch to better guide the generation procedure.

1

Subgoal-based Demonstration Learning for Formal Theorem Proving

Statement
Suppose n is a positive natural number
such that 𝑛! + 2 − 3 ∗ 𝑛 is a prime
number. Show that n must be equal to
3.

Informal Proof
Factoring, we get 𝑛! − 3𝑛 + 2 =
𝑛 − 2 𝑛 − 1 .

Either 𝑛 − 1 or 𝑛 − 2 is odd, and the
other is even. Their product must
yield an even number. The only
prime that is even is 2, which is when
𝑛 is 3 or 0. Since 0 is not a positive
number, the answer is 3.

Subgoal-based Proof

Step 1: Show that n > 2.

Step 2: Assume n is not greater than 2.

Step 3: Deduce that n = 1 or n = 2.

Step 4: Show that this leads to a contradiction with
the prime assumption.

Step 5: Use the inequality n > 2 to find the
expression for the given polynomial.

Step 6: Show that the polynomial is prime.

Step 7: Use the prime_product lemma to deduce
that either n - 1 = 1 or n - 2 = 1.

Step 8: Use the inequality n > 2 to show that n = 3.

(a) Subgoal-based Proof

Statement

Statement

Statement

Bernoulli
Noise

Optimal
Subset & Order

Reverse
Process

Forward
Process

(b) Demonstration Reorganization

Figure 1. Left: An instance of informal proof and subgoal-based proof. Right: Employing diffusion models to identify a more effective
subset of demonstration examples, as well as the optimal order for these examples.

the in-context examples have a significant impact on perfor-
mance. The lengthy formal sketches in automatic theorem
proving intensify this impact, as we can only present very
few cases of demonstrations. In response to that, we train a
diffusion model to organize the demonstrative in-context ex-
amples for the translation process from subgoal-based proof
to its corresponding formal sketch of each instance (§2.2).
This approach identifies a more effective subset of demon-
stration examples as well as the most beneficial order of
these examples (Figure 1(b)).

The proposed method significantly outperforms competing
approaches in formal theorem proving tasks, achieving a
pass rate of 45.5% on miniF2F dataset (Zheng et al., 2021),
a 6.6% absolute and 17.0% relative improvement over the
previous state-of-the-art system (Jiang et al., 2023). Further-
more, the adoption of diffusion models for demonstration
selection and ordering can lead to a significant improvement
in sampling efficiency, reaching previous state-of-the-art
(38.5%) on miniF2F with only 20 (compared to 100) calls
to the LLM.

2. Subgoal-based Demonstration Learning
Given a theorem statement x, the goal of proof synthesis is
to generate a formal sketch y which can be verified by an
off-the-shelf automated theorem prover (e.g., Sledgeham-
mer) (Jiang et al., 2023). In this section, we elaborate on the
subgoal-based demonstration learning framework that con-
sists of two key components, subgoal-based proof (§2.1) and
demonstration reorganization (§2.2). The subgoal-based
proof replaces the informal proof, breaking down a complex
problem into smaller subgoals that offer more fine-grained
and uniform guidance to the LLMs. The demonstration
reorganization takes place in the stage of generating the
formal sketch based on the subgoal-based proof. This pro-

cedure is non-trivial. Given the limited context length of the
LLMs, selecting relevant yet diverse demonstration exam-
ples has a significant impact on the final pass rate of these
formal sketches. We denote the set of all N demonstration
examples by E = {E1,E2,⋯,EN}. Each of them contains
a mathematical statement, an informal proof (or a subgoal-
based proof), and a formal sketch.2. In the remainder of this
section, we first describe the iterative refinement process
that produces the subgoal-based proofs given the informal
proof, guided by the principles in the subgoal learning the-
ory (Zhang et al., 2021). We then explain our solution to
the demonstration reorganization. Starting from collecting
arrangements that have yielded successful proofs, we use
these as training data for a diffusion model, which progres-
sively determines the most favorable reorganization during
inference.

2.1. Subgoal-based Proof

The significance of LLMs to formal theorem proving is that
they grant us the ability to leverage informal proofs to guide
formal theorem proving, which otherwise has to be based
on expensive heuristics-based brute-force search. Despite
considerable progress (Lewkowycz et al., 2022; OpenAI,
2023), this approach suffers from the flawed informal proofs
generated by the LLMs (Jiang et al., 2023). We propose
to use subgoal-based proofs to replace the informal proofs,
where the subgoals are strictly aligned with the states in the
automatic provers. Following Zhang et al. (2021), we seek
to obtain a valid sequence of subgoals which satisfies the
condition that each subgoal in this sequence should be reach-
able from the initial state (i.e., the statement) and attain the
final state (i.e., the passing state of the proof). These valid

2A more comprehensive illustration of these terms is provided
in Figure 3.

2

Subgoal-based Demonstration Learning for Formal Theorem Proving

sequences integrate the guidance from the LLMs better with
the search space of the automatic theorem provers, thereby
leveraging the ability of the LLMs to the maximum extent.
However, it is non-trivial to get these valid subgoal proofs
as human-written subgoals often fall short of the above con-
straints. To address this problem, we iteratively refine the
subgoal proof, in the spirit of self-play in reinforcement
learning (Silver et al., 2016), making calls to both the LLM
and the off-the-shelf automated theorem prover.

Subgoal Refinement. We start with manually written
subgoal-based proofs, and denote these as the initial seed set
{E(0)i }

N
i=1. This set contains subgoal-based proofs formed

on the informal proofs and the statement, yet not guaranteed
to be a valid sequence. We denote the sequence of subgoals
in an instance as (s0, s1, s2,⋯, s∆, s∆+1), where ∆ is the
total number of subgoals and s0 and s∆+1 are two special
subgoals that align with the initial and final states of the auto-
matic prover. During the k-th iteration, we randomly select a
subset of instances from the previous iteration {E(k−1)i }Ni=1
as the in-context demonstration for the LLM to generate
subgoals for a given instance. According to the definition,
si is considered to be a valid subgoal if and only if it can be
reached from s0 and can reach s∆+1. Therefore, for each
of the subgoals, we recursively call the proof assistant to
verify the validness of the most recently developed subgoal
and only after ∆ recursions we can obtain the new valid
sequence of subgoals and add that into the next iteration
as E(k)i . This process improves the consistency of the de-
rived subgoals in style, thus making it easier for the LLM
to learn from in the inference stage. We provide a detailed
description of the algorithm in the Appendix.

2.2. Demonstration Reorganization

The demonstration examples can be lengthy in formal the-
orem proving. If we assume a maximum context length
of 3072 tokens, only 4.79 examples on average can be in-
cluded. Our experiments echo the findings by Wu et al.
(2022b). These instance-based demonstration examples
have a significant impact on performance. Only certain or-
ders of carefully chosen demonstration examples lead to
successful theorem proving. Consequently, identifying the
optimal subset from the pool and ordering them into mean-
ingful in-context demonstration examples is of great sig-
nificance, which unfortunately is an NP-complete problem.
We formulate the demonstration reorganization problem as
finding the (Sub)hamiltonian graph where the nodes rep-
resent demonstration examples, and a traverse following
the path corresponds to the selection and ordering of them.
Building upon the recent success of applying diffusion mod-
els in addressing NP-complete problems (Graikos et al.,
2022; Sun & Yang, 2023), we further treat this problem
as a diffusion process on the graph. This solution has two

main advantages. First, it addresses the example selection
and ordering problem simultaneously. Second, the infer-
ence can be performed in parallel, which greatly reduces
the time of discovering the optimal arrangement given the
demonstration examples. We start by collecting successful
pairs of in-context demonstration example organization and
the corresponding statement x as the training data for the
diffusion model. We randomly organize (select and order)
the demonstration examples and query the LLM to see if
it can generate the proof successfully. The passing cases
will be used as the starting configuration ψ0 in the diffusion
process given the statement x.

Training. The aim of employing diffusion models is to
predict the optimal organization, denoted as ψ0,3 condition-
ing on the theorem statement x. From the standpoint of
variance inference, diffusion models adopt the following
formulations to model pθ(ψ0∣x),

pθ(ψ0∣x) ∶= ∫ pθ(ψ0∶T ∣x)dψ1∶T , (1)

where ψ1,⋯,ψT serve as latent variables with the same
dimensionality as ψ0. The learned reverse process progres-
sively denoises these latent variables to reconstructψ0. This
procedure can be formalized as follows,

pθ(ψ0∶T ∣x) = p(ψT)
T

∏
t=1

pθ(ψt−1∣ψt, x). (2)

The forward process gradually corrupts ψ0 to generate
noised latent variables,

q(ψ1∶T ∣ψ0) =
T

∏
t=1

q(ψt∣ψt−1). (3)

The goal of the training process is to maximize the evidence
lower bound (ELBO),

E [log pθ(ψ0∣x)] ≥ Eq [log
pθ(ψ0∶T ∣x)

qθ(ψ1∶T ∣ψ0, x)
]

= Eq[log pθ(ψ0∣ψ1, x) −∑
t>1

DKL[q(ψt−1∣ψt,ψ0)∥pθ(ψt−1∣ψt, x)]].

(4)

We employ a Graph Neural Network (GNN) for the encod-
ing and denoising process of the graph. Following Austin
et al. (2021), we adopt discrete diffusion models to model
binary random variables.

Inference. During the inference stage, we obtain sam-
ples ψ ∼ pθ(ψ0∣x) and subsequently reconstruct the order
of demonstration examples from ψ. We then incorporate

3ψ0 represents the sequence of demonstrations that, when fed
into the prompt, results in a successful formal sketch.

3

Subgoal-based Demonstration Learning for Formal Theorem Proving

examples sequentially into the LLM context, and define
the output of the demonstration organization module as the
sequence of examples upon reaching the LLM length con-
straint. More details of the implementation of the diffusion
model, the implementation of GNN, and techniques used in
the sampling process of ψ can be found in the Appendix.

3. Experiments
3.1. Formal Environment

Interactive Theorem Provers. Interactive Theorem
Provers (ITPs), such as Isabelle (Paulson, 1994), constitute
the backbone of contemporary mathematical verification
systems. They facilitate the integration of mathematical def-
initions and theorems into a consistent logical framework,
such as Higher-Order Logic or Dependent Type Theory,
which is operationalized by their kernels. The kernel plays
a pivotal role in the verification process, meticulously ex-
amining each theorem to ascertain its recognition by the
ITP and thereby ensuring the integrity of the system. The
theorem-proving process within an ITP is characterized by
the articulation of the theorem in the ITP’s programming
language, followed by an iterative simplification into more
manageable objectives or subgoals. The theorem is deemed
proven once it can be distilled down to pre-established facts.
The selection of Isabelle for our paper is motivated by its
intuitive interface, its compatibility with a range of logical
frameworks, and its comprehensive library of formalized
mathematics.

Sledgehammer. Sledgehammer (Paulsson & Blanchette,
2012) serves as a powerful tool for automating reasoning
within the interactive theorem prover Isabelle. It functions
by transmuting the goals encapsulated in Isabelle/HOL’s
higher-order logic into alternative logic, such as first-order
logic. These transmuted goals are then passed to off-the-
shelf automated theorem provers, including E, CVC4, Z3,
Vampire, and SPASS. If any of these automated theorem
provers successfully derive the proof in their respective for-
mats, Sledgehammer undertakes the task of reconstructing
the proof within the Isabelle/HOL framework using certified
provers, namely metis, meson, and smt. This reconstructed
proof, being more interpretable to humans, significantly en-
hances the system’s usability, thereby contributing to the
efficiency and effectiveness of (interactive) theorem prov-
ing.

3.2. Dataset and Evaluation

Dataset. We evaluate our approach using the miniF2F
dataset (Zheng et al., 2021), which comprises 488 formal
mathematical problems derived from high-school compe-
titions, expressed in three formal languages: Lean, HOL-
Light, and Isabelle. The dataset is divided into a validation

and a test set, each including 244 problems. The prob-
lems within the dataset are sourced from three distinct
categories: 260 problems are extracted from the MATH
dataset (Hendrycks et al., 2021), 160 problems are extracted
from actual high-school mathematical competitions (AMC,
AIME, and IMO), and 68 problems are crafted to mirror the
difficulty level of the aforementioned competitions.

Evaluation. The task at hand entails the generation of
formal sketches for problems in the miniF2F dataset. The
validity of a formal sketch depends on two criteria: first, the
absence of “cheating” keywords such as “sorry” and “oops”
that prematurely terminate a proof before its completion;
second, the capacity of the interactive theorem prover Is-
abelle to authenticate the corresponding formal statement
with the proof. To make working with Isabelle easier, we
use the Portal-to-Isabelle API, as introduced by Jiang et al.
(2023). Given the absence of a training split in the miniF2F
dataset, we leverage optimal organizations that yield suc-
cessful proofs from the miniF2F-valid set to train the dif-
fusion model. As proposed by Lample et al. (2022), we
employ the cumulative pass rate as a measure for the results
obtained from performing inference using diffusion models
on the miniF2F-valid set. This involves integrating the pass
rates from both the data collection stage for training and the
inference stage. When it comes to other scenarios, namely
conducting inference on the miniF2F-test or cases where
the diffusion model is not employed, we simply provide the
pass rate.

3.3. Baselines

We leverage the following baselines to substantiate the ef-
fectiveness of our proposed methodology:

Symbolic Automated Provers. We first employ Sledge-
hammer, a proof automation tool that is extensively utilized
within the Isabelle environment. We adhere to the default
configuration of Sledgehammer as provided in Isabelle2021,
which encompasses a 120-second timeout and a suite of
five automated theorem provers (Z3, CVC4, SPASS, Vam-
pire, E). In alignment with Jiang et al. (2023), we employ
Sledgehammer supplemented with heuristics, integrating 11
prevalent tactics (i.e., auto, simp, blast, fastforce, force, eval,
presburger, sos, arith, linarith, auto simp: field simps) with
Sledgehammer. If all the tactics fail or take longer than 10
seconds, the system reverts to the base Sledgehammer.

Search-based Methods. In addition to the above, we in-
corporate baselines that utilize Monte-Carlo tree search (Sil-
ver et al., 2016) to discover the proof. This includes
Thor (Jiang et al., 2022) and another version of Thor that
employs an expert iteration on autoformalized data (i.e.,
Thor+expert iteration (Wu et al., 2022a)). Thor combines

4

Subgoal-based Demonstration Learning for Formal Theorem Proving

Table 1. Pass rates on the miniF2F dataset with Isabelle. Numbers in bold denote the best performance. Numbers with a ⋆ correspond to
the cumulative pass rate (Lample et al., 2022) since the evaluated statements are part of the training for diffusion models. See §3.2 for
more details about cumulative pass rate. † denotes the concurrent work at the time of submission.

valid test

Sledgehammer 9.9% 10.4%
Sledgehammer+heuristic 18.0% 20.9%
Thor 28.3% 29.9%
Thor + expert iteration 37.3% 35.2%
DSP (540B Minerva) 42.6% 38.9%
LEGO-Prover† 52.4% 45.5%
Lyra† 52.8% 44.2%

Ours 48.0%⋆ 45.5%

Table 2. Ablation results on the miniF2F dataset with Isabelle. Numbers with a ⋆ correspond to the cumulative pass rate.

valid test

Ours 48.0%⋆(±0.4) 45.5%(±0.6)

- subgoal & diffusion 41.4%(±0.9) 38.7%(±1.2)
- subgoal 44.3%⋆(±0.7) 40.6%(±0.6)
- diffusion 46.9%(±1.3) 44.1%(±0.9)

language models with automatic theorem provers to over-
come the challenge of selecting beneficial premises from a
vast library. Thor+expert iteration enhances a neural theo-
rem prover by training it on theorems that have been auto-
matically formalized.

LLM-based Method. Lastly, we incorporate three LLM-
based baselines: Draft, Sketch, and Prove (DSP) (Jiang
et al., 2023), LEGO-Prover (Xin et al., 2023), and
Lyra (Zheng et al., 2023). DSP utilizes the 540B Min-
erva model (Lewkowycz et al., 2022) to generate informal
proofs, which are then transformed into formal sketches.
LEGO-Prover focuses on incrementally creating reusable
theorems, streamlining the theorem proving process through
the utilization of previously established results. Lyra im-
proves the verification process by integrating error messages
from external verifiers, facilitating proof optimization. No-
tably, all three methods, similar to our approach, employ
the Sledgehammer tool, maintaining consistency in tool us-
age across the methodologies. For a fair comparison, we
use versions of these baselines configured with 100 auto-
formalization attempts and without relying on ground-truth
informal proofs.

We exclude methods such as HyperTree Proof
Search (HTPS) (Lample et al., 2022) and GPT-f with expert
iteration (Polu et al., 2022), which are implemented using
Lean (de Moura et al., 2015), a different interactive theorem
prover. The disparity in tactics and automation between
Lean and Isabelle renders them not directly comparable to

our method.

3.4. Implementation Details

Throughout our work, we employ ChatGPT (i.e., the gpt-
3.5-turbo-0301 version) as the LLM. For the creation of the
formal sketch, the temperature and max tokens parameters
of gpt-3.5-turbo-0301 are set to 0 and 1024, respectively.
For each subgoal proof, we make one formal sketch attempt,
as suggested by previous literature (Jiang et al., 2023). In
terms of the establishment of the subgoal-based proof, we
set the number of refinement iterations to be 15, with the
number of demonstration examples, denoted as N , being
set to 61. For demonstration organization, we employ a ran-
domized demonstration organization approach to generate
proofs for 116 distinct statements on miniF2F-valid, which
yield 137 successful proofs. We then partition the corre-
sponding demonstration contexts into a training set and a
validation set, comprising 81 and 56 instances respectively.
The training of our diffusion models is conducted with a
learning rate of 5e−4, a batch size of 16, and throughout 50
epochs. We set the number of diffusion steps, represented
as T , to 80. We employ an early stopping strategy on the
validation set and report the performance averaged in three
repetitive experiments.

3.5. Main Results

The experiment results, as shown in Table 1, yield sev-
eral key observations: (1) Our method outperforms DSP,

5

Subgoal-based Demonstration Learning for Formal Theorem Proving

20 40 60 80 100
LLM Calls Per Problem

80

85

90

95

100

105

110

Pr

ob
le

m
s S

ol
ve

d
Problems Solved on the miniF2F-test

subgoal+diff
informal+diff
subgoal
informal

(a) Subgoal-based Proof

20 30 40 50 60 70 80 90 100
LLM Calls Per Problem

85

90

95

100

105

110

Pr

ob
le

m
s S

ol
ve

d

Problems Solved on the miniF2F-test
diffusion
gnn
topk

(b) Demonstration Reorganization

Figure 2. Number of problems solved on miniF2F-test against the number of LLM calls per problem, where the x-axis represents the
number of independent problem-solving attempts. Left: a comparative assessment between the informal proof and subgoal-based proof
under two distinct conditions: presence and absence of the diffusion model. Right: a comparative exploration of different in-context
learning methods.

with pass rates of 48.0% on miniF2F-valid and 45.5% on
miniF2F-test. This superior performance is attributable to
our novel application of diffusion models for demonstration
reorganization coupled with subgoal-based proof; (2) The
methods Thor and Thor + expert iteration struggle due to
the enormously large action space. This space significantly
overshadows that of games, thereby posing challenges to the
comprehensive utilization of the Monte Carlo tree search.
Consequently, these methods underperform when compared
to LLM-based methods; (3) DSP has pioneered the introduc-
tion of the informal proof, a critical step in the LLM-based
formal theorem proving task. However, human-written in-
formal proofs do not offer optimal compatibility with large
language models. Our method, grounded in the subgoal-
learning theory, is capable of inferring subgoal-based proofs
that are more amenable to large language models; and (4)
LEGO-Prover and Lyra, which achieves on-par performance
with our model, are concurrent work with complementary
focuses. LEGO-Prover focuses on the incremental creation
of reusable theorems, and Lyra enhances verification via
error feedback integration. The orthogonal nature presents a
promising direction for integrating our approach with theirs
in the future.

4. Analysis
4.1. Ablation Study

In our ablation study, we examine four variations of our
model on the miniF2F dataset, as detailed in Table 2. The
models include our full method (Ours), and three vari-
ants: one excluding the subgoal-based proof, denoted as
“-subgoal”, which utilizes informal proofs instead; one with-

out the diffusion method, referred to as “-diffusion”, em-
ploying a randomized selection for demonstrations; and one,
denoted as “-subgoal & diffusion”, representing the basic
form of gpt-3.5-turbo, where both the subgoal-based proof
and diffusion method are omitted. To quantify the uncer-
tainty associated with our method, we have supplemented
our results with standard deviation values. For the variants
employing diffusion models (“Ours” and “-subgoal”), we
trained three separate diffusion models as detailed in §3.4.
For the variants without diffusion models (“-subgoal & dif-
fusion” and “-diffusion”), the experiment was repeated three
times.

Our full model achieves the highest performance on both
validation and test sets. This underscores the importance of
both subgoal-based proof and demonstration reorganization.
The model without both components showed the lowest
performance, further emphasizing the significance of these
components. The models missing either the subgoal-based
proof or reorganization components also show decreased
performance, indicating the substantial role of each com-
ponent. Additionally, it is noteworthy that the methods
incorporating diffusion models exhibit relatively more sta-
ble performance, affirming the stability benefits of these
models in our study.

4.2. On the Effect of Subgoal-based Proof

We further use four different variants to explore the impact
of subgoal-based proof. Figure 2(a) displays the results of
this experiment, where “informal” denotes the utilization of
informal proofs instead of subgoal-based proof, and “diff”
indicates the integration of demonstration reorganization.

6

Subgoal-based Demonstration Learning for Formal Theorem Proving

Statement: Suppose n is a natural number such that n leaves a remainder of 3 when divided by 7. Show that (2n+1) leaves a
remainder of 0 when divided by 7.

Subgoal-based Proof:
Step 1: Express n as 7𝑘 + 3 for some k ∈ ℕ
Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.
Step 3: Show that the resulting expression is divisible by 7.

Formal Sketch:
mathd_numbertheory_370:

n :: nat
h0 :

-
(* Step 1: Express n as 7𝑘 + 3 for some k ∈ ℕ. *)

div_mult_mod_eq[of "n" "7"]

h0
c0:

(* Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify. *)

c0

c1:
(* Step 3: Show that the resulting expression is divisible by 7.*)

c1

Figure 3. A formal sketch generated by our proposed method.

The results indicate a significant difference between the
approaches that incorporate subgoal-based proof (“subgoal”
and “subgoal+diff”) and those that do not (“informal” and
“informal+diff”). This trend remains consistent across all
LLM call numbers, suggesting a noteworthy positive effect
of subgoal-based proof on the overall performance of our
method.

4.3. On the Effect of Demonstration Reorganization

To further investigate the effect of a diffusion model for
demonstration reorganization, we draw a comparative anal-
ysis between its performance and two alternative in-context
learning methodologies: the Graph Neural Network (GNN)
and the Top-K. The Top-K method calculates Ada embed-
dings for test problem statements and in-context examples,
subsequently selecting the top-k most similar examples, as
measured by dot product, ensuring those with higher simi-
larity are positioned nearer to the test problem in the prompt.
The GNN is congruent with a modified version of our pro-
posed model when the inference diffusion step is set to 1,
while the efficacy of the Top-K methodology has been ex-

tensively substantiated in the literature (Liu et al., 2021).
Figure 2(b) presents the empirical results, manifesting that
the diffusion model’s performance increment diminishes
as the number of LLM calls escalates to 100. This phe-
nomenon stems from the fact that the module is trained on
data collated from successful proofs via randomized organi-
zation sampling. Consequently, it may encounter difficulties
in discerning the optimal organization for data that deviates
significantly from its training dataset. Nevertheless, this
limitation does not overshadow the potential of diffusion
models to economize the number of LLM calls. Notably,
with demonstration reorganization, our method exhibits an
impressive capability of successfully deriving proofs for 94
problems (equivalently, a pass rate of 38.5%), with a mere
20 LLM calls. Remarkably, this result is comparable with
that of the DSP method, which necessitates 5× the number
of LLM calls.

4.4. Case Study

To better comprehend the efficacy of our proposed method,
we present a formal sketch of a problem that remains un-

7

Subgoal-based Demonstration Learning for Formal Theorem Proving

proven by earlier state-of-the-art methods. As demonstrated
in Figure 3, it is apparent that our strategy successfully
decomposes the complex objective into three manageable
subgoals, each solvable by the LLM. We provide additional
comprehensive examples in the Appendix.

5. Related Work
5.1. Machine Learning for Formal Theorem Proving

Formal theorem proving has seen significant advancements
through machine learning, with efforts focusing on enhanc-
ing proof search strategies (Polu & Sutskever, 2020; Polu
et al., 2022; Jiang et al., 2022) and employing Large Lan-
guage Models (LLMs) for autoformalization (Jiang et al.,
2023). Proof search improvements are marked by the
development of self-supervised strategies in Expert Iter-
ation (Polu et al., 2022) and PACT (Han et al., 2021), along-
side integrations of language models with automated provers
in HyperTree Proof Search (HTPS) (Lample et al., 2022)
and Thor (Jiang et al., 2022), complemented by transformer-
based premise selection in Magnushammer (Mikuła et al.,
2023). However, scalability remains a challenge due to the
increasing complexity of theorems. In parallel, the applica-
tion of LLMs for autoformalization and proof generation
has been explored, with Wu et al. (2022a) and Jiang et al.
(2023) demonstrating the conversion of mathematical prob-
lems into formal specifications. Baldur (First et al., 2023)
goes further by producing full proofs and enhancing prov-
ing capabilities with a proof repair model. Additionally,
LEGO-Prover (Xin et al., 2023) and Lyra (Zheng et al.,
2023) offer unique contributions in theorem proving, focus-
ing on the incremental development of reusable theorems
and the integration of error messages from external verifiers
for proof post-processing, respectively. Nevertheless, these
approaches have yet fully optimized the format and the orga-
nization of demonstration examples when invoking LLMs.
Our work aims to address this gap by introducing a subgoal-
based demonstration learning framework that refines the use
of LLMs in formal theorem proving.

5.2. In-context Learning

In-context Learning (ICL) primarily investigates two as-
pects: the selection and arrangement of in-context exam-
ples. For example selection, Liu et al. (2021) introduce a
retrieval-based method for prompt selection, enhancing the
semantic relevance over random selection. This concept was
expanded by Rubin et al. (2021) who utilize a pre-trained
language model for effective prompt retrieval. Additionally,
Sorensen et al. (2022) propose a novel template selection
method based on maximizing mutual information, circum-
venting the need for labeled examples or direct model access.
Su et al. (2022) present a two-step framework focusing on
efficiency, selecting examples from unlabeled data and re-

trieving task-specific examples during testing. Furthermore,
Agrawal et al. (2022) develop strategies for machine trans-
lation, emphasizing the importance of example quality and
domain relevance while highlighting the detrimental effects
of irrelevant examples. Concerning example arrangement,
Zhao et al. (2021) address the instability in few-shot learn-
ing results caused by example order, proposing a calibration
method. Extending this, Lu et al. (2021) explore the sensi-
tivity of prompt order in few-shot learning contexts. Even
though previous efforts have made remarkable progress in
either choosing or sequencing in-context examples, our re-
search sets a new precedent by combining both elements. In
this paper, we step out of these isolated areas of concentra-
tion, looking into an approach based on diffusion models
that effectively tackles both the challenges of selection and
ordering at the same time.

5.3. Subgoal Learning

Subgoal learning significantly enhances AI systems’ abil-
ity to address complex tasks by introducing efficiency and
structure in reinforcement learning (RL). Theoretical contri-
butions highlight the computational benefits of subgoal re-
wards (Zhai et al., 2022), optimal structuring for hierarchical
RL (Wen et al., 2020), option selection complexities (Jinnai
et al., 2019a), and temporal abstraction integration (Fruit
et al., 2017). Empirical efforts focus on subgoal exploration,
planning, and curriculum learning, leveraging strategies
for optimal discovery and decision-making through cover
time minimization (Jinnai et al., 2019b), dynamical dis-
tance learning (Hartikainen et al., 2019), entropy maximiza-
tion (Pitis et al., 2020), asymmetric self-play (OpenAI et al.,
2021), and innovative planning algorithms like SoRB (Ey-
senbach et al., 2019), DC-MCTS (Parascandolo et al., 2020),
PAIR (Li et al., 2022), and goal-oriented MCTS with hind-
sight experience replay (Moro et al., 2022). Curriculum
learning research aims at progressively enhancing subgoal
complexity to optimize learning pathways, with techniques
for automatic curriculum generation and complexity scaling
(Zhang et al., 2020; 2021). While there have been prelimi-
nary efforts to apply similar principles in the construction
of prompts for LLMs (Khot et al., 2022), the deployment of
subgoal learning theories to manage intricate tasks, such as
formal theorem proving, remains largely unexplored. Our
work pioneers the use of subgoal learning in this domain,
with a focus on format and organization.

6. Conclusion
In this paper, we have developed a subgoal-based demonstra-
tion learning framework that significantly enhances LLMs’
efficacy in formal theorem proving. Our approach combines
insights from subgoal learning and diffusion models, effec-
tively addressing the challenges of demonstration formatting

8

Subgoal-based Demonstration Learning for Formal Theorem Proving

and organization. As a result, we achieve a 17.0% relative
improvement in proof pass rate on the miniF2F benchmark
and a 5× improvement in sampling efficiency.

Acknowledgements
We would like to thank the HKU NLP group and the anony-
mous reviewers for their valuable suggestions that greatly
helped improve this work. We are also grateful to Wei Bi
for generously providing the CPU servers that significantly
contributed to the computational resources required for this
research. This work is partially supported by the joint re-
search scheme of the National Natural Science Foundation
of China (NSFC) and the Research Grants Council (RGC)
under grant number N HKU714/21.

Impact Statement
This work presents a novel algorithm for automated formal
proof generation. Its impacts potentially span across mathe-
matical research and software engineering: This algorithm
may assist mathematicians in writing rigorous mechanized
proofs, complementing their conceptual exploration; While
our work is primarily focused on mathematics at present,
there is potential for its application to extend to formal veri-
fication of software systems. Future research can focus on
enhancing the algorithm’s accuracy, broadening its appli-
cation to more complex theorems, and exploring synergies
with other AI techniques.

References
Agrawal, S., Zhou, C., Lewis, M., Zettlemoyer, L., and

Ghazvininejad, M. In-context examples selection for
machine translation. arXiv preprint arXiv:2212.02437,
2022.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Bresson, X. and Laurent, T. An experimental study of
neural networks for variable graphs, 2018. URL https:
//openreview.net/forum?id=SJexcZc8G.

Castelvecchi, D. et al. Mathematicians welcome computer-
assisted proof in ‘grand unification’theory. Nature, 595
(7865):18–19, 2021.

de Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pp. 378–388. Springer,
2015.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 32, 2019.

First, E., Rabe, M. N., Ringer, T., and Brun, Y. Baldur:
Whole-proof generation and repair with large language
models. arXiv preprint arXiv:2303.04910, 2023.

Fruit, R., Pirotta, M., Lazaric, A., and Brunskill, E. Re-
gret minimization in mdps with options without prior
knowledge. Advances in Neural Information Processing
Systems, 30, 2017.

Graikos, A., Malkin, N., Jojic, N., and Samaras, D. Dif-
fusion models as plug-and-play priors. arXiv preprint
arXiv:2206.09012, 2022.

Han, J. M., Rute, J., Wu, Y., Ayers, E. W., and Polu, S. Proof
artifact co-training for theorem proving with language
models. arXiv preprint arXiv:2102.06203, 2021.

Hartikainen, K., Geng, X., Haarnoja, T., and Levine,
S. Dynamical distance learning for semi-supervised
and unsupervised skill discovery. arXiv preprint
arXiv:1907.08225, 2019.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. pmlr, 2015.

Jiang, A. Q., Li, W., Tworkowski, S., Czechowski, K.,
Odrzygóźdź, T., Miłoś, P., Wu, Y., and Jamnik, M. Thor:
Wielding hammers to integrate language models and auto-
mated theorem provers. Advances in Neural Information
Processing Systems, 35:8360–8373, 2022.

Jiang, A. Q., Welleck, S., Zhou, J. P., Lacroix, T., Liu,
J., Li, W., Jamnik, M., Lample, G., and Wu, Y. Draft,
sketch, and prove: Guiding formal theorem provers with
informal proofs. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=SMa9EAovKMC.

Jinnai, Y., Abel, D., Hershkowitz, D., Littman, M., and
Konidaris, G. Finding options that minimize planning
time. In International Conference on Machine Learning,
pp. 3120–3129. PMLR, 2019a.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris, G. Discov-
ering options for exploration by minimizing cover time.
In International Conference on Machine Learning, pp.
3130–3139. PMLR, 2019b.

9

https://openreview.net/forum?id=SJexcZc8G
https://openreview.net/forum?id=SJexcZc8G
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=SMa9EAovKMC

Subgoal-based Demonstration Learning for Formal Theorem Proving

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K.,
Clark, P., and Sabharwal, A. Decomposed prompting:
A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock,
D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski,
R., Norrish, M., et al. sel4: Formal verification of an
os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pp. 207–
220, 2009.

Lample, G., Lacroix, T., Lachaux, M.-A., Rodriguez, A.,
Hayat, A., Lavril, T., Ebner, G., and Martinet, X. Hyper-
tree proof search for neural theorem proving. Advances
in Neural Information Processing Systems, 35:26337–
26349, 2022.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. arXiv preprint
arXiv:2206.14858, 2022.

Li, A. C., Prabhudesai, M., Duggal, S., Brown, E., and
Pathak, D. Your diffusion model is secretly a zero-shot
classifier. arXiv preprint arXiv:2303.16203, 2023.

Li, Y., Gao, T., Yang, J., Xu, H., and Wu, Y. Phasic self-
imitative reduction for sparse-reward goal-conditioned
reinforcement learning. In International Conference on
Machine Learning, pp. 12765–12781. PMLR, 2022.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen,
W. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

Mikuła, M., Antoniak, S., Tworkowski, S., Jiang, A. Q.,
Zhou, J. P., Szegedy, C., Kuciński, Ł., Miłoś, P., and
Wu, Y. Magnushammer: A transformer-based approach
to premise selection. arXiv preprint arXiv:2303.04488,
2023.

Moro, L., Likmeta, A., Prati, E., Restelli, M., et al. Goal-
directed planning via hindsight experience replay. In
International Conference on Learning Representations,
pp. 1–16, 2022.

OpenAI. Chatgpt: Optimizing language models for dia-
logue, 2022.

OpenAI. GPT-4 Technical Report. arXiv e-prints, art.
arXiv:2303.08774, March 2023. doi: 10.48550/arXiv.
2303.08774.

OpenAI, O., Plappert, M., Sampedro, R., Xu, T., Akkaya,
I., Kosaraju, V., Welinder, P., D’Sa, R., Petron, A., Pinto,
H. P. d. O., et al. Asymmetric self-play for automatic
goal discovery in robotic manipulation. arXiv preprint
arXiv:2101.04882, 2021.

Parascandolo, G., Buesing, L., Merel, J., Hasenclever, L.,
Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., and
Weber, T. Divide-and-conquer monte carlo tree search for
goal-directed planning. arXiv preprint arXiv:2004.11410,
2020.

Paulson, L. C. Isabelle: A generic theorem prover. Springer,
1994.

Paulson, L. C. Isabelle: The next 700 theorem provers.
arXiv preprint cs/9301106, 2000.

Paulsson, L. C. and Blanchette, J. C. Three years of expe-
rience with sledgehammer, a practical link between au-
tomatic and interactive theorem provers. In Proceedings
of the 8th International Workshop on the Implementa-
tion of Logics (IWIL-2010), Yogyakarta, Indonesia. EPiC,
volume 2, 2012.

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. Maximum
entropy gain exploration for long horizon multi-goal re-
inforcement learning. In International Conference on
Machine Learning, pp. 7750–7761. PMLR, 2020.

Polu, S. and Sutskever, I. Generative language model-
ing for automated theorem proving. arXiv preprint
arXiv:2009.03393, 2020.

Polu, S., Han, J. M., Zheng, K., Baksys, M., Babuschkin, I.,
and Sutskever, I. Formal mathematics statement curricu-
lum learning. arXiv preprint arXiv:2202.01344, 2022.

Rubin, O., Herzig, J., and Berant, J. Learning to re-
trieve prompts for in-context learning. arXiv preprint
arXiv:2112.08633, 2021.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sorensen, T., Robinson, J., Rytting, C. M., Shaw, A. G.,
Rogers, K. J., Delorey, A. P., Khalil, M., Fulda, N., and
Wingate, D. An information-theoretic approach to prompt
engineering without ground truth labels. arXiv preprint
arXiv:2203.11364, 2022.

Su, H., Kasai, J., Wu, C. H., Shi, W., Wang, T., Xin, J.,
Zhang, R., Ostendorf, M., Zettlemoyer, L., Smith, N. A.,
et al. Selective annotation makes language models bet-
ter few-shot learners. arXiv preprint arXiv:2209.01975,
2022.

10

Subgoal-based Demonstration Learning for Formal Theorem Proving

Sun, Z. and Yang, Y. Difusco: Graph-based diffusion
solvers for combinatorial optimization. arXiv preprint
arXiv:2302.08224, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wen, Z., Precup, D., Ibrahimi, M., Barreto, A., Van Roy, B.,
and Singh, S. On efficiency in hierarchical reinforcement
learning. Advances in Neural Information Processing
Systems, 33:6708–6718, 2020.

Wu, Y., Jiang, A. Q., Li, W., Rabe, M., Staats, C., Jam-
nik, M., and Szegedy, C. Autoformalization with large
language models. Advances in Neural Information Pro-
cessing Systems, 35:32353–32368, 2022a.

Wu, Z., Wang, Y., Ye, J., and Kong, L. Self-adaptive
in-context learning. arXiv preprint arXiv:2212.10375,
2022b.

Xin, H., Wang, H., Zheng, C., Li, L., Liu, Z., Cao, Q.,
Huang, Y., Xiong, J., Shi, H., Xie, E., et al. Lego-prover:
Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023.

Zhai, Y., Baek, C., Zhou, Z., Jiao, J., and Ma, Y. Computa-
tional benefits of intermediate rewards for goal-reaching
policy learning. Journal of Artificial Intelligence Re-
search, 73:847–896, 2022.

Zhang, T., Eysenbach, B., Salakhutdinov, R., Levine, S.,
and Gonzalez, J. E. C-planning: An automatic curricu-
lum for learning goal-reaching tasks. arXiv preprint
arXiv:2110.12080, 2021.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curriculum
learning through value disagreement. Advances in Neural
Information Processing Systems, 33:7648–7659, 2020.

Zhao, Z., Wallace, E., Feng, S., Klein, D., and Singh, S.
Calibrate before use: Improving few-shot performance
of language models. In International Conference on
Machine Learning, pp. 12697–12706. PMLR, 2021.

Zheng, C., Wang, H., Xie, E., Liu, Z., Sun, J., Xin, H.,
Shen, J., Li, Z., and Li, Y. Lyra: Orchestrating dual
correction in automated theorem proving. arXiv preprint
arXiv:2309.15806, 2023.

Zheng, K., Han, J. M., and Polu, S. Minif2f: a cross-system
benchmark for formal olympiad-level mathematics. arXiv
preprint arXiv:2109.00110, 2021.

11

Subgoal-based Demonstration Learning for Formal Theorem Proving

A. More Details about Subogal-based Proof
We provide a detailed description of the subgoal refinement method (see §2.1) through Algorithm 1. In the k-th iteration, we
construct demonstration examples {E(k)i }

N
i=1 using improved subgoal-based proofs. To construct E(k)i , we first extract the

statement and formal sketch from E
(k−1)
i , then use an LLM to generate subgoals. Afterward, a Refine module is called to

confirm the validity of the created subgoals and adjust any subgoals identified as infeasible.

A subgoal s∆ is deemed “reachable” from s1 if, for any si where 1 < i ≤∆, the ATP solvers can bridge the gap between
si−1 and si, under the assumption that all preceding subgoals sj (where j < i) are true. This concept is crucial in cases
where the proof structure necessitates the independent verification of lemma a, b from s1, followed by the substantiation
of s2 utilizing both lemma a and b. In such scenarios, as per our definition of reachability, the verification of (si−1, si)
inherently presumes the truth of all prior subgoals, denoted as all sj with j < i, which are encapsulated within the context C
in VERIF AND CORRECT. Specifically, the verification of (sa, sb) presupposes s1 and sa, and the verification of (sb, s2)
presupposes s1, sa, and sb. If the ITP validates the steps, the subgoal is deemed reachable; otherwise, it is considered
unattainable.

In practice, the reachability of subgoals is tested using the VERIFY function in Algorithm 4, which integrates both an
Interactive Theorem Prover (ITP) and a Large Language Model (LLM). It amends the formal sketch for a subgoal, assigns
the LLM to complete the missing segments, and then validates these with the ITP. If the ITP affirms the steps, the subgoal
is considered reachable; otherwise, it is deemed unattainable. In instances where the LLM consistently fails to generate
provable subgoals for the theorem prover, the VERIFY AND CORRECT function will revert to returning the original
subgoal pair (si, si+1).

We present an example to elucidate this process further (see Figures 4 to 12).4 As shown in Figure 4, the LLM creates
two subgoals for the theorem amc12a 2003 p4, leading to {s0, s1, s2, s3}. Refining these subgoals involves calling
verify and correct(s0, s1) to improve the subgoal s1. This is depicted in Figures 5 to 12. We first use the LLM to
reconstruct the subgoal related to the first step, but this attempt fails (Figure 5). Then we break down the subgoal s1
into three more detailed subgoals (Figure 6), each of which is then verified using the same LLM (Figures 7 to 9). Due
to the unsuccessful reconstruction of the second subgoal (Figure 8), it is further broken down into two more specific
subgoals (Figure 10). The last two subgoals pass the verification process successfully (Figures 11 and 12). Finally, the output
of verify and correct(s0, s1), namely S0→1, is defined as the set that includes the steps from 1 to 4 shown in Figure 12.

Algorithm 1 Iterative Subgoal Refinement
Requires: EXTRACT extraction of statement and formal sketch

COMPOSE composing of a statement, formal sketch
and subgoals to form a demonstration example

INITIALIZE SUBGOALS generate subgoals with a LLM

function ITERATIVE REFINEMENT({E(0)1 ,E
(0)
2 ,⋯,E(0)N })

for k in 1,2, . . . ,K do
for i in 1,2, . . . ,N do

x, y ← EXTRACT(E(k−1)i)
s0, s1,⋯, s∆, s∆+1 ← INITIALIZE SUBGOALS(x, y,E(k−1))
S0→(∆+1) ← REFINE((s0, s∆+1,{s1, s2,⋯, s∆}))
E
(k)
i ← COMPOSE(x, y, S0→(∆+1))

end for
end for
return {E(K)1 ,E

(K)
2 ,⋯,E(K)N }

end function

4To simplify the illustration, we leave out redundant demonstration examples.

12

Subgoal-based Demonstration Learning for Formal Theorem Proving

Algorithm 2 Refinement Algorithm
Requires: VERIFY AND CORRECT verify the validness of the subgoals and correct them

if necessary
function REFINE(si, sj+1, {si+1,⋯, sj})

if i = j then return VERIFY AND CORRECT(si, si+1)
end if
Si→i+1 ← REFINE(si, si+1,{})
Si+1→j+1 ← REFINE(si+1, sj+1,{si+2,⋯, sj})
return Si→i+1 ∪ Si+1→j+1

end function

Algorithm 3 Verify and Correct
Requires: VERIFY verify if si+1 is reachable from si

CORRECT correct the pair of subgoals if necessary
M the maximum number of LLM calls, which is set to 10 in our experiments
C context including formal sketch and current subgoal-based proof

function VERIFY AND CORRECT(si, si+1, C)
budget←M
Q← ∅ ▷ A priority queue; lower pos values indicate proximity to the formal statement
Q.PUSH((−C.pos(si+1), (si, si+1))) ▷ Push subgoals based on their distance to the formal statement
valid subgoals← []
while Q ≠ ∅ and budget > 0 do

, (s, s′)← Q.POP() ▷ Retrieve subgoal closest to the formal statement
budget← budget − 1 ▷ LLM call consumed by Verify
if VERIFY(s, s′,C) then

valid subgoals.APPEND((s, s′))
else

budget← budget − 1 ▷ LLM call consumed by Correct
subgoals← []
subgoals,C ← CORRECT(s, s′,C) ▷ Fix subgoal s′ or generate granular subgoals, then update the context
for (sj , sj+1) in subgoals do

Q.PUSH((−C.pos(sj+1), (sj , sj+1)))
end for

end if
end while
if valid subgoals ≠ ∅ then

return valid subgoals
else

return [(si, si+1)]
end if

end function

Algorithm 4 Verify
Requires: ITP Interactive Theorem Prover, i.e., Isabelle in our experiments

LLM Large Language Model, i.e., GPT-3.5-turbo in our experiments
function VERIFY(si, si+1, C)

llm output← LLM(C.verify prompt(si, si+1,C))
if ITP(llm output) = pass then

return True
else

return False
end if

end function

13

Subgoal-based Demonstration Learning for Formal Theorem Proving

Algorithm 5 Correct
Requires: LLM Large Language Model, i.e., GPT-3.5-turbo in our experiments

PARSE Parse the output of LLM to extract subgoals
which correspond to the same segment of the formal sketch as si+1

UPDATE Replace si+1 in C with newly generated subgoals
function CORRECT(si, si+1, C)

llm output← LLM(C.correct prompt(si, si+1,C))
subgoals← PARSE(llm output, si+1,C)
C ← UPDATE(llm output, si+1,C)
return subgoals,C

end function

14

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to transform a formal proof, written in a style suitable for a theorem-proving system, into a more explanatory and narrative
style, suitable for humans. The task involves adding explanatory comments that break down the formal proof into understandable steps,
providing context and insight into the underlying logical structure and reasoning.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
define x y where "x=ln a" and "y=ln b"
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

"
− "
!
. *)

define x y where "x=ln a" and "y=ln b"
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 2: Using the inequality ("
! −

!
")
#≥ 0, it is shown that the simplified equation 2 − !

" −
"
! is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 4. Illustration of the Initialize subgoals function as denoted in Algorithm 1. ChatGPT is leveraged to generate the subgoal-based
proof for a formal sketch.

15

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

(* Step 2: Using the inequality ("
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

define x y where "x=ln a" and "y=ln b"
have "x > 0" and "y > 0"

using assms by (simp_all add: ln_gt_zero)
have "?L = 2 - y / x - x / y"

using assms x_def y_def by (simp add: add_divide_distrib diff_divide_distrib ln_div)

(* Step 2: Using the inequality ("
! −

!
")
#≥ 0, it is shown that the simplified equation 2 − !

" −
"
! is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 5. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT encounters a failure
in reconstructing the proof associated with step 1, thereby deeming it an unsuitable subgoal.

16

Subgoal-based Demonstration Learning for Formal Theorem Proving

The Isabelle Proof Assistant was unable to verify Step 1. To resolve this, consider providing more detailed information or clarity to
enhance the explanation for this particular step.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: With the definitions 𝑥 = 𝑙𝑛 𝑎, 𝑦 = 𝑙𝑛 𝑏, and the constraints 𝑦 > 0 and 𝑥 ≥ 𝑦, the equation simplifies into 2 − !

" −
"
!. *)

define x y where "x=ln a" and "y=ln b"
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 2: Using the inequality ("
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

"$!
"
+ !$"

!
. *)

have "y>0"
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − !
" −

"
!. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality ("
!
− !

"
)#≥ 0, it is shown that the simplified equation 2 − !

"
− "
!

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 6. An instance of the “correct” component within the Verify and correct function in Algorithm 2. ChatGPT works on the
decomposition of the original subgoal (i.e., step 1 in the input) into a series of more granular subgoals (i.e., steps 1 - 3 in the output).

17

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)

(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding
!"#
!
+ #"!

#
. *)

have "y>0"
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
!
+ #"!

#
. *)

have "y>0"
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 7. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT successfully
reconstructs the proof associated with step 1, thus validating it as a viable subgoal.

18

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
!
+ #"!

#
. *)

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
! + #"!

. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge> y"

using \<open>b\<le>a\<close> unfolding x_def y_def using ln_mono sledgehammer
hence "(x - y)/x + (y - x)/y = 2 - y/x - x/y"

using \<open>x>0\<close> \<open>y>0\<close> by (simp add: diff_divide_distrib)
(* Step 3: Simplify the expression to 2 − #

! −
!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 8. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT encounters a failure
in reconstructing the proof associated with step 2, thereby deeming it an unsuitable subgoal.

19

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
!
+ #"!

#
. *)

have "y>0"
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
!
+ #"!

#
. *)

have "y>0"
using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer

moreover have "x \<ge>y"
using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer

ultimately have "x>0"
sledgehammer

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 9. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT successfully
reconstructs the proof associated with step 3, thus validating it as a viable subgoal.

20

Subgoal-based Demonstration Learning for Formal Theorem Proving

The Isabelle Proof Assistant was unable to verify Step 2. To resolve this, consider providing more detailed information or clarity to
enhance the explanation for this particular step.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: With the conditions set as 𝑦 > 0 and 𝑥 ≥ 𝑦, we transition the equation to be framed in terms of 𝑥 and 𝑦, thereby yielding

!"#
! + #"!

. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 3: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 4: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

. *)
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 10. An instance of the “correct” component within the Verify and correct function in Algorithm 2. ChatGPT works on the
decomposition of the original subgoal (specifically, step 2 in the input) into a series of more granular subgoals (specifically, steps 2 - 3 in
the output).

21

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)

(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!
. *)

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#

!
+ #"!

#
. *)

have "?L = (x-y)/x + (y-x)/y"
apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
!
− !
#
. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality (!
−

#
!)
$≥ 0, it is shown that the simplified equation 2 − #

! −
!
is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 11. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT successfully
reconstructs the proof associated with step 2, thus validating it as a viable subgoal.

22

Subgoal-based Demonstration Learning for Formal Theorem Proving

Your task is to complete the missing part of a Isabelle proof based on the corresponding description provided. The proof will consist of
several steps, and you will need to use your knowledge of mathematical concepts and logical reasoning to fill in the gap.

Input:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

. *)

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Output:
theorem amc12a_2003_p24:

fixes a b::real
assumes "b \<le>a" and "1<b"
shows "ln (a/b) / ln a + ln (b/a) / ln b \<le>0" (is "?L \<le> _")

proof –
(* Step 1: Define 𝑥 = 𝑙𝑛 𝑎 and 𝑦 = 𝑙𝑛 𝑏. *)
define x y where "x=ln a" and "y=ln b"
(* Step 2: Show that 𝑦 > 0 and 𝑥 ≥ 𝑦. *)
have "y>0"

using \<open>b>1\<close> unfolding y_def using ln_gt_zero sledgehammer
moreover have "x \<ge>y"

using \<open>a\<ge>b\<close> unfolding x_def y_def using assms(2) sledgehammer
ultimately have "x>0"

sledgehammer
(* Step 3: Use the definitions of 𝑥 and 𝑦 to rewrite the expression as !"#! + #"!

. *)
have "?L = (x-y)/x + (y-x)/y"

apply (subst (1 2) ln_div)
using assms unfolding x_def y_def sledgehammer

(* Step 4: Simplify the expression to 2 − #
! −

!
#. *)

also have "... = 2 - (y/x + x/y)"
using \<open>x>0\<close> \<open>y>0\<close> sledgehammer

(* Step 5: Using the inequality (!
#
− #

!
)$≥ 0, it is shown that the simplified equation 2 − #

!
− !
#

is less than or equal to 0. *)

also have "... \<le> 0"
proof –

have "sqrt (x/y) * sqrt (y/x) = 1"
sledgehammer

have "0\<le> (sqrt (x/y) - sqrt (y/x))^2"
sledgehammer

also have "... = x / y - 2 + y / x"
unfolding power2_eq_square using \<open>x>0\<close> \<open>y>0\<close> \<open>sqrt (x/y) * sqrt (y/x) = 1\<close>
sledgehammer

finally show ?thesis
sledgehammer

qed
finally show ?thesis.

qed

Figure 12. An instance of the “verify” component within the Verify and correct function in Algorithm 2. ChatGPT successfully
reconstructs the proof associated with step 3, thus validating it as a viable subgoal.

23

Subgoal-based Demonstration Learning for Formal Theorem Proving

B. More Details about Demonstration Reorganization
B.1. Parameterization

In alignment with Austin et al. (2021), we adopt discrete diffusion models to model binary random variables. Explicitly, the
forward process is given by:

q(ψt∣ψt−1) = Cat (ψt;p = δ(ψt−1)Qt) , (5)

where δ(ψ) symbolizes the one-hot encoding ofψ,Qt = [
(1 − βt) βt

βt (1 − βt)
] denotes the transition matrix, βt corresponds

to the corruption ratio and satisfies that ∏T
t=1(1 − βt) ≈ 0. The marginal at step t and the posterior at step t − 1 can be

articulated as:
q(ψt∣ψ0) = Cat (ψt;p = δ(ψ0)Qt) ,

q(ψt−1∣ψt,ψ0) = Cat(ψt−1;p =
δ(ψt)Q

⊺
t ⊙ δ(ψ0)Qt−1

δ(ψ0)Qtδ(ψt)⊺
) ,

(6)

whereQt =Q1Q2 . . .Qt. In consonance with Austin et al. (2021), we employ a denoising neural network which is tasked
with the prediction of p(ψ0∣ψt), thereby enabling the parameterization of the reverse process:

pθ(ψt−1∣ψt, x)∝∑
ψ

q(ψt−1∣ψt,ψ0)pθ(ψ0∣ψt, x). (7)

B.2. Implementation of GNN

Our work employs a modified version of GNN, a model that exhibits anisotropic characteristics and is enhanced by edge
gating methodologies (Bresson & Laurent, 2018; Sun & Yang, 2023). We define t as sinusoidal representations (Vaswani
et al., 2017) associated with the denoising timestep t. Consider hℓ

i and eℓij as the features of node i and edge ij at a specific
layer ℓ, respectively. During the transition between layers, these features disseminate via an anisotropic message propagation
paradigm as follows:

êℓ+1ij = P
ℓeℓij +Q

ℓhℓ
i +R

ℓhℓ
j ,

eℓ+1ij = eℓij +MLPe(BN(êℓ+1ij)) +MLPt(t),

hℓ+1
i = hℓ

i +ReLU(BN(U
ℓhℓ

i + SUMj∈Ni(σ(ê
ℓ+1
ij)⊙V

ℓhℓ
j))),

(8)

where P ℓ,Qℓ,Rℓ,U ℓ,V ℓ ∈ Rd×d denote layer-specific learnable parameters with d denoting the dimension of hidden
state. BN signifies the Batch Normalization operation (Ioffe & Szegedy, 2015), while SUM represents sum pooling. ⊙
designates the Hadamard product, andNi encapsulates the set of neighboring nodes of node i. Lastly, a two-layer multi-layer
perceptron is denoted by MLP(⋅).

In our experiments, we define h0
i = W [Ada(x);Ada(E(K)i)] where W ∈ Rd×3072 is a learnable parameter.

Ada(x),Ada(E(K)i) ∈ R1536×1 denote the ada embeddings 5 of the statement x and the i-th demonstration example,
respectively. The operator [⋅; ⋅] denotes the concatenation operation between two vectors. e0ij are initialized as sinusoidal
features of the edges.

B.3. Sampling Process

A straightforward strategy for creating a demonstration organization is by directly sampling ψ ∼ pθ(ψ0∣x). However,
this strategy introduces two key challenges: (1) A cycle in ψ might be present, indicating that at least one demonstration
example is selected multiple times; (2) ψ could include multiple separate sub-graphs, making it difficult to define the relative
position between two demonstration examples from two different sub-graphs. Taking a cue from treating diffusion models
as discriminative approaches (Li et al., 2023), we start by randomly creating 200 potential solutions. Using the diffusion
model’s ability to provide conditional density estimates, we rate these 200 potential solutions and select the one with the
highest score to build the final demonstration organization. We then reconstruct the sequence of demonstration examples
from ψ, adding examples one by one into the LLM context until we hit the length limit of the LLM.

5https://platform.openai.com/docs/guides/embeddings

24

https://platform.openai.com/docs/guides/embeddings

Subgoal-based Demonstration Learning for Formal Theorem Proving

B.4. Hyperparameters and Hardware Setup

In the course of our experiment, we employ a 3-layer Anisotropic Graph Neural Network with a hidden state dimensionality
set to 256. We sweep the learning rate from [1e − 4,2e − 4,5e − 4,7e − 4] and sweep batch size from [4,8,16,32]. The
processes of training and inference for the diffusion models are conducted on an NVIDIA RTX 3090 GPU.

C. More In-depth Analysis
C.1. Impact of Prompt Wording

To systematically investigate the influence of varying prompt wordings on the effectiveness of our proposed method, we
further conduct an experiment on the miniF2F-test set. The specific prompt is as follows:

Assume the role of a mathematician proficient in Isabelle.
When provided with both informal and formal statements of a problem,
your responsibility is to formulate a formal proof that Isabelle
can verify.

Table 3. Comparison of pass rates with different prompt wordings over 100 autoformalization attempts on the miniF2F-test set.

Prompt Type pass@100

Original (Proposed) 45.5%
Alternative Prompt 41.0%

As can be observed in Table 3, the original prompt yielded slightly better results compared to the alternative prompt. This
suggests that the phrasing of the prompt can have an influence on the performance, and our original choice was more
effective in achieving higher pass rates.

C.2. Sensitivity to Example Ordering

To assess the robustness and adaptability of our model, we explored the sensitivity of the model to the ordering of examples.
Specifically, we maintained the examples derived from our diffusion model but altered their sequence. The experiment
involves randomizing the sequence of examples after they were organized using the diffusion model. We then evaluated
the model’s ability to solve problems under this modified setup. The evaluation was conducted over 20 autoformalization
attempts on the miniF2F-test set.

Table 4. Impact of example ordering.

Method # of Problems Solved

Ours (Ordered) 94
Shuffled Order 39

The results in Table 4 demonstrate that the ordering of examples significantly impacts the model’s performance. It is evident
that the structured order provided by the diffusion model is important, as disrupting this order resulted in a substantial
decline in the number of problems solved.

C.3. Impact of Demonstration Selection and Presentation Order

We conducted experiments comparing our method, which meticulously selects and orders demonstrations, to an alternative
approach where the demonstrations are shuffled.

The results in Table 5 underscore the significance of both the selection and the order in which demonstrations are presented.
It is evident that a methodical approach to selecting and ordering demonstrations yields superior results compared to a
scenario where demonstrations are presented in a shuffled manner.

25

Subgoal-based Demonstration Learning for Formal Theorem Proving

Table 5. Comparison of our method vs. shuffled demonstrations

Method # of Problems Solved

Ours 94
Shuffled 39

C.4. Impact of Increasing Demonstrations

We conduct experiments to elucidate the impact of varying the number of demonstrations on the performance of our model.

Table 6. Performance analysis with varying numbers of demonstrations.

Number of Demonstrations # of Problems Solved

Ours 94
1 example 16
2 examples 29
3 examples 34

The empirical results in Table 6 underscore the collective significance of all demonstrations in enhancing the model’s
performance. It is evident that the incorporation of multiple demonstrations is pivotal, substantiating the efficacy of our
diffusion-based model.

C.5. Impact of Randomly Generated Problem Names

The incorporation of original problem names could potentially facilitate models like ChatGPT in associating them to readily
available solutions online. This scenario posits a risk of primarily assessing the model’s capability to translate human proof
sketches to subgoals and formal proofs, rather than its proficiency in innovating novel subgoals. To mitigate this concern
and uphold the rigor of our evaluation, we initiated experiments substituting original problem names with random identifiers
and analyzed the ensuing impact on performance. The evaluation was conducted over 20 autoformalization attempts on the
miniF2F-test set.

Table 7. Performance comparison with original and random problem names on the miniF2F-test set.

Method Original Random

Ours 38.5% 39.8%
Top-K 35.7% 34.8%

The results in Table 7 indicate that our method maintains robust performance, even manifesting a marginal enhancement
when random names are deployed. This steadfastness in performance, regardless of the naming conventions adopted,
accentuates the robustness and adaptability of our approach across diverse experimental conditions.

C.6. Impact of Proof Sketch Quality

To comprehensively assess the robustness of our method in relation to the quality of informal proof sketches, we conducted
an additional experiment that involved the generation of informal proofs using gpt-3.5-turbo-0613 for problems from the
miniF2F-valid dataset. Utilizing the methodology outlined in §2.1, we constructed subgoal-based proofs for these informal
proofs. For this purpose, a set of 61 problems was carefully chosen to serve as demonstration samples, aligning with the
experimental setup specified in §3.4. The results of this experiment are shown in Table 8.

The results from Table 8 demonstrate that our method maintains a notable degree of robustness against variations in the
quality of informal proof sketches. This robustness indicates the adaptability and dependability of our approach when
confronted with different levels of proof sketch quality, affirming its practical applicability in diverse scenarios.

26

Subgoal-based Demonstration Learning for Formal Theorem Proving

Table 8. Performance comparison with varying proof sketch quality.

Method valid test

Ours (DSP Informal Proofs) 48.0% (±0.4) 45.5% (±0.6)
Ours (GPT-3.5 Informal Proofs) 47.7% (±0.5) 45.0% (±0.7)

C.7. Evaluation of Optimal Organization Search

To further evaluate the efficiency of our method, we conducted experiments involving 200 randomized organization sampling
attempts for each statement within the miniF2F-valid and miniF2F-test datasets. These efforts aimed to determine the
potential of finding an optimal organization for each statement. The results of this extensive search are displayed in Table 9.

Table 9. Performance comparison with optimal organization search.

Method valid test

Ours 48.0% 45.5%
Optimal Organization Search 48.4% 44.3%

These results corroborate previous observations (Jiang et al., 2023) that the advantages of extensive organization searches
tend to level off beyond a certain number of attempts (in this case, 100). These results highlight the inherent challenges of
the miniF2F dataset and emphasize the effectiveness of our diffusion model.

C.8. Analysis of Sledgehammer Usage

To provide a comprehensive understanding of how our method and DSP (Jiang et al., 2023) utilize the Sledgehammer
tool, we have conducted a detailed analysis. This analysis was carried out on a machine with 64 CPU cores, focusing on
the average number of Sledgehammer calls and their execution times for each solved statement. The results are shown in
Table 10, which illustrates the average number of Sledgehammer calls and their corresponding durations (in seconds) for
each method.

Table 10. Average number of Sledgehammer calls and durations.

Method Calls Duration (seconds)

valid test valid test

DSP 2.33 2.39 3.29 2.98
Ours 2.88 3.22 4.16 4.94

The results in Table 10 indicate that our method exhibits a slight increase in both the frequency of Sledgehammer calls and
their execution times in comparison with DSP. Specifically, this increase is primarily observed in statements that our method
can solve but DSP cannot. For these statements, the number of Sledgehammer calls on the miniF2F-valid and miniF2F-test
are 3.21 and 5.38, respectively. This suggests that the need for Sledgehammer becomes more important as the problem’s
complexity increases.

D. Discussions about Correlation Between Input Statements and Organization
We further investigate the relationship between input statements and the demonstration organization generated by diffusion
models within the miniF2F dataset. We aimed to determine whether the diffusion model tends to generate a generic
organization broadly applicable across various statements or if it tailors unique organizations to individual statements.

The empirical results suggest that there is not a “one-size-fits-all” optimal demonstration organization. Specifically, even the
most adaptable organization we identified could successfully prove only 3 distinct statements. Furthermore, we only observed
4 instances of such adaptable organizations on the miniF2F-test. This highlights the tailored nature of each organization to its
corresponding statement. The limited scope of even the most adaptable organization indicates the challenge in identifying the

27

Subgoal-based Demonstration Learning for Formal Theorem Proving

optimal demonstration organization for each unique statement. This complexity further emphasizes the effectiveness of our
model in efficiently searching for and determining the most suitable demonstration organization for individual statements.

E. Discussions about the Train/Test Data Leakage
The potential for train/test leakage, stemming from the use of original problem names from the miniF2F dataset, was brought
to our attention. In response, we undertook a thorough analysis. Our findings indicated that about 32.0% of problems
could be identifiable by ChatGPT based on their names, and approximately 40% of informal statements were susceptible to
leakage. To further elucidate this, a comprehensive manual search was conducted on the test set’s informal statements and
their corresponding proofs. This search revealed that around 40% had been available online before September 1, 2021, with
platforms like Mathway and Mathematics Stack Exchange being significant contributors. Despite several miniF2F problems
lacking Isabelle solutions, we revised the potentially leaked statements. Experiments with randomized identifiers further
confirmed that our method’s performance is not contingent on data leakage (see Appendix C.5).

F. Additional Examples
We provide additional cases in Figure 13 to 18 to demonstrate the efficacy of our method.6

Figures 13 to 15 display examples where our method effectively guides the proof process. For instance, in Figure 13, the
method leverages demonstrations involving division and modulus operations, successfully navigating towards a clear proof
path. Similarly, in Figure 14, it utilizes demonstrations based on squaring and square root operations, accurately predicting
potential subgoals. Figure 15 continues this trend, demonstrating our method’s consistent ability to discern viable subgoals,
thus facilitating the construction of proofs.

Additionally, Figures 16 to 18 display the same statements as Figures 13 to 15 but with the demonstration examples reordered.
This reorganization illustrates the impact of demonstration order on the generation of proofs, revealing how changes in the
order can lead to unexpected errors. The comparison between these two groups highlights the significance of demonstration
organization in influencing final performance.

6In Figures 13 to 18, identical statements are guided by a consistent set of demonstration examples, but in a different order. Some less
relevant demonstration examples have been omitted due to space constraints.

28

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Let 𝑛 be an integer and 𝑝 be a prime number. Show that 𝑝 divides 𝑛 if and only if 𝑛! is congruent to 0 modulo 𝑝.

Proof:
theorem numbertheory_prmdvsneqnsqmodpeq0:

fixes n :: int
and p :: nat

assumes "prime p"
shows "p dvd n \<longleftrightarrow> (n^2) mod p = 0"
(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛! is congruent to 0 modulo 𝑝.

Step 2: Assume that 𝑛! is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)
proof -

(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛! is congruent to 0 modulo 𝑝.*)
assume "p dvd n"
then show "(n^2) mod p = 0" sledgehammer
(* Step 2: Assume that 𝑛! is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)
next assume "(n^2) mod p = 0"
then show "p dvd n" sledgehammer

qed

Problem:
Prove that for any natural number 𝑛, 3 divides 𝑛" + 2𝑛.

Proof:
theorem induction_divisibility_3divnto3m2n:

fixes n::nat
shows "3 dvd n^3 + 2 * n"
(* Step 1: Prove the base case 𝑛 = 0.

Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.
Step 3: Expand (𝑛 + 1)"+2(𝑛 + 1) and simplify.
Step 4: Use the assumption that 3 divides 𝑛" + 2𝑛 to show that 3 divides 3𝑛! + 3𝑛 + 3.
Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)"+2(𝑛 + 1) .
Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)

proof (induct n)
(* Step 1: Prove the base case 𝑛 = 0.*)
case 0

then show ?case sledgehammer
(* Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.*)
next case (Suc n)
have ?case when "n=0"

using that sledgehammer
moreover have ?case when "n>0"
proof -
(* Step 3: Expand (𝑛 + 1)"+2(𝑛 + 1) and simplify.*)

have "(n + 1)^3 + 2 * (n + 1) = (n^3+3*n^2+3*n+1) + (2*n+2)"
unfolding power3_eq_cube power2_eq_square sledgehammer

also have "... = n^3+2*n + 3*n^2+3*n+3" sledgehammer
finally have "(n+1)^3+2*(n+1) = n^3+2*n + 3*n^2+3*n+3".

(* Step 4: Use the assumption that 3 divides 𝑛" + 2𝑛 to show that 3 divides 3𝑛! + 3𝑛 + 3.*)
moreover have "3 dvd n^3+2*n" using Suc(1) sledgehammer
moreover have "3 dvd 3*n^2+3*n+3" sledgehammer

(* Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)"+2(𝑛 + 1) .*)
ultimately have "3 dvd (n+1)^3+2*(n+1)" sledgehammer

(* Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)
then show ?thesis sledgehammer

qed
ultimately show ?case sledgehammer

qed

Problem:
Suppose 𝑛 is a natural number such that 𝑛 leaves a remainder of 3 when divided by 7. Show that (2𝑛 + 1) leaves a remainder of 0 when divided by 7.

Proof:
theorem mathd_numbertheory_370:

fixes n :: nat
assumes h0 : "n mod 7 = (3::nat)"
shows "(2*n+1) mod 7 = (0::nat)"

(* Step 1: Express 𝑛 as 7𝑘 + 3 for some 𝑘𝜖ℕ$.
Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.
Step 3: Show that the resulting expression is divisible by 7. *)

proof -
(* Step 1: Express 𝑛 as 7𝑘 + 3 for some 𝑘𝜖ℕ$.*)
have "n = 7 * (n div 7) + (n mod 7)" using div_mult_mod_eq[of "n" "7"] sledgehammer
also have "... = 7 * (n div 7) + 3" using h0 sledgehammer
finally have c0: "n = 7 * (n div 7) + 3".
(* Step 2: Substitute the expression for 𝑛 into the expression for 2𝑛 + 1 and simplify.*)
have "2*n+1 = 2*(7*(n div 7) + 3) + 1" using c0 sledgehammer
also have "... = 14*(n div 7) + 7" sledgehammer
also have "... = 7*(2*(n div 7) + 1)" sledgehammer
finally have c1: "2*n+1 = 7*(2*(n div 7) + 1)".
(* Step 3: Show that the resulting expression is divisible by 7. *)
show "(2*n+1) mod 7 = 0" using c1 sledgehammer

qed

Prompt

ChatGPT Output

Figure 13. A case from miniF2F-valid. Our method identifies viable subgoals and leverages demonstration examples with division and
modulus operations to complete the proof.

29

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Suppose that 𝑥 is a positive real number. Show that 2 − 2 ≥ 2 − 𝑥 − !

"#
.

Proof:
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x:

fixes x :: real
assumes "x > 0"
shows "2 - sqrt 2 \<ge> 2 - x - 1/ (2 * x)"
(* Step 1: Show that 2 ≤ 𝑥 + !

"#
.

Step 2: Rearrange the inequality to get 2𝑥" + 1 − 2𝑥 2 ≥ 0.
Step 3: Factor the expression to get (2𝑥 − 1)"≥ 0.
Step 4: Conclude that the inequality is true. *)

proof -
(* Step 1: Show that 2 ≤ 𝑥 + !

"#
.*)

have c0: "2 * x > 0" using assms sledgehammer
have "sqrt 2 \<le> x + 1 / (2 * x)"
proof -

define y where "y = sqrt 2"
have c1: "2 = y * y"
proof -

have "2 = (sqrt 2) * (sqrt 2)" sledgehammer
then have "... = y * y" using \<open>y = sqrt 2\<close> sledgehammer
then show ?thesis sledgehammer

qed
have "(2 * x) * x + 1 - (2 * x) * (sqrt 2) = (y * y * x * x) + 1 - (2 * x) * y" using c1 y_def sledgehammer
also have "... = (y*x) * (y*x) - 2 * (y*x) + 1" sledgehammer
also have "... = (y*x - 1) * (y*x - 1)" sledgehammer
also have "... \<ge> 0" sledgehammer
ultimately have c2: "(2 * x) * x + 1 - (2 * x) * (sqrt 2) \<ge> 0" sledgehammer
have "(2*x) * (x + 1/(2*x) - sqrt 2) = (2 * x) * x + (2 * x) * (1/(2*x)) - (2*x) * sqrt 2" sledgehammer
also have "... = (2 * x) * x + 1 - (2*x) * sqrt 2" using c0 sledgehammer
(* Step 2: Rearrange the inequality to get 2𝑥" + 1 − 2𝑥 2 ≥ 0.*)
also have "... \<ge> 0" using c2 sledgehammer
(* Step 3: Factor the expression to get (2𝑥 − 1)"≥ 0.*)
ultimately have "(2*x) * (x + 1/(2*x) - sqrt 2) \<ge> 0" sledgehammer
hence "x + 1/(2*x) - sqrt 2 \<ge> 0" using mult_pos_pos sledgehammer
(* Step 4: Conclude that the inequality is true. *)
then show ?thesis sledgehammer

qed
then show ?thesis sledgehammer

qed

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that 𝑥 + 𝑦 = 13 and 𝑥𝑦 = 24. Find 𝑥" + 𝑦" and show that it is equal to 11.

Proof:
theorem mathd_algebra_510:

fixes x y :: real
assumes h0 : "x+y=13"

and h1 : "x*y=24"
shows "sqrt (x^2 + y^2) = 11"
(* Step 1: Use the identity 𝑥" + 𝑦" = 𝑥 + 𝑦 " − 2𝑥𝑦 to find 𝑥" + 𝑦" in terms of 𝑥 and 𝑦.

Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥" + 𝑦" .
Step 3: Show that 𝑥" + 𝑦" = 121.
Step 4: Take the square root of both sides to find 𝑥" + 𝑦".
Step 5: Show that 𝑥" + 𝑦" = 11. *)

proof -
(* Step 1: Use the identity 𝑥" + 𝑦" = 𝑥 + 𝑦 " − 2𝑥𝑦 to find 𝑥" + 𝑦" in terms of 𝑥 and 𝑦. *)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥" + 𝑦" . *)
also have "... = (13)^2 - 2*24" using h0 h1 sledgehammer
(* Step 3: Show that 𝑥" + 𝑦" = 121. *)
also have "... = 121" sledgehammer
finally have c1: "x^2 + y^2 = 121" sledgehammer
(* Step 4: Take the square root of both sides to find 𝑥" + 𝑦". *)
then show ?thesis sledgehammer
(* Step 5: Show that 𝑥" + 𝑦" = 11. *)

qed

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that #$%

"
= 7 and 𝑥𝑦 = 19. Find 𝑥" + 𝑦".

Proof:
theorem mathd_algebra_332:

fixes x y ::real
assumes "(x + y) / 2 = 7"

and "sqrt (x * y) = sqrt 19"
shows "x^2 + y^2 = 158"

(* Step 1: Use the identity (𝑥 + 𝑦)"= 𝑥" + 2𝑥𝑦 + 𝑦" to find 𝑥" + 𝑦" in terms of 𝑥 + 𝑦 and 𝑥𝑦.
Step 2: Substitute the given values of 𝑥 + 𝑦 and 𝑥𝑦 to find 𝑥" + 𝑦".
Step 3: Show that 𝑥" + 𝑦" = 158. *)

proof -
(* Step 1: Use the identity (𝑥 + 𝑦)"= 𝑥" + 2𝑥𝑦 + 𝑦" to find 𝑥" + 𝑦" in terms of 𝑥 + 𝑦 and 𝑥𝑦. *)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 + 𝑦 and 𝑥𝑦 to find 𝑥" + 𝑦". *)
also have "... = (2*7)^2 - 2*(sqrt 19)^2" using assms sledgehammer
(* Step 3: Show that 𝑥" + 𝑦" = 158. *)
also have "... = 158" sledgehammer
finally show "x^2 + y^2 = 158" sledgehammer

qed

Prompt

ChatGPT Output

Figure 14. A case from miniF2F-test. Our method predicts viable subgoals and utilizes demonstration examples involving squaring and
square root operations to finalize the proof.

30

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Given a real number n such that 𝑛 ≠ 3 and ("#$)

("&')
= 2, show that 𝑛 = 11.

Proof:
theorem mathd_algebra_181:

fixes n :: real
assumes h0 : "n \<noteq> 3" and h1 : "(n+5) / (n-3) = 2"
shows "n=11"
(* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛.

Step 2: Simplify the equation to obtain an expression for 𝑛.
Step 3: Show that the expression for 𝑛 is equal to 11. *)

proof -
(* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛. *)

have "n+5 = 2 * (n-3)" using h0 h1 sledgehammer
(* Step 2: Simplify the equation to obtain an expression for 𝑛. *)
thus ?thesis sledgehammer
(* Step 3: Show that the expression for 𝑛 is equal to 11. *)

qed

Problem:
Prove by induction that the sum of the first 𝑛 odd numbers is 𝑛(.

Proof:
theorem induction_sum_odd:

fixes n :: nat
assumes "n > 0"
shows "(\<Sum> (k::nat) = 0..(n-1). 2 * k + 1) = n^2"
(* Step 1: Base case: Show that the sum of the first odd number is 1.

Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(.
Step 3: Combine the two steps to complete the proof. *)

using assms
proof (induct n)

(* Step 1: Base case: Show that the sum of the first odd number is 1. *)
case (Suc n)
have ?case when "n=0" using that sledgehammer
(* Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(. *)
moreover have ?case when "n>0"
proof -

have "(\<Sum>k = 0..(n-1). 2 * k + 1) = n^2" using Suc(1) that sledgehammer
then have "(\<Sum>k = 0..(n-1). 2 * k + 1) + (2 * n + 1) = n^2 + 2 * n + 1" sledgehammer
then show ?thesis sledgehammer

qed
(* Step 3: Combine the two steps to complete the proof. *)
ultimately show ?case sledgehammer

qed simp

Problem:
For any natural number 𝑛 greater than or equal to 9, there exists a natural number 𝑥 such that 𝑥(is equal to the quotient of the difference between the
factorial of 𝑛 + 2 and the factorial of 𝑛 + 1 divided by the factorial of 𝑛.

Proof:
theorem amc12b_2020_p6:

fixes n :: nat
assumes h0: "9 \<le> n"
shows "\<exists>x::nat. (real_of_nat x)^2 = (fact (n + 2)

- fact (n + 1)) / fact n"

(* Step 1: Use the definition of factorial to simplify the expression.
Step 2: Rearrange the expression to obtain a perfect square.
Step 3: Show that the perfect square is a natural number. *)

proof -
(* Step 1: Use the definition of factorial to simplify the expression. *)
have "(fact (n + 2) - fact (n + 1)) / fact n = ((n+2)*(n+1)*fact n - (n+1)*fact n) / fact n" using fact_reduce[of "n+1"] sledgehammer
(* Step 2: Rearrange the expression to obtain a perfect square. *)
also have "... = (n+1) * (n+2) - (n+1)" sledgehammer
also have "... = (n+1)^2" sledgehammer
(* Step 3: Show that the perfect square is a natural number. *)
finally show ?thesis using assms sledgehammer

qed

Prompt

ChatGPT Output

Figure 15. A case from miniF2F-test. Our method recognizes viable subgoals and successfully finishes the proof.

31

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Prove that for any natural number 𝑛, 3 divides 𝑛! + 2𝑛.

Proof:
theorem induction_divisibility_3divnto3m2n:

fixes n::nat
shows "3 dvd n^3 + 2 * n"
(* Step 1: Prove the base case 𝑛 = 0.

Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.
Step 3: Expand (𝑛 + 1)!+2(𝑛 + 1) and simplify.
Step 4: Use the assumption that 3 divides 𝑛! + 2𝑛 to show that 3 divides 3𝑛" + 3𝑛 + 3.
Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)!+2(𝑛 + 1) .
Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)

proof (induct n)
(* Step 1: Prove the base case 𝑛 = 0.*)
case 0

then show ?case sledgehammer
(* Step 2: Assume the statement is true for some 𝑛 and prove it for 𝑛 + 1.*)
next case (Suc n)
have ?case when "n=0"

using that sledgehammer
moreover have ?case when "n>0"
proof -
(* Step 3: Expand (𝑛 + 1)!+2(𝑛 + 1) and simplify.*)

have "(n + 1)^3 + 2 * (n + 1) = (n^3+3*n^2+3*n+1) + (2*n+2)"
unfolding power3_eq_cube power2_eq_square sledgehammer

also have "... = n^3+2*n + 3*n^2+3*n+3" sledgehammer
finally have "(n+1)^3+2*(n+1) = n^3+2*n + 3*n^2+3*n+3".

(* Step 4: Use the assumption that 3 divides 𝑛! + 2𝑛 to show that 3 divides 3𝑛" + 3𝑛 + 3.*)
moreover have "3 dvd n^3+2*n" using Suc(1) sledgehammer
moreover have "3 dvd 3*n^2+3*n+3" sledgehammer

(* Step 5: Combine steps 3 and 4 to show that 3 divides (𝑛 + 1)!+2(𝑛 + 1) .*)
ultimately have "3 dvd (n+1)^3+2*(n+1)" sledgehammer

(* Step 6: Conclude that the statement is true for all natural numbers 𝑛. *)
then show ?thesis sledgehammer

qed
ultimately show ?case sledgehammer

qed

Problem:
Let 𝑛 be an integer and 𝑝 be a prime number. Show that 𝑝 divides 𝑛 if and only if 𝑛" is congruent to 0 modulo 𝑝.

Proof:
theorem numbertheory_prmdvsneqnsqmodpeq0:

fixes n :: int
and p :: nat

assumes "prime p"
shows "p dvd n \<longleftrightarrow> (n^2) mod p = 0"
(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛" is congruent to 0 modulo 𝑝.

Step 2: Assume that 𝑛" is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)
proof -

(* Step 1: Assume that 𝑝 divides 𝑛. Show that 𝑛" is congruent to 0 modulo 𝑝.*)
assume "p dvd n"
then show "(n^2) mod p = 0" sledgehammer
(* Step 2: Assume that 𝑛" is congruent to 0 modulo 𝑝. Show that 𝑝 divides 𝑛. *)
next assume "(n^2) mod p = 0"
then show "p dvd n" sledgehammer

qed

Problem:
Suppose 𝑛 is a natural number such that 𝑛 leaves a remainder of 3 when divided by 7. Show that (2𝑛 + 1) leaves a remainder of 0 when divided by 7.

Proof:
theorem mathd_numbertheory_370:

fixes n :: nat
assumes h0 : "n mod 7 = (3::nat)"
shows "(2*n+1) mod 7 = (0::nat)"

(* Step 1: Express 𝑛 in terms of 7𝑘 + 3 for some 𝑘 ∈ ℕ.
Step 2: Substitute the expression for 𝑛 into (2𝑛 + 1) and simplify.
Step 3: Show that the result from Step 2 leaves a remainder of 0 when divided by 7. *)

proof -
(* Step 1: Express 𝑛 in terms of 7𝑘 + 3 for some 𝑘 ∈ ℕ. *)
have "n = 7 * (n div 7) + (n mod 7)" using div_mult_mod_eq[of "n" "7"] sledgehammer
also have "... = 7 * (n div 7) + 3" using h0 sledgehammer
finally have c0: "n = 7 * (n div 7) + 3" .
(* Step 2: Substitute the expression for 𝑛 into (2𝑛 + 1) and simplify.*)
have "(2*n+1) = 2*(7*(n div 7) + 3) + 1" using c0 sledgehammer
also have "... = 14*(n div 7) + 7" sledgehammer
also have "... = 7*(2*(n div 7) + 1)" sledgehammer
finally have c1: "(2*n+1) = 7*(2*(n div 7) + 1)" .
(* Step 3: Show that the result from Step 2 leaves a remainder of 0 when divided by 7. *)
have "(2*(n div 7) + 1) mod 7 = 0" using mod_mult_self2[of "2*(n div 7) + 1" "7"] sledgehammer

Prompt

ChatGPT Output

Step error: Outer syntax error (line 1): command expected, but identifier error (line 1) was found At command \"<malformed>\" (line 1)

Figure 16. A case from miniF2F-valid. The shuffled demonstration organization results in the incorrect application of the
“mod mult self2” theorem.

32

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that 𝑥 + 𝑦 = 13 and 𝑥𝑦 = 24. Find 𝑥! + 𝑦! and show that it is equal to 11.

Proof:
theorem mathd_algebra_510:

fixes x y :: real
assumes h0 : "x+y=13"

and h1 : "x*y=24"
shows "sqrt (x^2 + y^2) = 11"
(* Step 1: Use the identity 𝑥! + 𝑦! = 𝑥 + 𝑦 ! − 2𝑥𝑦 to find 𝑥! + 𝑦! in terms of 𝑥 and 𝑦.

Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥! + 𝑦! .
Step 3: Show that 𝑥! + 𝑦! = 121.
Step 4: Take the square root of both sides to find 𝑥! + 𝑦!.
Step 5: Show that 𝑥! + 𝑦! = 11. *)

proof -
(* Step 1: Use the identity 𝑥! + 𝑦! = 𝑥 + 𝑦 ! − 2𝑥𝑦 to find 𝑥! + 𝑦! in terms of 𝑥 and 𝑦. *)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥! + 𝑦! . *)
also have "... = (13)^2 - 2*24" using h0 h1 sledgehammer
(* Step 3: Show that 𝑥! + 𝑦! = 121. *)
also have "... = 121" sledgehammer
finally have c1: "x^2 + y^2 = 121" sledgehammer
(* Step 4: Take the square root of both sides to find 𝑥! + 𝑦!. *)
then show ?thesis sledgehammer
(* Step 5: Show that 𝑥! + 𝑦! = 11. *)

qed

Problem:
Suppose that 𝑥 is a positive real number. Show that 2 − 2 ≥ 2 − 𝑥 − "

!#
.

Proof:
theorem algebra_amgm_faxinrrp2msqrt2geq2mxm1div2x:

fixes x :: real
assumes "x > 0"
shows "2 - sqrt 2 \<ge> 2 - x - 1/ (2 * x)"
(* Step 1: Show that 2 ≤ 𝑥 + "

!#
.

Step 2: Rearrange the inequality to get 2𝑥! + 1 − 2𝑥 2 ≥ 0.
Step 3: Factor the expression to get (2𝑥 − 1)!≥ 0.
Step 4: Conclude that the inequality is true. *)

proof -
(* Step 1: Show that 2 ≤ 𝑥 + "

!#
.*)

have c0: "2 * x > 0" using assms sledgehammer
have "sqrt 2 \<le> x + 1 / (2 * x)"
proof -

define y where "y = sqrt 2"
have c1: "2 = y * y"
proof -

have "2 = (sqrt 2) * (sqrt 2)" sledgehammer
then have "... = y * y" using \<open>y = sqrt 2\<close> sledgehammer
then show ?thesis sledgehammer

qed
have "(2 * x) * x + 1 - (2 * x) * (sqrt 2) = (y * y * x * x) + 1 - (2 * x) * y" using c1 y_def sledgehammer
also have "... = (y*x) * (y*x) - 2 * (y*x) + 1" sledgehammer
also have "... = (y*x - 1) * (y*x - 1)" sledgehammer
also have "... \<ge> 0" sledgehammer
ultimately have c2: "(2 * x) * x + 1 - (2 * x) * (sqrt 2) \<ge> 0" sledgehammer
have "(2*x) * (x + 1/(2*x) - sqrt 2) = (2 * x) * x + (2 * x) * (1/(2*x)) - (2*x) * sqrt 2" sledgehammer
also have "... = (2 * x) * x + 1 - (2*x) * sqrt 2" using c0 sledgehammer
(* Step 2: Rearrange the inequality to get 2𝑥! + 1 − 2𝑥 2 ≥ 0.*)
also have "... \<ge> 0" using c2 sledgehammer
(* Step 3: Factor the expression to get (2𝑥 − 1)!≥ 0.*)
ultimately have "(2*x) * (x + 1/(2*x) - sqrt 2) \<ge> 0" sledgehammer
hence "x + 1/(2*x) - sqrt 2 \<ge> 0" using mult_pos_pos sledgehammer
(* Step 4: Conclude that the inequality is true. *)
then show ?thesis sledgehammer

qed
then show ?thesis sledgehammer

qed

Problem:
Suppose that 𝑥 and 𝑦 are two real numbers such that #$%

!
= 7 and 𝑥𝑦 = 19. Find 𝑥! + 𝑦!.

Proof:
theorem mathd_algebra_332:

fixes x y ::real
assumes "(x + y) / 2 = 7"

and "sqrt (x * y) = sqrt 19"
shows "x^2 + y^2 = 158"

(* Step 1: Use the identity 𝑥! + 𝑦! = (𝑥 + 𝑦)!−2𝑥𝑦 to find 𝑥! + 𝑦! in terms of 𝑥 and 𝑦.
Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥! + 𝑦!.
Step 3: Show that 𝑥! + 𝑦! = 158. *)

proof -
(* Step 1: Use the identity 𝑥! + 𝑦! = (𝑥 + 𝑦)!−2𝑥𝑦 to find 𝑥! + 𝑦! in terms of 𝑥 and 𝑦.*)
have c0: "x^2 + y^2 = (x+y)^2 - 2*x*y" sledgehammer
(* Step 2: Substitute the given values of 𝑥 and 𝑦 to find 𝑥! + 𝑦!. *)
also have "... = 2*7^2 - 2*19 " using assms sledgehammer

Prompt

ChatGPT Output

Step error: Outer syntax error (line 1): command expected, but identifier error (line 1) was found At command \"<malformed>\" (line 1)

Figure 17. A case from miniF2F-test. The shuffled demonstration organization leads to an unsuitable conjecture, “... = 272 − 219,” which
cannot be proved using the Sledgehammer.

33

Subgoal-based Demonstration Learning for Formal Theorem Proving

As a mathematician familiar with Isabelle, your task is to provide a formal proof in response to a given problem statement.
Your proof should be structured and clearly written, meeting the following criteria:
- It can be verified by Isabelle.
- Each step of the proof should be explained in detail using comments enclosed in "(*" and "*)".
- The explanation for each step should be clear and concise, avoiding any unnecessary or apologetic language.
Please ensure that your proof is well-organized and easy to follow, with each step building upon the previous one.

Problem:
Given a real number n such that 𝑛 ≠ 3 and ("#$)

("&')
= 2, show that 𝑛 = 11.

Problem:
Prove by induction that the sum of the first 𝑛 odd numbers is 𝑛(.

Proof:
theorem induction_sum_odd:
 fixes n :: nat
 assumes "n > 0"
 shows "(\<Sum> (k::nat) = 0..(n-1). 2 * k + 1) = n^2"
 (* Step 1: Base case: Show that the sum of the first odd number is 1.
 Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(.
 Step 3: Combine the two steps to complete the proof. *)
 using assms
proof (induct n)
 (* Step 1: Base case: Show that the sum of the first odd number is 1. *)
 case (Suc n)
 have ?case when "n=0" using that sledgehammer
 (* Step 2: Inductive step: Assume that the sum of the first 𝑛 odd numbers is 𝑛(. Show that the sum of the first 𝑛 + 1 odd numbers is (𝑛 + 1)(. *)
 moreover have ?case when "n>0"
 proof -
 have "(\<Sum>k = 0..(n-1). 2 * k + 1) = n^2" using Suc(1) that sledgehammer
 then have "(\<Sum>k = 0..(n-1). 2 * k + 1) + (2 * n + 1) = n^2 + 2 * n + 1" sledgehammer
 then show ?thesis sledgehammer
 qed
 (* Step 3: Combine the two steps to complete the proof. *)
 ultimately show ?case sledgehammer
qed simp

Proof:
theorem mathd_algebra_181:
 fixes n :: real
 assumes h0 : "n \<noteq> 3" and h1 : "(n+5) / (n-3) = 2"
 shows "n=11"
 (* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛.

 Step 2: Simplify the equation to obtain an expression for 𝑛.
 Step 3: Show that the expression for 𝑛 is equal to 11. *)
proof -
 (* Step 1: Use the given equation ("#$)

("&')
= 2 to obtain an equation involving 𝑛. *)

 have "n+5 = 2 * (n-3)" using h0 h1 sledgehammer
 (* Step 2: Simplify the equation to obtain an expression for 𝑛. *)
 thus ?thesis sledgehammer
 (* Step 3: Show that the expression for 𝑛 is equal to 11. *)
qed

Problem:
For any natural number 𝑛 greater than or equal to 9, there exists a natural number 𝑥 such that 𝑥(is equal to the quotient of the difference between the
factorial of 𝑛 + 2 and the factorial of 𝑛 + 1 divided by the factorial of 𝑛.

Proof:
theorem amc12b_2020_p6:

fixes n :: nat
assumes h0: "9 \<le> n"
shows "\<exists>x::nat. (real_of_nat x)^2 = (fact (n + 2)

- fact (n + 1)) / fact n"

 (* Step 1: Simplify the expression on the right-hand side of the equation using the definition of factorial.
Step 2: Rearrange the equation to obtain an expression for 𝑥(.
Step 3: Show that the expression for 𝑥(is a perfect square.
Step 4: Conclude that there exists a natural number 𝑥 such that 𝑥(is equal to the given expression. *)

proof -
(* Step 1: Simplify the expression on the right-hand side of the equation using the definition of factorial. *)
have "(fact (n + 2) - fact (n + 1)) / fact n = ((n + 2) * fact (n + 1) - fact (n + 1)) / fact n" by (simp add: fact_reduce)

Prompt

ChatGPT Output

Step error: Failed to finish proof (line 1): goal (1 subgoal):
1. (2 + real n) * ((1 + real n) * fact n) - (1 + real n) * fact n = fact n + real n * fact n + real n * (fact n + real n * fact n)

At command \“by\” (line 1)

Figure 18. A case from miniF2F-test. The shuffling of the optimal demonstration organization leads to a complex and unresolved equation,
which further results in a failure to properly simplify the factorial expression.

34

