
Self-Infilling Code Generation

Lin Zheng 1 * Jianbo Yuan 2 Zhi Zhang 2 Hongxia Yang 2 Lingpeng Kong 1

Abstract

In this work, we introduce self-infilling code gen-
eration, a general framework that incorporates
infilling operations into auto-regressive decoding.
Our approach capitalizes on the observation that
recent infilling-capable code language models can
perform self-infilling: whereas conventional infill-
ing is designed to fill in the middle based on a
predefined prefix and suffix, self-infilling sequen-
tially generates both such surrounding context
and the infilled content. We utilize self-infilling
to introduce novel interruption and looping mech-
anisms in conventional decoding, evolving it into
a non-monotonic process. Interruptions allow for
postponing the generation of specific code until
a definitive suffix is established, enhancing con-
trol during decoding. Meanwhile, the looping
mechanism, which leverages the complementary
nature of self-infilling and left-to-right decoding,
can iteratively update and synchronize each piece
of generation cyclically. Extensive experiments
across a variety of code generation benchmarks
demonstrate that decoding with self-infilling not
only improves the output quality but also regular-
izes the overall generation, which effectively mit-
igates potential degeneration and scaffolds code
to be more consistent with intended functionality.

1. Introduction
Contemporary large language models have achieved excel-
lent performance in tasks related to code generation and
understanding (Austin et al., 2021; Chen et al., 2021; Fried
et al., 2023; Nijkamp et al., 2023b; Li et al., 2022; Anil
et al., 2023; OpenAI, 2023; Touvron et al., 2023a; Li et al.,
2023; Touvron et al., 2023b; Muennighoff et al., 2023; Ni-
jkamp et al., 2023a; Roziere et al., 2023; Xie et al., 2023; Xu

*This work was done during an internship at ByteDance. 1The
University of Hong Kong 2ByteDance Inc. Correspondence to:
Lin Zheng <lzheng2@cs.hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

et al., 2024). Building upon this success, an active line of re-
search aims to endow these language models with enhanced
free-form generation capacities (Fried et al., 2023; Bavarian
et al., 2022; Allal et al., 2023; Nijkamp et al., 2023a; Li
et al., 2023; Roziere et al., 2023), where models learn to
infill content considering both preceding and subsequent
contexts. Such capabilities are instrumental for numerous
downstream code-related tasks that require a bidirectional
context, including but not limited to partial code completion,
docstring generation, and type prediction (Fried et al., 2023;
Li et al., 2023; Roziere et al., 2023).

Established practices for fostering infilling capabilities in
language models involve training with an explicit infilling
objective (Raffel et al., 2020; Bavarian et al., 2022; Tay et al.,
2023; Anil et al., 2023; Fried et al., 2023; Nijkamp et al.,
2023a), which directs the model to predict the missing span
of sequence tokens given the surrounding context. Despite a
substantial allocation of computational resources dedicated
to the specialized infilling training (Bavarian et al., 2022;
Li et al., 2023; Roziere et al., 2023), most code generation
systems still persist in a strictly left-to-right fashion. It
remains unclear how the acquired proficiency in infilling
could aid in synthesizing complete code beyond narrowly
tailored partial infilling tasks (Bavarian et al., 2022; Fried
et al., 2023; Allal et al., 2023).

In this work, we investigate the integration of infilling capa-
bilities into the generation process of code language models.
We start with a seemingly straightforward yet overlooked ob-
servation: recent open-source code language models, specif-
ically those trained with fill-in-the-middle objectives (Bavar-
ian et al., 2022) (e.g., STARCODER (Li et al., 2023) and
CODE LLAMA (Roziere et al., 2023)), inherently possess
self-infilling capabilities (§2.1). Unlike regular infilling op-
erations that demand a partial surrounding context as input,
self-infilling autonomously generates both the surrounding
context and the infilled content.

We leverage this finding to develop an interruption mech-
anism (§2.2) in conventional left-to-right decoding, trans-
forming it into a non-monotonic process. This allows the
language model to temporarily halt the decoding process
when necessary, craft a suffix, and then return to the in-
terruption point to infill the bypassed context (Figure 1c).
To handle the variable length of the skipped context and

1

Self-Infilling Code Generation

Prefix

Suffix

Middle

Prefix

Middle

Prefix

Middle

Suffix

Prefix

Middle

SuffixSuffix

(a) Left-to-right (b) Infilling (c) Self-infilling
Interruption

(d) Self-infilling
Interruption
with Looping

Figure 1. Schematic illustrations of various decoding approaches
for code generation. (a) and (b) represent standard left-to-right
decoding and infilling operations, respectively. Whereas infilling
requires the user-provided prefix and suffix, self-infilling inter-
ruption (c) autonomously generates these segments. (d) further
expands on self-infilling by incorporating a looping mechanism.

enforce an appropriate suffix, we introduce suffix prompt-
ing by initiating the suffix with a prespecified yet common
prompt. The interruption mechanism is particularly useful in
high-entropy situations, where conventional decoding meth-
ods falter due to uncertainty in predicting the next token
and might cause propagation of errors through the context,
known as the exposure bias (Ranzato et al., 2015; Bengio
et al., 2015). Instead, self-infilling interruption offers an
easy-first alternative by deferring the generation of more
difficult tokens and crafting a well-definitive suffix. This
suffix works as an anchor to scaffold the code and produce a
more structured context for the subsequent infilling, which
ensures the final generation is logically consistent with the
intended functionality and enjoys improved regularity.

Besides, self-infilling implies a looping mechanism (§2.3) to
further enhance the decoding process. Leveraging the com-
plementary nature of left-to-right and self-infilling methods,
it iteratively updates code snippets with broader contexts,
wherein the output from one mode seamlessly informs the
input to the other (Figure 1d). Specifically, the suffix in
self-infilling is generated based solely on the prefix with a
rather limited context. This can be addressed by chaining a
subsequent left-to-right decoding phase, enabling the suffix
to be re-generated within an expanded context that includes
the infilled middle. Similarly, we can continue by append-
ing the next self-infilling to synchronize the middle and the
prefix based on the latest suffix information. Such piece-
wise synchronization allows each snippet to be recurrently
updated with more informative contexts.

Intuitively, the developed interruption and looping mecha-
nism mirrors human coding practices, which typically do
not conform strictly to a linear, left-to-right progression.
Instead, code is usually written via a dynamic process of
continuous refinement, editing, and reconnection of frag-
ments. While the replication of human coding strategies
may not necessarily be the optimal approach for language

models, our extensive experiments (§3) on various code
benchmarks verify the effectiveness of self-infilling genera-
tion. We demonstrate that our framework brings significant
improvements in the quality and regularity of code genera-
tion compared to conventional left-to-right approaches.

2. Self-infilling Code Generation
In this section, we introduce self-infilling, the built-in capa-
bility of models trained with fill-in-the-middle (§2.1; Bavar-
ian et al., 2022). We then detail our integration of self-
infilling into the decoding process, including the developed
interruption (§2.2) and looping (§2.3) mechanisms.

2.1. FIM Training Entails Self-infilling

Fill-in-the-middle (FIM) Training. Throughout this
work, we focus on code language models with causal
decoder-only Transformers (Vaswani et al., 2017; Radford
et al., 2018), which are currently the dominant paradigm
at large scale. Most of these language models are trained
with conventional left-to-right next token prediction (Rad-
ford et al., 2018; 2019). Despite compelling performance
(Austin et al., 2021; Chen et al., 2021; Nijkamp et al.,
2023b), such training objective only permits left-to-right
generation for downstream applications and restricts more
versatile generation tasks like infilling, which necessitates
a non-causal (or bidirectional) context. A recent practice
to address this limitation is training with the Fill-In-the-
Middle (FIM) objective (Bavarian et al., 2022), which is
extensively employed in recent code models (Allal et al.,
2023; Li et al., 2023; Roziere et al., 2023). FIM randomly
splits input raw code into three pieces (prefix, middle,
suffix) and rearranges them to form a permuted
sequence [<PRE>;prefix;<SUF>;suffix;<MID>;
middle;<EOT>], where ; denotes concatenation and
particular sentinel tokens are interleaved to mark the bound-
ary of each piece.1 The model is then optimized to max-
imize the factorized likelihood p(prefix)p(suffix |
prefix)p(middle | prefix,suffix) with each mod-
eled in a standard left-to-right auto-regressive manner.

FIM Entails Self-infilling. Our key observation is that
FIM (Bavarian et al., 2022) trains the model to predict
the “next” token irrespective of the specific pieces (i.e.,
prefix, middle, or suffix) these tokens belong to.
Consequently, the model learns not only to predict the
middle conditioned on both prefix and suffix, but
also to predict suffix only based on prefix. While the

1An alternative format, known as the SPM mode (Bavar-
ian et al., 2022), structures the pieces as [<PRE>;<SUF>;
suffix;<MID>;prefix;middle;<EOT>]. However, this
permutation is not as useful in our setting, because we would like
the suffix to be conditioned on the prefix context.

2

Self-Infilling Code Generation

former is extensively studied in the literature as infilling
(Donahue et al., 2020; Bavarian et al., 2022; Du et al., 2022;
Aghajanyan et al., 2022; Tay et al., 2022; 2023; Fried et al.,
2023), the latter is rarely explored, which characterizes the
distribution of suffix given prefix marginalized over
possible outcomes of middle. This leads to self-infilling,
where the model can first generate a suffix based on
prefix and then return to fill in the middle given the
self-generated context. We leverage this aspect to develop a
non-monotonic decoding process, as detailed subsequently.

2.2. Self-infilling Interruption

Self-infilling introduces a dynamic decoding process with
the interruption mechanism. Specifically, given an initial
input prompt denoted as prefix, the language model per-
forms next-token prediction similar to regular decoding,

prefix ∼ p(prefix). (1)

Our approach enhances decoding by incorporating interrup-
tions. On invocation, the current decoding is suspended to
generate a suffix, followed by filling in the middle:

suffix ∼ p(suffix | prefix), (2)
middle ∼ p(middle | prefix,suffix). (3)

In general, interruptions can be triggered by various indi-
cators, such as low likelihood or the occurrence of specific
tokens. We implement a simple heuristic to signal inter-
ruptions by employing a probability threshold τ . If the
maximum probability over the next token falls below τ , indi-
cating high uncertainty, self-infilling is invoked. Contrasting
with left-to-right decoding, self-infilling interruption adopts
an easy-first methodology and dynamically defers the gen-
eration of potentially difficult snippets. It is thus useful to
mitigate divergent issues due to producing an error-prone
context, known as the exposure bias (Bengio et al., 2015;
Ranzato et al., 2015).

Suffix Prompting. Accurately crafting a proper suffix
from only prefix is often challenging due to the inde-
terminate nature of the skipped segment middle during
infilling pretraining. To guide suffix generation, we propose
suffix prompting that enforces suffix to start with specific
tokens. For instance, in Python function generation (Chen
et al., 2021; Austin et al., 2021), a common ending is a
return statement containing the keyword return. Such
common keywords can be used as the suffix prompt (denoted
as suffixp) to shape suffix.

Technically, we represent the whole input sequence as a
quadruple in the following form,

[prefix; middle; suffixp; suffixc], (4)

where suffix := [suffixp;suffixc] and suffixc

is the suffix completion of suffixp. Given prefix and
a predefined suffixp, we can further expand upon Equa-
tion 2 as follows,

suffixc ∼ p(suffixc | prefix,suffixp),
suffix := [suffixp;suffixc].

(5)

The use of suffix prompting helps generate an appropriate
suffix, which serves as a contextual anchor to scaffold
the overall generation and ensure the output structure is
logically consistent with the intended functionality.

In practice, self-infilling interruption is implemented
through the manipulation of sentinel tokens. For instance,
the language model is programmed to produce <SUF> as
the next token upon interruption activation. Our detailed
implementation is outlined in Algorithm 2 (Appendix A).

2.3. Decoding through a Looping Mechanism

In this section, we introduce a looping mechanism to im-
prove decoding, which interweaves self-infilling with left-
to-right conditional generation to recurrently update snip-
pets. Note that during self-infilling, suffix is generated
based solely on prefix, a narrower context that excludes
middle. This can be enhanced by chaining a subsequent
left-to-right decoding phase to re-generate suffix as

suffixp∼p(suffixp |prefix,middle),
suffixc∼p(suffixc |prefix,middle,suffixp),

allowing suffix := [suffixp;suffixc] to integrate
information from both prefix and middle. Notably, the
suffix prompt suffixp is also updated through looping to
become fully contextual instead of being specified a priori.

This looping procedure can be continued to synchronize
middle with the latest suffix information through the next
self-infilling call. Instead of restarting self-infilling with
prefix generation (Equation 1), which would ignore the
information from the last left-to-right decoding and repeat
the first iteration, hereafter self-infilling begins with Equa-
tion 5 to directly incorporate suffixp.2 To update the gen-
erated tokens of prefix (Equation 1), we prepend them
into middle and reset prefix to the original fixed input.
This design choice corroborates prior research (Bavarian
et al., 2022), suggesting that while the infilled middle
sometimes struggles to join suffix, it could adeptly con-
tinue prefix. During looping, transferring the output from
self-infilling to left-to-right decoding is straightforward due
to explicit sentinel tokens. However, to continue the looping

2It is also feasible to pass the entire generated suffix to ini-
tiate self-infilling with middle generation (Equation 3); however,
this approach often yields inferior results, as shown in Table 4 and
discussed in §3.4.

3

Self-Infilling Code Generation

Algorithm 1 Looping Mechanism

Input: prompt, the language model, suffix prompt to-
kens suffixp, and number of iterations N .
Output: Generated code y.

Set prefix← prompt and x← [<PRE>;prefix];

for n = 1, 2, . . . , N do
Invoke self-infilling generation (Algorithm 2) with
↪→ input x to output x′;

Parse x′ into
↪→ (prefix′,middle′,suffixp′,suffixc′);

for p ∈ (prefix, middle, suffixp, suffixc) do
▷Update each piece to its latest version.
Update p← p′;

Set x← [prefix;middle];

Invoke left-to-right generation (Algorithm 3) with
↪→ input x to output x′;

Parse x′ via l2r_parser() (Function 5) into
↪→ (prefix′,middle′,suffixp′,suffixc′);

for p ∈ (prefix, middle, suffixp, suffixc) do
Update p← p′;

if n ̸= N then
▷Construct new input x for the next cycle.
x← [<PRE>;prefix;<SUF>;suffixp];

else
▷Prepare the final output y.
y ← [prefix;middle;suffixp;suffixc];

Return output y.

mechanism from the left-to-right decoding phase, we have
to parse the output into the quadruple (prefix, middle,
suffix, suffixp, suffixc), as these segments are not
explicitly delineated in left-to-right decodes. We explore
several heuristic approaches for this segmentation in Func-
tion 5 and discuss them further in §3.4.

As outlined in Algorithm 1, the looping mechanism cycli-
cally updates middle and suffix through self-infilling
and left-to-right generation, respectively. Since each piece
of the context is updated in situ, this looping process, akin
to a rolling window over the context or piece-wise Gibbs
sampling, leads to continuous synchronization of each sec-
tion. In addition, this mechanism allows all tokens to be
conditioned on a more informative bidirectional context,
overcoming the causal limitations of traditional decoding.

3. Experiments
In this section, we present extensive experiments to eval-
uate self-infilling generation across various benchmarks.
Please refer to Appendix B for an exhaustive overview of

experimental details and Appendix C for additional results
including illustrative generation samples.

3.1. Experimental Setup

Benchmarks. Our evaluation encompasses a range of
code generation benchmarks, including HUMANEVAL
(Chen et al., 2021), MBPP (Austin et al., 2021), and DS-
1000 (Lai et al., 2023). In addition, we also extend our
analysis to multilingual code generation with MULTIPL-
E (Cassano et al., 2023) and mathematical reasoning with
GSM8K (Cobbe et al., 2021), the detailed results of which
can be found at Appendix C.1.

Code Language Models. For our experiments, we uti-
lize the open-sourced STARCODER (Li et al., 2023) and
CODE LLAMA (Roziere et al., 2023) models, which have
been pre-trained with the FIM objective (Bavarian et al.,
2022). Further model details are available in Appendix B.2.

Evaluation Protocols. Following Chen et al. (2021), we
evaluate the performance of code language models with
the pass@k rate, which estimates the probability of a code
model generating a correct solution within k attempts. To fa-
cilitate a fair comparison to previous work (Lai et al., 2023;
Li et al., 2023; Roziere et al., 2023), we report pass@1,
pass@10, and pass@100 for the HUMANEVAL and MBPP
benchmarks. We measure pass@1 for other tasks. Pass@1
rates are calculated via greedy decoding, while pass@10 and
pass@100 are computed by generating 200 samples at tem-
perature 0.8 using nucleus sampling (Holtzman et al., 2020)
with top-p = 0.95. We set the maximum context length to
2048 tokens and limit the maximum number of generated to-
kens to 512, except for the HUMANEVAL benchmark, where
we limit the context length to 640 for accelerating decoding.
For self-infilling generation, τ and N are defaulted to 0.25
and 2, respectively, unless otherwise specified.

3.2. Results

Results on HUMANEVAL and MBPP. Table 1 displays
the comparative results of self-infilling and traditional de-
coding approaches on HUMANEVAL and MBPP bench-
marks. When self-infilling is solely equipped with its in-
terruption functionality, without the looping mechanism
(denoted as N = 0), its performance is marginally inferior
to vanilla left-to-right completion baselines. This could
be attributed to the inherent complexity of infilling tasks
compared to next-token prediction, often resulting in dif-
ficulties in integrating the prefix with the suffix (Bavarian
et al., 2022). Self-infilling further exacerbates these chal-
lenges by requiring the model to join the self-generated
suffix with greater variety. Nonetheless, as indicated in
§3.3, self-infilling contributes significantly to enhancing
the structure of generated code and mitigating potential de-

4

Self-Infilling Code Generation

Table 1. The pass@1(%), pass@10(%), and pass@100(%) rates on HUMANEVAL (zero-shot) and MBPP (three-shot) with different code
language models. N denotes the number of times the decoding process goes through the loop, and N =0 represents that the looping
mechanism is not activated.† Results are taken from Roziere et al. (2023) and Xu et al. (2024).

Model Size Method HUMANEVAL MBPP
pass@1 pass@10 pass@100 pass@1 pass@10 pass@100

CODE LLAMA - INSTRUCT †
7B

Left-to-right

34.8 64.3 88.1 44.4 65.4 76.8
13B 42.7 71.6 91.6 49.4 71.2 84.1
34B 41.5 77.2 93.5 57.0 74.6 85.4

CODE LLAMA - PYTHON †
7B 38.4 70.3 90.6 47.6 70.3 84.8

13B 43.3 77.4 94.1 49.0 74.0 87.6
34B 53.7 82.8 94.7 56.2 76.4 88.2

Lemur† 70B 35.4 - - 53.2 - -
GPT-3.5 Turbo† - 72.6 - - 70.8 - -
GPT-4 Turbo† - 88.4 - - 81.0 - -

CODE LLAMA 7B

Left-to-right 34.1 59.6 86.5 42.8 66.8 82.3

Self-infill (N=0) 29.9 56.9 86.0 41.0 67.0 84.2
Self-infill (N=1) 34.1 61.3 87.0 43.8 67.6 83.9
Self-infill (N=2) 39.0 62.5 88.5 44.8 67.9 84.5

CODE LLAMA 13B

Left-to-right 35.4 69.7 90.0 47.2 71.9 87.3

Self-infill (N=0) 32.3 69.2 90.5 44.0 71.2 87.8
Self-infill (N=1) 38.4 70.7 92.5 47.2 72.6 88.3
Self-infill (N=2) 40.8 72.1 91.1 49.0 73.0 89.2

STARCODERBASE 15.5B

Left-to-right 31.7 56.3 80.3 43.8 68.7 85.3

Self-infill (N=0) 27.4 52.0 80.5 42.2 68.7 85.7
Self-infill (N=1) 33.5 56.6 82.3 44.6 69.4 86.4
Self-infill (N=2) 36.0 59.4 84.6 46.6 69.1 84.9

STARCODER 15.5B

Left-to-right 35.4 62.1 85.1 48.6 71.5 86.6

Self-infill (N=0) 29.2 58.0 85.9 46.4 70.7 85.6
Self-infill (N=1) 37.8 63.2 86.5 47.8 71.3 86.1
Self-infill (N=2) 38.4 64.7 87.3 50.0 71.1 87.2

generate issues. Besides, when integrated with the looping
mechanism, self-infilling exhibits much higher code gen-
eration quality, scales effectively with increased iterations
N , and consistently outperforms left-to-right baselines. The
improvements even sometimes surpass those brought by spe-
cialized language training (e.g., CODE LLAMA - PYTHON)
or instruction tuning (e.g., CODE LLAMA - INSTRUCT).
These results suggest that the performance of infill-capable
code models can be largely improved by integrating self-
infilling capabilities into the inference phase, moving be-
yond the conventional left-to-right generation paradigm.

Results on DS-1000. The DS-1000 task supports code
language models to generate in both left-to-right completion
and insertion formats. In insertion mode, official suffixes
are provided for each task (except for Matplotlib problems)
to condition generation; while in left-to-right completion
mode, these suffixes are translated into succinct natural lan-
guage specifications and appended to problem descriptions

to align with the causal formulation. In our evaluation, we
follow the left-to-right format and use the given specifi-
cations to construct instance-wise suffix prompts for self-
infilling. As shown in Table 2, our framework improves the
performance over left-to-right completion and narrows the
quality gap with the insertion mode even though without
the use of official suffixes. Generation examples demon-
strate that self-infilling more effectively adheres to the given
specifications, such as allocating the final result to a specific
variable for evaluation. However, we note that performance
gains for STARCODER models are marginal, possibly due to
their limited infilling training compared to CODE LLAMA
series (Li et al., 2023; Roziere et al., 2023).

Results on Multilingual Code Generation. We further
evaluate the multilingual performance of self-infilling gener-
ation across various programming languages. We recruit the
MULTIPL-E benchmark (Cassano et al., 2023) and evaluate
our approach for C++, Java, and PHP languages. Detailed

5

Self-Infilling Code Generation

Table 2. Zero-shot pass@1(%) performance on DS-1000 with different code language models. † Results are taken from Li et al. (2023)
and Luo et al. (2023).

Model Method Matplotlib

NumPy

Pandas
PyTorch

SciP
y

Scik
it-

Learn TensorFlow

Overall

CodeGen-16B-Mono† Left-to-right 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7

code-cushman-001† Left-to-right 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1

code-davinci-001† Left-to-right 41.8 26.6 9.4 9.7 15.0 18.5 17.2 20.2

InCoder-6B† Left-to-right 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
Insertion 28.3 4.6 2.9 4.4 2.8 3.1 7.8 7.5

WizardCoder† Left-to-right 55.2 33.6 16.7 26.2 24.2 24.9 26.7 29.2
Insertion 55.2 35.1 20.4 30.4 28.9 32.3 37.8 32.8

code-davinci-002† Left-to-right 57.0 43.1 26.5 41.8 31.8 44.8 39.3 39.2
Insertion 57.0 46.5 30.1 47.7 34.8 53.7 53.4 43.3

CODE LLAMA 7B
Left-to-right 47.1 27.3 14.4 23.5 19.8 23.5 20.0 24.8
Self-infilling 48.4 30.0 17.2 27.9 22.6 38.3 20.0 28.7
Insertion 47.1 30.9 12.0 23.5 22.6 33.9 35.6 27.1

CODE LLAMA 13B
Left-to-right 49.0 33.2 18.6 30.9 20.8 37.4 31.1 30.3
Self-infilling 49.7 33.2 24.4 32.4 20.8 47.0 26.7 33.1
Insertion 50.3 36.4 21.6 33.8 20.8 53.9 35.6 34.4

STARCODERBASE
Left-to-right 47.1 31.4 9.6 26.5 27.4 38.3 17.8 26.9
Self-infilling 45.8 29.1 10.0 23.5 25.5 44.3 20.0 26.7
Insertion 45.8 31.4 12.0 27.9 26.4 42.6 26.7 28.3

STARCODER
Left-to-right 51.6 35.0 11.3 27.9 23.6 46.1 24.4 29.8
Self-infilling 50.3 34.1 12.0 29.4 23.6 47.0 26.7 29.9
Insertion 50.3 37.7 13.7 35.3 24.5 43.5 31.1 31.5

results are presented in Table 3, we observe a similar trend in
improving conventional left-to-right generation approaches
under the multilingual setting. These results indicate the
versatility of self-infilling generation across various pro-
gramming languages.

3.3. Analysis

Decoding Regularization. As discussed in §2.2, self-
infilling facilitates decoding that respects specific con-
straints, particularly through interruption and suffix prompts.
A significant advantage of this approach is its capacity to
shape the generation and mitigate degeneracy, a prevalent
issue where language models are prone to generating empty
or repetitive programs (Holtzman et al., 2020; Zhang et al.,
2023). We illustrate the effectiveness of such regulariza-
tion in Figure 2, which depicts the frequency of degenerate
samples for both vanilla and self-infilling decoding on HU-
MANEVAL. Notably, self-infilling significantly reduces the
occurrence of degenerate outputs, while vanilla decoding
produces more degenerate cases and displays a substantially
heavier tail. This improvement is largely attributed to the
interruption, which enforces the generation to end with a

Code Llama 7B Code Llama 13B StarCoder StarCoderBase
Model

0

20

40

60

80

De

ge
ne

ra
te

 S
am

pl
es

 P
er

 P
ro

bl
em Methods

Left-to-right
Self-infilling

Figure 2. The distribution of degenerate solutions from self-
infilling (N=2) versus vanilla decoding on HUMANEVAL across
various models. For each problem, 200 samples are generated
using nucleus sampling with the temperature 0.8 and top-p 0.95.

fitting suffix, such as a return statement in function-level
generation. Thanks to the suffix-first non-monotonic formu-
lation, self-infilling effectively shapes the generation toward
complete function programs. Our proposed approach makes
it easy to implement such regularization while achieving
higher performance, which is otherwise difficult to accom-
plish in conventional left-to-right decoding.

6

Self-Infilling Code Generation

Table 3. Pass@1(%) rates on C++, Java, and PHP versions of HU-
MANEVAL problems from the MULTIPL-E benchmark (zero-shot).
N denotes the number of times the decoding process goes through
the loop, and N=0 represents that the looping mechanism is not
activated.

Model Size Method Language
C++ Java PHP

STARCODERBASE 15.5B

Left-to-right 30.4 27.8 25.5

Self-infill (N=0) 31.1 26.6 26.1
Self-infill (N=1) 31.7 30.4 26.1
Self-infill (N=2) 30.4 30.4 31.7

STARCODER 15.5B

Left-to-right 31.1 27.8 24.8

Self-infill (N=0) 31.7 27.2 25.5
Self-infill (N=1) 31.1 31.0 26.1
Self-infill (N=2) 33.5 29.7 28.0

CODE LLAMA 7B

Left-to-right 28.6 33.5 24.2

Self-infill (N=0) 27.3 25.3 27.3
Self-infill (N=1) 31.7 30.4 29.8
Self-infill (N=2) 31.7 30.4 28.0

CODE LLAMA 13B

Left-to-right 38.5 34.8 35.4

Self-infill (N=0) 36.0 34.2 29.2
Self-infill (N=1) 39.1 35.4 36.6
Self-infill (N=2) 41.0 36.7 35.4

Inspecting the Looping Mechanism. Different from re-
search on self-improving frameworks (Madaan et al., 2023;
Chen et al., 2023; Huang et al., 2023) in large language mod-
els, our looping mechanism (§2.3) operates independently
of external tools or self-generated verbal feedback. Instead,
the model dynamically modifies the generation in-place
based on the most recent context. An in-depth examination
of this mechanism is provided in Figure 3, which reveals
that while overall task performance tends to improve with
increasing iterations N , the looping mechanism does not
intrinsically improve code quality. Rather, it simply updates
code snippets with more informative contexts and broad-
ens the decoding space, thereby increasing the likelihood
of deriving correct solutions on average. It is possible that
executing the loop can inadvertently introduce new bugs
to initially correct solutions (e.g., the category ‘Correct→
Incorrect’) or fail to fix buggy programs (the ‘Changed
but Remained Incorrect’ category). We provide additional
analyses in Appendix C.4 and Appendix C.6, including
illustrative generated examples across various categories
(Figures 18, 19, 20, 21 and 22).

3.4. Ablation Study

Additional ablation studies are deferred to Appendix C,
including inspecting the effect of varying suffix prompts
(Appendix C.2), examining the impact of removing self-
infilling from the looping mechanism (Appendix C.3), and
comparing looping with sample-and-rank approaches (Ap-
pendix C.4).

HumanEval MBPP
Dataset

0.0

0.1

0.2

0.3

0.4

Pr
op

or
ti

on

Unchanged
Changed but Remained Correct
Changed but Remained Incorrect
Correct Incorrect
Incorrect Correct

Figure 3. Proportional distribution of changes after a second iter-
ation of the looping mechanism (N = 2) on HUMANEVAL and
MBPP benchmarks with CODE LLAMA 13B. Categories illus-
trate the state changes of generated code: ‘Unchanged’ denotes no
change during the second time of looping, ‘Changed but Remained
Correct/Incorrect’ for changed snippets that stayed correct/incor-
rect, and ‘Correct → Incorrect’ for snippets that changed from
being correct to incorrect (vice versa).

On the Effect of τ and N . τ and N are main hyper-
parameters in our self-infilling generation framework. The
parameter τ determines the trigger point for the self-infilling
interruption. Specifically, a larger τ value indicates a more
aggressive approach towards activating self-infilling to regu-
larize generation, and vice versa. Besides, the parameter N
controls the duration of looped decoding execution. We con-
duct a detailed analysis to examine the influence of τ and N
on the generation results, as presented in Figure 4 (as well
as Figures 7, 8 and 9 in Appendix C.5). When the looping
mechanism (§2.3) is inactive (N = 0), We observe that a
larger τ typically correlates with slightly worse performance.
This could be attributed to 1) the complexity of infilling and
2) the challenge in crafting an apt suffix according to a lim-
ited prefix; nevertheless, large τ values lead to better control
over generation structures. For instance, nearly 13% of so-
lutions generated by CODE LLAMA 7B on HUMANEVAL
exhibit degeneracy at τ = 0.1, which is reduced to 2.4%
when increasing τ to 0.25. When equipped with the looping
mechanism, most τ settings exhibit improved performance
as N increases, despite some fluctuations at longer loop-
ing durations. Their performance generally surpasses the
left-to-right completion baseline significantly. An excep-
tion is observed when τ = 0.0, where self-infilling is not
engaged in the first iteration. This case is equivalent to ini-
tializing the generation with left-to-right decoding, which
is shown to benefit less from looping compared to other
settings of τ . This trend may step from the inherently less
structured nature of the left-to-right generation, narrowing
the exploration space in subsequent iterations.

7

Self-Infilling Code Generation

0 1 2 3 4
N

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Pa
ss

@1

HumanEval

0.00
0.25
0.50
0.75
1.00
L2R

0 1 2 3 4
N

MBPP

Figure 4. Results on HUMANEVAL and MBPP with different val-
ues of τ and N on CODE LLAMA 7B. N = 0 indicates that the
looping mechanism is disabled, and the horizontal dashed line rep-
resents the performance of the vanilla left-to-right baseline (L2R).

On the Implementation of Looping Mechanisms. The
introduced looping mechanism iteratively updates snippets
of output to enhance decoding. A pivotal aspect of these
iterations involves the transmission of updated contexts to
the subsequent iteration (Algorithm 1). Unlike self-infilling,
our mechanism’s left-to-right decoding lacks a clear notion
of suffixp and suffixc, necessitating strategic output
parsing to extract essential pieces for the next update cy-
cle. We explore three distinct strategies for extraction: 1)
Vanilla, where the new suffixp starts at the beginning
of updated suffix and ends at the occurrence of the de-
fault suffixp; 2) Extended, similar to Vanilla but start-
ing from the midpoint of the whole generation to enlarge
suffixp; and 3) Half, splitting the entire generation uni-
formly and employing the latter half as suffixp, where
the self-infilling reduces to standard infilling for Equation 3.
These strategies reflect an increased amount of context in-
formation available for the subsequent iteration.

Our analysis (Table 4) indicates that CODE LLAMA models
usually exhibit greater resilience to splitting strategy varia-
tions. Conversely, models like STARCODER generally bene-
fit from a more informative suffix prompt, encompassing a
broader context. This might step from less sufficient infilling
training in STARCODER (only 50% of its pre-training time)
compared to that in CODE LLAMA (90% of pre-training),
which restricts its capability of (self-)infilling according to
a limited context. In addition, the Half strategy, despite
being more informative, often leads to slightly inferior re-
sults. This could be due to its complete suffix being overly
specific and narrowing the solution space, compared to the
other strategies that allow for more model-drive completion.
Through our experiments, we utilize the Extended strategy
for all code language models, except for CODE LLAMA 7B
where strategy Vanilla is used.

Table 4. Results on HUMANEVAL and MBPP with different suffix
splitting strategies in the looping mechanism.

Dataset Strategy
Model

STARCODER CODE LLAMA
15B-BASE 15B 7B 13B

HUMANEVAL
Vanilla 31.7 34.8 37.2 35.9
Extended 36.0 37.8 32.3 40.8
Half 37.8 38.4 31.7 39.6

MBPP
Vanilla 41.6 44.8 44.6 49.0
Extended 46.6 50.8 43.8 49.0
Half 43.8 48.8 43.8 46.8

4. Related Work
A variety of language models possess the capability to per-
form infilling (Sun et al., 2024). Encoder-only (Devlin
et al., 2018; Liu et al., 2019; Joshi et al., 2020) and encoder-
decoder architectures (Raffel et al., 2020; Lewis et al., 2020;
Aghajanyan et al., 2021; Tay et al., 2023) are capable of
conditioning on the bidirectional context, but they primarily
focus on representation learning and fall short of generat-
ing coherent content. Standard left-to-right causal language
models excel in generating high-quality text (Radford et al.,
2018; 2019; Brown et al., 2020); however, their inherent
causal formulation limits their effectiveness in infilling tasks
that require bidirectional context. To circumvent these limi-
tations, several approaches tailor the auto-regressive model
architecture to generate tokens in a more flexible order be-
yond the standard left-to-right direction (Yang et al., 2019).
Techniques such as integrating both left-to-right and right-
to-left language models (Nguyen et al., 2023) have been
effective in capturing bidirectional dependencies and thus
facilitating infilling. Additionally, the ordering of genera-
tion can be made adaptive based on the model output or
enhanced by learning a location predictor for each token
(Stern et al., 2019; Gu et al., 2019; Chan et al., 2019; Welleck
et al., 2019; Shen et al., 2020; Alon et al., 2020; Shen et al.,
2023), further enhancing model flexibility in generation.

Another line of research enables infilling by transforming
the input sequences while retaining the left-to-right auto-
regressive formulation (Zhu et al., 2019; Donahue et al.,
2020; Tay et al., 2022; Du et al., 2022; Aghajanyan et al.,
2022; Bavarian et al., 2022; Fried et al., 2023). These meth-
ods reformat the input sequence by randomly selecting var-
ious spans and relocating them to the end of the sequence.
The language model is then trained to predict tokens in the
standard left-to-right auto-regressive manner but under this
permuted sequence, which learns to infill considering both
preceding and following content. This conceptually simple
framework can be considered as extending span corrup-
tion objectives (Raffel et al., 2020; Tay et al., 2023; 2022;
Anil et al., 2023), which are commonly used in training

8

Self-Infilling Code Generation

encoder-decoder Transformers, to the context of decoder-
only language models. For instance, the causal masking
objective (Aghajanyan et al., 2022; Yasunaga et al., 2022;
Fried et al., 2023; Yu et al., 2023; Nijkamp et al., 2023a)
samples a number of contiguous token spans at random,
moves these spans to the end of the input sequence, and re-
places the tokens at the original position with mask sentinel
tokens. GLM (Du et al., 2022; Zeng et al., 2022) further
generalizes the span corruption objective by randomly per-
muting the order among different spans to fully capture
the inter-dependencies between different spans. Fill-In-the-
Middle (FIM; Bavarian et al., 2022) employs a similar form
as the causal masking objective but only samples a single
span. These objectives are specially recruited in training
several code language models, including recent versions
of Codex (OpenAI et al., 2022), INCODER (Fried et al.,
2023), SANTACODER (Allal et al., 2023), STARCODER
(Li et al., 2023), STARCODER 2 (Lozhkov et al., 2024),
CODEGEN 2/2.5 (Nijkamp et al., 2023a), CODE LLAMA
(Roziere et al., 2023), DeepSeek-Coder (Guo et al., 2024),
and CodeGemma (CodeGemma Team, 2024), facilitating
numerous downstream tasks including partial code com-
pletion, docstring generation, return type prediction, and
adaptive retrieval-augmented generation (Wu et al., 2024).

In this work, we extend the study of FIM objectives used
in training language models and investigate their built-in
self-infilling capability. Complementary to prior efforts in
infilling training objectives, our work explores the advan-
tages of imbuing infilling capabilities with the decoding
process. While previous findings indicate that infilling can
be learned in pre-training without (or slightly) compromis-
ing left-to-right generation quality (Bavarian et al., 2022;
Li et al., 2023; Nijkamp et al., 2023a; Roziere et al., 2023),
our findings suggest decoding can be much enhanced by
incorporating the acquired infilling capability.

5. Conclusion
This work explores the built-in self-infilling capability of
FIM-trained code language models, based on which we de-
velop a code generation framework that integrates infilling
with auto-regressive decoding. Our method extends tradi-
tional decoding to a non-monotonic process that supports
interruption and looping mechanisms, allowing the model to
defer the generation of some contexts and recursively update
code snippets cyclically. Throughout extensive experiments,
we demonstrate that self-infilling decoding significantly im-
proves generation quality and regularity.

Limitations and Future Directions. Our findings sug-
gest that the decoding behavior of language models can be
effectively programmed and extended by harnessing their
(self-)infilling abilities. This highlights the considerable

potential of language models trained with diverse objectives
like FIM (Bavarian et al., 2022), which not only maintain
scalability (Bavarian et al., 2022; Tay et al., 2022; 2023;
Anil et al., 2023) but also yield possibly improved genera-
tion quality. Besides, there are several interesting directions
for future work, some of which we outline below:

• While our framework is primarily tailored for code gen-
eration tasks, its application to other domains, such as
mathematical reasoning, offers an intriguing avenue for
future exploration.

• The developed interruption and looping techniques
present our initial attempts to exploit self-infilling. There
exists potential to guide language models towards more
structured generation, such as conforming to context-free
grammars (Willard & Louf, 2023; Microsoft, 2023).

• Our self-infilling framework is limited to single-span in-
filling due to the formulation of FIM objectives. Extend-
ing self-infilling to accommodate multiple or nested spans
is a compelling direction for future research.

• The looping mechanism developed in this work incurs
additional computational overhead due to repeated con-
text processing and decoding operations. Future work
might include optimization of key-value caching and
reuse across iterations to enhance efficiency.

Acknowledgements
We would like to thank the HKU NLP group and the anony-
mous reviewers for their valuable suggestions that greatly
helped improve this work. Our manuscript especially bene-
fited from insightful discussions with Yiheng Xu, Tianbao
Xie, Chenxin An, and Hongjin Su. This work is partially
supported by the joint research scheme of the National Nat-
ural Science Foundation of China (NSFC) and the Research
Grants Council (RGC) under grant number N_HKU714/21.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Aghajanyan, A., Okhonko, D., Lewis, M., Joshi, M., Xu,

H., Ghosh, G., and Zettlemoyer, L. Htlm: Hyper-text
pre-training and prompting of language models. arXiv
preprint arXiv:2107.06955, 2021.

Aghajanyan, A., Huang, B., Ross, C., Karpukhin, V., Xu,
H., Goyal, N., Okhonko, D., Joshi, M., Ghosh, G., Lewis,

9

Self-Infilling Code Generation

M., et al. CM3: A causal masked multimodal model of
the internet. arXiv preprint arXiv:2201.07520, 2022.

Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Fer-
randis, C. M., Muennighoff, N., Mishra, M., Gu, A., Dey,
M., et al. SantaCoder: Don’t reach for the stars! arXiv
preprint arXiv:2301.03988, 2023.

Alon, U., Sadaka, R., Levy, O., and Yahav, E. Structural
language models of code. In International conference on
machine learning, pp. 245–256. PMLR, 2020.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin,
D., Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen,
Z., et al. PaLM 2 Technical Report. arXiv preprint
arXiv:2305.10403, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey,
C., Tworek, J., and Chen, M. Efficient training of
language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks. In Advances in Neural Information Process-
ing Systems, volume 28, 2015.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., et al. Language models are
few-shot learners. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 1877–1901,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-
Costin, L., Pinckney, D., Yee, M.-H., Zi, Y., Anderson,
C. J., Feldman, M. Q., Guha, A., Greenberg, M., and
Jangda, A. MultiPL-E: A scalable and polyglot approach
to benchmarking neural code generation. IEEE Trans.
Software Eng., 49(7):3675–3691, 2023.

Chan, W., Kitaev, N., Guu, K., Stern, M., and Uszkoreit,
J. Kermit: Generative insertion-based modeling for se-
quences. arXiv preprint arXiv:1906.01604, 2019.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
large language models to self-debug. arXiv preprint
arXiv:2304.05128, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

CodeGemma Team, G. L. Codegemma: Open code models
based on gemma, 2024. URL https://storage.
googleapis.com/deepmind-media/gemma/
codegemma_report.pdf.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Donahue, C., Lee, M., and Liang, P. Enabling language
models to fill in the blanks. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 2492–2501, Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.225. URL https://aclanthology.
org/2020.acl-main.225.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., and
Tang, J. Glm: General language model pretraining with
autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 320–335, 2022.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, S., Zettlemoyer, L., and Lewis,
M. InCoder: A generative model for code infilling
and synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hQwb-lbM6EL.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Gu, J., Liu, Q., and Cho, K. Insertion-based decoding with
automatically inferred generation order. Transactions
of the Association for Computational Linguistics, 7:661–
676, 2019.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://aclanthology.org/2020.acl-main.225
https://aclanthology.org/2020.acl-main.225
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL

Self-Infilling Code Generation

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi,
Y. The curious case of neural text degeneration. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Jiang, S., Wang, Y., and Wang, Y. Selfevolve: A code
evolution framework via large language models. arXiv
preprint arXiv:2306.02907, 2023.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer,
L., and Levy, O. Spanbert: Improving pre-training by
representing and predicting spans. Transactions of the
association for computational linguistics, 8:64–77, 2020.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. In
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 22199–22213, 2022.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettle-
moyer, L., Yih, W.-t., Fried, D., Wang, S., and Yu, T.
Ds-1000: A natural and reliable benchmark for data sci-
ence code generation. In International Conference on
Machine Learning, pp. 18319–18345. PMLR, 2023.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
7871–7880, Online, July 2020. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2020.acl-main.
703. URL https://aclanthology.org/2020.
acl-main.703.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., et al.
StarCoder: May the source be with you! arXiv preprint
arXiv:2305.06161, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with Alpha-
Code. Science, 378(6624):1092–1097, 2022.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=1qvx610Cu7.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
Starcoder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173, 2024.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Microsoft. A guidance language for controlling large lan-
guage models., 2023. URL https://github.com/
microsoft/guidance.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., von Werra, L., and Long-
pre, S. Octopack: Instruction tuning code large language
models. arXiv preprint arXiv:2308.07124, 2023.

Nguyen, A., Karampatziakis, N., and Chen, W. Meet in
the middle: A new pre-training paradigm. arXiv preprint
arXiv:2303.07295, 2023.

Ni, A., Iyer, S., Radev, D., Stoyanov, V., Yih, W.-t., Wang,
S., and Lin, X. V. Lever: Learning to verify language-
to-code generation with execution. In International Con-
ference on Machine Learning, pp. 26106–26128. PMLR,
2023.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and
Zhou, Y. CodeGen2: Lessons for training LLMs on
programming and natural languages. arXiv preprint
arXiv:2305.02309, 2023a.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H.,
Zhou, Y., Savarese, S., and Xiong, C. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https:
//openreview.net/forum?id=iaYcJKpY2B_.

OpenAI. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

OpenAI, Bavarian, M., Jiang, A., Jun, H., and Pondé,
H. New GPT-3 Capabilities: Edit and Insert. OpenAI
blog, 2022. URL https://openai.com/blog/
gpt-3-edit-insert/.

11

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://github.com/microsoft/guidance
https://github.com/microsoft/guidance
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/blog/gpt-3-edit-insert/
https://openai.com/blog/gpt-3-edit-insert/

Self-Infilling Code Generation

Pan, L., Saxon, M., Xu, W., Nathani, D., Wang, X.,
and Wang, W. Y. Automatically correcting large lan-
guage models: Surveying the landscape of diverse self-
correction strategies. arXiv preprint arXiv:2308.03188,
2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. OpenAI blog, 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:
140:1–140:67, 2020.

Ranzato, M., Chopra, S., Auli, M., and Zaremba, W. Se-
quence level training with recurrent neural networks.
arXiv preprint arXiv:1511.06732, 2015.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Shen, T., Quach, V., Barzilay, R., and Jaakkola, T. Blank lan-
guage models. arXiv preprint arXiv:2002.03079, 2020.

Shen, T., Peng, H., Shen, R., Fu, Y., Harchaoui, Z., and
Choi, Y. Film: Fill-in language models for any-order
generation. arXiv preprint arXiv:2310.09930, 2023.

Stern, M., Chan, W., Kiros, J., and Uszkoreit, J. Inser-
tion transformer: Flexible sequence generation via inser-
tion operations. In International Conference on Machine
Learning, pp. 5976–5985. PMLR, 2019.

Sun, Q., Chen, Z., Xu, F., Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024.

Tay, Y., Wei, J., Chung, H. W., Tran, V. Q., So, D. R.,
Shakeri, S., Garcia, X., Zheng, H. S., Rao, J., Chowdhery,
A., et al. Transcending scaling laws with 0.1% extra
compute. arXiv preprint arXiv:2210.11399, 2022.

Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Wei, J.,
Wang, X., Chung, H. W., Bahri, D., Schuster, T., Zheng,
S., Zhou, D., Houlsby, N., and Metzler, D. UL2: Uni-
fying language learning paradigms. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=6ruVLB727MC.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35,
pp. 24824–24837, 2022.

Welleck, S., Brantley, K., Iii, H. D., and Cho, K. Non-
monotonic sequential text generation. In Interna-
tional Conference on Machine Learning, pp. 6716–6726.
PMLR, 2019.

Willard, B. T. and Louf, R. Efficient guided generation for
llms. arXiv preprint arXiv:2307.09702, 2023.

Wu, D., Ahmad, W. U., Zhang, D., Ramanathan, M. K., and
Ma, X. Repoformer: Selective retrieval for repository-
level code completion. arXiv preprint arXiv:2403.10059,
2024.

Xie, T., Zhao, S., Wu, C. H., Liu, Y., Luo, Q., Zhong, V.,
Yang, Y., and Yu, T. Text2reward: Automated dense
reward function generation for reinforcement learning.
arXiv preprint arXiv:2309.11489, 2023.

Xu, Y., Su, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B.,
Zhou, F., Liu, Y., Xie, T., Cheng, Z., Zhao, S., Kong, L.,
Wang, B., Xiong, C., and Yu, T. Lemur: Harmonizing
natural language and code for language agents. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=hNhwSmtXRh.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R. R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. In Advances
in Neural Information Processing Systems, volume 32,
2019.

Yasunaga, M., Aghajanyan, A., Shi, W., James, R.,
Leskovec, J., Liang, P., Lewis, M., Zettlemoyer, L., and
Yih, W.-t. Retrieval-augmented multimodal language
modeling. arXiv preprint arXiv:2211.12561, 2022.

12

https://openreview.net/forum?id=6ruVLB727MC
https://openreview.net/forum?id=6ruVLB727MC
https://openreview.net/forum?id=hNhwSmtXRh
https://openreview.net/forum?id=hNhwSmtXRh

Self-Infilling Code Generation

Yu, L., Shi, B., Pasunuru, R., Muller, B., Golovneva, O.,
Wang, T., Babu, A., Tang, B., Karrer, B., Sheynin, S., et al.
Scaling autoregressive multi-modal models: Pretraining
and instruction tuning. arXiv preprint arXiv:2309.02591,
2023.

Zeng, A., Liu, X., Du, Z., Wang, Z., Lai, H., Ding, M.,
Yang, Z., Xu, Y., Zheng, W., Xia, X., et al. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Zhang, T., Yu, T., Hashimoto, T., Lewis, M., Yih, W.-t.,
Fried, D., and Wang, S. Coder reviewer reranking for
code generation. In International Conference on Machine
Learning, pp. 41832–41846. PMLR, 2023.

Zheng, W., Sharan, S. P., Jaiswal, A. K., Wang, K., Xi,
Y., Xu, D., and Wang, Z. Outline, then details: Syntac-
tically guided coarse-to-fine code generation. In Inter-
national Conference on Machine Learning, pp. 42403–
42419. PMLR, 2023.

Zhu, W., Hu, Z., and Xing, E. Text infilling. arXiv preprint
arXiv:1901.00158, 2019.

13

Self-Infilling Code Generation

Appendices
A. Pseudo-code
In practice, we implement our self-infilling interruption technique (§2.2; Algorithm 2) in a stateless manner through the
manipulation of sentinel tokens. For completeness, we also include the pseudo-code of the conventional left-to-right
generation process used in our looping mechanism (§2.3), as shown in Algorithm 3. Note that in both Algorithms 2 and 3
we omit detailed decoding setups, such as the use of temperature scaling and nucleus sampling.

Algorithm 2 Self-infilling Interruption

Input: Input sequence x, language model f(·;θ), suffix prompt tokens suffixp, stop condition S, and probability
threshold τ .
Output: Self-infilled output.

for t = 1, 2, . . . do
Calculate the probability distribution over the next token p(xt)← f(x;θ);
if <PRE> ∈ x and <SUF> /∈ x and <MID> /∈ x then

▷Prefix generation.
if maxv p(v) < τ then

▷ In case the model becomes uncertain, interrupt and pivot to suffix generation.
Set p(xt) = δxt(<SUF>) to place all probability mass on sentinel token <SUF>;

else if <PRE> ∈ x and <SUF> ∈ x and <MID> /∈ x then
▷Suffix generation.
Calculate the length of the current suffix lsuffix and the suffix prompt lsuffixp ;
if lsuffix < lsuffixp then

▷Override the next token logit so that the suffix has to start with suffixp.
Set p(xt) = δxt(suffix

p[lsuffix]);
▷Middle generation (i.e., infilling) does not require extra post-processing.

if stop condition S are met then
if <PRE> ∈ x and <SUF> ∈ x and <MID> /∈ x then

▷ If the suffix is being generated, populate <MID> to signify the start of infilling.
Set p(xt) = δxt(<MID>);

else
▷Otherwise, the generation process is terminated.
break

Draw the next token xt ∼ p(xt) and append xt to the current input x← [x;xt];
Return the updated sequence x.

Algorithm 3 Left-to-right Generation

Input: Input sequence x, language model f(·;θ), and a list of stop tokens S.
Output: Left-to-right decoded output.
for t = 1, 2, . . . do

Calculate the probability distribution over the next token p(xt)← f(x;θ);

if stop tokens S are met then
▷The generation process is terminated if the current generation contains stop tokens.
break

Draw the next token xt ∼ p(xt) and append xt to the current input x← [x;xt];
Return the updated sequence x.

14

Self-Infilling Code Generation

Parsing Function for Left-to-right Outputs

def l2r_parser(x, prompt, suffix_p, strategy):
x: The current output sequence
prompt: The original input prompt
suffix_p: The suffix prompt
strategy: The strategy used for splitting the output, as in Table 3 of Section 3.4.

l_prompt = x.find(prompt) + len(prompt)
the index of midpoint of the whole generation excluding the original prompt
l_half = l_prompt + (len(x) - l_prompt) // 2
l_suffix_p_start = x.find(suffix_p, l_half)
l_suffix_p_end = l_suffix_p_start + len(suffix_p)

prefix = x[:l_prompt]
if strategy == "Vanilla":

middle = x[l_prompt:l_suffix_p_start]
suffix_p = x[l_suffix_p_start:l_suffix_p_end]
suffix_c = x[l_suffix_p_end:]

elif strategy == "Extended":
middle = x[l_prompt:l_half]
suffix_p = x[l_half:l_suffix_p_end]
suffix_c = x[l_suffix_p_end:]

elif strategy == "Half":
middle = x[l_prompt:l_half]
suffix_p = x[l_half:]
suffix_c = ""

return (prefix, middle, suffix_p, suffix_c)

Figure 5. Python pseudo-code implementation of the parsing function for the left-to-right generation.

B. Additional Experimental Details
B.1. Task Details

• HUMANEVAL (Chen et al., 2021) consists of 164 crafted programming challenges, each accompanied by multiple
unit tests to evaluate the correctness of solutions generated by code models. We conduct evaluations in a zero-shot
manner. Following previous practice (Li et al., 2023), for STARCODER series, we strip off the trailing newline symbol \n
appearing at the end of the official prompt to align with their trained tokenizer (Microsoft, 2023); we adhere to the official
prompt format in evaluation for the remaining models.

• MULTIPL-E (Cassano et al., 2023) is a multilingual benchmark extending HUMANEVAL to various programming
languages. In this work, we report results of self-infilling generation for C++, Java, and PHP languages.

• MBPP (Austin et al., 2021) includes 500 crowd-sourced basic Python programming problems as the test set to eval-
uate code models. Following Austin et al. (2021), we use their provided 3-shot prompts for both STARCODER and
CODE LLAMA model families.

• DS-1000 (Lai et al., 2023) comprises 1,000 data science questions sourced from StackOverflow, aimed at benchmarking
code models against real-world scenarios. The questions span various Python libraries commonly used in data science,
including Matplotlib (155 questions), NumPy (220), Pandas (291), PyTorch (68), SciPy (106), Scikit-learn (115), and
Tensorflow (45). We use the provided prompt to perform zero-shot evaluation. There are two distinct prompt formats
in DS-1000 available for models considered in this work: the left-to-right completion format, which puts the entire
instruction in the left context for regular left-to-right decoding; and the insertion format, which provides the instruction in
both the left and right contexts. Our self-infilling mode follows the left-to-right format for generation, with further details
elaborated below.

• GSM8K (Cobbe et al., 2021) comprises various grade school math word problems. We assess the performance of
language models on the GSM8K test set, which includes 1,319 instances, using an 8-shot in-context example prompt.

B.2. Model Details

For code language models, our study mainly utilizes STARCODERBASE and STARCODER from the STARCODER family (Li
et al., 2023), along with CODE LLAMA 7B and CODE LLAMA 13B from the CODE LLAMA series (Roziere et al., 2023),

15

Self-Infilling Code Generation

Table 5. The pass@1(%), pass@10(%), and pass@100(%) rates on HUMANEVAL (zero-shot) with DeepSeek-Coder-Base models. N
denotes the number of times the decoding process goes through the loop, and N=0 represents that the looping mechanism is not activated.

Model Size Method HUMANEVAL
pass@1 pass@10 pass@100

DeepSeek-Coder-Base 1.3B

Left-to-right 31.1 52.0 78.3

Self-infill (N=0) 27.4 48.4 72.7
Self-infill (N=1) 32.3 52.9 79.1
Self-infill (N=2) 35.4 54.6 80.1

DeepSeek-Coder-Base 6.7B

Left-to-right 47.0 75.2 92.1

Self-infill (N=0) 36.6 70.5 89.6
Self-infill (N=1) 46.3 76.2 92.1
Self-infill (N=2) 48.2 78.4 92.4

DeepSeek-Coder-Base 33B

Left-to-right 49.4 81.4 93.1

Self-infill (N=0) 49.4 78.9 92.2
Self-infill (N=1) 58.5 83.0 94.1
Self-infill (N=2) 58.5 84.0 94.8

Table 6. Zero-shot pass@1(%) performance on DS-1000 with DeepSeek-Coder-Base models. † Results are taken from Guo et al. (2024).

Model Method Matplotlib

NumPy

Pandas
PyTorch

SciP
y

Scik
it-

Learn TensorFlow

Overall

DeepSeek-Coder-Base 1.3B

Left-to-right† 32.3 21.4 9.3 8.8 8.5 16.5 8.9 16.2
Left-to-right 35.5 22.3 9.6 7.4 7.5 27.8 11.1 18.2
Self-infilling 36.8 21.4 9.6 7.4 11.3 27.0 11.1 18.5
Insertion 35.5 20.9 5.2 7.4 13.2 13.0 15.6 15.7

DeepSeek-Coder-Base 6.7B

Left-to-right† 48.4 35.5 20.6 19.1 22.6 38.3 24.4 30.5
Left-to-right 51.6 39.1 22.3 19.1 24.5 45.2 26.7 33.4
Self-infilling 52.3 38.6 26.8 29.4 23.6 42.6 28.9 35.1
Insertion 51.6 45.9 31.3 22.1 29.2 42.6 40.0 38.5

DeepSeek-Coder-Base 33B

Left-to-right† 56.1 49.6 25.8 36.8 36.8 40.0 46.7 40.2
Left-to-right 60.6 51.8 28.2 35.3 34.9 48.7 46.7 42.8
Self-infilling 61.9 52.3 28.9 44.1 34.0 47.8 46.7 43.7
Insertion 61.3 49.5 32.0 47.1 29.2 47.0 60.0 44.1

respectively. Note that we do not evaluate CODE LLAMA 34B as it is not trained with the infilling objective (Roziere et al.,
2023).

Self-infilling with DeepSeek-Coder-Base Models. We also evaluate the performance of DeepSeek-Coder-Base families
(Guo et al., 2024), a series of recently released infilling-capable code language models. As detailed in Table 5 and Table 6, we
observe significant improvements in performing self-infilling generation compared to conventional left-to-right approaches.
Notably, this advantage scales well with the model size, where DeepSeek-Coder-Base 33B even demonstrates a 9% absolute
increase in pass@1 rate on the HUMANEVAL benchmark. On DS-1000, the results are consistent with the trends observed
for CODE LLAMA with DeepSeek-Coder-Base 6.7B and 33B models. In particular, our approach effectively narrows the
gap between left-to-right completion and the insertion baseline (which provides more informative bidirectional contexts).
However, DeepSeek-Coder-Base 1.3B exhibits a divergence from this trend, with the insertion baseline yielding slightly
worse performance. This difference might be attributed to the model’s smaller size, limiting its ability to generalize infilling
capabilities to more diverse problems.

Self-infilling with Instruct Models. While these model families encompass other variants supporting infilling, such as
CODE LLAMA - INSTRUCT, it is much more complicated to deal with the interplay between the instruction and infilling
sentinel tokens, which might override the effect of one with the other. To examine this, we conduct evaluations of these

16

Self-Infilling Code Generation

instruct models, in particular CODE LLAMA - INSTRUCT and DeepSeek-Coder-Instruct, on HUMANEVAL as well as
HUMANEVAL+ (Liu et al., 2023) for a more rigorous and robust evaluation. Besides, we prepare the input prompt according
to these models’ respective formats. As detailed in Table 7, our findings reveal mixed results when applying self-infill
generation to these language models. Generally, self-infilling does not significantly improve the performance of these
instruct models, nor does increasing the looping time yield substantial benefits. This can be attributed to the absence of
infilling training in the instruction fine-tuning stage, complicating the simultaneous application of instruction formatting and
infilling patterns during decoding. This observation suggests a potential area for future research: exploring the usage of
incorporating FIM during instruction fine-tuning to further improve self-infilling generation.

Table 7. The pass@1(%) rates on HUMANEVAL and HUMANEVAL+

(both are evaluated zero-shot) benchmarks with different instruct
code models.

Model Size Method HUMANEVAL HUMANEVAL+

CODE LLAMA - INSTRUCT 7B

Left-to-right 43.9 38.4

Self-infill (N=0) 42.7 37.2
Self-infill (N=1) 45.1 39.6
Self-infill (N=2) 45.7 40.9

CODE LLAMA - INSTRUCT 13B

Left-to-right 43.3 36.6

Self-infill (N=0) 37.2 31.1
Self-infill (N=1) 42.1 34.8
Self-infill (N=2) 42.1 35.4

DeepSeek-Coder-Instruct 1.3B

Left-to-right 68.3 63.4

Self-infill (N=0) 57.3 52.4
Self-infill (N=1) 65.2 59.8
Self-infill (N=2) 65.2 58.5

DeepSeek-Coder-Instruct 6.7B

Left-to-right 78.7 70.1

Self-infill (N=0) 73.8 66.5
Self-infill (N=1) 79.3 72.0
Self-infill (N=2) 78.7 72.0

DeepSeek-Coder-Instruct 33B

Left-to-right 77.4 68.9

Self-infill (N=0) 74.4 67.7
Self-infill (N=1) 79.3 71.3
Self-infill (N=2) 77.4 69.5

Self-infilling with More Flexible Infilling-capable Mod-
els. Notably, there are other open-sourced code models
like INCODER (Fried et al., 2023) and CODEGEN 2/2.5
(Nijkamp et al., 2023a) compatible with multi-span in-
filling. However, our preliminary experiments indicate
these models are difficult to perform self-infilling, par-
ticularly in generating a coherent suffix from a given
prefix prompt. This limitation may stem from their train-
ing paradigms, which involve more intricate span cor-
ruption objectives (Aghajanyan et al., 2022; Tay et al.,
2023) as opposed to the FIM objective (Bavarian et al.,
2022). In their input sequence construction, the same
set of sentinel tokens marks both the suffix and middle
segments. For example, a typical training instance might
follow the format [prefix; <Mask:0>; suffix;
<Mask:0>; middle; <EOT>], with <Mask:0> in-
dicating the start of both the suffix and middle seg-
ments. Consequently, these models may struggle to dis-
cern whether the ongoing generation pertains to the suffix
or the infilled section. As a result, our study focuses on
the STARCODER and CODE LLAMA families, deferring
an extensive analysis of more flexible infilling models to
future work.

B.3. Self-infilling Implementation Details

In this section, we provide comprehensive details of our self-infilling implementation.

The Use of Stopping Criteria. Common code language models usually necessitate specific stopping conditions to appro-
priately terminate decoding, since they struggle to faithfully stop their generation as expected. This is often accomplished
by monitoring for specific tokens in the generated code, such as incorporating markers like <code> and </code>; the
decoding process is then terminated upon encountering the closing marker </code>. Another example is employing stop
tokens indicative of the start of a new function, class implementation, or assertion during function-level generation. In our
looping mechanism, where multiple rounds of decoding occur, we terminate both self-infilling and left-to-right generation
upon these stop tokens and remove any extra content after the first met stop token.

Tokenization. Proper tokenization in infill-capable language models often poses challenges (Microsoft, 2023; Roziere
et al., 2023), especially when different parts of the generation output (prefix, middle, and suffix) may break up
tokens across piece boundaries. This can sometimes lead to irregular tokens and hurt performance due to out-of-distribution
tokens. We apply a heuristic strategy to alleviate this by right-stripping all spaces from the current generation output, making
the context more amenable to tokenization in the next iteration. However, this approach is sub-optimal to resolving irregular
tokens and we leave a systematic investigation as future work.

Fallback for Infilling Failures. Sometimes self-infilling does not yield a coherent generation, such as failing to generate
a well-defined suffix or producing an infilled middle without joining the suffix appropriately. To mitigate this issue and

17

Self-Infilling Code Generation

continue the looping mechanism, we employ a simple fallback strategy to reset the context when necessary. For self-infilling,
if it fails to generate a proper suffix, we retain the prefix in the context and pass it to the subsequent left-to-right decoding;
alternatively, if the middle fails to integrate with the given suffix, we truncate it to the last occurrence of the suffix prompt
and use the resulting segment for left-to-right generation. Similarly, if the left-to-right decoding leads to degenerate outputs
or fails to produce suffix prompt tokens, we revert to the context of the previous self-infilling call. Such fallback strategies
ensure that even though some updating iterations encounter issues, we can still reset the context properly and continue the
looping mechanism.

Problem Description

Problem:
I have data of sample 1 and sample 2 (a and b) -- size is different for sample 1 and sample 2. I want to do
a weighted (take n into account) two-tailed t-test.
I tried using the scipy.stat module by creating my numbers with np.random.normal, since it only takes data
and not stat values like mean and std dev (is there any way to use these values directly). But it didn't
work since the data arrays has to be of equal size.
Any help on how to get the p-value would be highly appreciated.
A:
<code>
import numpy as np
import scipy.stats
a = np.random.randn(40)
b = 4*np.random.randn(50)
</code>
BEGIN SOLUTION
<code>

Official Suffix

</code>
END SOLUTION
<code>
print(p_value)
</code>

NL Specification

p_value = ... # put solution
in this variable

Our Suffix Prompt

suffix_prompt = p_value

Figure 6. Illustration of suffix prompt construction for DS-1000 problems (Lai et al., 2023), where the official suffix for insertion mode is
manually translated to a natural language (NL) specification and appended to the completion mode prompt. Self-infilling generation
follows the completion format and utilizes the suffix prompt derived from the NL specification.

Suffix Prompts. For HUMANEVAL, MULTIPL-E, MBPP, and GSM8K benchmarks, which focus on function-level
program synthesis, we set the default suffix prompt to return, controlling the structure of the generation while relying on
minimal prior knowledge.

The DS-1000 benchmark covers a spectrum of code generation tasks. We adopt a simple heuristic to construct suffix
prompts according to the provided input/output specification in a problem-wise manner. In particular, DS-1000 offers two
prompt formats for evaluating code language models: 1) insertion mode, where official prefixes and suffixes are given as
input for each problem, except in Matplotlib tasks where a trailing context is absent; and 2) left-to-right mode with only
prefix prompts and manually translated natural language (NL) specifications for suffixes appended to prefixes. To evaluate
the ability of self-infilling, we follow the left-to-right mode and devise suffix prompts from the translated NL specification
for each problem, as illustrated in Figure 6. In general, our strategy proceeds as follows: if the problem requires completing
a Python function, we set suffixp = “return”; if the problem requires storing the result in a particular variable named
var, set suffixp = “var”3; if there is no such specification, we set suffixp = “</code>” that signifies the end of
the generation; as for Matplotlib problems, we set suffixp = “# SOLUTION END” that indicates the end.

B.4. Evaluation Setup Details

Stop Criterion. Code language models usually require a list of stop tokens to signify the end of their generation. For
HUMANEVAL, we recruit the same set of stop tokens following prior research (Chen et al., 2021; Li et al., 2023), including
["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif", "\n```"] that indicates the start of generation beyond the

3If there are multiple variables of interest, we simply adopt the last variable name as the suffix prompt.

18

Self-Infilling Code Generation

Table 8. 8-shot accuracy on the GSM8K math-reasoning benchmark. Solutions are generated via chain-of-thought prompting (Wei et al.,
2022; Kojima et al., 2022) with greedy decoding. † Results are taken from Li et al. (2023); Touvron et al. (2023a); Roziere et al. (2023).

Model Size Method GSM8K PAL GSM8K CoT

CodeGen-Multi† 16B
Left-to-right

8.6 3.2
CodeGen-Mono† 16B 13.1 2.6

STARCODERBASE † 15.5B 21.5 8.4

STARCODERBASE 15.5B Left-to-right 21.5 6.1
Self-infilling 21.3 6.4

STARCODER 15.5B Left-to-right 23.9 5.8
Self-infilling 24.9 7.0

CODE LLAMA 7B Left-to-right 27.4 9.7
Self-infilling 29.4 10.2

CODE LLAMA 13B Left-to-right 37.7 17.7
Self-infilling 39.8 21.6

current function scope. Following a similar spirit, ["\nclass", "\nassert", ’\n"""’, "\nprint", "\nif", "\n<|/",
"\n```", "[DONE]"] is used for MBPP. Default stop tokens are used for MULTIPL-E (Cassano et al., 2023). For DS-1000,
the default setup in Lai et al. (2023) adopts stop tokens ["</code>", "# SOLUTION END"]. We extend the list to include
["</code>", "# SOLUTION END", "\nEND SOLUTION"], which more effectively truncates generated outputs and
improves performance across both baselines and our method. For GSM8K, which employs a few-shot prompting format,
the stop tokens are ["\n\n\n", "\nQ:"].

On Evaluating Looping with Pass@k Metrics. When evaluating pass@k metrics for code generation, it is worth noting
that the looping mechanism generates a single solution within an updated context iteratively, unlike multi-pass approaches
where each pass yields an independent solution for subsequent selection and evaluation. The looping process is essentially
part of a singular generative process and does not perform interim evaluations of functional correctness or involve selecting
among different iterations. Consequently, our evaluation of pass@k metrics still accurately reflects functional correctness
without skewing or biasing the results due to the looping process. This ensures our comparison to conventional left-to-right
decoding on Pass@k remains valid.

C. Additional Experimental Results
C.1. Mathematical Reasoning with GSM8K

In this section, we extend our analysis to the GSM8K (Cobbe et al., 2021) mathematical reasoning task, employing
methodologies from Program-Aided Language models (PAL; Gao et al., 2023) and Chain-of-Thought prompting (CoT;
Wei et al., 2022). PAL solves mathematical reasoning problems by generating and executing Python programs to calculate
answers, whereas CoT generates explicit intermediate steps in natural language to reach conclusions. For self-infilling in
PAL, we set the default suffix prompt to return; while for CoT, we design the suffix prompt as follows,

suffixp := “\nTherefore, the answer is”.

This formulation guides the suffix towards generating a conclusive response to the mathematical problem.

GSM8K results are presented in Table 8. We observe a consistent improvement in reasoning accuracy over left-to-right
baselines with CODE LLAMA models under the PAL format. However, similar to the DS-1000 benchmark, the benefits for
STARCODER models are slight. In terms of CoT, which involves natural language instead of code, self-infilling decoding
also leads to improved task accuracy in comparison to traditional left-to-right generation. These results not only highlight
the versatility of self-infilling but also suggest its potential applicability in complicated reasoning tasks.

C.2. On the Effect of Different Suffix Prompts

Suffix prompts serve as another core component in our self-infilling framework, significantly influencing the decoding
process and the structure of generation. To understand their effect, we conduct an experiment with varied suffix prompt

19

Self-Infilling Code Generation

Table 10. Pass@1(%) Results on HUMANEVAL using different looping mechanisms. N denotes the number of iterations and t denotes
the temperature for rejection sampling. SI denotes Self-Infilling.

Decoding Method Setup
Model

STARCODER CODE LLAMA
15B-BASE 15B 7B 13B

Rejection Sampling
t=0.3 32.3 35.4 34.8 37.8
t=0.5 31.7 35.4 35.4 36.6
t=0.8 32.9 37.2 34.1 38.4

Loop w/o SI
N=0 31.7 35.4 34.1 35.4
N=1 31.1 34.1 31.7 34.8
N=2 31.7 36.0 31.1 32.9

Loop w/ SI (ours)
N=0 27.4 29.2 29.9 32.3
N=1 33.5 37.8 34.1 38.4
N=2 36.0 38.4 39.0 40.8

Left-to-right - 31.7 35.4 34.1 35.4

configurations, as detailed in Table 9. For these experiments, we use N = 1 for the looped mechanism to facilitate a direct
comparison among different suffix prompts. For HUMANEVAL, we explore four suffix prompt variants, including 1) an
empty string, 2) the default choice with the return keyword, 3) a dynamic strategy $ARG_NAME using the function’s first
argument name, as well as 4) a full return statement by specifying a variable result. We observe that the default suffix
prompt choice yields the best performance across all model types, but choices 3) and 4) also demonstrate effectiveness.
This highlights the potential benefits of enhancing self-infilling through refined suffix prompt design. We conduct a similar
evaluation scheme for DS-1000 and find STARCODER models are robust to varying suffix prompts, while CODE LLAMA
models benefit from more informative suffix prompts. Interestingly, CODE LLAMA models tend to produce empty suffixes
with an empty suffix prompt, likely a consequence of the pre-training phase, where <SUF> might be commonly followed by
<MID> and thus empty suffixes are preferred.

C.3. A Looping Mechanism without Self-infilling

Table 9. Results on HUMANEVAL and DS-1000 with different suffix
prompts.

Dataset Suffix Prompt
Model

STARCODER CODE LLAMA
15B-BASE 15B 7B 13B

HUMANEVAL

"" 29.9 34.1 33.5 35.4
"return" (default) 33.5 37.8 34.1 38.4
"$ARG_NAME" 26.8 31.1 29.2 37.8
"\nreturn result\n" 32.9 38.4 30.5 37.2

DS-1000
"" 27.0 28.6 24.7 27.6
"$ARG_NAME" (default) 27.0 29.9 28.1 31.6
"\n</code>\n" 26.9 30.0 23.6 27.1

In this section, we investigate the impact of removing the
self-infilling component from the looping mechanism. In
particular, we design a looping mechanism without self-
infilling by initiating with left-to-right decoding, manually
extracting the latter part of the completion as suffix,
and then using the standard infilling operator to regenerate
middle based on the extracted suffix. This roughly
corresponds to a right-shifted version of looping in §2.3
(instead of starting with self-infilling and then performing
left-to-right decoding, this variant starts from left-to-right
decoding to self-infilling). As shown in Table 10, our find-
ings indicate that looping under these conditions typically
does not enhance coding performance, and extending the looping time does not yield improvements. Furthermore, this
looping mechanism even leads to lower pass rates sometimes. This may be attributed to the specificity of suffix generated
through left-to-right decoding, which potentially restricts the possible outcomes of middle. In addition, left-to-right
decoding does not regularize the structure of generated output, which might be degenerate and thus lead to degenerate
suffix as well. Self-infilling, on the other hand, effectively scaffolds the overall generation and regenerates suffix
based on a succinct suffixp, encouraging the model to explore a larger decoding space. This ablation study underscores
the value of the self-infilling component in the looping mechanism.

We also compare our approach to another iterative variant with rejection sampling. This method initially uses greedy
decoding and falls back to stochastic sampling if the initial generation degenerates (that is, lacking a return keyword or
becoming empty). We limit the rejection process to a maximum of 10 trials to prevent infinite loops. The temperature settings
were varied, with top_p set at 0.95. The results indicate that while rejection sampling reduces degenerate behaviors (typically
requiring 2-3 sampling attempts for acceptance), it does not significantly improve pass rates compared to self-infilling.

20

Self-Infilling Code Generation

Additionally, we did not find a significant correlation between pass rates, sampling times, and temperature settings. This
evidence suggests that the advantages of self-infilling extend beyond simply addressing degeneration biases.

C.4. Comparison to Sample-and-Rank Baselines

The introduced looping mechanism (§2.3) in place updates pieces of the generation multiple times, which produces multiple
possible generations along the iterative process. An alternative approach to accomplishing this is performing beam search,
or simply sampling multiple generations in the conventional left-to-right way, followed by selection based on the highest
probability or average token log-likelihood (Chen et al., 2021; Zhang et al., 2023). Our comparative analysis with these
multi-sample baselines, as presented in Table 11 on HUMANEVAL, reveals that our looping mechanism, despite lacking
an explicit selection or aggregation step, performs competitively with these baselines. Furthermore, when complemented
by a ranking component — first generating multiple samples via self-infilling and then selecting based on the highest
average likelihood — our method demonstrates superior performance over existing baselines. These results highlight the
effectiveness of the looping mechanism, which encourages code language models to explore a broader decoding space.

Our looping mechanism is also relevant to multi-pass code generation approaches in the literature (Chen et al., 2023;
Jiang et al., 2023; Pan et al., 2023). Unlike these approaches Chen et al. (2023), we demonstrate that base code models,
even without instruction-following abilities, can exhibit improved generation quality via looping. Our approach alternates
between left-to-right decoding and self-infilling, relying solely on the pre-trained code model without additional training.
Nevertheless, our work can be further augmented with other signals like syntactic representation (Zheng et al., 2023) and
execution results (Ni et al., 2023) to generate better samples.

C.5. Additional Ablation Studies

This section provides additional ablation studies on the effect of hyper-parameters τ and N under various code language
models, including CODE LLAMA 13B (Figure 7), STARCODER (Figure 8), and STARCODERBASE (Figure 9). Note that
setting τ = 0 and N = 0 reduces the looping mechanism to conventional left-to-right decoding. However, this configuration
still adds a sentinel <PRE> to the beginning of the input prompt, potentially leading to a subtle performance difference.

C.6. Examples of Self-infilling

In this section, we present additional examples (Figures 10, 11, 12 and 13 for HUMANEVAL and Figures 14, 15 and 16
for DS-1000 problems) to illustrate the distinct decoding behaviors of the self-infilling approach compared to traditional
left-to-right decoding. Besides, we also provide demonstrations of self-infilling generation with the interruption and looping
mechanism, as shown in Figures 17, 18, 19, 20, 21 and 22.

These examples are generated using CODE LLAMA 13B with greedy decoding. For the sake of brevity and clarity, the
occurrence of stop tokens during generation is omitted. Also note that the sentinel token <PRE> used in self-infilling, which
is usually positioned at the beginning of the problem description, is not displayed in these illustrations for readability.

21

Self-Infilling Code Generation

Table 11. Comparison results of self-infilling against various multi-sample baselines on HUMANEVAL. N denotes the number of iterations
in our looping mechanism, while S indicates the beam size for Beamsearch and the number of samples for other approaches. Samples are
generated with nucleus sampling at temperature 0.3 and top-p 0.95. The Rank strategy selects the generation with the highest mean token
log probabilities (Chen et al., 2021).

Method Setup
Model

STARCODER CODE LLAMA
15B-BASE 15B 7B 13B

Greedy S = 1 31.7 35.4 34.1 35.4

Beamsearch S = 2 36.0 37.2 34.1 40.8
S = 4 34.8 40.2 16.5 19.5

Sample S = 1 29.3 30.5 29.3 34.8

Rank S = 2 36.0 37.2 37.2 37.2
S = 4 32.9 36.6 32.3 34.1

Ours S = 1, N = 1 33.5 37.8 34.1 38.4
S = 1, N = 2 36.0 38.4 39.0 40.8

Ours + Rank S = 2, N = 1 34.8 40.2 33.5 42.1
S = 2, N = 2 37.8 37.8 36.5 40.2

0 1 2 3 4
N

0.30

0.35

0.40

0.45

0.50

Pa
ss
@1

HumanEval

0.00
0.25
0.50
0.75
1.00
L2R

0 1 2 3 4
N

MBPP

Figure 7. Results on HUMANEVAL and MBPP with different values of probability threshold τ and looping times N on CODE LLAMA 13B.
N = 0 indicates the looping mechanism is disabled, and the horizontal dashed line represents the performance of the vanilla left-to-right
baseline (L2R).

22

Self-Infilling Code Generation

0 1 2 3 4
N

0.25

0.30

0.35

0.40

0.45

0.50
Pa

ss
@1

HumanEval

0.00
0.25
0.50
0.75
1.00
L2R

0 1 2 3 4
N

MBPP

Figure 8. Results on HUMANEVAL and MBPP with different values of probability threshold τ and looping times N on STARCODER.
N = 0 indicates that the looping mechanism is disabled, and the horizontal dashed line represents the performance of the vanilla
left-to-right baseline (L2R).

0 1 2 3 4
N

0.25

0.30

0.35

0.40

0.45

Pa
ss
@1

HumanEval

0.00
0.25
0.50
0.75
1.00
L2R

0 1 2 3 4
N

MBPP

Figure 9. Results on HUMANEVAL and MBPP with different values of probability threshold τ and looping times N on STARCODERBASE.
N = 0 indicates that the looping mechanism is disabled, and the horizontal dashed line represents the performance of the vanilla left-to-
right baseline (L2R).

23

Self-Infilling Code Generation

Problem Description

from typing import List

def remove_duplicates(numbers: List[int]) -> List[int]:
""" From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4]
"""

Vanilla Generation

TODO: implement this function
return []

Self-infilled Generation

<SUF>return numbers

<MID> seen = set()
for number in numbers:

if number in seen:
numbers.remove(number)

else:
seen.add(number)

<EOT>

Figure 10. An illustration of self-infilling decoding with interruption on HUMANEVAL: vanilla left-to-right generation exhibits degenerate
behaviors that output an empty program due to the initially generated comment; however, self-infilling early interrupts the decoding flow
and drafts a plausible suffix first, which then drives subsequent decoding towards joining that suffix.

Problem Description

def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""

Vanilla Generation

if len(s) < 3:
return False

for i in range(len(s) - 2):
if s[i] == s[i + 1] == s[i + 2]:

return False
return True

Self-infilled Generation

if len(s) < 3:
return False

<SUF>return True

<MID> for i in range(len(s) - 2):
if s[i] == s[i + 1] == s[i + 2]:

return False
<EOT>

Figure 11. An illustration of self-infilling decoding with interruption on HUMANEVAL: both vanilla left-to-right and self-infilling
generation produce the same code snippet, despite through different decoding trajectories.

24

Self-Infilling Code Generation

Problem Description

def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.

if the two lists have the same number of chars, return the first list.

Examples
total_match([], []) -> []
total_match(['hi', 'admin'], ['hI', 'Hi']) -> ['hI', 'Hi']
total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) -> ['hi', 'admin']
total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) -> ['hI', 'hi', 'hi']
total_match(['4'], ['1', '2', '3', '4', '5']) -> ['4']
'''

Vanilla Generation

lst1 = ['hi', 'admin']
lst2 = ['hI', 'Hi']
lst1 = ['hi', 'admin']
lst2 = ['hi', 'hi', 'admin', 'project']
lst1 = ['hi', 'admin']
lst2 = ['hI', 'hi', 'hi']
lst1 = ['4']
lst2 = ['1', '2', '3', '4', '5']
lst1 = ['hi', 'admin']
lst2 = ['hI', 'hi', 'hi']
lst1 = ['hi', 'admin']
lst2 = ['hI', 'hi', 'hi']
lst1 = ['hi', 'admin']
lst2 = ['hI', 'hi', 'hi']
lst1 = ['hi', 'admin']
...

Self-infilled Generation

#<SUF>return lst1
else:

return lst2

<MID> Write your code here.
total_chars_lst1 = 0
total_chars_lst2 = 0
for i in lst1:

total_chars_lst1 += len(i)
for i in lst2:

total_chars_lst2 += len(i)
if total_chars_lst1 < total_chars_lst2:

<EOT>

Figure 12. An illustration of self-infilling decoding with interruption on HUMANEVAL: vanilla left-to-right generation tends to repeat
the same snippet; self-infilling first starts the program with a symbol # that signifies a comment; however, the specific content within the
comment is uncertain to the model, which thus issues an interruption of current decoding and proceeds to the suffix, circumventing a
context prone of degeneracy.

25

Self-Infilling Code Generation

Problem Description

def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between two consonants from

the right side of the word (case sensitive).

Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met
the above condition.

You may assume that the given string contains English letter only.

Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
"""

Vanilla Generation

vowels = "aeiouAEIOU"
word = word[::-1]
for i in range(len(word)):

if word[i] in vowels:
if i == 0:

return ""
else:

return word[i]
return ""

Self-infilled Generation

vowels =<SUF>return vowels[0]
else:

return vowels[-1]

<MID> "aeiouAEIOU"
word = word[::-1]
for i in range(len(word)):

if word[i] in vowels:
if i != 0:

return word[i]
else:

return ""
return ""

Figure 13. An illustration of self-infilling decoding with interruption on HUMANEVAL: both vanilla left-to-right and self-infilling
generation produce an incorrect code snippet. While self-infilling is invoked to yield a suffix first, it fails to complete the infilling operation
and keeps generating the code without respecting the previously produced suffix.

26

Self-Infilling Code Generation

Problem Description

Problem:

I have used the

sklearn.preprocessing.OneHotEncoder
to transform some data the output is scipy.sparse.csr.csr_matrix how can I merge it back into my original
dataframe along with the other columns?

I tried to use pd.concat but I get

TypeError: cannot concatenate a non-NDFrame object
Thanks

A:

<code>
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
df_origin, transform_output = load_data()
def solve(df, transform_output):

return the solution in this function
result = solve(df, transform_output)
BEGIN SOLUTION

Vanilla Generation

TODO: Implement your solution here
#
#
#
#
#
...

Self-infilled Generation

<SUF>return result

result = solve(df_origin, transform_output)
<MID> result = pd.concat([df, transform_output],
axis=1)

END SOLUTION
<EOT>

Figure 14. An illustration of self-infilling decoding with interruption on DS-1000: vanilla left-to-right generation exhibits degenerate
behaviors that output an empty program since it produces a misleading comment at the very beginning of the solution; however, self-
infilling early drafts a plausible suffix first, which in turn drives the overall generation process to yield a plausible solution.

27

Self-Infilling Code Generation

Problem Description

Problem:

I may be missing something obvious, but I can't find a way to compute this.

Given two tensors, I want to keep elements with the minimum absolute values, in each one of them as well as
the sign.

I thought about

sign_x = torch.sign(x)
sign_y = torch.sign(y)
min = torch.min(torch.abs(x), torch.abs(y))
in order to eventually multiply the signs with the obtained minimums, but then I have no method to multiply
the correct sign to each element that was kept and must choose one of the two tensors.

A:

<code>
import numpy as np
import pandas as pd
import torch
x, y = load_data()
</code>
signed_min = ... # put solution in this variable
BEGIN SOLUTION
<code>

Vanilla Generation

sign_x = torch.sign(x)
sign_y = torch.sign(y)
min = torch.min(torch.abs(x), torch.abs(y))
</code>

Self-infilled Generation

<SUF>signed_min = torch.sign(x) *
torch.min(torch.abs(x), torch.abs(y))
</code><MID><EOT>

Figure 15. An illustration of self-infilling decoding with interruption on DS-1000: vanilla left-to-right generation follows the description
well but does not store the result to the specified variable; instead, self-infilling ensures the overall generation must include the expected
variable through suffix prompting.

28

Self-Infilling Code Generation

Problem Description

Problem:
I am trying to find col duplicates rows in a pandas dataframe.
df=pd.DataFrame(data=[[1,1,2,5],[1,3,4,1],[4,1,2,5],[5,1,4,9],[1,1,2,5]],columns=['val',
'col1','col2','3col'])
df
Out[15]:

val col1 col2 3col
0 1 1 2 5
1 1 3 4 1
2 4 1 2 5
3 5 1 4 9
4 1 1 2 5
duplicate_bool = df.duplicated(subset=['col1','col2', '3col'], keep='first')
duplicate = df.loc[duplicate_bool == True]
duplicate
Out[16]:

val col1 col2 3col
2 1 1 2 5
4 1 1 2 5

Is there a way to add a column referring to the index of the first duplicate (the one kept)
duplicate
Out[16]:

val col1 col2 3col index_original
2 4 1 2 5 0
4 1 1 2 5 0

Note: df could be very very big in my case....

A:
<code>
import pandas as pd

df=pd.DataFrame(data=[[1,1,2,5],[1,3,4,1],[4,1,2,5],[5,1,4,9],[1,1,2,5]],columns=['val',
'col1','col2','3col'])
</code>
result = ... # put solution in this variable
BEGIN SOLUTION
<code>

Vanilla Generation

df['index_original'] = df.groupby(['col1','col2',
'3col']).cumcount()
</code>

Self-infilled Generation

<SUF>result = df.loc[duplicate_bool == True]
result['index_original'] = df.loc[duplicate_bool
== True].index.values
result = result.reset_index(drop=True)
</code><MID>duplicate_bool =
df.duplicated(subset=['col1','col2', '3col'],
keep='first')
<EOT>

Figure 16. An illustration of self-infilling decoding with interruption on DS-1000: vanilla left-to-right generation adheres to the
description but fails to allocate the result to the designated variable. In contrast, self-infilling guarantees that the final output is correctly
assigned to the expected variable via suffix prompting.

29

Self-Infilling Code Generation

Problem Description

def get_row(lst, x):
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.

Examples:
get_row([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]

], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
get_row([], 1) == []
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]
"""

N = 1 : Self-infilling

<SUF>return []
result = []
for i in range(len(lst)):

for j in range(len(lst[i])):
if lst[i][j] == x:

result.append((i, j))
result.sort(key=lambda x: (x[0], -x[1]))
return result

<MID> if not lst:
<EOT>

N = 1 : Left-to-right

if not lst:

return []
result = []
for i, row in enumerate(lst):

if x in row:
result.append((i, row.index(x)))

return sorted(result, key=lambda x: (x[0],
-x[1]))

N = 2 : Self-infilling

<SUF> for i, row in enumerate(lst):
if x in row:

result.append((i, row.index(x)))
return

sorted(result, key=lambda x: (x[0],
-x[1]))

<MID> result = []
<EOT>

N = 2 : Left-to-right

result = []

for i, row in enumerate(lst):
for j, col in enumerate(row):

if col == x:
result.append((i, j))

return sorted(result, key=lambda x: (x[0],
-x[1]))

Figure 17. An illustration of self-infilling decoding with interruption and looping on HUMANEVAL, which successfully corrects the
initially wrong solution at N = 1 (classified as the ‘Incorrect → Correct’ category in Figure 3). The area above the dashed line indicates
the current context, while the content below represents the corresponding completion.

30

Self-Infilling Code Generation

Problem Description

def remove_vowels(text):
"""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels("abcdef\nghijklm")
'bcdf\nghjklm'
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
"""

N = 1 : Self-infilling

vowels = 'aeiou'
<SUF>return text

<MID> for vowel in vowels:
text = text.replace(vowel, '')

<EOT>

N = 1 : Left-to-right

vowels = 'aeiou'
for vowel in vowels:

text = text.replace(vowel, '')

return text

N = 2 : Self-infilling

<SUF> text = text.replace(vowel, '')
return

text
<MID> vowels = ['a', 'e', 'i', 'o', 'u', 'A',
'E', 'I', 'O', 'U']

for vowel in vowels:
<EOT>

N = 2 : Left-to-right

vowels = ['a', 'e', 'i', 'o', 'u', 'A', 'E',
'I', 'O', 'U']

for vowel in vowels:

text = text.replace(vowel, '')
return text

Figure 18. An illustration of self-infilling decoding with interruption and looping on HUMANEVAL, which successfully corrects the
initially wrong solution at N = 1 (classified as the ‘Incorrect → Correct’ category in Figure 3). The area above the dashed line indicates
the current context, while the content below represents the corresponding completion.

31

Self-Infilling Code Generation

Problem Description

def sort_array(array):
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum(first index value, last index value) is

odd,
or sort it in descending order if the sum(first index value, last index value) is even.

Note:

* don't change the given array.

Examples:

* sort_array([]) => []

* sort_array([5]) => [5]

* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]

* sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
"""

N = 1 : Self-infilling

if len(array) == 0:
return array

elif len(array) == 1:
return array

else:
<SUF>return array

<MID> if sum(array[0], array[-1]) % 2 == 0:
return sorted(array, reverse=True)

else:
<EOT>

N = 1 : Left-to-right

if len(array) == 0:
return array

elif len(array) == 1:
return array

else:
if sum(array[0], array[-1]) % 2 == 0:

return sorted(array, reverse=True)
else:

return sorted(array)

N = 2 : Self-infilling

<SUF> else:
if sum(array[0], array[-1]) % 2 == 0:

return sorted(array, reverse=True)
else:

return

sorted(array)

<MID> if len(array) == 0:
return []

elif len(array) == 1:
return array

<EOT>

N = 2 : Left-to-right

if len(array) == 0:
return []

elif len(array) == 1:
return array

else:
if sum(array[0], array[-1]) % 2 == 0:

return sorted(array, reverse=True)
else:

return sorted(array)

Figure 19. An illustration of self-infilling decoding with interruption and looping on HUMANEVAL, where the solution generated at
N = 1 is incorrect and does not get fixed after the subsequent update (the ‘Changed but Remained Incorrect’ category in Figure 3). The
area above the dashed line indicates the current context, while the content below represents the corresponding completion.

32

Self-Infilling Code Generation

Problem Description

You are an expert Python programmer, and here is your task: Write a function to find the similar elements
from the given two tuple lists. Your code should pass these tests:

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)
[BEGIN]
def similar_elements(test_tup1, test_tup2):

res = tuple(set(test_tup1) & set(test_tup2))
return (res)

[DONE]

... (2 other in-context examples)

You are an expert Python programmer, and here is your task: Write a function to extract the index minimum
value record from the given tuples. Your code should pass these tests:

assert index_minimum([('Rash', 143), ('Manjeet', 200), ('Varsha', 100)]) == 'Varsha'
assert index_minimum([('Yash', 185), ('Dawood', 125), ('Sanya', 175)]) == 'Dawood'
assert index_minimum([('Sai', 345), ('Salman', 145), ('Ayesha', 96)]) == 'Ayesha'
[BEGIN]

N = 1 : Self-infilling

def index_minimum(<SUF>return min_value
[DONE]<MID>tuples):

min_value = min(tuples, key=lambda x: x[1])[0]
<EOT>

N = 1 : Left-to-right

def index_minimum(tuples):
min_value = min(tuples, key=lambda x: x[1])[0]

return min_value
[DONE]

N = 2 : Self-infilling

<SUF> min_value = min(tuples, key=lambda x:
x[1])[0]

return

min_value
[DONE]<MID>def index_minimum(tuples):
<EOT>

N = 2 : Left-to-right

def index_minimum(tuples):

min_value = min(tuples, key=lambda x: x[1])
return min_value[0]

[DONE]

Figure 20. An illustration of self-infilling decoding with interruption and looping on MBPP, where the solution generated at N = 1
remains correct after the subsequent update (the ‘Changed but Remained Correct’ category in Figure 3). The area above the dashed line
indicates the current context, while the content below represents the corresponding completion.

33

Self-Infilling Code Generation

Problem Description

You are an expert Python programmer, and here is your task: Write a function to find the similar elements
from the given two tuple lists. Your code should pass these tests:

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)
[BEGIN]
def similar_elements(test_tup1, test_tup2):

res = tuple(set(test_tup1) & set(test_tup2))
return (res)

[DONE]

... (2 other in-context examples)

You are an expert Python programmer, and here is your task: Write a function to find the maximum difference
between the number of 0s and number of 1s in any sub-string of the given binary string. Your code should
pass these tests:

assert find_length("11000010001", 11) == 6
assert find_length("10111", 5) == 1
assert find_length("11011101100101", 14) == 2
[BEGIN]

N = 1 : Self-infilling

def find_length(<SUF>return max_diff
[DONE]<MID>binary_string, n):
max_diff = 0
for i in range(n):

zero_count = 0
one_count = 0
for j in range(i, n):

if binary_string[j] == '0':
zero_count += 1

else:
one_count += 1

if abs(zero_count - one_count) > max_diff:
max_diff = abs(zero_count - one_count)

<EOT>

N = 1 : Left-to-right

def find_length(binary_string, n):
max_diff = 0
for i in range(n):
zero_count = 0
one_count = 0
for j in range(i, n):
if binary_string[j] == '0':
zero_count += 1

else:
one_count += 1

if abs(zero_count - one_count) > max_diff:
max_diff = abs(zero_count - one_count)

return max_diff
[DONE]

N = 2 : Self-infilling

<SUF> if binary_string[j] == '0':
zero_count += 1

else:
one_count += 1

if abs(zero_count - one_count) > max_diff:
max_diff = abs(zero_count - one_count)

return

max_diff
[DONE]<MID>def find_length(binary_string, n):
max_diff = 0
for i in range(n):
zero_count = 0
one_count = 0
for j in range(i, n):

<EOT>

N = 2 : Left-to-right

def find_length(binary_string, n):
max_diff = 0
for i in range(n):
zero_count = 0
one_count = 0
for j in range(i, n):

if binary_string[j] == '0':
zero_count += 1

else:
one_count += 1

if abs(zero_count - one_count) > max_diff:
max_diff = abs(zero_count - one_count)

return max_diff
[DONE]

Figure 21. An illustration of self-infilling decoding with interruption and looping on MBPP, where the solution generated at N = 1
remains unchanged after the subsequent update (the ‘Unchanged’ category in Figure 3). The area above the dashed line indicates the
current context, while the content below represents the corresponding completion.

34

Self-Infilling Code Generation

Problem Description

You are an expert Python programmer, and here is your task: Write a function to find the similar elements
from the given two tuple lists. Your code should pass these tests:

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)
[BEGIN]
def similar_elements(test_tup1, test_tup2):

res = tuple(set(test_tup1) & set(test_tup2))
return (res)

[DONE]

... (2 other in-context examples)

You are an expert Python programmer, and here is your task: Write a python function to check whether the
frequency of each digit is less than or equal to the digit itself. Your code should pass these tests:

assert validate(1234) == True
assert validate(51241) == False
assert validate(321) == True
[BEGIN]

N = 1 : Self-infilling

def validate(num):
<SUF>return True
else:

return False
[DONE]<MID> num = str(num)

for i in num:
if num.count(i) > int(i):

<EOT>

N = 1 : Left-to-right

def validate(num):
num = str(num)
for i in num:

if num.count(i) > int(i):

return False
return True

[DONE]

N = 2 : Self-infilling

<SUF> if num.count(i) > int(i):
return False

return

True
[DONE]<MID>def validate(num):

for i in num:
<EOT>

N = 2 : Left-to-right

def validate(num):
for i in num:

if num.count(i) > int(i):
return False

return True
[DONE]

Figure 22. An illustration of self-infilling decoding with interruption and looping on MBPP, where the looped update introduces bugs
to an initially correct solution at N = 1 (classified as the ‘Correct → Incorrect’ category in Figure 3). The area above the dashed line
indicates the current context, while the content below represents the corresponding completion.

35

