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Abstract
Cell identity encompasses various semantic as-
pects of a cell, including cell type, pathway in-
formation, disease information, and more, which
are essential for biologists to gain insights into
its biological characteristics. Understanding cell
identity from the transcriptomic data, such as an-
notating cell types, has become an important task
in bioinformatics. As these semantic aspects are
determined by human experts, it is impossible for
AI models to effectively carry out cell identity
understanding tasks without the supervision sig-
nals provided by single-cell and label pairs. The
single-cell pre-trained language models (PLMs)
currently used for this task are trained only on
a single modality, transcriptomics data, lack an
understanding of cell identity knowledge. As a
result, they have to be fine-tuned for downstream
tasks and struggle when lacking labeled data with
the desired semantic labels. To address this is-
sue, we propose an innovative solution by con-
structing a unified representation of single-cell
data and natural language during the pre-training
phase, allowing the model to directly incorporate
insights related to cell identity. More specifically,
we introduce LangCell, the first Language-Cell
pre-training framework. LangCell utilizes texts
enriched with cell identity information to gain a
profound comprehension of cross-modal knowl-
edge. Results from experiments conducted on
different benchmarks show that LangCell is the
only single-cell PLM that can work effectively
in zero-shot cell identity understanding scenar-
ios, and also significantly outperforms existing
models in few-shot and fine-tuning cell identity
understanding scenarios.
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1. Introduction
Single-cell RNA sequencing (scRNA-seq) data represents
a powerful tool for deciphering the “language of life”, of-
fering profound insights into downstream biomedical ap-
plications (Ziegenhain et al., 2017). In scRNA-seq data
analysis, it is crucial to understand cell identity from mul-
tiple perspectives, such as cell type, pathway information
and disease information (Morris, 2019; Abdolhosseini et al.,
2019). Tasks like cell type annotation and cell batch integra-
tion have become the cornerstone of this field (Luecken &
Theis, 2019; Luecken et al., 2022).

Pre-trained language models (PLMs) have recently demon-
strated success in deciphering the complex language of life
(Mo et al., 2021; Ji et al., 2021). Building on these findings,
recent studies emphasize the effectiveness and feasibility
of using PLMs to analyze single-cell data solely based on
sequencing information (Yang et al., 2022a; Theodoris et al.,
2023; Cui et al., 2023; Gong et al., 2023). These models
harness the transformer architecture to assimilate millions
of scRNA-seq entries, refining their capabilities through
fine-tuning to adeptly perform diverse downstream tasks.
Despite these successes, current single-cell representation
models face the following challenges:

(1). Current model frameworks, which rely solely on self-
supervised learning methods like masked modeling, are
adept at capturing gene co-expression relationships. How-
ever, due to a lack of effective utilization of human expert
knowledge, they fall short in focusing on understanding cell
identity when learning cell representations. This limitation
restricts the model’s capacity for representation learning,
consequently affecting its performance in various down-
stream tasks.

(2). As cell identities are determined by human experts in
natural language, it is impossible for existing models to
effectively carry out cell identity understanding tasks with-
out fine-tuned with single cell and text/label pairs. Both
the amount and quality of data for fine-tuning significantly
impact the model’s performance in specific tasks. However,
in practical scenarios, obtaining sufficient and reliable la-
beled data that closely matches the downstream task is often
costly. This difficulty is even more pronounced in situations
such as researching new diseases or cell subtypes, where
no existing data may be available (Zhai et al., 2023). These
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practical issues significantly reduce the convenience and
applicability of existing models.

BioTranslator (Xu et al., 2023a) considers combining
biomedical data and natural language in the current research
landscape. However, BioTranslator only used Transformer-
based model and performed large-scale pre-training on nat-
ural language modality. It did not actually pre-train on large
amounts of single-cell data but instead relied on training a
naive fully connected network on downstream data, which
struggles to capture the richness and complexity of tran-
scriptomic data.

We believe that encoding scRNA-seq data with high qual-
ity and aligning it with multi-perspective textual annota-
tions can significantly enhance the comprehension between
textual information and single-cell data. This integration
equips the model with the capacity to extend its knowledge
from familiar categories to novel ones, guided by semantic
coherence. This approach not only enhances the model’s
predictive accuracy but also bolsters its applicability across
diverse biomedical scenarios. We propose LangCell, a
genuine Language-Cell Pre-training model to seamlessly
integrate the feature space of scRNA-seq data with textual
information, marking significant advancements in under-
standing cell identity.

We constructed a cell-text dataset, scLibrary, containing
27.5 million scRNA-seq entries along with their descrip-
tions. Specifically, we obtained raw scRNA-seq data and
corresponding metadata from the CELLxGENE (Biology
et al., 2023). We selected eight critical aspects of cell iden-
tity that could contain essential insights, including cell type,
developmental stage and disease information, to obtain as
comprehensive descriptions as possible from the Open Bio-
logical and Biomedical Ontology Foundry (OBO Foundry)
(Smith et al., 2007).

Subsequently, we have transferred some key insights from
the fields of NLP and CV (Li et al., 2022; 2021; Gao et al.,
2021; Park et al., 2023), and designed a set of multi-task co-
operative pre-training methods that are effective in the cell-
text domain. Specifically, we introduce four tasks during
the pre-training phase. Masked Gene Modeling (MGM) and
Cell-Cell Contrastive Learning (C-C), to enhance single-cell
representation learning. Additionally, we employ Cell-Text
Contrastive Learning (C-T) and Cell-Text Matching (CTM)
to train our model to recognize the underlying links between
single-cell and textual data.

LangCell achieves state-of-the-art (SOTA) performance on
a range of cell identity understanding tasks across zero-shot,
few-shot, and full dataset scenarios. It addresses classic
tasks such as cell type annotation and batch integration. As
the first model capable of true zero-shot cell type annota-
tion, LangCell shows excellent performance in zero-shot

(a) (b)

Figure 1: (a). Plots of zero- and few-shot cell type annota-
tion. The curve shows the average F1-scores on PBMC10K
and PBMC3&68K, for two settings of LangCell and three
of the best single-cell PLMs. (b). UMAP plot of em-
beddings for scRNA-seq data and descriptions of three
similar cell types in PBMC10K. LangCell aligns single-
cell and text embeddings.

scenarios, surpassing few-shot baselines in most cases (Fig.
1a).

In complex scenarios with rich cell types and low subtype
distinction, we propose the cell-text retrieval task, enabling
users to describe target cell types in natural language and
search within databases. We also introduced two new tasks
of great biological significance: non-small cell lung cancer
subtype classification and pathway identification and con-
structed high-quality benchmarks for each. Results demon-
strate that LangCell offers profound insights into cell iden-
tity from multiple perspectives, including cell type, disease
subtype, and cell pathways.

Our main contributions can be summarized as follows:

(1). We introduce LangCell, the first Language-Cell pre-
training framework. It unifies cellular language and natural
language into a latent space. (Fig. 1b) This process in-
fuses the model with text knowledge related to cell identity,
enhancing LangCell’s understanding, expression, and gener-
alization of transcriptomic data.

(2). By harnessing the powerful link between scRNA-seq
data and natural language texts, LangCell stands out as the
sole PLM capable of executing zero-shot cell identity un-
derstanding tasks, surpassing the performance of existing
few-shot learning models with superior experimental out-
comes.

(3). LangCell’s cell encoder outperforms state-of-the-art
(SOTA) models in all few-shot and fine-tuning tasks related
to cell identity understanding. These advancements are at-
tributed to the synergistic impact of self-supervised learning
on scRNA-seq data and distant supervision based on text.
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Figure 2: The schematic overview of LangCell. For each single-cell data containing a pair of scRNA-seq data and metadata:
(1) During preprocessing, the scRNA-seq data is converted into a gene sequence arranged in descending order of relative
expression levels, and a multi-perspective textual description of the cell is obtained from the metadata using OBO Foundry.
(2) The embeddings of the cell and text are obtained using the cell encoder (f ) and the unimodal mode (g1) of the text
encoder, and the matching score pc,t is calculated using the multimodal mode (g2) of the text encoder. (3) Pre-training is
conducted through joint optimization of four loss functions. Among them, Masked Gene Modeling (MGM) and Cell-Cell
Contrastive Learning (C-C) aim to enhance single-cell representation learning. In contrast, Cell-Text Contrastive Learning
(C-T) and Cell-Text Matching (CTM) aim to train the model to understand the latent connections between single-cell and
textual data.

2. Related works
scRNA-seq Data Representation PLMs offer more po-
tential for better scRNA-seq data representation. scBERT
(Yang et al., 2022a), Geneformer (Theodoris et al., 2023),
scGPT (Cui et al., 2023), and scFoundation (Hao et al.,
2023) are transformer-based models that collectively pre-
train on extensive scRNA-seq datasets, ranging from over a
million to 50M samples, and demonstrate advanced capabil-
ities in tasks such as cell type annotation, transfer learning
across biological tasks, drug response prediction and other
tasks. BioTranslator (Xu et al., 2023a) bridges the gap be-
tween natural language and scRNA-seq data. However, its
reliance on MLP for encoding scRNA-seq data falls short
of capturing the intricacies of transcriptomic complexity.

Multi-modal in Scientific Data Scientific data, such as
molecules, proteins, and scRNA-seq data, which are not as
visually intuitive as images, necessitate a more profound
level of multi-modal interaction and comprehension. Works
like KV-PLM (Zeng et al., 2022) have paved the way for
a unified comprehension of molecules and textual infor-
mation, while MolT5 (Edwards et al., 2022) represents a
self-supervised framework that empowers the system to
handle innovative cross-modal tasks, including molecular
captioning and text-based de novo molecular generation.

ProtST (Xu et al., 2023b) has pioneered the field of protein
multi-modal learning. However, scRNA-seq analysis has
yet to witness a significant model for cross-modal represen-
tation learning, even BioTranslator has not fully realized the
potential of cross-modal learning. We firmly believe that
establishing connections between scRNA-seq data and text
information is paramount.

3. Methods
In this section, we provide a comprehensive description of
the LangCell workflow. The framework of the LangCell is
illustrated in Fig. 2. Next, we first present the processing
of scRNA-seq data to fit the cell encoder in 3.1, then the
model architecture and pre-training methods in 3.2 and 3.3,
respectively, and finally the downstream applications in 3.4.

3.1. Data Processing

The raw scRNA-seq data is provided as a count matrix.
Assume there are m cells and n genes considered, then the
count matrix is denoted as A ∈ Nm×n. We adopted a rank
value encoding method (Theodoris et al., 2023; Qiu et al.,
2013), used for converting the count matrix into sequence
data analogous to natural language. Firstly, we normalize
the gene expression of each cell separately to remove the
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influence of sequencing depth to get A′. Then, we find the
non-zero median β ∈ Rn for each column of A′ as the
median expression of each gene, and use β to normalize
each column of A′ to get A′′. That is:

A′
ij =

Aij
n∑

k=1

Aik

, βj = median{A′
kj |A′

kj ̸= 0}, A′′
ij =

A′
ij

βj

Compared to A′, A′′ eliminates the differences brought
about by the overall expression level of the base, and its
values can reflect the relative level of a gene’s expression
in a cell among all cells. For example, some housekeeping
genes may easily have higher absolute expression, but this
does not necessarily indicate a particularly noteworthy high
expression of that gene in that cell. Based on A′′, we sort
the expressed genes in each cell by their relative expression
to obtain the sequence representation of that cell. Notably,
we conduct statistics on a large-scale pre-training dataset to
obtain a more universal β and use this β in all subsequent
model applications.

3.2. Model Architecture

Our model consists of two trainable parts: a cell encoder
and a text encoder.

Cell Encoder: We use pre-trained Geneformer (Theodoris
et al., 2023) to initialize our cell encoder, which encodes the
sequential cell inputs into an embedding sequence. Notably,
we add a [CLS] token at the beginning of the sequence,
whose embedding is projected through a linear projector as
a cell embedding.

Text Encoder: This encoder has two encoding modes: uni-
modal and multimodal (Li et al., 2022). For unimodal
text encoding, it is equivalent to a BERT (Devlin et al.,
2018). For multimodal encoding, we add a pluggable cross-
attention module after each self-attention module in the
attention layers to compute the joint embedding and the
cell-text matching probability through a linear layer. The
weights are initialized using PubMedBERT (Gu et al., 2021),
which is proven to be one of the best pre-trained BERTs in
the biomedical field.

Define the cell encoder as f , which is utilized to derive the
embedding zc from single-cell data c. Define the unimodal
mode of the text encoder as g1, which is responsible for
generating the embedding zt from textual data t. Define
the multimodal mode of the text encoder as g2, which is
employed to calculate the matching probability pc,t between
single-cell and text data. These three encoding methodolo-
gies are articulated as follows:

zc = f(c),

zt = g1(t),

pc,t = g2(zc, t) = g2(f(c), t)

3.3. Pre-training Process

Our model is designed to map scRNA-seq data and text to
a shared latent space and utilize the unstructured knowl-
edge contained in natural language as distant supervision to
optimize cell representation learning. To this end, during
the pre-training process, we jointly optimize four objective
loss functions, including masked gene modeling, intra- and
inter-modal contrastive learning, and cell-text matching.

Masked Gene Modeling (MGM): We randomly mask
some of the genes in the cell input sequence and use the
output embeddings of the model at these positions to predict
the reconstruction of the original input. We use the cross-
entropy loss function as the loss function for this multi-class
task:

LMGM =
1

N

N∑
i=1

H(vij , v̂ij)

where N is the number of masked genes, vij and v̂ij respec-
tively represent the label and predicted probability of the
i-th masked position being identified as the j-th gene, H is
the cross entropy loss function.

Cell-Cell Intra-Modal Contrastive Learning (C-C): We
introduce cell-cell contrastive learning to alleviate the prob-
lem of representation degradation caused by BERT-based
methods (Li et al., 2020; Reimers & Gurevych, 2019). In
scRNA-seq data, each gene expression level carries unique
meaning, and artificial data augmentation methods such as
shuffling and perturbing at the input data may disrupt the
gene expression semantics (Yang et al., 2022b). We believe
that perturbation at the feature level is more suitable for data
augmentation in scRNA-seq data. Therefore, we use two
instances of standard dropout applied to the same single-cell
to construct positive samples, while other single-cells in
the same batch serve as negative samples, which has been
proven effective in natural language research (Gao et al.,
2021). To expand the batch size under limited video mem-
ory, we adopted a momentum encoder method similar to
that of (Li et al., 2022). The InfoNCE (He et al., 2019) loss
function is used as follows:

LC−C = − 1

T

T∑
i=1

log
esim(z(i)

c ,z(i)+
c )/τ∑T

j=1 e
sim(z

(i)
c ,z

(j)+
c )/τ

where T is the batch size, sim is the cosine similarity func-
tion, τ is the temperature parameter, z(i)

c and z
(i)+
c repre-

sent the embedding of the i-th cell and its positive sample,
respectively.

Cell-Text Inter-Modal Contrastive Learning (C-T): We
project cells and text into the same embedding space through
cell-text contrastive learning. The text encoder employs an
unimodal encoding mode. This technique has been widely
used in multimodal fields such as image-text and has been
proven effective (Radford et al., 2021; Li et al., 2022). Simi-
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larly, a momentum encoder is used to expand the batch size.
The loss function is as follows:

LC−T = − 1

2T

T∑
i=1

(log
esim(z(i)

c ,z
(i)
t )/τ∑T

j=1 e
sim(z

(i)
c ,z

(j)
t )/τ

+ log
esim(z

(i)
t ,z(i)

c )/τ∑T
j=1 e

sim(z
(i)
t ,z

(j)
c )/τ

)

The symbols in the formula represent similar meanings as
above. z(i)

t represents the text embeddings.

Cell-Text Matching (CTM): When computing this loss,
the text encoder adopts a multimodal encoding mode, con-
ducting cross-attention calculations with cell embeddings
after each self-attention layer, and the final output is used for
binary classification to predict whether the cell matches the
text or not. This task aims to explore the matching relation-
ship between cells and text with higher resolution, selecting
cells and texts that are as similar as possible to the positive
examples of cell-text pairs to form negative examples. The
loss function is binary cross-entropy:

LCTM = H(y, pc,t)

where y represents the label indicating whether the cell
matches the text.

Overall Pre-training Loss: We optimize the weighted sum
of the four losses to simultaneously explore the intrinsic
patterns of scRNA-seq data and its associations with text:

min
θ

γ1LMGM + γ2LC−C + γ3LC−T + γ4LCTM

where θ represents the model parameters, and γi are the
weights acting as hyperparameters.

3.4. Downstream Applications

Based on the aligned representation space of cell data and
text, and utilizing the cell-text matching module with cross-
attention, LangCell can be used for zero-shot cell identity
understanding (Fig. 3). Specifically, for a given single cell
c and N candidate text descriptions {t(i)}Ni=1, we obtain
logits1 by comparing their cosine distances in the shared em-
bedding space, and obtain logits2 by comparing the scores
given by the cell-text matching module. Both are considered
comprehensively for classification according to the weight
of α. In practical applications, since logits2 is slower to
compute, we can calculate logits2 only for the candidates
with high logits1 scores.

The specific calculations are as follows:

logits = α · softmax({zc · z(i)
t }Ni=1)+

(1− α) · softmax({g2(zc, t(i))}Ni=1)

Additionally, a classification or regression head can also be
added after the cell encoder for fine-tuning in downstream
tasks. This downstream setting is referred to as LangCell-

CE (Cell Encoder) in the subsequent experiments.
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Figure 3: The application of LangCell in zero-shot
cell identity understanding. LangCell obtains Similar-
ity Scores using the shared embedding space of cell and text
data, obtains Cell-Text Matching Scores through the match-
ing module, and considers these comprehensively to obtain
the final classification logits. In the figure, the symbol ⊕
represents the weighted sum after the Softmax operation.

4. Experiments
4.1. Experiment Settings

4.1.1. Pre-training Details

Dataset Construstion: We established scLibrary, a com-
prehensive dataset comprising roughly 27.5 million pairs of
scRNA-seq data and associated textual descriptions. This
dataset was sourced from the CELLxGENE database, where
we acquired scRNA-seq data in raw count matrix format and
the corresponding meta data. Our selection criteria included
all human cells processed using the 10X sequencing proto-
col. We excluded data that were duplicates, had fewer than
200 expressed genes, had excessive missing metadata, or
were used in downstream tasks. scRNA-seq data were pro-
cessed according to 3.1. Next, we selected 8 cell identities
from the meta data that might contain important insights and
used these entries to generate multi-view textual descrip-
tions of cells from OBO Foundry. Specifically, the selected
cell identities include assay, cell type, developmental stage,
tissue information, organ information, disease information,
as well as the donor’s gender and ethnicity, with each entry’s
type detailed in the Appendix D.

Pre-training Stages: Our pre-training consists of two
stages. In the first stage, we initialize the cell encoder pa-
rameters using Geneformer and conduct unimodal training
using only the LMGM and LC−C loss functions. This is to
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obtain a better single-cell representation learning model. In
the second stage, we initialize the text encoder parameters
using PubMedBERT and engage in multimodal training us-
ing all four loss functions. Both stages are trained separately
for three epochs each.

Setups: The training process was conducted using the Py-
torch framework and the Hugging Face transformers library.
We employed the AdamW optimizer, with the learning rate
warmed up to 1e-5 over 1000 steps, followed by a linear de-
cay strategy. Weight decay was set to 0.001. More detailed
parameter settings can be found in the Appendix C.

4.1.2. Downstream Task Datasets

We collected a set of benchmark datasets to evaluate our
model’s performance on different downstream tasks. These
include human peripheral blood cell datasets (Gayoso et al.,
2022; Zheng et al., 2017), human liver datasets (Lin et al.,
2020), a human brain cell dataset (Siletti et al., 2023), and
a comprehensive human cell dataset (Consortium* et al.,
2022). In addition, we propose two novel cell identity un-
derstanding tasks: non-small cell lung cancer (NSCLC)
subtype classification and cell pathway identification, for
which we have constructed high-quality benchmarks. The
original data used to build these benchmarks were obtained
from CELLxGENE. The former uses disease information
from clinical diagnosis in the metadata to annotate two sub-
types of NSCLC; the latter employs the irGSEA package to
label hallmark pathways from the MSigDB (Liberzon et al.,
2011). More details can be found in the Appendix D.2.

4.1.3. Baselines

Our focus is on comparison with single-cell pre-trained
language models such as Geneformer, scGPT, xTrimeGene,
and scBERT, which have already been proven to outperform
traditional methods in a multitude of tasks. Additionally,
although BioTranslator did not undergo pre-training for
single-cell representation learning, it is an important point
of comparison as the first model to consider leveraging
textual descriptions to address single-cell issues.

4.2. Zero-shot Cell Identity Understanding

4.2.1. Novel Cell Type Identification

Experimental Setup: Accurate cell type annotation is fun-
damental for extensive scRNA-seq analyses. However, in
practical scenarios, it is often difficult to find enough high-
quality labeled data for each cell type to be annotated for
fine-tuning. This poses a major challenge to the application
of existing single-cell models in actual scenarios, where
existing models can only assign all unseen new classes un-
der the “Novel” label (Yang et al., 2022a). We refer to
this highly challenging zero-shot task as “Novel Cell Type

Identification”, which requires the model to perform cell
type annotation in the absence of fine-tuning data. In addi-
tion to zero-shot learning, we engage in few-shot learning to
benchmark against baselines and evaluate the data efficiency
of LangCell. We meticulously selected few-shot settings
that are relevant and have practical implications in bioin-
formatics. This study focuses on two common scenarios
encountered in real-world applications:

Zero-and Few-shot Cell Type Annotation: Suitable for sce-
narios with fewer alternative cell types, commonly seen in
annotating small-scale single-cell data from specific tissues
or dividing cells of a certain cell type into multiple subtypes.
The few-shot approach is configured to use n (1 ≤ n ≤ 9)
training samples for each category during fine-tuning. This
configuration is designed with the practical consideration
that a smaller number of alternative types in real-world set-
tings enables the feasibility of providing very little manually
annotated data for each category. In the few-shot task, all
baseline models add a linear layer as the classification head.
LangCell uses two settings: fine-tuning with the C-T and
CTM tasks or using only its cell encoder and a linear classi-
fication head (LangCell-CE). Our analysis is conducted on
two benchmarks of human peripheral blood mononuclear
cells, PBMC10K and PBMC3&68K. The evaluation metrics
employed are accuracy and macro F1 score.

Cell-Text Retrieval Suitable for scenarios with many alterna-
tive cell types, commonly seen in annotating single cells in
complex environments or completely unknown single cells.
Given the abundance of cell types, which may encompass
subtypes with ambiguous boundaries, we define this task as
a cell-text retrieval task. The few-shot method is structured
to perform fine-tuning on a limited selection of cell types,
followed by testing on a range of unseen cell types. This
approach is compared with BioTranslator, the sole existing
model with cross-type transfer capabilities. This setting
mirrors a real-life situation where some known annotated
data is available, but the target data differs from the known
dataset. We test on the challenging human comprehensive
cell dataset, Tabula Sapiens, which includes 161 cell types,
66 of which are completely new types not included in scLi-
brary. We use common evaluation metrics for multimodal
retrieval tasks, recall@k.

Results: We report the test results of n-shot cell type an-
notation in Table 1 and Fig. 1, and the results of cell-text
retrieval in Fig. 4. The experimental results show that Lang-
Cell performs excellently in both zero-shot and few-shot
settings for both types of tasks. Specifically, we observe:

Zero- and Few-shot Cell Type Annotation: LangCell shows
excellent performance in zero-shot scenarios, surpassing
few-shot baselines in most cases. LangCell can also use a
few examples to adapt to new tasks quickly, demonstrating
its high data efficiency.
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Table 1: Results of zero- and few-shot cell type annotation. LangCell is the only single-cell PLM that can perform
zero-shot. All other models need to add classification headers and fine-tune. In most cases, LangCell’s zero-shot performance
is better than the few-shot results of existing models. Acc: accuracy (%). F1: macro F1 score (%).

Dataset Model 0-shot 1-shot 3-shot 5-shot 7-shot 9-shot
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

PBMC
10k

scBERT ✗ ✗ 31.4 9.4 60.6 41.4 78.0 58.2 59.0 54.6 81.9 62.6
scGPT ✗ ✗ 41.9 34.0 43.3 41.1 81.1 66.3 82.0 68.3 86.7 75.8
Geneformer ✗ ✗ 54.0 42.2 70.3 46.7 81.0 63.9 80.9 71.2 88.0 78.6

LangCell-CE ✗ ✗ 88.7 75.2 92.2 86.1 93.0 88.7 93.6 89.1 94.4 90.7
LangCell 86.5 89.6 88.1 87.5 95.1 94.7 96.0 94.8 96.3 95.3 96.8 95.2

PBMC
3&68k

scBERT ✗ ✗ 19.9 13.8 36.5 39.4 48.5 43.0 48.3 40.9 47.6 51.7
scGPT ✗ ✗ 17.7 21.1 45.3 44.3 52.0 61.6 79.9 76.9 85.7 76.9
Geneformer ✗ ✗ 21.1 24.7 55.2 49.2 59.3 69.1 81.5 74.8 83.3 74.1

LangCell-CE ✗ ✗ 86.2 79.7 85.8 85.8 87.2 84.1 89.1 85.9 86.7 86.0
LangCell 83.9 82.6 89.7 87.1 89.9 87.8 90.3 87.7 92.1 87.5 92.4 88.5
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Figure 4: Results of cell-text retrieval. Zero-shot LangCell surpasses BioTranslator trained on up to 30% of the 161 types.

Cell-Text Retrieval: The zero-shot performance of LangCell
surpasses BioTranslator, which at most uses 48 (30% of
161) cell types, for training. This confirms LangCell’s good
performance in such challenging application scenarios.

4.2.2. NSCLC Subtype Classification

ScRNA-seq technology plays a significant role in the study
of malignant tumor. However, it is difficult to analyze malig-
nant cells due to the scarcity of data and their characteristics
of high mutational burdens. Lung squamous cell carcinoma
(LUSC) and lung adenocarcinoma (LUAD) are the two most
common subtypes of non-small cell lung cancer (NSCLC).
We test LangCell on 2,658 malignant cells from patients
with these two lung cancer subtypes, to assess its effective-
ness in identifying disease-related cell identities.

Since all cell type labels are “Malignant”, we used descrip-
tions of these two diseases to construct the texts. As shown
in Figure 5, LangCell aligns single-cell and disease texts
well in the latent space. Its zero-shot classification sur-
passes Geneformer (fine-tuned with 10-shot learning) by
about 20% in both accuracy and macro F1-score. (Table 2)
This experiment demonstrates LangCell’s strong capability
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Text of LUAD

Figure 5: UMAP plot of embeddings for scRNA-seq data
and descriptions of two NSCLC subtypes.

in understanding disease-related cell identities and its effec-
tive performance in the analysis of single cells with high
mutational burdens, such as malignant cells.

4.2.3. Single-cell batch integration

Single-cell batch integration holds significant importance
in biomedical research. It plays a crucial role in mitigating
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Table 2: Results of NSCLC subtype classification (%).
Model n-shot Acc F1

Geneformer 1 46.7 43.9
10 73.1 73.1

LangCell 0 93.5 93.2

Table 3: Results of cell batch integration (%) from scratch.

Dataset Model Avgbio ASWbatch Sfinal

PBMC10K

scVI 70.0 97.6 81.0
scBERT 18.1 95.0 48.9
scGPT* 72.3 91.9 80.2
Geneformer 79.3 92.8 84.7
LangCell 80.8 97.9 87.6

Perirhinal
Cortex

scVI 84.9 89.6 86.8
scBERT 15.1 92.9 46.2
scGPT* 88.9 88.4 88.7
Geneformer 85.5 91.8 88.0
LangCell 95.2 95.6 95.4

batch effects from different experimental data, scaling up
data analysis, and fostering a comprehensive understanding
of cell diversity and functionality within biological systems.
This task requires the model to correctly distinguish whether
the expression differences between cells arise from mean-
ingless batch effects or meaningful biological information,
demanding a strong understanding of cell identity informa-
tion inherent in scRNA-seq data.

We evaluated the performance of LangCell in cell batch
integration on the PBMC10K and Perirhinal Cortex, com-
paring it with the classical model in the field, scVI, as well
as several single-cell PLMs. To comprehensively assess
model performance, we used the evaluation metrics Avgbio,
ASWbatch, and Sfinal proposed in (Luecken et al., 2022).
These metrics respectively assess the model’s capability
of biological integration, batch effect removal, and a com-
prehensive evaluation of both. Detailed calculation can be
found in the Appendix E. The experimental results in Ta-
ble 3 indicate that LangCell surpasses the existing optimal
models in all three metrics. This demonstrates LangCell’s
profound insight into transcriptomic data, its ability to ac-
curately preserve important biological information, and its
effectiveness in correcting irrelevant batch effects.

4.3. Cell Representation Learning of LangCell-CE

4.3.1. Cell Type Annotation (fine-tune)

We also evaluate the representation capabilities of LangCell-
CE on the classic task of cell type annotation. The results in
Table 4 demonstrate that our model achieves SOTA perfor-
mance on all three datasets. This demonstrates that Lang-
Cell successfully injects unstructured knowledge into the
cell encoder, enhancing the understanding of scRNA-seq
data. In addition, experiments on LiverCross demonstrate

Table 4: Results of cell type annotation (%). *: Since
xTrimoGene did not release the checkpoint, we can only
obtain their reported Zheng68k result.

Dataset PBMC10K LiverCross Zheng68K
Acc F1 Acc F1 Acc F1

scBERT 97.5 90.5 37.3 12.2 77.9 68.8
scGPT 96.5 94.1 48.1 24.1 84.6 75.2
xTrimoGene* - - - - - 73.5
Geneformer 97.8 95.7 46.7 24.0 83.9 74.4
LangCell-CE 98.3 96.9 50.4 26.0 85.4 76.9

Table 5: Result of pathway identification (%). The metrics
are detailed in Appendix E.

Model avg-AUROC avg-AUPRC flatten-AUROC flatten-AUPRC

Geneformer 82.8 23.9 86.6 27.3

LangCell-CE 89.3 31.4 89.9 35.4

the effectiveness of LangCell in cross-dataset tasks.

4.3.2. Pathway Identification

In the pre-training process, we injected knowledge of “cell
types” into LangCell-CE, thereby naturally deepening its
understanding of this cell identity. We cannot yet determine
whether LangCell-CE’s outstanding performance is due to
its comprehensively improved ability to learn cell represen-
tations, or simply due to its insights into this specific task.
To verify this, we explored a new cell identity not covered
in pre-training, cell pathways, and designed a challenging
representation learning task around it. For each single cell,
the model was tasked with identifying multiple pathways
from a selection of 41 important pathways, essentially con-
stituting a multi-label binary classification problem with 41
independent labels. Considering the data imbalance caused
by the expression of each pathway in only a few cells, fo-
cal loss (Lin et al., 2017) was used during fine-tuning. As
shown in Table E, LangCell significantly outperforms the
existing state-of-the-art model Geneformer on AUROC and
AUPRC on this challenging task.

4.4. Ablation Study

Stage Division: The primary motivation for dividing the
training into two stages is to reduce computational costs.
Our preliminary experiments showed that the first stage of
training significantly accelerates the convergence of the loss
function in the second phase (Fig. 6), thereby reducing the
number of epochs needed to reach convergence. Consid-
ering that the first phase only requires computing LMGM

and LC−C , whose computational costs are much lower than
LC−T and LCTM , the two-stage pre-training significantly
reduces the overall computational resources needed.

8
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Table 6: Ablation study of pre-training tasks in LangCell.
LangCell-1: model at the end of the first stage of pre-
training. w/o CTM: without CTM module.

Models LMGM LC−C LC−T LCTM
zero-shot fine-tune

Acc F1 Acc F1

Geneformer ✔ ✗ ✗ ✗ - - 76.1 64.7
LangCell-1 ✔ ✔ ✗ ✗ - - 77.0 65.8
LangCell w/oCTM ✔ ✔ ✔ ✗ 84.8 85.9 - -
LangCell ✔ ✔ ✔ ✔ 85.2 86.1 78.0 66.6

0 10000 20000 30000 40000 50000 60000 70000 80000
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3

4
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6
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Figure 6: The impact of whether to conduct the first stage
on the convergence speed of LangCell pre-training.

Initialization: If we don’t use Geneformer and PubMed-
BERT to initialize the model parameters and instead start
training from scratch, the convergence of the model will be
extremely slow in the early stages due to the absence of high-
quality representations of scRNA-seq data and text. Specifi-
cally, the loss demonstrates negligible decline throughout
the first 20,000 steps, and the huge computational costs
prevent further study of training from scratch.

Ablation Study of Pre-training Tasks: We explored the
influence of various pre-training tasks on the model’s perfor-
mance in downstream applications (Table 6). Compared to
using only LMGM , the incorporation of LC−C improves the
model’s cell representation learning capability, which is con-
sistent with findings in NLP (Gao et al., 2021) and CV (Park
et al., 2023) fields. The integration of textual data further
enhances the performance of the cellular encoder, which
we attribute to the injection of unstructured knowledge in
the text. The results on zero-shot and few-shot retrieval
tasks demonstrate the importance of considering both sim-
ilarity scores and matching scores comprehensively, with
performance surpassing that of considering either alone.

Discussion on the setting of α: α mentioned in 3.4 is an
adjustable hyperparameter during downstream tasks. Users
of LangCell can use a small validation set to select the
optimal α for a specific task. If there is no labeled validation
set available, we recommend setting 0.2 as the default value
for α, which is near-optimal in most cases. In the zero-
shot experiments of this paper, to simulate an application
scenario with no labeled data at all, we did not manually
adjust α and instead used the default value 0.2. The results
in Table 7 present the impact of α on several zero-shot tasks.

Table 7: The impact of alpha setting on the model’s zero-
shot ability.

PBMC10K PBMC3&68K
α Accuracy F1 Accuracy F1

0 56.83 25.09 65.32 31.33
0.01 86.74 67.07 88.54 81.45
0.05 92.40 80.08 87.44 83.07
0.1 90.98 85.18 85.13 82.47
0.2 86.54 89.61 83.94 82.64
0.3 86.29 89.47 84.25 82.16
0.5 85.98 89.49 83.91 82.39
0.7 85.84 89.46 83.74 82.42
0.9 85.77 89.43 83.70 82.43

5. Conclusion and Limitation
In this work, we present LangCell, the Language-Cell pre-
training framework, offering a unified representation of
single-cell data and natural language that transcends the
need for task-specific fine-tuning. By integrating these
modalities, LangCell intuitively grasps the relationship be-
tween cellular data and textual identities, enhancing its cell
representation learning capabilities. Our experiments across
various biological tasks confirm LangCell’s superior perfor-
mance over existing models, particularly in zero-shot and
few-shot scenarios. This framework sets a new standard for
the field, enabling more accurate and efficient analysis of
single-cell transcriptomics data.

Currently, LangCell still has some limitations. For example,
the pre-training texts are all from the OBO Foundry, which
limits the diversity to a certain extent. LangCell also cannot
yet analyze other single-cell omics such as scATAC-seq,
and it does not include cell/text generation functions. In the
future, we will focus on improving these aspects.

Code Availability
LangCell will soon be added to the OpenBioMed toolkit:
https://github.com/PharMolix/OpenBioMed.

Code is available at: https://github.com/PharMolix/LangCell.
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A., Shelhamer, E., Hénaff, O., Botvinick, M. M., Zis-
serman, A., Vinyals, O., and Carreira, J. Perceiver io:
A general architecture for structured inputs & outputs,
2022.

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. Dnabert:
Pre-trained bidirectional encoder representations from
transformers model for dna-language in genome. Bioin-
formatics, 37(15):2112–2120, 2021. doi: 10.1093/
bioinformatics/btab083.
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Appendix

A. More Experimental Results
A.1. Cell Batch Integration & Novel Cell Type Identification

The complete experimental results for cell batch integration are shown in Table A.1.1.

Table A.1.1: Results of cell batch integration (%) from scratch. * stands for the results from scGPT.

Dataset Model NMI ARI ASWcell Avgbio ASWbatch Sfinal

PBMC10K

scVI 80.8 71.1 58.1 70.0 97.6 81.0
scBERT 5.3 3.4 45.5 18.1 95.0 48.9
scGPT* 73.8 79.3 63.9 72.3 91.9 80.2
Geneformer 82.5 84.6 70.9 79.3 92.8 84.7
LangCell 84.5 85.4 72.4 80.8 97.9 87.6

Perirhinal
Cortex

scVI 95.0 95.7 63.9 84.9 89.6 86.8
scBERT 3.1 2.7 39.6 15.1 92.9 46.2
scGPT* 88.6 89.5 88.6 88.9 88.4 88.7
Geneformer 89.0 81.3 86.3 85.5 91.8 88.0
LangCell 97.2 98.3 90.2 95.2 95.6 95.4

We perform a visual analysis of the PBMC10K dataset to intuitively observe LangCell’s zero-shot capability for cell batch
integration (Fig. A.1.1, left and right). We also visualize the encoding results of the current best models, scGPT and
Geneformer (Fig. A.1.2, Fig. A.1.3). It can be observed that all three models excel at eliminating batch effects, but LangCell,
during encoding, can directly focus on the identity information of cells, with cells of the same type clustering together in the
feature space.

Moreover, LangCell can effectively complete novel cell type identification. Comparing the left and middle images of Fig.
A.1.1, it can be seen that LangCell can correctly annotate most cells without any fine-tuning.

Figure A.1.1: UMAP plot of embeddings for scRNA-seq data of LangCell in the zero-shot scenario. Three scatter plots are
colored by actual cell type labels, predicted cell type labels, and batch information, respectively. It is evident that the cell
embeddings generated directly by LangCell, without any fine-tuning, possess desirable properties: they cluster by cell type
and eliminate batch effects. By comparing the left and middle plots, one can intuitively observe that LangCell is capable of
reliably annotating cell types in a zero-shot scenario.

A.2. Cell-Text Retrieval

We plotted heatmaps of top retrieval results for zero-shot LangCell and BioTranslator trained on 10% types. It is clear to see
that LangCell’s result plot has a sharper diagonal line, signaling a significantly higher retrieval ability for new cell types than
BioTranslator (Fig. A.2.1, Fig. A.2.2).
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Figure A.1.2: UMAP plot of embeddings for scRNA-seq data of scGPT. In the middle is the predicted result of fine-tuned
scGPT.

Figure A.1.3: UMAP plot of embeddings for scRNA-seq data of Geneformer.

Figure A.2.1: Heatmap of the top-ranked results from Lang-
Cell’s zero-shot retrieval on Tabula Sapiens.

Figure A.2.2: Heatmap of the top-ranked results from Bio-
Translator’s retrieval on Tabula Sapiens. Trained on 10%
types and tested on 90% types.
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Figure A.3.1: flatten-PRC of pathway identification. Figure A.3.2: flatten-ROC of pathway identification.

Table A.4.1: Ablation study of pre-training tasks in LangCell. LangCell-1: model at the end of the first stage of pre-training.
w/o CTM: without CTM module.

Models

Zero-shot Fine-tune

PBMC10K PBMC3&68K Avg PBMC10K LiverCross Zheng68k Avg
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Geneformer - - - - - - 97.8 95.7 46.7 24.0 83.9 74.4 76.1 64.7
LangCell-1 - - - - - - 98.1 96.6 48.5 25.4 84.4 75.4 77.0 65.8
LangCell w/oCTM 85.8 89.4 83.7 82.4 84.8 85.9 - - - - - - - -
LangCell 86.5 89.6 83.9 82.6 85.2 86.1 98.3 96.9 50.4 26.0 85.4 76.9 78.0 66.6

A.3. Pathway Identification

Fig. A.3.1 and Fig. A.3.2 visually show the performance of fine-tuned LangCell and Geneformer in the pathway identification
task.

A.4. Ablation Study of Pre-training Tasks

The complete experimental results for cell batch integration are shown in Table A.4.1.

A.5. Retrieval for novel cell types not covered by scLibrary

LangCell has demonstrated excellent performance in cell-text retrieval tasks. However, many cell types in the test dataset
Tabula Sapiens are covered by scLibrary. To confirm that LangCell’s outstanding performance is not solely due to
encountering the same cell types in scLibrary, we re-calculate the experimental results in Figure 4 for 95 cell types covered
by scLibrary and 66 cell types not covered by scLibrary. We present the experimental effects of LangCell in a zero-shot
scenario and compare them with the results of BioTranslator under the setting of 30% training classes (Table A.5.1). Each
set of experiments uses all 161 types as alternatives. The experimental results show that for new types of cells present
in Tabula Sapiens that are not included in scLibrary, LangCell also exhibits outstanding classification performance. This
demonstrates LangCell’s strong transferability to entirely new cell types.

A.6. Robustness to “Dropout Zeros”

In practical application scenarios, scRNA-seq data often contains “dropout zeros” noise, which means that low gene
expressions may not be captured during sequencing (Silverman et al., 2018). The model’s resistance to such noise
significantly influences its practicality. In fact, “dropout zeros” can be regarded as random noise introduced by sequencing
technology. Works such as Geneformer and scGPT have demonstrated that single-cell language models can understand the
contextual relationships of gene expressions during large-scale pre-training, thereby possessing resistance to noise in scRNA-
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Table A.5.1: The cell-text retrieval results of the cell types covered and not covered by scLibrary.
Model Data Selection Classes of Cells Number of Cells Recall@1 (Accuracy)

BioTranslator (baseline) 30% classes for training and 70% for test 113 212k 13.71
LangCell All 161 456k 28.65
LangCell Covered by scLibrary 95 429k 28.77
LangCell Not covered by scLibrary 66 27k 26.74

Table A.6.1: The impact of “dropout zeros” on LangCell experimental results.
Dropout Probability (%) CosineSimilarity (%) Accuracy(%) F1 (%)

0 100 86.54 89.61
1 99.70 86.66 89.59
5 98.72 86.37 89.71
10 97.45 88.14 89.50

seq data. To verify LangCell’s resistance to “dropout zeros”, we have added the following experiment on the PBMC10K
dataset. For genes with expression levels in the bottom 30% of each cell (excluding genes with an expression level of 0),
we reduced their expression levels to 0 with a certain probability to simulate the “dropout zeros” noise. Subsequently,
we observed the perturbation of LangCell-generated cell embeddings under different probabilities of dropout zeros. We
also tested the impact of different probabilities of dropout zeros on the downstream task effects in the zero-shot cell type
annotation task, reflecting LangCell’s performance on lower-quality downstream task data. The experiments were conducted
three times for each dropout probability, and the average results are shown in Table A.6.1.

The experimental results indicate that applying dropout perturbation does not cause significant shifts in the cell embeddings
generated by LangCell. This demonstrates that LangCell has excellent noise resistance capabilities against the “dropout
zeros” phenomenon specific to scRNA-seq data. Moreover, the experimental results of zero-shot cell type annotation also
show that dropout zeros events in downstream task data do not significantly degrade LangCell’s performance. This proves
the robustness of LangCell on data of lower quality.

B. More Discussion about Complexity Analysis and Inference Speed
B.1. Complexity analysis of text encoder

Let the text length be N , the gene sequence length of a cell be M , and consider the vector dimension as a constant.
When the text encoder adopts a single-modality mode (g1), the bottleneck for time and space complexity lies in the
self-attention computation of the text, with a complexity of O(N2) (Vaswani et al., 2023). When the text encoder adopts a
multi-modality mode (g2), the time and space complexity is determined by both the self-attention computation of the text
and the cross-attention computation between the image and text, with a complexity of O(N2 +MN).

Furthermore, during the zero-shot inference process, let the total number of categories be P and the total number of cells
be Q. Typically, P ≪ Q. The time complexity for calculating the embeddings of all categories in single-modality mode
is O(PN2). For each cell, the time complexity for computing the embeddings is O(M2), and the time complexity for
calculating the match scores with the top k categories using g2 is O(kN2 + kMN). Therefore, the total time complexity of
the inference process is O(PN2 +Q(M2 + kN2 + kMN)).

B.2. Discussion about inference speed

The total time complexity of the reasoning process is O(PN2 +Q(M2 + kN2 + kMN)). Put simply, the total number of
forward passes required during the inference process is P +Q+ kQ, where 0 ≤ k ≤ P .

The number of forward passes for LangCell-CE, Geneformer and other models that require fine-tuning during inference is
Q. Considering P ≪ Q, the main factor affecting inference time is the choice of k. In scenarios where inference speed is
highly required, k can be set to 0, thus achieving fast inference similar to LangCell-CE; in scenarios with a larger number of
categories or where inference speed is not a high requirement, a larger k can be chosen or even k can be set to P for more
accurate inference.

For the experimental results reported in the paper, except for the cell-text retrieval experiment where k = 20 is taken, all
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Table B.2.1: The impact of k on the model’s inference performance and time. (P = 8)
k Time (s) Zero-Shot Accuracy (%) Zero-Shot F1 (%)

0 186.62 86.76 89.37
2 514.51 86.28 89.23
4 841.18 86.04 89.49
6 1162.49 86.53 89.55
8 1537.91 86.54 89.61

For comparison, the inference time of LangCell-CE or Geneformer: 188.23s.

Table B.2.2: The complete performance of LangCell at k = 0 (i.e., w/o CTM).

Dataset Model 0-shot 1-shot 3-shot 5-shot 7-shot 9-shot
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

PBMC
10K

Geneformer ✗ ✗ 54.0 42.2 70.3 46.7 81.0 63.9 80.9 71.2 88.0 78.6

LangCell w/oCTM 85.8 89.4 86.6 90.6 89.3 91.6 92.2 93.0 93.0 93.3 96.2 94.2
LangCell 86.5 89.6 88.1 87.5 95.1 94.7 96.0 94.8 96.3 95.3 96.8 95.2

PBMC
3&68K

Geneformer ✗ ✗ 21.1 24.7 55.2 49.2 59.3 69.1 81.5 74.8 83.3 74.1

LangCell w/oCTM 83.7 82.4 86.6 84.4 87.6 86.1 88.7 86.9 88.2 86.8 89.1 87.6
LangCell 83.9 82.6 89.7 87.1 89.9 87.8 90.3 87.7 92.1 87.5 92.4 88.5

others take k = P . In the ablation study reported in Table 6, LangCell w/oCTM reports the average zero-shot performance
of the model on the two datasets in Table 1 under the setting of k = 0. In Table B.2.1, we provide the impact of different k
values on the model’s inference performance and time on the PBMC10K dataset (P = 8).

Experimental results are consistent with theoretical derivations, demonstrating that larger values of k enhance model
performance but also increase the time cost of inference. Furthermore, the inference speed at k = 0 is close to that of
LangCell-CE or Geneformer. Fortunately, in most cases, the model performance at k = 0 is not much lower than at k = P ,
and it generally still surpasses other methods. When users have high demands for inference speed, setting k = 0 is a viable
option to quickly obtain satisfactory results. In Table B.2.2, we provide the complete performance of LangCell at k = 0 (i.e.,
w/o CTM) in the experiments of Table 1 from the paper.

C. Experiment Settings for Pre-training and the Downstream Tasks
Pre-training The pre-training is conducted on four NVIDIA Tesla A100 GPUs and takes approximately 50 days to
complete. More experiment configurations are shown in Table C.0.1.

Downstream Tasks In downstream tasks, we uniformly follow the settings below:

• Perform quality control on all datasets used, removing special categories such as “Other” or “Unknown”, as well as
single cells with too few expressed genes.

• For tasks with randomness, perform three random iterations and take the average.

• In few-shot tasks, all models are trained for 20 epochs.

• For fine-tuning tasks, all models are trained for the same number of epochs. Cell type annotation uses a training:test
split of 2:1, while pathway identification uses a training:test split of 3:7.

D. Datasets
D.1. Pre-training Data

We constructed a pre-training dataset named scLibrary from CELLxGENE (Megill et al., 2021; Biology et al., 2023). We
obtained raw count matrices of scRNA-seq data along with their associated metadata. Our criteria for selection encompassed
human cells that were analyzed using the 10X Genomics sequencing technology. We filtered out data that contained
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Table C.0.1: Experiment Configurations

Hyperparameter Value

Model

Vocab size
Hidden size
Number of hidden layers
Max sequence length
Number of attention heads
Dropout
Hidden act
LayerNorm eps

25427
512
12
2048
8
0.02
ReLU
1e-12

Pre-training

Similarity function
Optimizer
Scheduler
Max learning rate
Warm up steps
Weight decay
Batch size
Gradient accumulation

Cosine similarity
AdamW
Linear
1e-5
1000
1e-3
3
32

duplicates, had less than 200 expressed genes, exhibited significant gaps in metadata, or were previously utilized in other
analyses.

We employed information closely related to cell identity, such as cell type (CL), cell expression phenotype (PATO), ancestral
concept system descriptions (HANCESTRO), cell anatomical information (UBERON), disease definitions (Mondo), and
ontologies from the Open Biological and Biomedical Ontologies Foundry (OBO Foundry) (Smith et al., 2007), to provide
professional-level textual annotations for each single-cell.

The dataset contains textual information categorized into eight distinct cell identities, which describe single-cell sequencing
data from various angles, including Assay, Cell Type, Development Stage, Disease Information,
Ethnicity of Donor, Sex of Donor, Tissue Information, Organ Information. After pre-
processing, only three labels related to the donor information—“development stage”, “ethnicity”, and “sex”—have missing
values, while the other five labels—assay, cell type, tissue, organ, and disease—are complete without any missing values.
The statistical results are depicted in Table D.1.1.

Table D.1.1: Missing values in the scLibrary.

Missing Labels Number of Cells

Miss Development Stage 1.92M
Miss Ethnicity 13.22M
Miss Sex 2.00M

Miss 1 label 10.59M
Miss 2 labels 1.70M
Miss 3 labels 1.05M

Each cell identity has multiple possible values (Table D.1.2). We have selected three significant cell identities to showcase
the data distribution, as depicted in Fig. G.0.1, Fig. G.0.2, and Fig. G.0.3.

In the pre-training phase, we stack the cell identity information in a fixed order. Below is an example of a cell description
text missing the “ethnicity” information:
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Table D.1.2: The cell identities used in the scLibrary.

Cell Identity Number of values

Assay 7
Disease 56
Cell Type 562
Development Stage 160
Ethnicity of Donor 25
Sex of Donor 3
Tissue Information 192
Organ Information 48

assay: 10x 3’ v2. ;
cell type: malignant cell. a neoplastic cell that is capable of entering a surrounding tissue. ;
development stage: 74-year-old human stage. adult stage refers to an adult who is over 74 and under 75 years old. ;
disease: squamous cell lung carcinoma. a carcinoma arising from squamous bronchial epithelial cells. it may be
keratinizing or non-keratinizing. keratinizing squamous cell carcinoma is characterized by the presence of keratinization,
pearl formation, and/or intercellular bridges. non-keratinizing squamous cell carcinoma is characterized by the absence
of keratinization, pearl formation, and intercellular bridges. cigarette smoking and arsenic exposure are strongly
associated with squamous cell lung carcinoma. ;
sex: male. a biological sex quality inhering in an individual or a population whose sex organs contain only male
gametes. ;
tissue: lung. respiration organ that develops as an out pocketing of the esophagus. ;
tissue general: lung. respiration organ that develops as an out pocketing of the esophagus.

During inference, the model can work quite well even with only a single piece of identity information. For example, in the
cell type annotation experiment (4.2.1), we used only the text of “cell type”; in the NSCLC subtype classification experiment
(4.2.2), we used only the text of “disease”. Here is an example of the “cell type” text used in the experiment of Section 4.2.1:

cell type: dendritic cell. a cell of hematopoietic origin, typically resident in particular tissues, specialized in the uptake,
processing, and transport of antigens to lymph nodes for the purpose of stimulating an immune response via T cell
activation. these cells are lineage negative (cd3-negative, cd19-negative, cd34-negative, and cd56-negative).

D.2. Downstream Tasks Dataset

We have assembled a set of benchmark datasets to evaluate the performance of LangCell across various downstream tasks.
The following discussion will be structured according to the dataset of cells involved.

PBMC10K The PBMC10K dataset, as reprocessed by the study referenced in (Gayoso et al., 2022), features 3,346 distinct
genes that are actively expressed. It is compiled from two separate single-cell RNA sequencing (scRNA-seq) data sets, both
derived from healthy human peripheral blood mononuclear cells (PBMCs). The first data set includes 7,982 individual cells,
and the second comprises 4,008 cells. The PBMC10K dataset encompasses nine different cell types: B cells, CD4 T cells,
CD8 T cells, CD14+ Monocytes, Dendritic cells, natural killer (NK) cells, FCGR3A+ Monocytes, Megakaryocytes, and an
additional category for other cell types. We have utilized PBMC10K for zero-, few-shot, and full-data cell-type annotation
tasks and single-cell integration tasks.

PBMC3&68K The PBMC3&68K (Zheng et al., 2017) dataset is a comprehensive scRNA-seq dataset formed by the
integration of two sub-datasets, PBMC3K, and PBMC68K, encompassing a total of 4,638 cell samples. The dataset includes
eight types of cells, which are B cells, CD4 T cells, CD8 T cells, CD14+ Monocytes, Dendritic cells, FCGR3A+ Monocytes,
Megakaryocytes, and NK cells, allowing for a multifaceted exploration of cellular heterogeneity and functionality within the
PBMC population. PBMC3&68K is characterized by the analysis of 14,236 unique genes, providing a detailed view into the
transcriptomic landscape of the cells. It is composed of two distinct batches, which may represent different experimental
conditions or time points, offering a robust framework for comparative analysis. This level of detail is invaluable for
researchers aiming to understand the intricacies of immune cell dynamics and for the development of targeted therapeutic
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strategies. We have utilized PBMC3&68K for zero-, few-shot, and full-data cell-type annotation and single-cell integration
tasks.

Zheng68K Zheng68K (Zheng et al., 2017) is a highly relevant and challenging dataset, consisting of 68,450 PBMCs
with 11 highly related cell types. Zheng68K provides high-quality cell type annotations, making it an ideal benchmark
for evaluating annotation approaches. However, the dataset poses significant challenges due to the large number of cell
categories and the uneven distribution of samples between types. We have utilized Zheng68K for zero-, few-shot, and
full-data cell-type annotation tasks.

Human liver cross datasets Human liver datasets, sourced from the work (Lin et al., 2020), are a combination of the
macParland and aizarani datasets. The macParland dataset includes 14 cell types, while the aizarani dataset comprises 7 cell
types that are part of the macParland dataset. In our experiments, we utilized the macParland dataset as the training set and
the aizarani dataset as the test set to perform zero-, few-shot, and full data cell type annotation tasks, thereby assessing the
model’s generalization capability.

Perirhinal Cortex The original data for the Perirhinal Cortex dataset is derived from (Siletti et al., 2023), which includes
606 high-quality samples from 10 distinct brain regions. The Perirhinal Cortex dataset consists of two batches with rich
cellular content, containing 59,357 genes in total. The first batch includes 8,465 cells, while the second batch comprises
9,070 cells. We have utilized Perirhinal Cortex for zero-, few-shot, and full-data single-cell integration tasks.

Tabula Sapiens Tabula Sapiens (Consortium* et al., 2022) is an innovative human single-cell research project that has
uncovered the transcriptomic features of 475 distinct cell types by analyzing live cells from multiple human tissues. The
data is derived from 59 meticulously selected samples, encompassing a broad range of tissue types from the bladder to the
vasculature, involving donors of varying genders, ethnicities, and ages. The project has analyzed a total of 483,152 cells,
including a substantial number of immune cells, epithelial cells, endothelial cells, and stromal cells. We have utilized Tabula
Sapiens for the cell-text retrieval task.

Non-small cell lung cancer (NSCLC) subtype dataset The Non-small cell lung cancer (NSCLC) subtype dataset we’ve
developed provides a new benchmark for cell identification tasks. This dataset is sourced from CELLxGENE, where we
meticulously selected cell data from the lungs of patients with malignant lung cancer, specifically those diagnosed with
adenocarcinoma or squamous cell carcinoma. By annotating the dataset with clinical metadata, we’ve distinguished between
the two NSCLC subtypes. Cluster analysis revealed a clear division of the data into two age-based clusters. Considering
the more uniform data distribution in the elderly population, we have chosen this group’s cluster to represent the NSCLC
subtype dataset. We have utilized the NSCLC subtype dataset for the cancer subtype identification task.

Cell pathway identification dataset Pathway analysis is indispensable in this field, offering a detailed perspective on
cellular diversity and molecular dynamics, which is essential for pinpointing key biological changes and therapeutic targets,
thereby driving the precision of medical treatments. Therefore, we constructed the cell pathway identification dataset, a
new dataset for cell identification. This dataset is obtained from CELLxGENE, and is processed using various R packages
to create a pathway annotation dataset. Initially, the Seurat package was utilized for data normalization and identification
of variable features. Subsequently, integrated pathway analysis was conducted on the normalized data using the irGSEA
package, employing the “AUCell” method to score pathway activities in individual cells. The analysis specifically focused
on the 50 hallmark pathways from the Broad Institute’s Molecular Signatures Database (MSigDB), considering only the
top 5% of expressed pathways. Finally, the dataset was further refined to include only those pathways that appeared with
a frequency greater than 0.5%. This approach enabled a comprehensive and targeted annotation of cellular pathways,
enhancing the understanding of cellular functions and states within the single-cell RNA-seq data.

It acts as a crucial lens through which we can discern cellular heterogeneity and the intricate interplay of molecular
interactions within cells. By annotating active pathways in individual cells, this dataset provides an unparalleled viewpoint
to identify pivotal biological transitions and pinpoint potential therapeutic targets. Such granularity is pivotal for advancing
precision medicine, enabling the customization of interventions to the precise molecular characteristics observed in
pathological states.

The genesis of this dataset marks the confluence of bioinformatics and systems biology, establishing a formidable foundation
for forthcoming research endeavors. It enables a more profound comprehension of the molecular machinations underlying
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complex diseases and paves new pathways for drug discovery. By bridging the gap between high-resolution single-cell data
and functional pathway analysis, this dataset emerges as a potent tool for decoding the complexities of cellular life, thereby
fostering the advancement of human health and the development of innovative therapeutic strategies.

E. Evaluation Metrics
Cell type annotation To estimate the effectiveness of LangCell for multi-classification tasks, we employ three evaluation
metrics: accuracy, macro F1-score, and weighted F1-score. Accuracy measures the closeness of the prediction to the ground
truth, while macro F1-score comprehensively assesses classification results without considering the importance of different
categories. We also use weighted F1-score to measure classification performance while accounting for the importance of
different categories. These metrics are calculated based on true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) rates.

Accuracy =
TP + TN

TP + TN + FP + FN

To calculate both macro F1-score and weighted F1-score, we need to compute Precision and Recall. These two key metrics
are calculated using the following formulas:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Thus, we can compute both macro F1-score and weighted F1-score using the following formulas, N denotes the total
number of cell types and ni denotes the number of samples in the i-th class:

macro F1 =
1

N

N∑
i=1

F
(i)
1

weighted F1 =
1

N

N∑
i=1

ni ∗ F (i)
1

where F
(i)
1 =

2 ∗ Precision(i) ∗Recall(i)

Precision(i) +Recall(i)

Single-cell Integration We implemented the evaluation metrics as defined in the scIB (Luecken et al., 2022) benchmark
study, which serves as a benchmark for single-cell integration. Here is a detailed description of each metric.

1. Adjusted Rand Index (ARI)

The ARI for cell types is a metric used in the field of cell biology and systems biology to evaluate the quality of cell
clustering. It is a modification of the traditional Rand Index, which measures the similarity between two partitions of
the same set of elements. The ARIcell is specifically tailored to assess the agreement between the annotated cell types
(or labels) and the clusters generated by an algorithm which is a community detection algorithm applied to cell data.

The ARIcell score is a normalized measure that ranges from 0 to 1. A score of 0 indicates that the clustering is no better
than random chance, meaning the algorithm’s partitioning is as likely as random labeling. Conversely, a score of 1
indicates a perfect match between the algorithm’s clusters and the true annotations, signifying that the clustering has
successfully identified the underlying structure of the cell types.

RI =
TP + TN

TP + TN + FP + FN

ARI =
RI − E(RI)

max(RI)− E(RI)

2. Normalize Mutual Information (NMI)
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NMI is a statistical measure used to evaluate the similarity between two categorical label sets. In the single-cell
integration task, we compare the ground truth cell type labels with the cell type labels derived from Louvain clustering
of integrated cell embeddings. The NMIcell quantifies the concordance between these two sets of labels, with a score of
1 indicating perfect alignment and a score of 0 indicating no correlation. The Louvain clustering algorithm is applied
across a range of resolutions from 0.1 to 2, with increments of 0.1, to find the optimal clustering configuration that
maximizes the NMIcell score, thereby ensuring the best possible match between the predicted cell types and the actual
cell types.

NMI(Y,C) =
2× I(Y ;C)

H(Y ) +H(C)

Y represents the true categories of the data; C represents the results of the clustering; H represents the cross-
entropy; I(Y ;C) represents mutual information, which is a useful measure of information in information theory.
I(Y ;C) = H(Y ) − H(Y |C). Mutual information is a useful measure of information in information theory; it
represents the amount of information about one random variable contained within another, or the reduction in
uncertainty of one random variable due to the knowledge of another. In other words, it quantifies the degree of
correlation between two random variables.

3. Average Silhouette Width (ASW)
ASW is a metric used to evaluate the quality of clustering in datasets, particularly in the context of cell type clustering
and batch mixing evaluation. It quantifies the cohesion of clusters by measuring the average silhouette width of all data
points within a cluster.

The silhouette width ranges from -1 to 1, where:

(a) A value of 1 indicates that the data point is well-matched to its cluster and very dissimilar to the nearest cluster.
(b) A value close to 0 suggests that the data point lies on or near the decision boundary between two clusters, indicating

poor clustering.
(c) A negative value indicates that the data point is closer to a different cluster than its own, suggesting misclassifica-

tion.

To assess the effectiveness of cell type clustering, we calculate ASWcell with the known cell type labels. To evaluate
batch clustering, we derive an adjusted ASW score by incorporating batch labels and subtracting 1 from it, which we
refer to as ASWbatch. The scores of ASWcell and ASWbatch range from 0 to 1, with higher values signifying superior
performance in cell-type clustering or batch mixing. The calculation is as follows:

ASWcell =
ASWC + 1

2
ASWbatch = 1− |ASWB |

where C denotes the set of all cell identity labels.

4. Integration Metrics
We report three key evaluation metrics to assess the performance of LangCell on single-cell integration tasks. Avgbio

represents the average value of ARIcell, NMIcell and ASWcell, reflecting the conservation of biological variance.
ASWbatch indicates the effectiveness of batch effect removal. We perform a weighted average of the two to obtain
Sfinal, providing a comprehensive evaluation of a model’s performance in single-cell integration tasks.

Avgbio =
ARIcell +NMIcell +ASWcell

3
Sfinal = Avgbio × 0.6 +ASWbatch × 0.4

Cell-Text Retrieval We utilize the commonly used retrieval metric, recall@k. Specifically, for the i-th sample with label
yi, and the top k results retrieved denoted as Ri,k, then:

retrieval@ki = 1 if yi ∈ Ri,k else 0

retrieval@k = average{retrieval@ki}
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Pathway Identification We calculate AUROC and AUPRC in two different ways. The first method is denoted as “avg-”,
which involves calculating the AUROC and AUPRC for N samples across 41 pathways separately and then taking the
average. The second method is referred to as “flatten-”, where each pathway prediction for every sample is treated as a
single prediction, and the AUROC and AUPRC are computed across 41 ∗N predictions.

F. More Related Works
scRNA-seq Data Representation The gene expression profile, essential for scientific inquiry, elucidates the intricacies
of gene expression within individual cells. The presence of nearly 20,000 human protein-coding genes (Seal et al.,
2022), coupled with the “Dropout Zeros” phenomenon (Svensson, 2019; Silverman et al., 2018; Linderman et al., 2022),
significantly complicates the analysis of high-dimensional data.

Traditional methods involve dimensionality reduction, such as manual marker gene selection (Pasquini et al., 2021; Guo &
Li, 2021), machine learning techniques (F.R.S., 1901; Shen, 2009; Hotelling, 1933; Tsuyuzaki et al., 2019; van der Maaten,
2014; Li et al., 2023b), or autoencoder-based approaches (Alessandri et al., 2020; Talwar et al., 2018; Tran et al., 2019;
2022). However, manual gene selection is often empirical (Huang et al., 2020) and results in information loss, while machine
learning methods tend to be complex and susceptible to noise. Autoencoder-based approaches depend on the similarity
between test and training data. Yet, in practice, it is not always feasible to obtain labeled training data that closely match the
distributions of interest.

scBERT (Yang et al., 2022a), using the Performer architecture (Choromanski et al., 2022) with 6 million parameters, encodes
over a million normalized, unlabeled scRNA-seq samples and surpasses performance benchmarks in cell type annotation
tasks. Exceiver (Connell et al., 2022), with the Perceiver IO architecture (Jaegle et al., 2022), pre-trains on 0.5 million
healthy human scRNA-seq count matrix data, demonstrating effectiveness in downstream tasks. Geneformer (Theodoris
et al., 2023) pre-trains on nearly 30 million scRNA-seq samples, applying transfer learning across various biological tasks.
scGPT (Cui et al., 2023) is trained on over 33 million scRNA-seq records, and fine-tunes for downstream tasks including
cell type annotation and multi-batch integration. scFoundation (Hao et al., 2023), with 100 million parameters, pre-trains on
over 50 million human scRNA-seq data, introducing read-depth-aware pre-training to model gene co-expression patterns,
validated in tasks like gene expression enhancement and drug response prediction. BioTranslator (Xu et al., 2023a) bridges
the gap between natural language and scRNA-seq data. However, its reliance on MLP for encoding scRNA-seq data falls
short of capturing the intricacies of transcriptomic complexity.

During the review and revision process of this paper, there have also been new preprints exploring the integration of
single-cell data and natural language from different perspectives. For example, Cell2Sentence (Levine et al., 2023) and
GenePT (Chen & Zou, 2023) have proposed the idea of directly transcribing single-cell gene sequences into natural language
and utilizing large language models for encoding. These works are still undergoing updates and improvements, and we look
forward to their future contributions in providing more valuable insights to this field.

Multi-modal in Scientific Data Multi-modal learning enhances the model’s ability to understand and express multi-modal
data, with the core of this approach resting in the creation of a unified representational space that fosters inter-modal
interaction and learning, capturing data interconnections and enhancing generalization through cross-modal knowledge
transfer. The vision language model has experienced significant advancements. The CLIP (Radford et al., 2021) model
enables image classification and description without extra supervision by learning image-text associations. BLIP (Li et al.,
2022) introduces the Multimodal Encoder-Decoder (MED) architecture, which enables the model to switch seamlessly
between encoding and generation tasks, thereby enhancing the quality of the text corpus through the innovative Captioning
and Filtering (CapFilt) method. Additionally, BLIP-2 (Li et al., 2023a) leverages the Querying Transformer (Q-Former) to
effectively bridge the gap between visual and textual modalities, further advancing the state of the art in vision-language
pre-training.

G. More Figures and Tables
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Figure G.0.1: Overview of the distribution of cell type categories in the scLibrary dataset. To facilitate the presentation, we
have selected the top 30 categories with the highest data volume for display.

Figure G.0.2: Overview of the distribution of disease in the scLibrary dataset. To facilitate the presentation, we have selected
the top 15 categories with the highest data volume for display.
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Table G.0.1: The downstream tasks, categories, batch, and quantity information of each dataset used in LangCell.
Dataset Downstream Task Batch Number Cell type #Number

PBMC10K
Cell Type Annotation
(Zero-, Few-shot, and Full)
Single-cell Integration

2

CD4 T cells 4,996
CD14+ Monocytes 2,227
B cells 1,621
CD8 T cells 1,448
Other 463
NK cells 457
FCGR3A+ Monocytes 351
Dendritic Cells 339
Megakaryocytes 88

PBMC3&68K
Cell Type Annotation
(Zero-, Few-shot, and Full)
Single-cell Integration

2

CD4 T cells 2,384
CD8 T cells 665
CD14+ Monocytes 564
B cells 476
NK cells 276
FCGR3A+ Monocytes 195
Dendritic cells 61
Megakaryocytes 17

Zheng68K Cell Type Annotation
(Zero-, Few-shot, and Full) -

CD8+ Cytotoxic T 20,757
CD8+/CD45RA+ Naive Cytotoxic 16,645
CD56+ NK 8,775
CD4+/CD25 T Reg 6,185
CD19+ B 5,877
CD4+/CD45RO+ Memory 3,059
CD14+ Monocyte 2,847
Dendritic 2,095
CD4+/CD45RA+/CD25- Naive T 1,871
CD34+ 242
CD4+ T Helper2 97

macParland Cell Type Annotation
(Zero-, Few-shot, and Full) -

Hepatocytes 3,501
ab T 961
Inflammatory Macs 813
gd T 569
Plasma cells 511
NK cells 488
Non-inflammatory Macs 379
Central venous liver sinusoidal endothelial cells 327
Periportal liver sinusoidal endothelial cells 306
Portal endothelial cells 211
Mature B cells 129
cholangiocytes 119
Erythroid cells 93
Stellate cells 37

Aizarani Cell Type Annotation
(Zero-, Few-shot, and Full) -

Hepatocytes 3,086
T/NK 3,066
liver sinusoidal endothelial cells 1,361
cholangiocytes 1,022
macrovascular endothelial cells 355
B 244
Stellate cells and myofibroblasts 28

Perirhinal Cortex Single Cell Integration 2

oligodendrocyte precursor cell 6,404
astrocyte 5,319
oligodendrocyte 4,073
central nervous system macrophage 770
endothelial cell 544
fibroblast 305
pericyte 68
leukocyte 41
vascular associated smooth muscle cell 8
neuron 3
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Figure G.0.3: Overview of the distribution of tissue in the scLibrary dataset. To facilitate the presentation, we have selected
the top 30 categories with the highest data volume for display.

Table G.0.2: The downstream tasks, categories, batch, and quantity information of each dataset used in LangCell.
Dataset Downstream Task Batch Number Cell type #Number

Tabula Sapiens
(Top 10) Cell-Text Retrieval -

macrophage 33,607
fibroblast 31,125
B cell 19,067
neutrophil 16,992
memory B cell 14,565
mesenchymal stem cell 14,036
T cell 13,947
basal cell 12,991
CD4-positive, alpha-beta T cell 12,870
classical monocyte 12,746

Non-small cell lung
cancer (NSCLC) subtype Cancer Subtype Identification - Squamous cell lung carcinoma 1,600

Lung adenocarcinoma 1,058
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