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Abstract

We provide a statistical analysis of regularization-
based continual learning on a sequence of linear
regression tasks, with emphasis on how differ-
ent regularization terms affect the model perfor-
mance. We first derive the convergence rate for
the oracle estimator obtained as if all data were
available simultaneously. Next, we consider a
family of generalized ℓ2-regularization algorithms
indexed by matrix-valued hyperparameters, which
includes the minimum norm estimator and con-
tinual ridge regression as special cases. As more
tasks are introduced, we derive an iterative up-
date formula for the estimation error of general-
ized ℓ2-regularized estimators, from which we
determine the hyperparameters resulting in the
optimal algorithm. Interestingly, the choice of
hyperparameters can effectively balance the trade-
off between forward and backward knowledge
transfer and adjust for data heterogeneity. More-
over, the estimation error of the optimal algorithm
is derived explicitly, which is of the same order
as that of the oracle estimator. In contrast, our
lower bounds for the minimum norm estimator
and continual ridge regression show their subopti-
mality. A byproduct of our theoretical analysis is
the equivalence between early stopping and gen-
eralized ℓ2-regularization in continual learning,
which may be of independent interest. Finally, we
conduct experiments to complement our theory.
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1. Introduction
Continual learning (CL) in machine learning involves train-
ing a model continuously across multiple tasks, constrained
by limited memory. As more tasks are introduced and ad-
ditional data samples are collected, it is expected that the
model will exhibit enhanced performance on both old and
new tasks. However, due to memory limits, not all past data
can be retained; typically, only a subset of the data or sum-
mary statistics are stored. This makes continual learning
more challenging than single-task learning, as it prohibits
the simple pooling of all samples (Parisi et al., 2019). Alter-
natively, without using exceedingly large long-term memory,
we can view continual learning as an online multi-task prob-
lem where a model is sequentially fitted to data provided
for each task. However, such an approach may result in
poor performance of the current model on previous tasks, a
phenomenon known as catastrophic forgetting (McCloskey
& Cohen, 1989; Goodfellow et al., 2014). Clearly, forget-
ting information from earlier tasks undermines the overall
effectiveness of the model.

There are two goals of continual learning algorithms. One
is the forward knowledge transfer, which focuses on trans-
ferring knowledge from previous tasks to make learning on
new tasks simpler. The other is the backward knowledge
transfer (Lin et al., 2023), which aims to address the issue
of catastrophic forgetting when learning new tasks and keep
the overall performance improving over time. From a sta-
tistical perspective, the main difficulty in these two goals
is heterogeneity among tasks, i.e., the data distribution can
vary across different tasks. In the presence of heterogeneity,
the forward and backward knowledge transfer can contradict
each other, between which a trade-off will arise (Lin et al.,
2023; Wang et al., 2024). An ideal CL algorithm should
properly balance the knowledge extracted from old tasks
and the information contained in new samples to achieve
both forward and backward knowledge transfer.

To resolve the conflict, many algorithms have been proposed
recently. Roughly speaking, these algorithms fall into three
categories: regularization-based methods (Kirkpatrick et al.,
2017; Aljundi et al., 2018; Liu & Liu, 2022), replay-based
methods (Chaudhry et al., 2019; Riemer et al., 2019; Jin
et al., 2021), and expansion-based methods (Serra et al.,
2018; Yoon et al., 2020; Yang et al., 2021). The common
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intuition underlying these algorithms is applying different
techniques that can use old information to constrain the
model’s change on new tasks, thereby achieving forward
and backward knowledge transfer simultaneously. How-
ever, the theoretical understanding of CL algorithms is still
underdeveloped. In particular, none of the existing work
shows an explicit trade-off between forward and backward
knowledge transfer, let alone offering a guidance on how to
balance them properly. Also, the roles of heterogeneity and
noise are not fully discussed, which are crucial aspects of
practical continual learning.

In this paper, we enrich the existing literature by establish-
ing theoretical properties of regularization-based contin-
ual learning algorithms within the linear regression frame-
work. Our analysis includes considerations for heterogene-
ity, noise, and overparametrization, and offers an in-depth
investigation of the trade-off between forward and back-
ward knowledge transfer. Specifically, our contributions are
summarized as follows.

• We provide lower bounds for two continual learning al-
gorithms, i.e., the minimum norm estimator (Lin et al.,
2023) and continual ridge regression (Li et al., 2023).
These bounds reveal their suboptimality compared to
the oracle estimator, which motivates us to study some
new algorithms.

• We point out two main reasons for the failure of the
above two methods: forward–backward trade-off and
information heterogeneity. The former is essentially
the trade-off between the information carried in old
tasks and that in the new task, and the latter means that
the knowledge carried in different tasks varies.

• Inspired by our findings, we propose a generalized ℓ2-
regularized estimator. By choosing its hyperparameters
properly to deal with the forward–backward trade-off
and information heterogeneity, we show that our esti-
mator attains the error rate of the oracle estimator and
hence avoids catastrophic forgetting.

• We establish the relationship between early stopping
between ℓ2-regularization in continual linear regres-
sion. We show that, if the learning rate of gradient
descent takes a more general form as in our gener-
alized ℓ2-regularization, then these two methods are
actually equivalent. This can be viewed as an extension
of similar results shown for learning a single task.

• We conduct simulation experiments to complement our
theory. We obtain a practical algorithm based on the
above theoretical results, which has a close connec-
tion with elastic weighted consolidation (EWC). We
illustrate its performance through simulations.

1.1. Related Work

Continual learning algorithms. Over the past several
years, continual learning has attracted considerable attention,
leading to the proposal of numerous empirical algorithms
aimed at mitigating catastrophic forgetting. Broadly speak-
ing, these methods can be categorized into three groups:
(1) regularization-based methods (Kirkpatrick et al., 2017;
Aljundi et al., 2018; Liu & Liu, 2022), which regularize
modifications to the importance weights for old tasks when
learning the new task; (2) expansion-based methods (Serra
et al., 2018; Yoon et al., 2020; Yang et al., 2021), which learn
a mask to fix the importance weights for old tasks during
the new task learning and further expand the neural network
when needed; (3) memory-based methods, which either
store and replay the data from old tasks when learning the
new task, i.e., experience-replay based methods (Chaudhry
et al., 2019; Riemer et al., 2019; Jin et al., 2021), or store
the gradient information from old tasks and learn the new
task in the direction orthogonal to old tasks, i.e., orthogonal-
projection based methods (Farajtabar et al., 2020; Saha et al.,
2021; Lin et al., 2022).

Theoretical studies in CL. McCloskey & Cohen (1989)
proposed a unified framework for the performance analysis
of regularization-based CL methods, by formulating them as
a second-order Taylor approximation of the loss function for
each task. Bennani et al. (2020) and Doan et al. (2021) ana-
lyzed generalization error and forgetting for the orthogonal
gradient descent (OGD) approach (Yin et al., 2020) based
on NTK models, and further proposed variants of OGD to
address forgetting. Lee et al. (2021) and Asanuma et al.
(2021) studied CL in the teacher–student setup to character-
ize the impact of task similarity on forgetting performance.
Cao et al. (2022) and Li et al. (2022) investigated continual
representation learning with dynamically expanding feature
spaces, and developed provably efficient CL methods with
a characterization of the sample complexity.

Besides, there are some theoretical works on regularization-
based methods. Evron et al. (2022) studied the minimum
norm estimator in CL under an overparameterized and noise-
free setup. Li et al. (2023) gave a fixed design analysis of
continual ridge regression for two-task linear regression.

Chen et al. (2022) characterized the lower memory bound
in CL using the PAC framework. Andle & Yasaei Sekeh
(2022) analyzed the selection of frozen filters based on layer
sensitivity to maximize the performance of CL. Wen et al.
(2024) studied the contrastive CL methods and provided
upper and lower performance bounds. Yang et al. (2022)
presented a CL algorithm based on supervised PCA and
gave a theoretical analysis. Denevi et al. (2019) proposed to
add a bias term to SGD and showed improved performance
theoretically.
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2. Continual Linear Regression
Data. We consider a standard continual learning problem
where a sequence of tasks indexed by t = 1, . . . , T arrives
sequentially. Suppose that each task t holds a dataset Dt =

{(x(t)
i , y

(t)
i ) ∈ Rp × R}nt

i=1, where nt denotes its sample
size. We assume that all of the T tasks are generated by a
linear model with the same regression coefficient, i.e., for
all t ∈ [T ] and i ∈ [nt],

y
(t)
i = (x

(t)
i )⊤w∗ + ε

(t)
i , (1)

where w∗ ∈ Rp is the true parameter and ε
(t)
i are inde-

pendent random noises with variance σ2. By stacking
the data as Xt := (x

(t)
1 , . . . ,x

(t)
nt )

⊤ ∈ Rnt×p, yt :=

(y
(t)
1 , . . . , y

(t)
nt ) ∈ Rnt , and εt := (ε

(t)
1 , . . . , ε

(t)
nt ) ∈ Rnt ,

we can rewrite (1) as

yt = Xtw∗ + εt.

We define Σt := X⊤
t X/nt ∈ Rp×p as the covariance

matrix for task t. Note that we do not require nt > p, i.e.,
we allow for overparametrization in any single task.

Evaluation metric. Our goal is to estimate w∗ in the
continual learning setting. For any estimator ŵ, we use
L(ŵ) := E∥ŵ −w∗∥2 to denote its estimation error. Note
that the definition of L applies to each task, since they
share a common true parameter w∗. Based on L, two key
metrics, forgetting and generalization error, can be defined
respectively as

Ft :=
1

t− 1

t−1∑
τ=1

(L(ŵt)− L(ŵτ )),

Gt :=
1

t

t∑
τ=1

L(ŵt) = L(ŵt),

for each t ∈ [T ], where ŵτ denotes the output of a continual
learning algorithm after the arrival of task τ . Small Ft

means that the estimator learned after task t still has good
performance on previous tasks. If Ft < 0 for every t ∈
[T ], the continual learning algorithm achieves consistently
increasing performance and avoids catastrophic forgetting.

Oracle estimator. Without the constraint of continual
learning, i.e., data of all tasks are available simultaneously,
we can estimate w∗ by simply pooling all samples together
and solving the offline optimization problem

min
w

{
T∑

t=1

∥Xtw − yt∥2
}
.

We call its solution the oracle estimator (ORA) and denote
it by

ŵ
(ORA)
T := argmin

w

{
T∑

t=1

∥Xtw − yt∥2
}
. (2)

The oracle estimator cannot be used in continual learning
practice since it requires simultaneous availability of all
data. Nevertheless, it serves as an ideal baseline to gauge
the accuracy of estimating w∗ without continual learning
constraint. If a continual learning algorithm exhibits com-
parable performance to the oracle estimator, then we can
assert the superiority of that algorithm.

3. Learning Algorithms
In this paper, our primary objective is to investigate the
generalized ℓ2-regularization algorithm (GR), which is a
family of regularization-based continual learning algorithms.
Specifically, it sequentially produces an estimate of w∗ as
depicted in Algorithm 1, where {Ht}Tt=1 are user-specified
regularization weight matrices and ∥w − ŵ

(GR)
t−1 ∥2Ht

:=

(w − ŵ
(GR)
t−1 )⊤Ht(w − ŵ

(GR)
t−1 ).

Algorithm 1 Generalized ℓ2-regularization method

Initialization: ŵ(GR)
0 = 0

Iterative update for each task t ∈ [T ]:

ŵ
(GR)
t := argmin

w

{
1

n
∥Xtw − yt∥2

+ ∥w − ŵ
(GR)
t−1 ∥2Ht

} (3)

The choice of {Ht}Tt=1 determines how we navigate the
balance between forward and backward knowledge transfer.
With different choices of {Ht}Tt=1, the GR algorithm en-
compasses several commonly studied algorithms as special
cases. For example, when Ht = λtIp for some λt > 0,
GR becomes the conventional continual ridge regression
algorithm (Li et al., 2023). In the overparameterized sce-
nario where p > nt, if Ht → 0, then GR is equivalent to
the minimum norm estimator (Evron et al., 2022; Lin et al.,
2023).

In the rest of this section, we give an in-depth discussion of
these two algorithms.

3.1. Minimum Norm Estimator

Let γ(t)
j be the jth eigenvalue of Σt. If |{j : γ

(t)
j > 0}| =

nt < p, then there always exists some w that interpolates
the training data of task t, i.e., Xtw = yt. In this overpa-
rameterized regime, some recent works (Evron et al., 2022;
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Lin et al., 2023) studied the the minimum norm estimator
(MN), which is defined in Algorithm 2.

Algorithm 2 Minimum norm estimator

Initialization: ŵ(MN)
0 = 0

Iterative update for each task t ∈ [T ]:

ŵ
(MN)
t = argmin

w

{
∥w − ŵ

(MN)
t−1 ∥2

s.t. Xtw = yt,

}

Compared to ℓ2-regularization methods, MN can be re-
garded as the limit of the ℓ2-regularized estimator when
the penalty strength tends to 0. From this perspective, it
might overly prioritize the data from the new task and un-
derestimate the knowledge embedded in old tasks. Given
that yt = Xtw∗ + εt ̸= Xtw∗, imposing the condition
Xtw = yt on the estimators inevitably introduces the
noise term, which in reality dominates the information when
p > n.

Specifically, the following theorem provides a lower bound
showing that the estimation error of the MN estimator can-
not converge to 0.

Theorem 3.1 (Lower bound for the minimum norm estima-
tor). Suppose that Σt satisfies |{j : γ

(t)
j > 0}| = nt < p.

Then we have

L(ŵ(MN)
t ) ≥ σ2

maxj∈[p] γ
(t)
j

.

From Theorem 3.1 we see that the estimation error of the
minimum norm estimator is lower bounded by a term inde-
pendent of the old tasks.

Consequently, even if the old tasks provide sufficient sam-
ples for an accurate estimate of w∗ or the number of tasks
increases infinitely, the estimation error of the MN estimator
is always lower bounded by a constant that is not approach-
ing 0. Indeed, irrespective of the accuracy of ŵt−1, even if
it precisely matches w∗, the MN estimator cannot leverage
it to obtain a better estimate. This is because the estimator
attempts to interpolate the newly encountered deficient data
and hence does not balance the trade-off between old and
new tasks, which we refer to as the forward–backward trade-
off. As a result, the MN estimator is highly susceptible to
catastrophic forgetting.

3.2. Continual Ridge Regression

Continual ridge regression (CRR) (Li et al., 2023) uses ridge
regularization to constrain the parameter’s change when

fitting new tasks. Specifically, it updates the estimate using
the iterations defined in Algorithm 3.

Algorithm 3 Continual ridge regression

Initialization: ŵ(CRR)
0 = 0

Iterative update for each task t ∈ [T ]:

ŵ(CRR)
t = argmin

w

{
1

n
∥Xtw − yt∥2

+ λt∥w − ŵt−1∥2
}

Clearly, CRR is a special case of our generalized ℓ2-
regularized estimator, which uses the conventional ridge
penalty by setting λ

(1)
t = · · · = λ

(p)
t = λt. CRR treats each

coordinate of w∗ equally, i.e., it potentially assumes that
|(ŵ(CRR)

t )j − (w∗)j |2 are the same for different j.

However, such homogeneity does not always exist in con-
tinual learning setting since the information introduced
by different tasks can vary across various directions of
w∗, especially in the scenario where the data distributions
differ across tasks. For example, there may exist some
i ̸= j such that |(ŵ(CRR)

t )j − (w∗)j |2 = o(1) while
|(ŵ(CRR)

t )i − (w∗)i|2 = O(1) if previous tasks contain
very little information about (w∗)i. In this case, the suitable
values for λi and λj might differ. Consequently, the CRR
estimator, which cannot address such information hetero-
geneity, may be suboptimal.

More specifically, we have the following lower bound for
the CRR estimator, which shows that its worst-case perfor-
mance is much worse than that of GR.

Theorem 3.2 (Lower bound for continual ridge regression).
Consider a two-task and two-dimensional continual learn-
ing problem with covariance matrices Σ1 = diag(1, ϵ) and
Σ2 = diag(ϵ, 1) and sample sizes n1 and n2. Then we have

sup
n1,n2,ϵ

inf
λ

L
(
ŵ

(CRR)
2

)
L
(
ŵ

(GR)
2

) = +∞,

where λ is the regularization hyperparameter of CRR.

4. Generalized ℓ2-Regularization Attains
Oracle Rate

In this section, we provide a theoretical analysis of the
generalized ℓ2-regularized estimator (GR) defined in (3).
Our theory shows that, through the proper selection of the
regularization weight matrix Ht, it is possible to avoid
catastrophic forgetting, and the resulting estimation error
can even be comparable with that of the oracle estimator.
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Before establishing our main results, we first present some
assumptions for our analysis.

4.1. Assumptions

Assumption 4.1 (Fixed design). The features {Xt}Tt=1 are
fixed while the noises εt are random with mean 0 and vari-
ance σ2 > 0.

Assumption 4.2 (Commutable covariance matrices). The
set of covariance matrices {Σt}Tt=1 are commutable.

These two assumptions ensure that the GR estimator have
explicit solutions, which helps to deliver our messages con-
cisely. Similar assumptions are commonly made in related
literature (Lei et al., 2021; Wu et al., 2022; Li et al., 2023).
In Section 6, we will show that without these assumptions,
similar results still hold.

By simple linear algebra, Assumption 4.2 is equivalent to the
fact that {Σt}Tt=1 are simultaneously diagonalizable. There-
fore, there exists a single orthogonal matrix U ∈ Rp×p

such that Σt = UΓtU
⊤, where Γt = diag{γ(t)

1 , . . . , γ
(t)
p }

denotes the diagonal matrix consisting of the eigenvalues of
Σt. In this case, the heterogeneity among different tasks is
solely encoded by the different eigenvalues in Γt.

Assumption 4.3 (Sufficient sample size). For each j ∈ [p],∑T
t=1 γ

(t)
j > 0.

This assumption is imposed to simplify the analysis of
ŵ(ORA). Under this assumption, when the data of all T
tasks are pooled together, there is no overparameterization,
i.e.,

∑T
t=1 Σt has full rank. Therefore, the oracle estima-

tor ŵ(ORA) defined by (2) has a unique solution, whose
estimation error can be calculated directly.

Indeed, the following lemma gives an explicit expression
for the estimation error of the oracle estimator.

Lemma 4.1 (Estimation error of the oracle estimator). Sup-
pose that Assumptions 4.1–4.3 hold. Then the estimator
error of the oracle estimator is

L(ŵ(ORA)
T ) =

p∑
j=1

σ2

γ
(1)
j n1 + · · ·+ γ

(t)
j nT

.

As the task number T increases, the estimation error of ORA
is monotonically decreasing. Therefore, it does not suffer
from the issue of catastrophic forgetting.

We remark that Assumption 4.3 still allows a single task to
be overparameterized.

4.2. Main Results

In this section, we consider a set of specific choices of
Ht = UΛtU

⊤, where Λt = diag{λ(t)
1 , . . . , λ

(t)
p } is some

diagonal matrix. We show that if Λt is selected properly, the
estimation error of GR is compatible with that of the oracle
estimator; as a result, catastrophic forgetting is avoided.

We first decompose the estimation error into components
along different directions. Let uj ∈ Rp be the jth column of
U . Define e(t)j := (u⊤

j (ŵ
(GR)
t −w∗))

2 to be the projected

estimation error of ŵ(GR)
t onto uj for j ≥ 1 and e

(0)
j :=(

u⊤
j w∗

)2
. Since U is orthogonal, we have L(ŵ(GR)

t ) =∑p
j=1 e

(t)
j .

We are ready to present our main result regarding the esti-
mation error of the GR estimator.

Theorem 4.2. Suppose that Assumptions 4.1–4.3 hold. Con-
sider Ht = UΛtU

⊤, where Λt = diag{λ(t)
1 , . . . , λ

(t)
p } is

some diagonal matrix. Then the projected estimation error
satisfies

E
[
e
(t)
j

]
= E

[
e
(t−1)
j

]
− 2

γ
(t)
j E

[
e
(t−1)
j

]
λ
(t)
j + γ

(t)
j

+
(γ

(t)
j )2E

[
e
(t−1)
j

]
+ γ

(t)
j σ2/n

(λ
(t)
j + γ

(t)
j )2

.

(4)

If we set Λt by

λ
(t)
j =

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t−1)
j nt−1

nt
(5)

for each j ∈ [p] and t ∈ [T ], then (4) is minimized and we
have

E
[
e
(t)
j

]
=

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

,

which further implies

L(ŵ(GR)
t ) =

p∑
j=1

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

. (6)

Under the choices of regularization weight matrices given
in Theorem 4.2, we see that the estimation error of the GR
estimator is monotonically nonincreasing with task index t.
Indeed, as long as the covariance matrices Σt are positive
definite, the estimation error is strictly decreasing. There-
fore, the forgetting error Ft ≤ 0 for every t ∈ [T ] and hence
catastrophic forgetting is eliminated, even though we allow
a single task to be overparameterized and the covariance
matrices to be different across tasks.

Compared with Lemma 4.1, the estimation errors of the
GR and oracle estimators are asymptotically equivalent as
T increases, even though the latter can only be calculated
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when pooling data of all tasks together. Indeed, the only
difference between them is the additional term σ2/e

(0)
j in

the denominator of the estimation error of GR. Therefore,
the estimation error of GR is even slightly smaller than
that of the oracle estimator. This is because GR has an
extra ridge term when learning the first task, whereas the
oracle estimator has no regularization term. We also remark
that given a fixed set of tasks, the final estimation error
L(ŵ(GR)

T ) is independent of the task ordering, although the
choice of Ht is dependent on it.

The key to achieving these desirable properties lies in the
specific form of {Ht}Tt=1. From the proof of Theorem
4.2, we identify two crucial considerations in choosing
{Ht}Tt=1.

(1) The first consideration concerns balancing the trade-off
between the information carried in ŵt−1 and that in Dt,
i.e., the forward–backward trade-off. For example, if
the estimation error of ŵt−1 is relatively small (larger
nτ for τ ≤ t − 1) compared with the error of the
new task, σ2/nt, we should increase the regularization
strength λ

(t)
j .

(2) The second one involves addressing the information
heterogeneity among different tasks. As the covariance
matrices vary, the amount of information pertaining to
different directions of w∗ within different tasks may
differ. Therefore, Λt should adapt to this information
heterogeneity, allowing λ

(t)
i and λ

(t)
j to be different for

i ̸= j.

The choice of hyperparameters specified in Theorem 4.2
effectively addresses the forward–backward trade-off and
information heterogeneity, thereby avoiding catastrophic
forgetting and achieving an estimation error comparable
with that of the oracle estimator.

We remark that Theorem 4.2 does not necessitate p < nt; it
allows any individual task to be overparameterized. As long
as aggregating all the data leads to an underparameterized
linear regression problem, we can progressively improve the
estimation of w∗ as new tasks are continuously introduced
using generalized ℓ2-regularization. Ultimately, we achieve
the error rate of the oracle estimator after completing the
final task.

4.3. A Practical Algorithm

Now we take a closer look at the optimal choice of {Ht}Tt=1

developed in Theorem 4.2. Substituting (5) into the defini-
tion of Ht gives

Ht =
1

nt
(n1Σ1 + · · ·+ nt−1Σt−1 + σ2UE0U

⊤),

which is the summation of the covariance matrices of old
tasks weighted by sample sizes plus an additional error
term. Tasks with larger sample size will be allocated with
larger weights in the optimal regularization matrix, which is
reasonable since they contain more information about w∗.

If nt is sufficiently large, the term σ2UE0U
⊤/nt in Ht is

negligible and we can approximate Ht by

H̃t :=
1

nt
(n1Σ1 + · · ·+ nt−1Σt−1) ≈ Ht, (7)

which can be easily computed in practice. This approxi-
mation makes the generalized ℓ2-regularized estimator a
practical algorithm, which can be implemented without any
underlying knowledge about the true parameter.

Connection with other regularization methods. Note
that in linear regression, the covariance matrix is just the
Hessian matrix (or Fisher information matrix) of the loss
function. This links our GR estimator to some other pop-
ular regularization-based algorithms such as EWC and its
variants (Kirkpatrick et al., 2017; Huszár, 2018; Schwarz
et al., 2018). Specifically, if all tasks have the same sam-
ple size, our method recovers the online EWC proposed by
Schwarz et al. (2018) with the hyperparameter γ = 1. Our
theory gives a precise characterization of how to combine
the Fisher information of old tasks properly in continual
linear regression.

Approximate weight matrices. We now present a result
demonstrating that using the approximate optimal weight
matrices has minimal impact on the estimation error when
certain conditions are met. To this end, we define ρ

(t)
j :=

γ
(t)
j /(e

(j)
0 +γ

(1)
j n1+ . . . γ

(t−1)
j nt−1), which can be viewed

as the information ratio between the new task t and the old
tasks. A larger ρ indicates that the new task contains more
information.

Theorem 4.3. Suppose that Assumptions 4.1–4.3 hold. As-
sume that we use H̃t := UΛ̃tU

⊤ instead of Ht defined
in Theorem 4.2 as the regularization weight matrices. Let
∆

(t)
j = 1/(λ̃j+γj)−1/(λj+γj). Suppose that there exists

some constant C > 0 such that

(γ
(t)
j ∆

(t)
j )2 ≤

C(C − 1)(ρ
(t)
j )2

(1 + ρ
(t)
j )(1 + Cρ

(t)
j )2

(8)

for each t. Then for every t ∈ [T ], we have

L(ŵ(GR)
t ) ≤ C

e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

.

Since ρ
(t)
j is of order o(1), the right-hand side of (8) is

roughly O((ρ
(t)
j )2). Therefore, as ρ

(t)
j becomes larger,
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which means that there is relatively more information of
u⊤
j w∗ contained in the new task t, the requirement on the

approximation accuracy of λ̃(t)
j becomes looser. In this case,

we can still attain the oracle rate without calculating the
optimal regularization matrix very accurately. In Section 7,
we will conduct experiments to illustrate the performance of
the generalized ℓ2-regularized estimator using H̃t defined
in (7) instead of Ht.

5. Connection Between Early Stopping and
ℓ2-Regularization

Besides adding a penalty term to the loss function, another
commonly used regularization method is early stopping.
When training a single task, several works (Raskutti et al.,
2014; Ali et al., 2019) have shown that applying gradient
descent with early stopping is equivalent to ridge regression,
in both classification and regression tasks. However, in
continual learning where there is a sequence of tasks to be
learned, similar results are still limited. In this section, we
show that such equivalence also exists in continual linear
regression.

Specifically, we formulate the early stopping estimator (ES)
for continual linear regression in the following algorithm.
Specifically, let ŵ(ES)

0 = 0 be the initial value. At each
task t, we set ŵ(ES)

t−1 as the initial point and apply mt-step
gradient descent to the loss function of this new task, where
At is a positive definite matrix used to control the learning
rate and mt is the number of gradient descent iterations.

Algorithm 4 Early stopping estimator

Initialization: ŵ(ES)
0 = 0

for each task t = 1 to T do
w

(0)
t = ŵ

(ES)
t−1 ;

for τ = 1 to mt do
w

(τ)
t = w

(τ−1)
t − (At/n)X

⊤
t (Xtw

(τ−1)
t −yt);

end for
ŵ

(ES)
t = w

(mt)
t ;

end for

Note that in ordinary gradient descent, At is simply stIp
for some st > 0, which we refer to as vanilla early stop-
ping (vanilla ES). In contrast, here we take a more general
form of the learning rate matrix in order to capture the
information heterogeneity and align with the generalized
ℓ2-regularization studied above.

The following theorem establishes the equivalence between
the ES and GR estimators.

Theorem 5.1. Assume that Σt = UtΓtU
⊤
t , At =

UtStU
⊤
t , and Ht = UtΛtU

⊤
t for some positive defi-

nite diagonal matrices Γt = diag{γ(t)
1 , . . . , γ

(t)
p }, St =

diag{s(t)1 , . . . , s
(t)
p } and Λt = diag{λ(t)

1 , . . . , λ
(t)
p } satisfy-

ing

λ
(t)
j =

γ
(t)
j (1− s

(t)
j γ

(t)
j )mt

1− (1− s
(t)
j γ

(t)
j )mt

(9)

for each j ∈ [p] and t ∈ [T ]. Then for each t ∈ [T ], we
have

ŵ
(ES)
t = ŵ

(GR)
t ,

where ŵ
(ES)
t is the ES estimator using the learning rate

matrix At, and ŵ
(GR)
t is the GR estimator using the regu-

larization weight matrix Ht.

Note that this result does not require commutable covaraince
matrices in Assumption 4.2. From Theorem 5.1 we conclude
that with some proper choices of the learning rate matrix
At and regularization weight matrix Ht, the ES estimator
ŵ

(ES)
t and the GR estimator ŵ(GR)

t output exactly the same
estimates for each t. Indeed, the errors ŵt −w∗ of these
two estimators are both the weighted average of the error
of the (t− 1)th task ŵt−1 −w∗ and the variance term for
the new task, X⊤

t εt/n, where the weights are determined
by the learning rate matrix At, iteration number mt, and
regularization weight matrix Ht.

We remark that (9) is required to hold for each j ∈ [p].
Therefore, vanilla ES with At = stIp and vanilla ℓ2-
regularization with Ht = λtIp may not be equivalent since
γ
(t)
j could be different for different j and a single λt and

st could not make (9) hold for every j ∈ [p]. It could
happen that vanilla ES is equivalent to some generalized
ℓ2-regularized estimator or vice verse.

Similar to ℓ2-regularization, early stopping with proper
learning rate matrix At can also avoid catastrophic forget-
ting and attain the oracle rate.
Corollary 5.2. Suppose that Assumption 4.1–4.3 hold.
Assume that At = UStU

⊤ for some diagonal matrix
St = diag{s(t)1 , . . . , s

(t)
p } satisfying(

1− s
(t)
j γ

(t)
j

)mt

= 1−
γ
(t)
j nt

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

(10)
for each j ∈ [p]. Then the estimation error of ŵ(ES)

t is

L(ŵ(ES)
t ) =

p∑
j=1

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

.

If the new task t has a larger sample size nt, the term
(1 − sjγj)

mt should decrease by (10), implying that both
the learning rate s

(t)
j and the iteration number mt should

be increased. This means that when task t provides more
information, we should traverse a more extensive path in the
gradient descent process, allowing for a deeper utilization
of the new data.

7
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6. Extensions
In this section, we discuss some possible extensions to relax
our model assumptions.

Commutable covariance matrices. The main purpose of
Assumption 4.2 is to obtain explicit forms for some crucial
quantities of ℓ2-regularized estimators, such as the optimal
regularization matrix Ht and the corresponding optimal
estimation error.

Without this assumption, even though the optimal estimation
error does not have an explicit form, we can still show that
there exist some regularization weight matrices such that
the estimation error is monotonically nonincreasing with t.
Therefore, catastrophic forgetting can still be avoided.

Specifically, we have the following result without Assump-
tion 4.2.

Theorem 6.1. There exist {λ(t)
j , j = 1, . . . , p, t =

1 . . . , T} such that for each t ∈ [T ],

L(ŵ(GR)
t ) ≤ L(ŵ(GR)

t−1 ),

where the strict inequality holds for t satisfying∑p
j=1 γ

(t)
j > 0.

Intuitively, the condition
∑p

j=1 γ
(t)
j means that task t has

nonzero information about the true parameter w∗. There-
fore, there always exists some choice of the regularization
weight matrix under which we can leverage the new infor-
mation and improve on the existing estimator.

Moreover, in Section 7 we will empirically show that violat-
ing this assumption will not cause a significant performance
degradation for our method.

Other loss functions. Our theory can be extended to gen-
eral convex loss functions. In this scenario, the Hessian
matrix of the loss function at the true parameter plays the
role of the data covariance matrix in linear regression. The
heterogeneity among different tasks is encoded by the dif-
ferences in the Hessian matrices. Our analysis can then
proceed with some modifications.

Common true parameters. Our model (1) assumes that
all tasks share the same true parameter w∗. In real-world
continual learning, new challenges may arise when the true
parameters are different across tasks. Analyzing the setting
with distinct true parameters may need to introduce more
trade-offs and insights. For example, if the parameters are
not too far apart, our results may still hold with an additional
error term. On the other hand, if the parameters differ
significantly, negative transfer may dominate and continual
learning might not work at all. We leave a comprehensive
analysis of this problem to future work.

7. Experiments
We conduct simulation experiments to illustrate the perfor-
mance of continual ridge regression (CRR), the minimum
norm estimator (MN), and the generalized ℓ2-regularized
estimator (GR).

Data generation. We consider two data generating set-
tings, namely with and without covariate shift. The differ-
ence between them is whether the covariance matrices are
the same for different tasks.

(1) Without covariate shift. The true parameter w∗ is
sampled from N (0, Ip) and is fixed for each task.
The features x

(t)
i are independently sampled from

N (0, Ip) and the noises ε
(t)
i are independently sam-

pled from N (0, σ2). Then the labels are generated by
y
(t)
i = w⊤

∗ x
(t)
i + ε

(t)
i .

(2) With covariate shift. The true parameter w∗ is sam-
pled from N (0, Ip) and is fixed for each task. The
covariance matrices of the features are generated as
follows. We first randomly sample the eigenvalues
γ
(j)
t by P (γ

(j)
t = 1) = 0.99 and P (γ

(j)
t = 100) =

0.01. Then the covariance matrices are set by Σt :=

diag{γ(1)
t , . . . , γ

(p)
t }. After the covariance matrices

are generated, the features x(t)
i are independently sam-

pled from N (0,Σt) and the noises ε
(t)
i are indepen-

dently sampled from N (0, σ2). Finally, the labels are
generated by y

(t)
i = w⊤

∗ x
(t)
i + ε

(t)
i .

Experimental configuration. We compare the perfor-
mance of the CRR, MN, and GR algorithms with that of the
oracle estimator. The regularization weight matrices of GR
are set to H̃t as discussed in Section 4.3.

We set the task number T = 20 and sample size n1 = · · · =
nt = 150. The parameter dimension p = 200, and hence
each single task is overparameterized. We consider two
noise levels: σ2 = 1 or 5. We repeated our experiments 100
times and present the average results.

Simulation results. The simulation results for different
noise levels are depicted in Figure 1. We observe that the es-
timation error of the MN estimator remains nearly constant
as the task number t increases. Furthermore, a higher noise
level makes the MN estimator perform worse than the other
methods. This highlights the sensitivity of MN to noise.

The simulation results with and without covariate shift are
contrasted in Figure 2, from which we find that covariate
shift makes the CRR estimator worse. In the absence of
covariate shift, CRR exhibits a decreasing loss, even though
it is inferior to the GR estimator. In the presence of covariate

8
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Figure 1. Simulation results for different noise levels: T = 20,
nt = 150, p = 200, σ2 = 1 or 5, and no covariate shift.
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Figure 2. Simulation results with and without covariate shift: T =
20, nt = 150, p = 200, and σ2 = 1.

shift, the performance of CRR deteriorates significantly, and
its estimation error remains approximately constant.

In each case, the GR estimator consistently demonstrates a
decreasing estimation error, which eventually converges to
the oracle estimator. It is noteworthy that, due to the random
generating process for sampling the features, Assumption
4.2 does not hold for the empirical covariance matrices.
Nevertheless, this departure does not adversely impact the
performance of our method.

8. Conclusion
Our analysis focuses on regularization-based continual
learning across a series of linear regression tasks. We estab-
lish the estimation error of the oracle estimator with access
to all data concurrently. We then explore a set of generalized
ℓ2-regularization algorithms characterized by matrix-valued
hyperparameters. We develop an iterative formula to update
the estimation error for these generalized ℓ2-regularized es-
timators when new tasks are introduced. This allows us to
identify the hyperparameters that optimize the performance
of the algorithm. Remarkably, selecting the optimal hyper-
parameters achieves a balanced trade-off between forward
and backward knowledge transfer and accommodates the
variability in data distribution. Furthermore, we explicitly

derive the estimation error of the optimal algorithm, which is
found to match the order for the oracle estimator. Finally, we
show that early stopping and generalized ℓ2-regularization,
rather than the conventional ridge regression, are equivalent
in the context of continual learning, thereby addressing a
question raised by Evron et al. (2023) on the connection be-
tween early stopping and explicit regularization in continual
learning.
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Appendix

A. Proofs for Section 3
Proof of Theorem 3.1. By the definition of minimum norm estimator, we have

Xtŵ
(MN)
t = yt

for each t ∈ [T ]. Therefore,
Xt(ŵ

MN
t −w∗) = yt −Xtw∗ = εt,

which implies

(ŵ
(MN)
t −w∗)

⊤Σt(ŵ
MN
t −w∗) =

1

nt
∥Xt(ŵt −w∗)∥2 =

1

nt
∥εt∥2.

Taking expectation with respect to εt on both sides gives

E(ŵ
(MN)
t −w∗)

⊤Σt(ŵ
(MN)
t −w∗) = σ2.

By the property of eigenvalues, we have

E(ŵ
(MN)
t −w∗)

⊤Σt(ŵ
(MN)
t −w∗) ≤ max

j∈[p]
γ
(t)
j E∥ŵt −w∗∥2.

Therefore, we finally conclude that

E∥ŵt −w∗∥2 ≥ σ2

maxj∈[p] γ
(t)
j

.

Proof of Theorem 3.2. Without loss of generality, we assume w2
∗,1 = w2

∗,1 = 1. In this two-task problem, the definition of
CRR estimator is

ŵ1 = argmin
w

{
1

n1
∥X1w − y1∥2 + λ1∥w∥2

}
,

ŵ2 = argmin
w

{
1

n2
∥X2w − y2∥2 + λ2∥w − ŵ1∥2

}
,

where λ1 and λ2 are the hyperparameters.

Task 1 By taking derivatives, we can explicitly obtain the solution of ŵ1:

ŵ1 = (Σ1 + λ1I2)
−1(X1y1/n1).

By the definition of Σ1, we further have

ŵ1,1 =
1

1 + λ1

X⊤
1,1y1

n1

and

ŵ1,2 =
1

ϵ+ λ1

X⊤
1,2y1

n1
,

where ŵ1,j is the jth coordinate of ŵ and X1,j is the jth column of X . Therefore, using the definition of Σ1 again we
obtain

E (ŵ1,1 −w∗,1)
2 = E

(
1

1 + λ1

X⊤
1,1(X1w∗ + ε1)

n1
−w∗,1

)2

= E

(
w∗,1

1 + λ1
−w∗,1 +

1

1 + λ1

X⊤
1,1ε1

n1

)2

=

(
λ1

1 + λ1

)2

+

(
1

1 + λ1

)2
σ2

n1

≥ σ2

n1 + σ2
,
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where the last equation holds if and only if λ1 = σ2/n1. Similarly, for ŵ1,2 we have

E (ŵ1,2 −w∗,2)
2 = E

(
1

ϵ+ λ1

X⊤
1,2(X1w∗ + ε1)

n1
−w∗,2

)2

= E

(
ϵ

ϵ+ λ1
w∗,2 −w∗,2 +

1

ϵ+ λ1

X⊤
1,2ε1

n1

)2

=

(
λ1

ϵ+ λ1

)2

+
ϵ

(ϵ+ λ1)2
σ2

n1

≥ σ2

ϵn1 + σ2
,

where the last equation holds if and only if λ1 = σ2/ϵn1.

Task 2 Through almost the same analysis, for ŵ2 we have

E
[
(ŵ2,1 −w∗,1)

2|ŵ1

]
= E

[
1

ϵ+ λ2

(
X⊤

2,1(X2w∗ + ε2)

n2
+ λ2ŵ1,1

)
−w∗,1

]2

=

(
λ2

ϵ+ λ2

)2

(ŵ1,1 −w∗,1)
2 +

ϵ

(ϵ+ λ2)2
σ2

n2

and

E
[
(ŵ2,2 −w∗,2)

2|ŵ1

]
= E

[
1

1 + λ2

(
X⊤

2,2(X2w∗ + ε2)

n2
+ λ2ŵ1,2

)
−w∗,2

]2

=

(
λ2

1 + λ2

)2

(ŵ1,2 −w∗,2)
2 +

1

(1 + λ2)2
σ2

n2
.

From Theorem 4.2, we know that

E(ŵ(GR)
2,1 −w∗,1)

2 = O

(
σ2

n1 + ϵn2

)
and

E(ŵ(GR)
2,2 −w∗,2)

2 = O

(
σ2

ϵn1 + n2

)
.

By some calculations, if
E(ŵ(CRR)

2,1 −w∗,1)
2

E(ŵ(GR)
2,1 −w∗,1)2

< ∞

when n1, n2 → ∞ and ϵ → 0, we need

ϵ
1−

√
ϵn2

n1+ϵn2√
ϵn2

n1+ϵn2

≲ λ2 ≲ ϵ

√
n1

n1+ϵn2

1−
√

n1

n1+ϵn2

.

If
E(ŵ(CRR)

2,2 −w∗,2)
2

E(ŵ(GR)
2,2 −w∗,2)2

< ∞

when n1, n2 → ∞ and ϵ → 0, we need

√
ϵn1 + n2

n2
− 1 ≲ λ2 ≲

√
1

ϵn1+n2

1−
√

1
ϵn1+n2

.
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We consider a special case, where ϵn2/n1 → ∞. Then the above requirements become

ϵ
n1

n1 + ϵn2
≲ λ2 ≲ ϵ

√
n1

n1 + ϵn2

and
ϵn1

n2
≲ λ2 ≲

√
1

ϵn1 + n2
.

However, if n1 = O(n2), n2 = O(n3) and ϵ = O(n−0.5) for some n → ∞, the lower bound of the first inequality if greater
than the upper bound of the second inequality:

ϵ
n1

n1 + ϵn2
= O(n−1)

while √
1

ϵn1 + n2
= O(n−1.5).

Therefore, by contradiction we have

sup
n1,n2,ϵ

inf
λ2

L(ŵ(CRR)
2 )

L(ŵ(GR)
2 )

= ∞.

B. Proofs for Section 4
Proof of Lemma 4.1. The oracle estimator ŵ(ORA)

T satisfies

T∑
t=1

X⊤
t (Xtŵ

(ORA)
T − yt) = 0,

which implies (
T∑

t=1

X⊤
t Xt

)
ŵ

(ORA)
T =

T∑
t=1

X⊤
t yt.

By Assumption 4.2 and 4.3, we have that
∑T

t=1 X
⊤
t Xt is invertible. Therefore, the ORA has the following explicit form

solution

ŵ
(ORA)
T =

(
T∑

t=1

X⊤
t Xt

)−1( T∑
t=1

X⊤
t yt

)

=

(
T∑

t=1

X⊤
t Xt

)−1( T∑
t=1

X⊤
t (Xtw∗ + εt)

)

= w∗ +

(
T∑

t=1

X⊤
t Xt

)−1( T∑
t=1

X⊤
t εt

)
.

Taking expectation with respect to {εt}Tt=1, we obtain

E ∥ŵ(ora)
T −w∗∥2 = E

∥∥∥∥∥∥
(

T∑
t=1

X⊤
t Xt

)−1( T∑
t=1

X⊤
t εt

)∥∥∥∥∥∥
2

= tr


(

T∑
t=1

X⊤
t Xt

)−1
 .

14
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By Assumption 4.2, we can further have

tr


(

T∑
t=1

X⊤
t Xt

)−1
 = tr


(

T∑
t=1

ntΓt

)−1


=

p∑
j=1

1

n1γ
(1)
j + . . . nT γ

(T )
j

,

which completes the proof.

Proof of Theorem 4.2. For each t = 1, . . . , T , the solution of GR estimator ŵ(GR)
t satisfies

1

nt
X⊤

t (Xtŵ
(GR)
t − yt) +Ht(ŵ

(GR)
t − ŵ

(GR)
t−1 ) = 0

Since yt = Xtw∗ + εt, it can be written explicitly as

ŵ
(GR)
t = w∗ + (X⊤

t Xt + nHt)
−1X⊤

t εt + (X⊤
t Xt + ntHt)

−1ntHt(ŵ
(GR)
t−1 −w∗).

Therefore, for each j = 1, . . . , p,

u⊤
j (ŵ

(GR)
t −w∗) = u⊤

j (ntΣt + ntHt)
−1X⊤

t εt + (ntΣt + ntHt)
−1ntΛtU

⊤(ŵ
(GR)
t−1 −w∗),

which implies that

E
[
e
(t)
j

]
= E

[∥∥∥u⊤
j (ŵ

(GR)
t −w∗)

∥∥∥2]
(i)
= E

[
(u⊤

j (X
⊤
t Xt + ntHt)

−1Xtεt)
2
]
+ E

[
(u⊤

j (X
⊤
t Xt + ntHt)

−1ntHt(ŵt−1 −w∗))
2
]

(ii)
= E

[
(u⊤

j U(ntΓt + ntΛt)
−1U⊤Xtεt)

2
]
+ n2

tE
[
(u⊤

j U(ntΓt + ntΛt)
−1ΛU⊤(ŵt−1 −w∗))

2
]

(iii)
=

γ
(t)
j σ2/n+ (λ

(t)
j )2E

[
e
(t−1)
j

]
(λ

(t)
j + γ

(t)
j )2

=
γ
(t)
j σ2/n+ (λ

(t)
j + γ

(t)
j − γ

(t)
j )2E

[
e
(t−1)
j

]
(λ

(t)
j + γ

(t)
j )2

= E
[
e
(t−1)
j

]
− 2

γ
(t)
j E

[
e
(t−1)
j

]
λ
(t)
j + γ

(t)
j

+
(γ

(t)
j )2E

[
e
(t−1)
j

]
+ γ

(t)
j σ2/n

(λ
(t)
j + γ

(t)
j )2

,

(11)

where (i) comes from the independence between εt and ŵ
(GR)
t−1 , (ii) comes from Assumption 4.2 and (iii) is obtained by the

property of eigenvalues and eigenvectors. To derive the optimal value of λ(t)
j Now we consider two different cases:

1. Consider the case γj = 0. Then as long as λj > 0, Σt +Ht is invertible and we have

E
[
e
(t)
j

]
= E

[
e
(t−1)
j

]
.

This means that data of task t do not bring new information about the direction j of w∗, which makes the jth projected
error e(t)j unchanged.

15
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2. Consider the case γj > 0. In this case, the last formula of Equation 11 can be regarded as a quadratic function of
1/(λ

(t)
j + γ

(t)
j ) as λ(t)

j changes. Therefore, the optimal λj is obtained by

1

λ
(t)
j + γ

(t)
j

=
E
[
e
(t−1)
j

]
γ
(t)
j E

[
e
(t−1)
j

]
+ σ2/nt

,

which is the minimum of the quadratic function. This further implies that λ(t)
j = σ2/nt

E(e(t−1)
j )2

, where we have

E
[
e
(t)
j

]
=

(
E
[
e
(t−1)
j

])2
γ2
j + E

[
e
(t−1)
j

]
γjσ

2/nt − γ2
j

(
E
[
e
(t−1)
j

])2
γ2
j

(
E
[
e
(t−1)
j

])2
+ γjσ2/nt

=
E
[
e
(t−1)
j

]
· σ2/(γjnt)

E
[
e
(t−1)
j

]
+ σ2/(γjnt)

=
1(

E
[
e
(t−1)
j

])−1

+ (σ2/(γjnt))
−1

.

(12)

To prove the final results, we consider mathematical induction. By Assumption 4.3, for each j ∈ [p], there exists τj ∈ [T ]

such that τj > 0. Therefore, by the above derivation, e(τj)j satisfies

E
[
e
(τj)
j

]
=

1

(e
(0)
j )−1 + (σ2/(γ

(τj)
j nτj ))

−1

=
σ2

σ2/e
(0)
j + γ

(τj)
j nτj

=
σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(τj)
j nτj

.

For t < τj , by Case (1) discussed above we have

E
[
e
(t)
j

]
=

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t−1)
j nt

since γ
(t)
j = 0 for every t < τj .

Now suppose

E
[
etj
]
=

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

holds for some t ≥ τj . If γ(t+1)
j = 0, by Case (1) we have

E
[
e
(t+1)
j

]
= Ee(t)j =

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t+1)
j nt+1

since γ
(t+1)
j = 0. If γ(t+1)

j > 0, by Case (2) we have

E
[
e
(t+1)
j

]
=

1(
Ee

(t)
j

)−1

+
(
σ2/γ

(t+1)
j nt+1

)−1

=
σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t+1)
j nt+1

.

16
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Therefore, we conclude that for each t ∈ [T ],

E[e(t)j ] =
σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

holds if Λt is chosen by

λ
(t)
j =

σ2/nt

Ee
(t−1)
j

=
σ2/e

(0)
j + γ

(1)
j n1 + · · ·+ γ

(t−1)
j nt−1

nt

.

Finally, since ∥ŵGR
t )−w∗∥2 =

∑p
j=1 e

(t)
j , taking summation of all e(t)j gives

L(ŵ(GR)
t ) =

p∑
j=1

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

.

Proof of Theorem 4.3. Recall from the proof of Theorem 4.2 that

E
[
e
(t)
j

]
= E(u⊤

j (X
⊤
t Xt + nHt)

−1Xtεt)
2 + E(u⊤

j (X
⊤
t Xt + nHt)

−1nHt(ŵt−1 − w∗))
2

= E(u⊤
j U(nΓt + nΛt)

−1U⊤Xtεt)
2 + n2E(u⊤

j U(nΓt + nΛt)
−1ΛU⊤(ŵt−1 − w∗))

2

=
γjσ

2/n+ λ2
jEe

(t−1)
j

(λj + γj)2

=
γjσ

2/n+ (λj + γj − γj)
2Ee(t−1)

j

(λj + γj)2

= Ee(t−1)
j − 2

γjEe(t−1)
j

λj + γj
+

γ2
jEe

(t−1)
j + γjσ

2/n

(λj + γj)2
.

The optimal λj that minimize the above equation satisfies

1

λj + γj
=

Ee(t−1)
j

γjEe(t−1)
j + σ2/nt

,

namely

λj =
σ2/nt

Ee(t−1)
j

.

Now suppose we use its approximated version instead:

1

λ̃j + γj
=

1

λj + γj
+∆

for some λ̃j . Then we have

Ee(t)j ≤
Ee(t−1)

j · σ2/(γjnt)

Ee(t−1)
j + σ2/(γjnt)

+ (γ2
jEe

(t−1)
j + γjσ

2/n)∆2.

Suppose that

Ee(t−1)
j ≤ Cσ2

e
(0)
j + γ

(1)
j n1 + . . . γ

(t−1)
j nt−1

.

17
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If we want

Ee(t)j ≤ Cσ2

e
(0)
j + γ

(1)
j n1 + . . . γ

(t)
j nt

,

holds true, we only need to make sure

Eet−1
j · σ2/(γjnt)

Eet−1
j + σ2/(γjnt)

+ (γ2
jEe

(t−1)
j + γjσ

2/n)∆2

≤ Cσ2

e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t−1)
j nt−1 + Cγ

(t)
j nt

+ γ2
j∆

2

(
Cσ2

e0j + γ1
jn1 + . . . γt−1

j nt−1

+
σ2

γt
jnt

)

≤ Cσ2

e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

.

Define

ρ
(t)
j :=

γ
(t)
j nt

e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

,

then the above inequality becomes

C

1 + Cρ
(t)
j

+ (γ
(t)
j )2∆2

(
C +

1

ρ
(t)
j

)
≤ C

1 + ρ
(t)
j

,

which is indeed

(γ
(t)
j )2∆2 ≤

C(C − 1)(ρ
(t)
j )2

(1 + ρ
(t)
j )(1 + Cρ

(t)
j )2

.

C. Proofs for Section 5
Proof of Theorem 5.1. For each t ∈ [T ] and τ ∈ [mt], using the update iteration of MN estimator we have

w
(τ)
t −w∗ = (Ip −AtX

⊤
t Xt/nt)w

(τ−1)
t + (At/nt)X

⊤
t (Xtw∗ + εt)−w∗

= (Ip −AtX
⊤
t Xt/nt)(w

(τ−1)
t −w∗) +AtX

⊤
t εt/nt

= (Ip −AtX
⊤
t Xt/nt)

τ (w
(ES)
t−1 −w∗) + (I − (I −AtX

⊤
t Xt/nt)

τ )(AtX
⊤
t Xt/nt)

−1At

nt
X⊤

t εt

= U(Ip − StΓt)
τU⊤(w

(ES)
t−1 −w∗) +U(Ip − (Ip − StΓt)

τ )Γ−1
t U⊤X⊤

t

nt
εt.

Therefore, for each j = 1, . . . , p, we have

u⊤
j (w

(τ)
t −w∗) = (1− sjγj)

τu⊤
j (w

(ES)
t−1 −w∗) + (1− (1− sjγj)

τ )u⊤
j

X⊤
t

γjn
εj .

Note that By the proof of Theorem 4.2, the solution of generalized ℓ2 regularization estimator satisfies

u⊤
j (ŵ

(GR)
t −w∗) = (γj + λj)

−1λju
⊤
j (ŵ

(GR)
t−1 −w∗) + (γj + λj)

−1γju
⊤
j

X⊤
t

γjn
εt.

Therefore, if λj and sj satisfy

(1− sjγj)
mt =

λj

γj + λj
,

18



A Statistical Theory of Regularization-Based Continual Learning

namely

sj =
1− (λj/(γj + λj))

1/mt

γj

or

λj =
γj(1− sjγj)

mt

1− (1− sjγj)mt
,

the early stopping and ℓ2 regularization output the same estimator, i.e.,

w
(ES)
t = w

(mt)
t = ŵ

(GR)
t .

Proof of Corollary 5.2. By Theorem 4.2 and Theorem 5.1, if s(t)j and mt satisfy

(
1− s

(t)
j γj

)mt

=
σ2/(γjn)

E
[
e
(t−1)
j

]
+ σ2/(γjn)

,

the ES estimator ŵ(ES)
t equals the optimal generalized ℓ2 regularization estimator defined in Theorem 4.2. In this case, its

estimation error satisfies

L(ŵ(ES)
t ) =

p∑
j=1

σ2

σ2/e
(0)
j + γ

(1)
j n1 + · · ·+ γ

(t)
j nt

.

D. Proof for Section 6
Proof of Theorem 6.1. For simplicity, we omit the superscript of the GR estimator in this proof. Let UtΓtU

⊤
t be the

eigendecomposition of Σt and define e(t2)j,t1
:= ((u

(t1)
j )⊤(ŵt2 −w∗))

2 as the projected error of wt2 onto the jth eigenvector

of wt1 . Note that if Assumption 4.2 holds, u(t1)
j = u

(t2)
j for every t1, t1 ∈ [T ] and e

(t2)
j,t1

equals to e
(t2)
j defined in Section 4

for each t1.

By the same derivation of (12), we directly have

E
[
e
(t)
j,t

]
=

1(
E
[
e
(t−1)
j,t

])−1

+ (σ2/(γjnt))−1

≤ E
[
e
(t−1)
j,t

]
.

Therefore, summing them up with respect to j gives

L(ŵt) ≤ L(ŵt−1).

Obviously, the inequality holds strictly as long as
∑p

j=1 γ
(t)
j > 0, i.e., there exists one j such that γj > 0.

We remark that if e(t−1)
j,t = e

(t−1)
j,t−1 for every t, we can use mathematical induction to derive the estimation error in Theorem

4.2. However, without Assumption 4.2, we cannot ensure this equation holds true.

19


