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Abstract
The pretraining-finetuning paradigm has become
the prevailing trend in modern deep learning. In
this work, we discover an intriguing linear phe-
nomenon in models that are initialized from a
common pretrained checkpoint and finetuned on
different tasks1, termed as Cross-Task Linear-
ity (CTL). Specifically, we show that if we lin-
early interpolate the weights of two finetuned
models, the features in the weight-interpolated
model are often approximately equal to the lin-
ear interpolation of features in two finetuned
models at each layer. We provide comprehen-
sive empirical evidence supporting that CTL con-
sistently occurs for finetuned models that start
from the same pretrained checkpoint. We conjec-
ture that in the pretraining-finetuning paradigm,
neural networks approximately function as lin-
ear maps, mapping from the parameter space to
the feature space. Based on this viewpoint, our
study unveils novel insights into explaining model
merging/editing, particularly by translating oper-
ations from the parameter space to the feature
space. Furthermore, we delve deeper into the root
cause for the emergence of CTL, highlighting
the role of pretraining. We released our source
code at https://github.com/zzp1012/
Cross-Task-Linearity.

1. Introduction
Pretrained models have become the fundamental infrastruc-
ture of modern machine learning systems, and finetuning has
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Figure 1. The spawning method and the pretraining-finetuning
paradigm. θ0 denotes random initialization of the network weights.
For spawning, the network is first trained for k epochs to get θk,
then spawned into two copies and updated until convergence to get
θT
1 ,θ

T
2 . Note θT

1 ,θ
T
2 are trained on same task but with different

SGD noise. With a proper chosen k , θT
1 and θT

2 can satisfy LMC
and LLFC. For pretraining-finetuning, the network is first trained
on pretraining task DPT to get θPT. Then θPT is finetuned on Di

and Dj to get θi and θj . Di and Dj can be different.

evolved as a predominant way for adapting the pretrained
model to various downstream tasks. Despite the prominent
success, our understanding of the pretraining-finetuning
paradigm still lags behind. There is a growing interest in
unraveling the hidden mechanisms of pretraining and fine-
tuning, particularly in human preference alignment (Ouyang
et al., 2022), interpretability (Elhage et al., 2021; Olsson
et al., 2022), and AI ethics (Weidinger et al., 2021) etc.

Recent works on Linear Mode Connectivity (LMC) (Na-
garajan & Kolter, 2019; Frankle et al., 2020) and Layerwise
Linear Feature Connectivity (LLFC) (Zhou et al., 2023) shed
light on understanding the training dynamics and hidden
mechanisms of neural networks. LMC depicts a linear path
in the parameter space of a network where the loss remains
approximately constant (see Definition 3.1). In other words,
linearly interpolating the weights of two different models,
which are of the same architecture and trained on the same
task, could lead to a new model that achieves similar per-
formance as the two original models. LLFC indicates that
the features in the weight-interpolated model are propor-
tional to the linear interpolation of the features in the two
original models (see Definition 3.2). Frankle et al. (2020)
observed LMC for networks that are jointly trained for a
short time before undergoing independent training on the
same task, termed as spawning method (see Figure 1). Zhou
et al. (2023) discovered the models that linearly connected
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Performance Equality Task
LMC (Frankle et al., 2020) Approx. equal Approx. equal Single
LLFC (Zhou et al., 2023) Flexible Proportional to Single
CTL (Ours) Flexible Approx. equal Multiple

Table 1. Comparison: LMC requires models with approximately
equal performance; LLFC depicts a proportional relation only.
Both LMC and LLFC focus on models trained on the same task.
CTL extends LLFC to models finetuned on different tasks.

in the loss landscape are also linearly connected in feature
space, i.e., satisfy LMC and LLFC simultaneously.

As shown in Figure 1, a connection is identified between the
pretraining-finetuning paradigm and the spawning method,
as both entail training models from a same pretrained check-
point. Therefore, a natural question arises: are models,
initialized from a common pretrained checkpoint2 but fine-
tuned on different tasks, linearly connected in the loss land-
scape or feature space, akin to the models obtained by the
spawning method satisfying LMC and LLFC?

In this work, we discover that the finetuned models are
linearly connected in internal features even though there
is no such connectivity in the loss landscape, i.e., LLFC
holds but LMC not. Indeed, we identify a stronger notion of
linearity than LLFC: if we linearly interpolate the weights
of two models that finetuned on different tasks, the features
in the weight-interpolated model are approximately equal
to the linear interpolation of features in the two finetuned
models at each layer, namely Cross-Task Linearity (CTL) as
termed in this paper (see comparison among LMC, LLFC,
and CTL in Table 1). To be precise, let θi and θj be the
weights of two finetuned models, and f (ℓ)(θ) be the features
in the model of weights θ at ℓ-th layer. We say that θi and
θj satisfy CTL if ∀ℓ,∀α ∈ [0, 1],

f (ℓ)(αθi + (1− α)θj) ≈ αf (ℓ)(θi) + (1− α)f (ℓ)(θj).

CTL may not be universal for arbitrary networks trained
on tasks, yet we provide comprehensive empirical evidence
supporting that CTL consistently occurs for the finetuned
models across a wide range of settings. We conjecture
that in the pretraining-finetuning paradigm, neural networks
can roughly function as linear maps, mapping from the
parameter space to the feature space.

Based on the observed CTL in the pretraining-finetuning
paradigm, we obtain novel insights into two widely-used
model merging/editing techniques: model averaging (Iz-
mailov et al., 2018; Matena & Raffel, 2022; Rame et al.,
2023; 2022; Wortsman et al., 2022a;b) and task arith-
metic (Ilharco et al., 2022; 2023; Ortiz-Jimenez et al., 2023).

i) Model averaging takes the average of weights of multi-
ple models, which are finetuned on the same task but with

2In this work, we consider finetuned models that start from a
common pretrained checkpoint.

different hyperparameter configurations, so as to improve ac-
curacy and robustness. We explain the averaging of weights
as the averaging of features at each layer, building a stronger
connection between model averaging and logits ensemble
than before.

ii) Task arithmetic merges the weights of models, that are
finetuned on different tasks, via simple arithmetic opera-
tions, shaping the behaviour of the resulting model accord-
ingly. We translate the arithmetic operation in the parameter
space into the operations in the feature space, yielding a
feature-learning explanation for task arithmetic.

Furthermore, we delve deeper into the root cause of CTL.
We empirically investigate various factors contributing to
the holding of CTL, highlighting the role of pretraining.
We also take a primary attempt to prove CTL and find that
the emergence of CTL is associated with the flatness of the
network landscape and the distance between the weights of
two finetuned models.

In summary, our work reveals a linear connection between
finetuned models, offering significant insights into model
merging/editing techniques. This, in turn, advances our
understanding of underlying mechanisms of pretraining and
finetuning from a feature-centric perspective.

2. Related Work
(Linear) Mode Connectivity. Freeman & Bruna (2017);
Draxler et al. (2018); Garipov et al. (2018) noted Mode Con-
nectivity (MC), where different minima in the loss landscape
can be connected by a non-linear path of nearly constant
loss. Nagarajan & Kolter (2019); Frankle et al. (2020) dis-
covered that the path of nearly constant loss can be linear,
for models that are jointly trained for a short time before
undergoing independent training, termed Linear Mode Con-
nectivity (LMC). Fort et al. (2020) analyzed LMC from a
perspective of the Neural Tangent Kernel dynamics. En-
tezari et al. (2022); Ainsworth et al. (2023) showed that
even independently trained networks can satisfy LMC after
accounting for permutation invariance. Studies (Liang et al.,
2018; Venturi et al., 2019; Nguyen et al., 2019; Nguyen,
2019; Kuditipudi et al., 2019; Ferbach et al., 2023; Zhao
et al., 2023; Zhou et al., 2023) have attempted to prove (lin-
ear) mode connectivity from various perspectives. Adilova
et al. (2023) studied the layerwise behaviour of LMC under
federated learning settings. Qin et al. (2022) studied MC in
the context of pretrained language models. Mirzadeh et al.
(2021); Juneja et al. (2023) investigated finetuning from
the lens of LMC. Zhou et al. (2023) identified a stronger
connectivity than LMC, namely Layerwise Linear Feature
Connectivity (LLFC), and observed LLFC always co-occurs
with LMC. (Chen et al., 2024) expand the concept of feature
similarity with LLFC.
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Model Merging/Editing. Recent studies find averaging the
parameters of finetuned models over the same task leads to
improved performance and generalization abilities (Izmailov
et al., 2018; Matena & Raffel, 2022; Rame et al., 2023;
2022; Wortsman et al., 2022a;b). Moreover, the averaging
of weights from models finetuned over tasks enables multi-
task abilities (Ilharco et al., 2022; Li et al., 2022; Yadav
et al., 2023; Jin et al., 2023; Stoica et al., 2023; Yu et al.,
2023). Singh & Jaggi (2020); Liu et al. (2022) show that
the weights of independently trained neural networks can
be merged after aligning the neurons. Moreover, Ilharco
et al. (2023); Ortiz-Jimenez et al. (2023) extend the simple
averaging to arithmetic operations in the parameter space,
enabling a finer-grained control of the model behaviours.

3. Backgrounds and Preliminaries
Notation Setup. Unless explicitly stated otherwise, we
consider a classification dataset/task, denoted as D =
{(xi, yi)}ni=1 where xi ∈ Rd0 is the input and yi ∈ [c]
is the label of the i-th datapoint. Here, d0 is the input di-
mension, [c] = {1, 2, . . . , c} and c is the number of classes.
We use X ∈ Rd0×n to stack all the input data into a matrix.

We consider an L-layer neural network defined as f(θ;x),
where θ denotes the model parameters, x is the input, and
f(θ;x) ∈ Rc. f (ℓ)(θ;x) ∈ Rdℓ represents the internal
feature (post-activation) in the network at the ℓ-th layer.
Here, dℓ denotes the dimension of the ℓ-th layer (0 ≤ ℓ ≤ L)
and f (L)(θ;x) = f(θ;x). For an input matrix X , we use
f (ℓ)(θ;X) ∈ Rdℓ×n to denote the collection of features on
all the datapoints. When X is clear from the context, we
simply write f (ℓ)(θ) = f (ℓ)(θ;X). The expected loss on
dataset D is denoted by L(θ) = E(x,y)∈D [L (f (θ;x) , y)],
where L represents the loss function. Our analysis focuses
on models trained on a training set, with all investigations
evaluated on a separate test set.

Linear Mode Connectivity (LMC).
Definition 3.1 (Linear Mode Connectivity (Nagarajan &
Kolter, 2019; Frankle et al., 2020)). Given dataset D and
two modes3 θi and θj such that L(θi) ≈ L(θj) on D, we
say θi and θj are linearly connected in the loss landscape if
they satisfy ∀α ∈ [0, 1],

L(αθi + (1− α)θj) ≈ L(θi) ≈ L(θj).

As Definition 3.1 shows, LMC indicates different optima
can be connected via a simple linear path of nearly constant
loss. Previous studies (Frankle et al., 2020) observed LMC
for networks that start from a common pretrained checkpoint
and undergo independent training on the same task until
convergence, commonly referred as spawning method (Fort
et al., 2020; Zhou et al., 2023).

3A mode refers to the obtained solution after training.

Layerwise Linear Feature Connectivity (LLFC).
Definition 3.2 (Layerwise Linear Feature Connectiv-
ity (Zhou et al., 2023)). Given dataset D and two modes
θi, θj of an L-layer neural network f , the modes θi and θj

are said to be linearly connected in feature space on D if
∀ℓ ∈ [L],∀α ∈ [0, 1] such that,

f (ℓ)(αθi + (1− α)θj) ∝ αf (ℓ)(θi) + (1− α)f (ℓ)(θj).

In Definition 3.2, LLFC states that the features (post-
activation) in the interpolated model θα = αθi+(1−α)θj

are proportional to the linear interpolation of the features in
θi and θj at each layer.

Zhou et al. (2023) introduced LLFC, which defines a
stronger notion of linear connectivity than LMC, and noted
its consistent co-occurrence with LMC. Specifically, if two
modes θi and θj satisfy LMC, then they also approximately
satisfy LLFC. Moreover, it can be proven that LLFC directly
induces LMC for models with equal loss (see Theorem 3.3).
Therefore, they believed that LLFC is a more fundamental
property than LMC.

Theorem 3.3 (LLFC Induces LMC (Proof in Ap-
pendix B.2)). Given dataset D, convex loss function L,
and two modes θi and θj with equal loss on D, i.e.,
L(θi) = L(θj), suppose the two modes θi, θj satisfy LLFC
on D with exact equality, then for all α ∈ [0, 1],

L(αθi + (1− α)θj) ≤ L(θi) = L(θj).

Main Experimental Setup. In Section 4.1, we con-
duct experiments on standard continue learning benchmark
datasets, including Rotated MNIST (LeCun et al., 1998)
and Split CIFAR-100 (Krizhevsky et al., 2009), with MLP
and ResNet-18 (He et al., 2016). We follow the same train-
ing procedures and hyper-parameters as in Mirzadeh et al.
(2021). In Sections 4.2 and 4.3, we directly adopt the fine-
tuned ViTs (Dosovitskiy et al., 2020)/T5s (Raffel et al.,
2020) checkpoints open-sourced by Wortsman et al. (2022a);
Ilharco et al. (2023) and perform experiments on various
image and text datasets. Due to space limit, we defer more
experimental settings to Appendix C.1.

4. Cross-Task Linearity
In this section, we provide empirical evidence indicating
that the finetuned models are linearly connected in the fea-
ture space, even though there is no such connectivity in the
loss landscape, i.e. LLFC holds but LMC not. Taking a step
further, we identify a stronger notion of linearity, namely
Cross-Task Linearity (CTL), which approximately charac-
terizes neural networks as linear maps in the pretraining-
finetuning paradigm. From these observations, we offer
novel insights into model averaging and task arithmetic.
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Figure 2. Verification of CTL. Compare ED[1−cosine
(ℓ)
α (x)] with ED[1−cosine(ℓ)i,j (x)]. Here, {θi}3i=1 and {Di}3i=1 denotes finetuned

models and their corresponding downstream tasks. For Rotated MNIST, models are pretrained on MNIST and finetuned on variants of
MNIST where digits are at different angles. For Split CIFAR-100, models are pretrained and finetuned on disjoint sets of 5 classes from
CIFAR-100. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset, respectively. The
results are reported for last three layers/blocks, with α ∈ {0.25, 0.5, 0.75}. More results in Appendix C.3.
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Figure 3. Verification of CTL. Distribution of coef(ℓ)α (x) across
the dataset. Here, α = 0.5. {θi}3i=1 and {Di}3i=1 denotes fine-
tuned models and their corresponding downstream tasks. We
follow the same training settings as in Figure 2. The results are re-
ported for last three layers/blocks. More results in Appendix C.3.

4.1. Extend LMC and LLFC to CTL

LMC Fails in the Pretraining-Finetuning Paradigm.
LMC might not hold for the finetuned models, as the pre-
conditions of Definition 3.1 are not met, i.e., the models
finetuned on different tasks might not have approximately
equal optimal loss on the same task. Indeed, the studies on
LMC are motivated by the interest in studying optima of
the same loss landscape. It means LMC depicts the prop-
erty of models trained on the same task. Therefore, it is
clear that finetuned models might not satisfy LMC, even
on the pretraining task, where catastrophic forgetting may
occur (McCloskey & Cohen, 1989). Similar phenomena
were observed in (Mirzadeh et al., 2021; Juneja et al., 2023).

LLFC Holds in the Pretraining-Finetuning Paradigms.
Despite no connectivity in the loss landscape, we surpris-
ingly find that the finetuned models are linearly connected
in the feature space. Here, we extend the original LLFC to
the cases where models are finetuned on different tasks.

To verify LLFC for finetuned models, we conduct extensive
experiments across a range of settings. Specifically, we

consider a set of finetuned models4, Θ = {θi}ki=1, which
are initialized from a common pretrained checkpoint θPT

but finetuned on different tasks. Here, the downstream tasks
for finetuning are denoted as {Di}ki=1, respectively. Then,
for each pair of finetuned models (θi,θj) ∈ Θ2, on each
datapoint (x,y) ∈ Di ∪ Dj , we measure the cosine similar-
ity between the features in the weight-interpolated model
θα = αθi+(1−α)θj and the linear interpolation of the fea-
tures in θi and θj at each layer ℓ, denoted as cosine(ℓ)α (x) =
cos[f (ℓ)(θα;x), αf

(ℓ)(θi;x) + (1 − α)f (ℓ)(θj ;x)]. We
compare cosine(ℓ)α to the baseline cosine similarity be-
tween the features in θi and θj in the same layer, i.e,
cosine(ℓ)i,j (x) = cos[f (ℓ)(θi;x), f

(ℓ)(θj ;x)]. In Figure 2,
the values of ED[1 − cosine(ℓ)α (x)] consistently approach
0 across a range of layers, α, and various pairs of (θi,θj),
under different task settings. The small error bars indicate
a consistent behaviour across each datapoint in Di ∪ Dj .
Additionally, the values of baseline ED[1 − cosine(ℓ)i,j (x)]

deviate from 0, excluding the trivial scenario where f (ℓ)(θi)
and f (ℓ)(θj) are already close enough. The results confirm
that LLFC holds in the pretraining-finetuning paradigm.

CTL Occurs in the Pretraining-Finetuning Paradigm.
Building upon the observations of LLFC for finetuned mod-
els, we identify a stronger notion of linearity than LLFC,
termed as Cross-Task Linearity (CTL). Precisely, given a
pair of finetuned models (θi,θj) ∈ Θ2 and downstream
tasks Di and Dj respectively, we say them satisfy CTL on
Di ∪ Dj if ∀ℓ ∈ [L],∀α ∈ [0, 1],

f (ℓ)(αθi + (1− α)θj) ≈ αf (ℓ)(θi) + (1− α)f (ℓ)(θj).

Beyond LLFC, CTL enforces the approximate equality. We

4For simplicity, we often denote models of the same architec-
ture as θ instead of f(θ).
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Figure 4. Linear correlation between the model averaging ac-
curacy and the logits ensemble accuracy. Each datapoint rep-
resents three models fine-tuned on ImageNet with varying hy-
perparameters, denoted as {θ}3i=1. The x-axis represents accu-
racy of f( 1

3

∑3
i=1 θi), while the y-axis represents accuracy of

1
3

∑3
i=1 f(θi). The grey dashed line represents y = x.

have validated the features in weight-interpolated model
θα and the linear interpolation of features in θi and θj

have similar directions. To further validate CTL, we com-
pare the length of their features at each layer ℓ. Specifi-
cally, for each pair of finetuned models (θi,θj) ∈ Θ2, on
each datapoint x ∈ Di ∪ Dj , we measure coef(ℓ)α (x) =
∥f(ℓ)(θα;x)∥ cosine(ℓ)α (x)

∥αf(ℓ)(θi;x)+(1−α)f(ℓ)(θj ;x)∥
5. In Figure 3, the values of

coef(ℓ)α (x) are close to 1 across various layers and different
pairs of (θi,θj), under different task settings. Together with
the results in Figure 2, we confirm that CTL often occurs
for the finetuned models.

In summary, we find that neural networks approximately
function as linear maps in the pretraining-finetuning
paradigm, mapping from the parameter space to the fea-
ture space. This viewpoint enables us to study model merg-
ing/editing from a feature-learning perspective.

Conjecture 4.1 (Transitivity of CTL.). Given models
θi,θj ,θk. We have (θi,θk) satisfy CTL if (θi,θj) and
(θj ,θk) satisfy CTL.

In addition, we conjecture the transitivity of CTL (see Con-
jecture 4.1). This is inferred from our results in Figures 2, 3
and 13 to 16 that (θi,θk) is observed to satisfy CTL when
(θi,θj) and (θj ,θk) satisfy CTL. We will later leverage the
transitivity of CTL to prove the theorems.

4.2. Insights into Model Averaging

Recent studies (Wortsman et al., 2022a;b) discovered that
averaging the weights of multiple models fine-tuned on the

5∥f (ℓ)(θα;x)∥ cosine(ℓ)α (x) denotes the length of the pro-
jection of f (ℓ)(θα;x) onto the vector αf (ℓ)(θi;x) + (1 −
α)f (ℓ)(θj ;x).

same task but with different hyperparameter configurations
often leads to improved accuracy and robustness. This ap-
proach, termed as model averaging, can be formulated as
f( 1

k

∑k
i=1 θi). Here, {θi}ki=1 represents the set of finetuned

models, and the downstream task for finetuning is denoted
as DFT. Alternatively, as another way to combine multiple
models, the logits ensemble simply averages the outputs of
different models, i.e., 1

k

∑k
i=1 f(θi). Both methods are ef-

fective in improving overall model performance in practice
and indeed a linear correlation has been observed between
the accuracy of model averaging and logits ensemble (see
Figure 4). Here, we build a stronger connection between
model averaging and logits ensemble in the feature space.

Specifically, we discover that the features in model aver-
aging can be approximated by the averaging of features in
each individual finetuned model, i.e., ∀ℓ ∈ [L],

f (ℓ)

(
1

k

k∑
i=1

θi

)
≈ 1

k

k∑
i=1

f (ℓ)(θi). (1)

We conduct extensive experiments to validate our discovery.
Similar to Section 4.1, on each datapoint x ∈ DFT, we
measure the cosine similarity between the features in model
averaging f (ℓ)( 1

k

∑k
i=1 θi) and the averaging of features in

each model 1
k

∑k
i=1 f

(ℓ)(θi) at each layer ℓ, denoted as
cosine

(ℓ)
avg(x) = cos[f (ℓ)( 1

k

∑k
i=1 θi;x),

1
k

∑k
i=1 f

(ℓ)(θi;x)]

Additionally, we compare cosine(ℓ)avg(x) with the baseline
cosine

(ℓ)
base(x) =

1
k

∑k
i=1 cos[f

(ℓ)( 1
k

∑k
j=1 θj ;x), f

(ℓ)(θi;x)].

We compute coef
(ℓ)
avg(x) =

∥f(ℓ)( 1
k

∑k
i=1 θi;x)∥cosine

(ℓ)
avg(x)

∥ 1
k

∑k
i=1 f(ℓ)(θi;x)∥ to

validate the features have similar length. In Figure 5, the val-
ues of ED[1− cosine(ℓ)avg(x)] closely approach 0 compared

with the baseline ED[1 − cosine(ℓ)base(x)], and in Figure 6,
the values of coef(ℓ)avg(x) closely approximate 1. In conclu-
sion, model averaging roughly aggregates the features in
each individual finetuned model at each layer.

It is not difficult to see that our discovery could directly
imply the observed linear correlation between the model
averaging accuracy and the logits ensemble accuracy, par-
ticularly when Equation (1) is applied to the output layer.
Apparently, our discovery unveils a finer-grained character-
ization of the linear correlation between model averaging
and logits ensemble. Indeed, our discovery can be viewed
as a generalization of CTL to the case of multiple models
in the pretraining-finetuning paradigm (see Theorem 4.2).
Hence, we conclude that CTL establishes a stronger connec-
tion between model averaging and logits ensemble in the
feature space, thus further explaining the effectiveness of
model averaging from a feature-learning perspective.
Theorem 4.2 (CTL Generalizes to Multiple Models
(Proof in Appendix B.3)). Given dataset D and a set of
modes Θ where each pair of modes (θi,θj) ∈ Θ2 satisfy
CTL on D, assume transitivity of CTL (see Conjecture 4.1),
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More results in Appendix C.4.

then for any {θi}ki=1 ∈ Θ and {αi}ki=1 ∈ [0, 1], subject to
the constraint that

∑k
i=1 αi = 1, we have

f (ℓ)

(
k∑

i=1

αiθi

)
≈

k∑
i=1

αif
(ℓ)(θi), ∀ℓ ∈ [L].

4.3. Insights into Task Arithmetic

Ilharco et al. (2023) introduced task arithmetic for editing
pretrained models using task vectors, which are obtained
by subtracting the pretrained weights from the finetuned
weights. Specifically, considering a pretrained model θPT

and a set of finetuned models {θi}ki=1 with corresponding
downstream tasks {Di}ki=1, the task vectors {τi}ki=1 are de-
fined as τi = θi − θPT . Arithmetic operations, including
addition and negation, can be applied to the task vectors to
obtain a new task vector τnew, and the new task vector is
then applied to the pretrained weights with a scaling term λ,
i.e., θnew = θPT + λτnew. It allows to control the behavior
of the edited model via simple arithmetic operations on task
vectors. In this subsection, we aim to explain the effective-
ness of task arithmetic from a feature-learning perspective.

CTL Explains Learning via Addition. An intriguing dis-
covery in task arithmetic is that the addition of task vectors
builds multi-task models. For instance, with a proper chosen
λ, f (θPT + λ (τi + τj)) demonstrate comparable perfor-
mance on both tasks Di and Dj . Despite this surprising
observation, it is not well understood why addition in the
parameter space leads to the multi-task abilities.

We aim to interpret the addition operation from a feature-

learning perspective. Assuming CTL holds for the edited
models, we can easily derive that ∀ℓ ∈ [L],

f (ℓ) (θPT + λ(τi + τj))

≈1

2
f (ℓ)(θPT + 2λτi) +

1

2
f (ℓ)(θPT + 2λτj).

(2)

We conduct experiments to verify Equation (2). Specifically,
given a pair of task vectors (τi, τj), on each datapoint
x ∈ Di∪Dj , we measure the cosine similarity between LHS
and RHS of Equation (2), i.e., cosine(ℓ)arith(x; 2λτi, 2λτj) =
cos[f (ℓ) (θPT + λ(τi + τj)) ,

1
2f

(ℓ)(θPT + 2λτi;x) +
1
2f

(ℓ)(θPT + 2λτj ;x)] at each layer ℓ. Similarly as
before, we compare it with the baseline cosine simi-
larity, i.e., cosine

(ℓ)
base(x; 2λτi, 2λτj) = cos[f (ℓ)(θPT +

2λτi;x), f
(ℓ)(θPT + 2λτj ;x)]. Additionally, we examine

the approximate equality via ceofℓarith(x; 2λτi, 2λτj) =
∥f(ℓ)(θPT+λ(τi+τj))∥ cosine

(ℓ)
arith

(x;2λτi,2λτj)

∥ 1
2
f(ℓ)(θPT+2λτi;x)+ 1

2
f(ℓ)(θPT+2λτj ;x)∥ . In Figure 7, the

values of ED[1 − cosine
(ℓ)
arith(x; 2λτi, 2λτj)] are close

to 0 compared with ED[1 − cosine
(ℓ)
base(x; 2λτi, 2λτj)],

and in Figure 8, the values of ceofℓarith(x; 2λτi, 2λτj) are
distributed around 1. Hence we conclude that the features
in the model applied with the addition of two task vectors
can be approximated by the addition of the features in two
models, each applied with a single task vector.

Though Equation (2) has transformed the addition from
the parameter space to the feature space, the reason why
addition in the feature space constructs multi-task models re-
mains unclear. In fact, we discover that if we replace the fea-
tures in the pretrained model by the average of the features
in two finetuned model, i.e., fL←(ℓ+1)(θPT;

1
2f

(ℓ)(θi) +
1
2f

(ℓ)(θj)), the model with replaced features could demon-
strate abilities on both Di and Dj . Here, fL←(ℓ+1)(θ; ·)
denotes the mapping from the internal features of the net-
work f(θ) at ℓ-th layer to the final output. This feature
replacement shares a similar methodology with the model
stitching6, and thus, we term the model with replaced
features as the stitched model. In Figure 9, across var-

6Model stitching (Lenc & Vedaldi, 2015; Bansal et al., 2021) is
a widely used technique for analyzing the internal representations
of networks. It stitches the front part of one model with the back
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Figure 9. Accuracy of fL←(ℓ+1)(θPT;
1
2
f (ℓ)(θPT + λτi) +

1
2
f (ℓ)(θPT + λτj)), fL←(ℓ+1)(θPT; f

(ℓ)(θPT + λτi)) and
fL←(ℓ+1)(θPT; f

(ℓ)(θPT + λτj)) on both Di (x-axis) and Dj

(y-axis). Results are reported for ViT-B/32 with various combi-
nations of task vectors and different values of λ ∈ [0.05, 1]. The
stitching layers ℓ is chosen to be Block-9.

part of another model by a learnable linear layer. If stitched model

ious combinations of τi and τj and different values of
λ, the stitched model fL←(ℓ+1)(θPT;

1
2f

(ℓ)(θPT + λτi) +
1
2f

(ℓ)(θPT + λτj)) achieves comparable performance on
both Di and Dj , while fL←(ℓ+1)(θPT; f

(ℓ)(θPT + λτi))
and fL←(ℓ+1)(θPT; f

(ℓ)(θPT + λτj)) are only capable of
single tasks. Therefore, we conclude that the addition in
the feature space actually aggregates the task-specific in-
formation from both tasks, thereby bridging the multi-task
abilities and CTL.

CTL Explains Forgetting via Negation. Another surpris-
ing finding in task arithmetic is that negating a task vector
removes the ability of the pretrained model on the corre-
sponding task. Specifically, the edited model f(θPT − λτi)
forgets its proficiency on Di while maintaining its perfor-
mance elsewhere. Further exploration of the underlying
reasons for this forgetting effect is encouraged.

We still explain the negation operation from a feature-
learning perspective. Assume CTL satisfied for the edited

retains a good performance on target task, we say that the two
model share a similar representation at the stitching layer. In our
case, no learnable linear layer is employed.
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stitching layer ℓ is chosen to be Block-19.

models, we can simply obtain that, ∀ℓ ∈ [L],

f (ℓ) (θPT) ≈
1

2
f (ℓ)(θPT + λτi) +

1

2
f (ℓ) (θPT − λτi) . (3)

To verify Equation (3), given a task vector τi, on each dat-
apoint x ∈ Di, we measure cosine

(ℓ)
arith(x;λτi,−λτi) and

compare it with cosine
(ℓ)
base(x;λτi,−λτi). We also compute

coef
(ℓ)
arith(x;λτi,−λτi). The results in Figures 7 and 8 val-

idate our hypothesis in Equation (3).

Equation (3) interprets the negation in the parameter space
as the negation in the feature space, as can be rewritten as:

f (ℓ) (θPT − λτi) ≈ f (ℓ) (θPT)−∆(ℓ)(λτi), (4)

where ∆(ℓ)(λτi) = f (ℓ) (θPT + λτi) − f (ℓ) (θPT). Intu-
itively, ∆(ℓ)(λτi) encodes the extra information specific
to the task Di. Therefore, f (ℓ) (θPT − λτi) loses the task-
specific information of ∆(ℓ)(λτi), while retaining most in-
formation of f (ℓ) (θPT).

We now examine the ability of the negation in the feature
space through model stitching. Specifically, we measure the
accuracy of the stitched model fL←(ℓ+1)(θPT; f

(ℓ)(θPT)−
∆(ℓ)(λτi)) on the downstream task Di and the pretraining
task DPT. In Figure 10, with the increase of λ, the accuracy
of fL←(ℓ+1)(θPT; f

(ℓ)(θPT) − ∆(ℓ)(λτi)) drops signifi-
cantly on Di while keeping nearly constant on DPT. We also
evaluate fL←(ℓ+1)(θPT; f

(ℓ)(θPT − λτi)), which shows
a similar performance to fL←(ℓ+1)(θPT; f

(ℓ)(θPT) −
∆(ℓ)(λτi)) on both tasks, thus further validating Equa-
tion (4). In conclusion, CTL translates the negation in the
parameter space as the negation in the feature space, which
further induces the aforementioned forgetting effect.

CTL Implies Task Arithmetic. Ortiz-Jimenez et al. (2023)
proposed the weight disentanglement as the necessary con-
dition to perform task arithmetic. We show that the weight
disentanglement is roughly a consequence of CTL (see The-
orem 4.3 and discussion in Appendix A).

Theorem 4.3 (CTL Connects to Weight Disentanglement.
(Proof in Appendix B.4)). Given pretrained model θPT

and a set of task vectors Υ = {τi}ki=1, suppose each pair
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Figure 11. The impact of the number of pretraining/finetuning
epochs on the emergence of CTL. We show the change of
1 − cosine
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0.5(x) and coef

(ℓ)
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number of finetuning epochs from 0 to 20. Results are reported for
ResNet-18s pretrained and finetuned on Split CIFAR-100.

of edited models (θPT + λiτi,θPT + λjτj) satisfy CTL
when λi, λj ∈ [−β, β], assume the transitivity of CTL (see
Conjecture 4.1), then ∀{αi}ki=1 ∈ [− β

k+1 ,
β

k+1 ],

f

(
θPT +

k∑
i=1

αiτi;x

)
≈

k∑
i=1

gi(αiτi;x) + g0(x)

where gi(αiτi;x) = 1
k+1f(θPT + (k + 1)αiτi;x) and

g0(x) =
1

k+1f(θPT;x).

5. Unveiling the Root Cause of CTL
We have seen CTL consistently occurs in the pretraining-
finetuning paradigm, roughly characterizing networks as
linear maps from the parameter space to the feature space.
In this section, we aim to unveil the root cause of CTL. We
explore various factors contributing to the emergence of
CTL, emphasizing the role of pretraining. We also take a
theoretical attempt to prove CTL.

Factors Contributing to CTL. We investigate the impact
of two factors, the number of pretraining/finetuning epoch
and the task similarity, on the emergence of CTL.

i) The number of pretraining/finetuning epochs. First, we
study the impact of the pretraining epochs on CTL. Specif-
ically, we vary the number of pretraining epochs and fix
the the number of finetuning epochs. Consistently with
Section 4.1, we measure cosine(ℓ)0.5(x), cosine(ℓ)i,j (x) and

coef
(ℓ)
0.5(x) for each pair of finetuned models. In Figure 11

(left), ED[1− cosine
(ℓ)
0.5(x)] decreases as the number of pre-

training epochs increases and the values of coef(ℓ)0.5(x) grad-
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Figure 12. The impact of task similarity on the emergence of CTL.
We show the change of 1− cosine

(ℓ)
0.5(x) and coef

(ℓ)
0.5(x) w.r.t. the

ratio of replaced samples (task similarity). Left: We replace the
samples from the two finetuning dataset with the samples from the
pretraining dataset. Right: We replace the samples from one fine-
tuning dataset with the samples from the other finetuning dataset.
Results are reported for ResNet-18s pretrained and finetuned on
Split ImageNet.

ually concentrate around 1. Results indicate that increasing
pretraining epochs promotes the emergence of CTL.

Second, we study the impact of the finetuning epochs on
CTL. Similarly, we fix the number of pretraining epochs
and vary the number of pretraining epochs. In Figure 11
(right), the values of ED[1− cosine

(ℓ)
0.5(x)] deviate slightly

from 0 once finetuning for at least one epoch, while there is
no clear trend for coef(ℓ)0.5(x). Results imply that the number
of finetuning epochs has lesser impact on CTL.

ii) The task similarity. First, we study the impact of the sim-
ilarity between the pretraining and finetuning tasks on CTL.
However, directly quantifying task similarity is challeng-
ing. Therefore, we adopt an alternative method: replacing
the samples from the finetuning tasks Di and Dj with the
samples from the pretraining task DPT and finetuning the
models on Di and Dj with these replaced samples. The ra-
tio of replaced samples, i.e., # of replaced samples

# of total samples inDi\Dj
, serves as a

measure of task similarity7. We then calculate cosine(ℓ)0.5(x)

and coef
(ℓ)
0.5(x) for each pair of finetuned models at different

ratio of replaced samples. In Figure 12 (left), as the ratio of
replaced samples increases, ED[1−cosine

(ℓ)
0.5(x)] decreases,

and the values of coef(ℓ)0.5(x) gradually approaches 1. Re-
sults indicate that the similarity between pretraining task
and finetuning task promotes the emergence of CTL.

Second, we study the impact of the similarity between the
two finetuning tasks on CTL. Similarly, we replace the sam-

7Notably, when the ratio is 1, Di, Dj and DPT are identical.

ples from one finetuning task with the samples from the
other finetuning task and use the ratio of replaced samples
as a measure of task similarity8. In Figure 12 (right), the
values of ED[1− cosine

(ℓ)
0.5(x)] remain nearly constant re-

gardless of how similar the two finetuning tasks are, and
the distributions of coef(ℓ)0.5(x) change little as well. Results
demonstrate that the similarity between finetuning tasks has
lesser effects on CTL.

In summary, our investigation indicate that the number of
pretraining epochs and the similarity between pretraining
and finetuning tasks promote the emergence of CTL, em-
phasizing the role of pretraining.

Theoretical Attempt to Prove CTL. In addition, we take
a first step to prove CTL. Specifically, we prove that the
emergence of CTL is related to the flatness of the landscape
of f(·) and the distance between two finetuned models (see
Theorem 5.1). We affirm our theorem by demonstrating a
strong correlation between δi,j and α(1−α)λmax

2 ∥θi − θj∥2
(Results in Appendix C.2).

Theorem 5.1 (The Emergence of CTL (Proof in Ap-
pendix B.2)). Suppose f(θ) : Rp 7→ R is third differen-
tiable in an open convex set Θ and the its Hessian norm at
θ0 is bounded by λmin ≤

∥∥∇2f(θ0)
∥∥ ≤ λmax, then

δi,j = |f(αθi + (1− α)θj)− αf(θi)− (1− α)f(θj)|

≤α(1− α)λmax

2
∥θi − θj∥2 + E ,

where E = O
(
max

(
∥αθi + (1− α)θj − θ0∥3 , α ∥θi − θ0∥3 ,

(1− α) ∥θj − θ0∥3
))

is the high order term.

Remark 5.2. Previous studies found linearizing models is
insufficient to explain LMC and task arithmetic (Fort et al.,
2020; Ortiz-Jimenez et al., 2023). In Theorem 5.1, instead
of linearizing models, we provide a more realistic setting.

6. Conclusion and Limitations
In this work, we identified Cross-Task Linearity (CTL) as a
prevalent phenomenon that consistently occurs for finetuned
models, approximately characterizing neural networks as
linear maps in the pretraining-finetuning paradigm. Based
on the observed CTL, we obtained novel insights into two
widely-used model merging/editing techniques: model aver-
aging and task arithmetic. Furthermore, we studied the root
cause of CTL, highlighting the role of pretraining.

Our current work primarily focuses on empirical findings,
despite a theoretical attempt to prove CTL in Section 5.
We defer a thorough theoretical analysis to future work.
Additionally, on the practical side, we leave comprehensive
exploration of CTL on Large Language Models to future.

8When the ratio is 1, Di and Dj are identical yet different from
DPT
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A. Connection with Prior Works
A recent work (Ortiz-Jimenez et al., 2023) argue against the linearization hypothesis, which suggesting that finetuning
occurs in the linear regime, by demonstrating the significant impact of non-linear terms on model behavior during training
and merging. There is seemingly a contradiction between our main discovery, CTL, and the findings of Ortiz-Jimenez et al.
(2023), as CTL roughly characterizing the neural network as linear maps in the pretraining-finetuning paradigm. In this
section, we clarify that our main discovery, CTL, indeed does not contradict with the findings of Ortiz-Jimenez et al. (2023).

Let us first revisit the linearization hypothesis. As mentioned in Ortiz-Jimenez et al. (2023), the linearization hypothesis
was originally proposed to explain the phenomenon that the outputs of weight-averaged model linearly correlate with
the averaging of the outputs of each individual model (Ilharco et al., 2022; Wortsman et al., 2022a;b). In fact, this linear
correlation phenomenon can be viewed as a special case of our main discovery, Cross-Task Linearity (CTL), when applied
to the output layer. Our work indeed generalizes this phenomenon to the intermediate states at each layer and a broader
setting of pretraining-finetuning paradigm (see full discussion in Section 4.2). Therefore, our work is closely aligned with
Ilharco et al. (2022); Wortsman et al. (2022a;b).

Now let us turn to Ortiz-Jimenez et al. (2023). They demonstrated that the finetuned models cannot be accurately
approximated by their post-hoc linearization and thus rejected the linearization hypothesis. The post-hoc linearization refers
to the first-order Taylor expansion of the finetuned models at the pretrained checkpoint and the linearization hypothesis
implies the finetuned model can be perfectly approximated by this linearization. However, they found that the performance
of these post-hoc linearized models failed to match that of the original finetuned models, neither in single tasks nor in task
arithmetic. The post-hoc linearization ensures the strict linearity of the finetuned models, which could directly explain
both the linear correlation phenomenon and our main discovery, CTL. However, such linearization exhibits a significant
discrepancy with the original finetuned models in terms of performance and thereby cannot fully explain the effectiveness of
task arithmetic/model averaging.

In this work, we depart from the linearization hypothesis and instead focus on an approximate version of linearity. i.e, CTL.
For the experiment side, we observe the approximate linearity, CTL, rather than strict linearity on the original finetuned
model under standard experimental settings. For the theory side, we do not assume any linearization of finetuned models.
Though such approximate linearity as well as the previous linear correlation phenomenon are surprising for neural networks,
which are often viewed as highly non-linear functions, we take a preliminary attempt to prove that the approximate linearity
can emerge when the product of the sharpness of the loss landscape and the squared Euclidean distance between two
finetuned models’ weights is sufficiently small (see Theorem 5.1). Therefore, our discovery not only establishes a strong
connection with previous findings on the linear correlation phenomenon but also departs from the linearization hypothesis,
turning to the approximate linearity.

Moreover, our discovery, CTL, also connects to the Weight Disentanglement, proposed in section 4 of Ortiz-Jimenez et al.
(2023), regarded as a pre-condition for finetuned models to perform task arithmetic. In Theorem 4.3, we demonstrate
that assuming the transitivity of CTL (see Conjecture 4.1), CTL can disentangle the edited models applied with multiple
task vectors into a sum of localized components, each controlled by a single task vector. Therefore, CTL closely relates
to the Weight Disentanglement. In fact, the condition of the Weight Disentanglement is too idealistic to be satisfied in
practice. However, CTL serves as a relaxed version of the Weight Disentanglement, which still effectively explaining the
task arithmetic.

In conclusion, our work indeed closely aligns with prior studies, not only Ilharco et al. (2022); Wortsman et al. (2022a;b)
but also Ortiz-Jimenez et al. (2023). We depart from the linearization hypothesis and identify an approximate version of
linearity, CTL, which generalizes the previous linear correlation phenomenon and still efficiently explains the effectiveness
of the model merging/task arithmetic techniques.

B. Missing Proofs
B.1. Preliminary Lemmas

Definition B.1 (Transitivity of CTL.). Given models θi,θj ,θk. We have (θi,θk) satisfy CTL if (θi,θj) and (θj ,θk)
satisfy CTL.

Lemma B.2 (CTL holds for two-model weight interpolations.). Given two models θi and θj satisfy CTL, then ∀γ ∈ [0, 1],
we have θ′i = γθi + (1− γ)θj and θj satisfy CTL.
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Proof. ∀α, γ ∈ [0, 1],∀ℓ ∈ [L],

f (ℓ)(αθ′i + (1− α)θj) = f (ℓ)(α(γθi + (1− γ)θj) + (1− α)θj)

= f (ℓ)(αγθi + (1− αγ)θj)

≈ αγf (ℓ)(θi) + (1− αγ)f (ℓ)(θj)

≈ α(γf (ℓ)(θi) + (1− γ)f (ℓ)(θj)) + (1− α)f (ℓ)(θj)

≈ αf (ℓ)(θ′i) + (1− α)f (ℓ)(θj)

Therefore, θ′i and θj satisfy CTL, and this finishes our proof.

Lemma B.3 (CTL holds for multi-model weight interpolations.). Given a set of models Θ = {θi}ki=1, suppose each pair
of models (θi,θj) ∈ Θ2 satisfy CTL, assume transitivity of CTL (see Definition B.1), then for any {αi}ki=1 ∈ [0, 1] subject
to
∑k

i=1 αi = 1, we have the weight-interpolated model θ′ =
∑k

i=1 αiθi satisfy CTL with each model from Θ.

Proof. We proceed by induction on k. When k = 2, Lemma B.2 directly implies Lemma B.3.

Assume Lemma B.3 holds for some k′ ≥ 2. Assume that for any {αi}k
′

i=1 ∈ [0, 1] subject to
∑k′

i=1 αi = 1 and any θj ∈ Θ,
we have θ′ =

∑k′

i=1 αiθi and θj satisfy CTL.

Now we need to show Lemma B.3 holds when k = k′ + 1. That is, we need to show for any {αi}k
′+1

i=1 ∈ [0, 1] subject to∑k′+1
i=1 αi = 1 and any θj ∈ Θ, we have θ′ =

∑k′+1
i=1 αiθi and θj satisfy CTL. As Lemma B.3 holds when k = k′, we

have the weight-interpolated model θ′′ =
∑

i̸=j
αi

1−αj
θi satisfy CTL with each model θp ∈ Θ \ {θj}. As both (θ′′,θp)

and (θp,θj) satisfy CTL, we have θ′′ and θj satisfy CTL as well. According to Lemma B.2, the weight-interpolated model
αiθj + (1− αj)θ

′′ =
∑k′+1

i=1 αiθi and θj satisfy CTL, and this finishes our proof.

B.2. Proof of Theorem 3.3

Theorem B.4 (LLFC Induces LMC). Given dataset D, convex loss function L, and two modes θi and θj with equal loss
on D, i.e., L(θi) = L(θj), suppose the two modes θi, θj satisfy LLFC on D with exact equality, then for all α ∈ [0, 1],

L(αθi + (1− α)θj) ≤ L(θi) = L(θj).

Proof. Since θi and θj satisfy LLFC on D with exact equality, we have

f (αθi + (1− α)θj ;x) = αf (θi;x) + (1− α) f (θj ;x) , ∀x ∈ D.

Since the loss function L is convex to model outputs, we have

L (f (αθi + (1− α)θj ;x) , y) = L (αf (θi;x) + (1− α) f (θj ;x) , y)

≤ αL (f (θi;x) , y) + (1− α)L (f (θj ;x) , y) , ∀(x, y) ∈ D.

Therefore,

E(x,y)∈D [L (f (αθi + (1− α)θj ;x) , y)] ≤ E(x,y)∈D [αL (f (θi;x) , y)] + E(x,y)∈D [(1− α)L (f (θj ;x) , y)]

L (αθi + (1− α)θj) ≤ αL(θi) + (1− α)L(θj)

According to the condition that L(θi) = L(θj), we finally obtain that

L(αθi + (1− α)θj) ≤ L(θi) = L(θj).
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B.3. Proof of Theorem 4.2

Theorem B.5 (CTL Generalizes to Multiple Models). Given dataset D and a set of modes Θ where each pair of
modes (θi,θj) ∈ Θ2 satisfy CTL on D, assume transitivity of CTL (see Definition B.1), then for any {θi}ki=1 ∈ Θ and
{αi}ki=1 ∈ [0, 1], subject to the constraint that

∑k
i=1 αi = 1, we have

f (ℓ)

(
k∑

i=1

αiθi

)
≈

k∑
i=1

αif
(ℓ)(θi), ∀ℓ ∈ [L].

Proof. We proceed by induction on k. When k = 2, Theorem B.5 clearly holds. For any (θ1,θ2) ∈ Θ2, CTL holds on D.
Then, ∀α1 ∈ [0, 1] and α2 = 1− α1 ∈ [0, 1], we have

f (ℓ)(α1θ1 + α2θ2) = f (ℓ)

(
2∑

i=1

αiθi

)
≈ α1f

(ℓ)(θ1) + α2f
(ℓ)(θ2)

≈
2∑

i=1

αif
(ℓ)(θi), ∀ℓ ∈ [L].

Assume Theorem B.5 holds for some k′ ≥ 2. That is, assume that for any {θi}k
′

i=1 ∈ Θ and {αi}k
′

i=1 ∈ [0, 1], subject to the
constraint that

∑k′

i=1 αi = 1, we have

f (ℓ)

 k′∑
i=1

αiθi

 ≈
k′∑
i=1

αif
(ℓ)(θi), ∀ℓ ∈ [L].

Now we need to show Theorem B.5 holds when k = k′ + 1. For any set of modes {θi}k
′+1

i=1 ∈ Θ and any set of coefficients
{αi}k

′+1
i=1 ∈ [0, 1], we define θavg,k′ =

∑k′

i=1
αi

1−αk′+1
θi. According to Lemma B.3, CTL holds for θavg,k′ and θk′+1, then

we have

f (ℓ)(αθk′+1 + (1− α)θavg,k′) ≈ αf (ℓ)(θk′+1) + (1− α)f (ℓ)(θavg,k′), ∀α ∈ [0, 1],∀ℓ ∈ [L].

Substituting α with αk′+1, we can obtain

f (ℓ)(αk′+1θk′+1 + (1− αk′+1)θavg,k′) = f (ℓ)

k′+1∑
i=1

αiθi


≈ αk′+1f

(ℓ)(θk′+1) + (1− αk′+1)f
(ℓ)(θavg,k′), ∀α ∈ [0, 1],∀ℓ ∈ [L].

Knowing that Theorem B.5 holds true when k = k′, then we have

f (ℓ)

k′+1∑
i=1

αiθi

 ≈ αk′+1f
(ℓ)(θk′+1) + (1− αk′+1)f

(ℓ)

 k′∑
i=1

αi

1− αk′+1
θi


≈ αk′+1f

(ℓ)(θk′+1) + (1− αk′+1)

k′∑
i=1

αi

1− αk′+1
f (ℓ)(θi)

≈
k′+1∑
i=1

αif
(ℓ)(θi), ∀ℓ ∈ [L].

Therefore, Theorem B.5 holds true when k = k′ + 1, and this finishes our proof.

16



On the Emergence of Cross-Task Linearity in the Pretraining-Finetuning Paradigm

B.4. Proof of Theorem 4.3

Theorem B.6 (CTL Connects to Weight Disentanglement.). Given pretrained model θPT and a set of task vectors
Υ = {τi}ki=1, suppose each pair of edited models (θPT + λiτi,θPT + λjτj) satisfy CTL when λi, λj ∈ [−β, β], assume
the transitivity of CTL (see Definition B.1), then ∀{αi}ki=1 ∈ [− β

k+1 ,
β

k+1 ],

f

(
θPT +

k∑
i=1

αiτi;x

)
≈

k∑
i=1

gi(αiτi;x) + g0(x)

where gi(αiτi;x) =
1

k+1f(θPT + (k + 1)αiτi;x) and g0(x) =
1

k+1f(θPT;x).

Proof. We proceed by induction on k. When k = 1, above Theorem B.6 clearly holds. For any τ1 ∈ Υ and λ1 ∈ [−β, β],
CTL holds for (θPT,θPT + λ1τ1). Then, ∀α1 ∈ [−β

2 ,
β
2 ], we have

f(θPT + α1τ1) ≈
1

2
f(θPT + 2α1τ1;x) +

1

2
f(θPT;x)

Assume Theorem B.6 holds for some k′ ≥ 1. That is, assume that for any {τi}k
′

i=1 ∈ Υ and {αi}k
′

i=1 ∈ [− β
k′+1 ,

β
k′+1 ], we

have

f

θPT +

k′∑
i=1

αiτi;x

 ≈
k′∑
i=1

1

k′ + 1
f(θPT + (k′ + 1)αiτi;x) +

1

k′ + 1
f(θPT;x)

Now we need to show Theorem B.6 holds when k = k′ + 1. According to Lemma B.3, it is clear to see that the edited
model θPT + (k′ + 2)αk′+1τk′+1 and the weight-averaged model 1

k′+1θPT + 1
k′+1

∑k′

i=1 θPT + (k′ + 2)αiτi satisfy CTL.
Then, we have

f

θPT +

k′+1∑
i=1

αiτi;x


=f

 1

k′ + 2
(θPT + (k′ + 2)αk′+1τk′+1) +

k′ + 1

k′ + 2

 1

k′ + 1
θPT +

1

k′ + 1

k′∑
i=1

θPT + (k′ + 2)αiτi

 ;x


≈ 1

k′ + 2
f(θPT + (k′ + 2)αk′+1τk′+1;x) +

k′ + 1

k′ + 2
f

θPT +

k′∑
i=1

k′ + 2

k′ + 1
αiτi;x


≈ 1

k′ + 2
f(θPT + (k′ + 2)αk′+1τk′+1;x) +

k′ + 1

k′ + 2

 k′∑
i=1

1

k′ + 1
f(θPT + (k′ + 2)αiτi;x) +

1

k′ + 1
f(θPT;x)


≈

k′+1∑
i=1

1

k′ + 2
f(θPT + (k′ + 2)αiτi;x) +

1

k′ + 2
f(θPT;x)

Therefore, Theorem B.6 holds when k = k′ + 1, and this finishes our proof.

B.5. Proof of Theorem 5.1

Theorem B.7 (The Emergence of CTL). Suppose f(θ) : Rp 7→ R is third differentiable in an open convex set Θ and the
its Hessian norm at θ0 is bounded by λmin ≤

∥∥∇2f(θ0)
∥∥ ≤ λmax, then

δi,j = |f(αθi + (1− α)θj)− αf(θi)− (1− α)f(θj)| ≤
α(1− α)λmax

2
∥θj − θi∥2 + E ,

where E = O
(
max

(
∥αθi + (1− α)θj − θ0∥3 , α ∥θi − θ0∥3 , (1− α) ∥θj − θ0∥3

))
is the high order term.
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Proof. Since f is third differentiable in an open convex set Θ, then by Taylor’s Theorem, for any θ0,θ ∈ Θ,

f(θ) = f(θ0) +∇f(θ0)
⊤ (θ − θ0) +

1

2
(θ − θ0)

⊤∇2f(θ0) (θ − θ0) +Rθ0,3(θ − θ0).

where the remainder term Rθ0,3(θ − θ0) = O
(
∥θ − θ0∥3

)
. Suppose λmin ≤

∥∥∇2f(θ0)
∥∥ ≤ λmax, we have

λmin

2
∥θ − θ0∥2 ≤ 1

2
(θ − θ0)

⊤∇2f(θ0) (θ − θ0) ≤
λmax

2
∥θ − θ0∥2 .

Then for f(αθi + (1− α)θj), by Taylor’s Theorem,

f(αθi + (1− α)θj)

= f(θ0) +∇f(θ0)
⊤ (αθi + (1− α)θj − θ0)

+
1

2
(αθi + (1− α)θj − θ0)

⊤∇2f(θ0) (αθi + (1− α)θj − θ0) +Rθ0,3(αθi + (1− α)θj − θ0)

= f(θ0) +∇f(θ0)
⊤ (α (θi − θ0) + (1− α) (θj − θ0))

+
1

2
(αθi + (1− α)θj − θ0)

⊤∇2f(θ0) (αθi + (1− α)θj − θ0) +Rθ0,3(αθi + (1− α)θj − θ0)

= α
(
f(θ0) +∇f(θ0)

⊤ (θi − θ0)
)
+ (1− α)

(
f(θ0) +∇f(θ0)

⊤ (θi − θ0)
)

+
1

2
(αθi + (1− α)θj − θ0)

⊤∇2f(θ0) (αθi + (1− α)θj − θ0) +Rθ0,3(αθi + (1− α)θj − θ0)

= α

(
f(θi)−

1

2
(θi − θ0)

⊤∇2f(θ0) (θi − θ0)−Rθ0,3(θi − θ0)

)
+ (1− α)

(
f(θj)−

1

2
(θj − θ0)

⊤∇2f(θ0) (θj − θ0)−Rθ0,3(θj − θ0)

)
+

1

2
(αθi + (1− α)θj − θ0)

⊤∇2f(θ0) (αθi + (1− α)θj − θ0) +Rθ0,3(αθi + (1− α)θj − θ0)

= αf(θi) + (1− α)f(θj)

+
1

2
(α (θi − θ0) + (1− α) (θj − θ0))

⊤∇2f(θ0) (α (θi − θ0) + (1− α) (θj − θ0))

− α

2
(θi − θ0)

⊤∇2f(θ0) (θi − θ0)−
(1− α)

2
(θj − θ0)

⊤∇2f(θ0) (θj − θ0)

+Rθ0,3(αθi + (1− α)θj − θ0)− αRθ0,3(θi − θ0)− (1− α)Rθ0,3(θj − θ0)

= αf(θi) + (1− α)f(θj)

− α(1− α)

2
(θj − θi)

⊤∇2f(θ0) (θj − θi)

+Rθ0,3(αθi + (1− α)θj − θ0)− αRθ0,3(θi − θ0)− (1− α)Rθ0,3(θj − θ0).

Therefore, we have

|f(αθi + (1− α)θj)− αf(θi)− (1− α)f(θj)|

=

∣∣∣∣−α(1− α)

2
(θj − θi)

⊤∇2f(θ0) (θj − θi) +Rθ0,3(αθi + (1− α)θj − θ0)− αRθ0,3(θi − θ0)− (1− α)Rθ0,3(θj − θ0)

∣∣∣∣
≤

∣∣∣∣α(1− α)

2
(θj − θi)

⊤∇2f(θ0) (θj − θi)

∣∣∣∣+ |Rθ0,3(αθi + (1− α)θj − θ0)− αRθ0,3(θi − θ0)− (1− α)Rθ0,3(θj − θ0)|

≤ α(1− α)λmax

2
∥θj − θi∥2 +O

(
max

(
∥αθi + (1− α)θj − θ0∥3 , α ∥θi − θ0∥3 , (1− α) ∥θj − θ0∥3

))
.

where the last inequality is because λmin ≤
∥∥∇2f(θ0)

∥∥ ≤ λmax and Rθ0,3(θ − θ0) = O
(
∥θ − θ0∥3

)
.
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C. More Experimental Results
C.1. Detailed Experimental Settings

C.1.1. EXPERIMENTAL SETTINGS IN SECTION 4.1

Multi-Layer Perceptron on the Rotated MNIST Dataset.
Following the settings outlined by Mirzadeh et al. (2021), we adopt the multi-layer perceptron with two hidden layers
with 100 units for Rotated MNIST dataset. ReLU activation functions are adopted between linear layers. Therefore, the
multi-layer perceptron has 4 linear layers (1 for input, 2 for hidden and 1 for output) and 3 ReLU layers. We pretrain the
MLP on normal MNIST and finetune it on Rotated MNIST, where each digit are rotated by a specific angle. We use rotation
angle degrees of {0◦, 22.5◦, 45◦, 67.5◦, 90◦}. Optimization is done with the default SGD algorithm and the learning rate of
1× 10−1, the batch size is set to 64 and the training epoch is set to 1 for both pretraining and finetuning.

We have 4 finetuned MLPs, yielding 6 non-repeated combinations of two finetuned models (θi,θj) in total. CTL are
evaluated for each combinations on the union of their finetuning tasks (Di ∪ Dj) which have 20, 000 test samples.

ResNet-18 on the Split CIFAR-100 Dataset.
Still following the settings outlined by Mirzadeh et al. (2021), we adopt the ResNet-18 architecture (He et al., 2016) on the
Split CIFAR-100 dataset. The Split CIFAR-100 dataset is divided by classes, and 5 consecutive categories of CIFAR-100
are grouped into one split, having 20 splits in total. We use the first split as pretraining task and the second to fifth splits as
finetuning tasks. We pretrain the ResNet-18 on first split and finetune it on the rest 4 splits respectively, acquiring 4 finetuned
ResNet-18 checkpoints. No data augmentation techniques are adopted and optimization is done using the default SGD
algorithm with learning rate of 5× 10−2. The batch size is set to 64. The training epoch is set to 10 for both pretraining and
finetuning.

Similar to the setup of the Rotated MNIST experiment, we have 4 finetuned ResNet-18 models, yielding 6 non-repeated
combinations of two finetuned models (θi,θj) in total. CTL are evaluated for each combinations and on the union of their
finetuning tasks (Di ∪ Dj) which have 20, 000 test samples.

C.1.2. EXPERIMENTAL SETTINGS IN SECTION 4.2

Model Averaging Accuracy v.s. Logits Ensemble Accuracy.
We choose 20 out of the 72 ViT-B/32 (Dosovitskiy et al., 2020) checkpoints that are finetuned on ImageNet (Deng et al.,
2009) and open-sourced by Wortsman et al. (2022a), yielding

(
20
3

)
= 1140 non-repeated combinations of three finetuned

ViT-B/32 models. For each combination of the finetuned models, we evaluated model averaging accuracy and logits
ensemble accuracy on 10, 000 test samples from ImageNet.

Verification of Equation (1)
For ViT-B/32 on CIFAR-10, We train our ViT-B/32 initialized from same CLIP pretrained checkpoint but finetuned on
CIFAR-10 dataset with different hyper-parameters to obtain 5 checkpoints to validate Equation (1). For ViT-B/32 on
ImageNet, we choose 10 out of the 72 ViT-B/32 checkpoints that are finetuned on ImageNet and open-sourced by Wortsman
et al. (2022a) to validate Equation (1). For both cases, we perform experiments on randomly-selected 10, 000 samples from
the test set.

It’s worth mentioning that in the forward pass of ViT models, the input in the shape of (batch size, patches num,
hidden dim) will be permuted to (patches num, batch size, hidden dim). We permute the internal feature
back and reshape it into (batch size, patches num × hidden dim). Now, the dimension of the features is
simply patches num × hidden dim.

C.1.3. EXPERIMENTAL SETTINGS IN SECTION 4.3

CTL Explains Learning via Addition.
We present the experimental settings in (i) Cross-Task Linearity (CTL) and (ii) Model Stitching experiment, respectively.

i) Cross-Task Linearity (CTL) experiment.
Vision Transformer (Dosovitskiy et al., 2020): we evaluate ViT-B/32 and ViT-L/14 on 8 image classification datasets:
Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Stallkamp et al., 2011),
MNIST (LeCun & Cortes, 2005), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2016), SVHN (Netzer et al., 2011)).
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8 finetuned ViT-B/32 (ViT-L/14) models generate
(
8
2

)
= 28 non-repeated combinations of two task vectors in total. For each

combination of the two task vectors, we validate Equation (2) on on the union of their finetuning datasets (Di ∪ Dj) which
has 10, 000 test samples in total.

T5 (Raffel et al., 2020): we evaluate T5 on 6 NLP datasets: IMDB (Maas et al., 2011), RACE (Lai et al., 2017), QASC (Khot
et al., 2020), MultiNews (Fabbri et al., 2019), SQuAD (Rajpurkar et al., 2016), CommonGen (Lin et al., 2019), as same
setup in Ilharco et al. (2023). 6 finetuned T5-base models generate

(
6
2

)
= 15 non-repeated combinations of two task vectors

in total. For each combination of the two task vectors, we validate Equation (2) on on the union of their finetuning datasets
(Di ∪ Dj) which has 1, 000 test samples in total. As T5 is a encoder-decoder architecture and sentences are varied in their
lengths, we adopt the convention in sentence-T5 (Ni et al., 2021), which uses (i) the average pooling of tokens in the encoder
to represent the internal feature of a sentence and (ii) the decoder’s hidden states when generating first token (which is
equivalent to attention pooling) to represent the feature of a sentence in decoder.

ii) Model Stitching experiment.
We only validate ViT architectures (ViT-B/32, ViT-L/14) on the aforementioned 8 image classification datasets. We follow
the Cross-Task Linearity (CTL) experiment settings except for the evaluation data size, which is of 2, 000 in this case.
Notably, it is impossible for us to include the results for all 28 combinations, and thus, part of our experimental results will
be presented, which is the same for the other experiments.

CTL Explains Learning via Negation.
Similar to the Learning via Addition setup, the datasets and architectures are kept the same.

i) Cross-Task Linearity (CTL) experiment.
We evaluate both ViT and T5 architectures. For ViT architectures, we evaluate the 8 finetuned models on their corresponding
finetuned datasets, each having 10, 000 test samples. For T5 architectures, we evaluate the 6 finetuned models on their
downstream finetuned datasets, each having 10, 000 test samples.

ii) Model Stitching experiment.
In Model Stitching experiment, we only validate ViT (ViT-B/32, ViT-L/14) architectures. We follow the same settings as
above except for evaluation data size, which is of 2, 000 in this case.

C.1.4. EXPERIMENTAL SETTINGS IN SECTION 5

i) The number of pretraining/finetuning epochs. We adopt the ResNet-18 on the Split CIFAR-100 Dataset setting in
Appendix C.1.1. For validating the impact of pretraining epochs, we vary the number of pretraining epochs from 0 to 20 and
fix the number of finetuning epochs to 10. For validating the impact of finetuning epochs, we fix the number of pretraining
epochs to 10 and vary the number of finetuning epochs from 0 to 20. We use the combination of D1 and D2.

ii) The task similarity. We use the Split ImageNet-1k (Deng et al., 2009) instead of Split CIFAR-100 as pretraining
and finetuning datasets in practice to confidentially make sure the differences between datasets significant. Similar to
the setting of ResNet-18 on the Split CIFAR-100 Dataset setting in Appendix C.1.1, the Split ImageNet-1k dataset is
divided by classes, and 10 consecutive categories are grouped into one split. We use the first split as pretraining datasets
and the second/third split as D1/D2. We use the default training hyper-parameters in torchvision (contributors, 2016) to
pretrain/finetune the ResNet-18.

C.2. Verification of Theorem 5.1

In this section, we conduct experiments to validate the theoretical analysis presented in Theorem 5.1. Specifically, we
demonstrate that δi,j exhibits a stronger correlation with α(1−α)λmax

2 ∥θi − θj∥2 compared to λmax or ∥θi − θj∥2 alone.

For each pair of θi and θj , we calculate the distance between finetuned models, i.e., ∥θi − θj∥2, and δi,j , i.e., |f(αθi +
(1−α)θj)−αf(θi)− (1−α)f(θj)| where α = 0.5. We also compute the largest eigenvalue of the Hessian matrix of f(·)
at θ0, i.e., λmax. Here, θi and θj denote models that are initialized from a common checkpoint and finetuned on the same
dataset with different hyperparameters. The function f(·) represents the loss function L(·), and θ0 is simply chosen as θPT.

For ResNet-20 models finetuned on the CIFAR-10 dataset, we find that if we use α(1−α)λmax
2 ∥θi − θj∥2 to fit a regression

model to predict δi,j , the R-squared value of the model is approximately 0.903. However, if we use only λmax or ∥θi − θj∥2
to fit the regression model, the R-squared value of the model is approximately 0.782 or 0.839, respectively. Therefore,
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Figure 13. Verification of CTL. Compare ED[1− cosine
(ℓ)
α (x)] with ED[1− cosine(ℓ)i,j (x)]. Here, {θi}4i=1 and {Di}4i=1 denotes four

finetuned MLPs on corresponding Rotated MNIST with rotation ∈ {22.5◦, 45◦, 67.5◦, 90◦} respectively. The results are reported for all
layers of finetuned MLP, with α ∈ {0.25, 0.5, 0.75}.

we conclude that δi,j indeed demonstrates a strong correlation with α(1−α)λmax
2 ∥θi − θj∥2. It is worth noting that such

correlation is a joint effect of both λmax and ∥θi − θj∥2, implying that either reducing λmax or ∥θi − θj∥2 leads to the
fulfillment of CTL.

C.3. More Verification of CTL

In this section, we provide more experimental results about the CTL on MLP and ResNet-18 in different task combinations
and different layers, which shows the CTL holds in the pretraining-finetuning paradigm. In Figure 13 and Figure 14, we
include experimental results of ED[1− cosine(ℓ)α (x)] and coef(ℓ)α (x) for MLPs on Rotated MNIST dataset. In Figure 15
and Figure 16, we include experimental results of ED[1− cosine(ℓ)α (x)] and coef(ℓ)α (x) for ResNet-18 on Split CIFAR-100
dataset.

C.4. More Verification of Equation (1)

In this section, we provide more experimental results about the CTL in model averaging on ViT-B/32 to validate Equation (1).
In Figure 17, we include the ED[1− cosine(ℓ)avg(x)] and coef(ℓ)avg(x) for ViT-B/32 on CIFAR-10. In Figure 18, we include
the ED[1− cosine(ℓ)avg(x)] and coef(ℓ)avg(x) for ViT-B/32 on ImageNet. Results are reported across all blocks of ViT-B/32.

C.5. More Verification of Equation (2)

In this section, we provide more results about the CTL in task arithmetic on ViT-B/32, ViT-L/14 , T5 and Llama-2-13B
architectures to validate Equation (2). We report both ED[1 − cosine

(ℓ)
arith(x;λτi, λτj)] and coef

(ℓ)
arith(x;λτi, λτj). In

Figure 19, we provide more results for ViT-B/32 architecture and all the blocks of ViT-B/32 are reported. In Figure 20, we
provide more results for ViT-L/14 architecture and the last 12 blocks of ViT-L/14 are reported. In Figure 21, we provide
more results on T5 architecture and the last 6 encoder blocks and last 6 decoder blocks of T5 are reported.

C.6. More Verification of Equation (3)

In this section, we provide results about the CTL in task arithmetic for more task vectors of ViT-B/32, ViT-L/14 and T5
architectures to validate Equation (3). We report both ED[1− cosine

(ℓ)
arith(x;λτi,−λτi)] and coef

(ℓ)
arith(x;λτi,−λτi). In

Figure 22, we provide more results for ViT-B/32 architecture and all the blocks of ViT-B/32 are reported. In Figure 23, we
provide more results for ViT-L/14 architecture and last 12 blocks of ViT-L/14 are reported. In Figure 24, we provide more
results for T5 architecture and the last 6 encoder blocks and last 6 decoder blocks of T5 are reported.
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Figure 14. Verification of CTL. Distribution of coef(ℓ)α (x) across the datasets. Here, {θi}4i=1 and {Di}4i=1 denotes four finetuned MLPs
on the corresponding Rotated MNIST with rotation ∈ {22.5◦, 45◦, 67.5◦, 90◦} respectively. The results are reported for all layers except
classification head of finetuned MLPs, with α ∈ {0.25, 0.5, 0.75}.

22



On the Emergence of Cross-Task Linearity in the Pretraining-Finetuning Paradigm

1 − cosine𝑖,𝑗
(ℓ)
(𝒙) 1 − cosine0.25

(ℓ)
(𝒙) 1 − cosine0.50

(ℓ)
(𝒙) 1 − cosine0.75

(ℓ)
(𝒙)

ResNet18 on Split CIFAR-100

(𝜃1, 𝜃2) on 𝒟1 ∪ 𝒟2

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

(𝜃1, 𝜃3) on 𝒟1 ∪ 𝒟3

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

(𝜃1, 𝜃4) on 𝒟1 ∪ 𝒟4

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

(𝜃2, 𝜃3) on 𝒟2 ∪ 𝒟3

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

(𝜃2, 𝜃4) on 𝒟2 ∪ 𝒟4

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

(𝜃3, 𝜃4) on 𝒟3 ∪ 𝒟4

𝐸
𝒟
[1

−
co
si
n
e(

ℓ
)
𝒙
]

0.6

0.4

0.2

0.0
Block 1-0 Block 1-1 Block 2-0 Block 2-1 Block 3-0 Block 3-1 Block 4-0 Block 4-1

Figure 15. Verification of CTL. Compare ED[1− cosine
(ℓ)
α (x)] with ED[1− cosine(ℓ)i,j (x)]. Here, {θi}4i=1 and {Di}4i=1 denotes four

finetuned ResNet-18s and the second to fifth splits in Split CIFAR-100 respectively. The results are reported for all blocks of finetuned
ResNet-18 models, with α ∈ {0.25, 0.5, 0.75}.
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Figure 16. Verification of CTL. Distribution of coef(ℓ)α (x) across the datasets. Here, {θi}4i=1 and {Di}4i=1 denotes four finetuned
ResNet-18s and the second to fifth splits in Split CIFAR-100 respectively. The results are reported for all blocks of finetuned ResNet-18
models, with α ∈ {0.25, 0.5, 0.75}.
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Figure 17. Verification of CTL in model averaging. (a) Compare ED[1− cosine
(ℓ)
avg(x)] with ED[1− cosine

(ℓ)
base(x)]. (b) Distribution

of coef(ℓ)avg(x) on CIFAR-10. The results are reported for all blocks of ViT-B/32 models finetuned on CIFAR-10 with different hyper-
parameters.
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Figure 18. Verification of CTL in model averaging. (a) Compare ED[1− cosine
(ℓ)
avg(x)] with ED[1− cosine

(ℓ)
base(x)]. (b) Distribution

of coef(ℓ)avg(x) on ImageNet. The results are reported for all blocks of ViT-B/32 models finetuned on ImageNet with different hyper-
parameters.
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Figure 19. Verification of Learning via Addition in task arithmetic. (a) Compare ED[1 − cosine
(ℓ)
arith(x;λτi, λτj)] with ED[1 −

cosine
(ℓ)
base(x;λτi, λτj)]. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset,

respectively. (b) Distribution of coef(ℓ)arith(x;λτi, λτj). The results are reported for all blocks of finetuned ViT-B/32 under different
settings, with λ = 0.4 and α = 0.5.
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Figure 20. Verification of Learning via Addition in task arithmetic. (a) Compare ED[1 − cosine
(ℓ)
arith(x;λτi, λτj)] with ED[1 −

cosine
(ℓ)
base(x;λτi, λτj)]. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset,

respectively. (b) Distribution of coef(ℓ)arith(x;λτi, λτj). The results are reported for the last 12 blocks of finetuned ViT-L/14 under
different settings, with λ = 0.4 and α = 0.5.
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Figure 21. Verification of Learning via Addition in task arithmetic. (a) Compare ED[1 − cosine
(ℓ)
arith(x;λτi, λτj)] with ED[1 −

cosine
(ℓ)
base(x;λτi, λτj)]. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset,

respectively. (b) Distribution of coef(ℓ)arith(x;λτi, λτj). The results are reported for the last 6 encoder blocks and the last 6 decoder
blocks of finetuned T5 under different settings, with λ = 0.4 and α = 0.5.
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Figure 22. (a) Compare ED[1− cosine
(ℓ)
arith(x;λτi,−λτi)] with ED[1− cosine

(ℓ)
base(x;λτi,−λτi)]. The bottom and top of the error

bar represent the lower and upper quartile of the values across the dataset, respectively. (b) Distribution of coef(ℓ)arith(x;λτi,−λτi). The
results are reported for all blocks of finetuned ViT-B/32 under different settings, with λ = 0.4 and α = 0.5.
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Figure 23. Verification of Learning via Negation in task arithmetic. (a) Compare ED[1 − cosine
(ℓ)
arith(x;λτi,−λτi)] with ED[1 −

cosine
(ℓ)
base(x;λτi,−λτi)]. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset,

respectively. (b) Distribution of coef(ℓ)arith(x;λτi,−λτi). The results are reported for the last 12 blocks of finetuned ViT-L/14 under
different settings, with λ = 0.4 and α = 0.5.
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Figure 24. Verification of Learning via Negation in task arithmetic. (a) Compare ED[1 − cosine
(ℓ)
arith(x;λτi,−λτi)] with ED[1 −

cosine
(ℓ)
base(x;λτi,−λτi)]. The bottom and top of the error bar represent the lower and upper quartile of the values across the dataset,

respectively. (b) Distribution of coef(ℓ)arith(x;λτi,−λτi). The results are reported for the last 6 encoder blocks and the last 6 decoder
blocks of finetuned T5 under different settings, with λ = 0.4 and α = 0.5.
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