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Abstract
Research on adversarial robustness has predomi-
nantly focused on continuous inputs, leaving cat-
egorical inputs, especially tabular attributes, less
examined. To echo this challenge, our work aims
to evaluate and enhance the robustness of classi-
fication over categorical attributes against adver-
sarial perturbations through efficient attack-free
approaches. We propose a robustness evaluation
metric named Integrated Gradient-Smoothed Gra-
dient (IGSG). It is designed to evaluate the attri-
butional sensitivity of each feature and the deci-
sion boundary of the classifier, two aspects that
significantly influence adversarial risk, according
to our theoretical analysis. Leveraging this met-
ric, we develop an IGSG-based regularization to
reduce adversarial risk by suppressing the sensi-
tivity of categorical attributes. We conduct exten-
sive empirical studies over categorical datasets
of various application domains. The results af-
firm the efficacy of both IGSG and IGSG-based
regularization. Notably, IGSG-based regulariza-
tion surpasses the state-of-the-art robust training
methods by a margin of approximately 0.4% to
12.2% on average in terms of adversarial accu-
racy, especially on high-dimension datasets. The
code is available at https://github.com/
YujunZhou/IGSG.

1. Introduction
Adversarial attacks (Goodfellow et al., 2014) pose signifi-
cant concerns in safety-critical applications by exploiting
vulnerabilities in deep learning models, thereby impact-
ing their decision-making (Moosavi-Dezfooli et al., 2016;
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Madry et al., 2017; Carlini & Wagner, 2017). To mitigate
these risks, defense strategies, known as robustness en-
hancement methods, have been developed to reduce the
model’s adversarial risk (Shafahi et al., 2019; Zhang et al.,
2019; Wong et al., 2020). Additionally, the evaluation of
robustness in current works is typically quantified by the
success rate of various attack methods against adversarial
risk (Madry et al., 2017; Carlini & Wagner, 2017; Kim et al.,
2024). Despite extensive research of these aspects in the
continuous domain, the discrete domain, which is prevalent
in real-world safety-critical applications, has not been as
thoroughly investigated (Bao et al., 2023). However, these
methods for robustness evaluation and enhancement in con-
tinuous settings are not directly transferable to categorical
data. Firstly, robustness evaluation through attacks is com-
putationally demanding for categorical data. The generation
of commonly used L0-norm bounded adversarial perturba-
tions on categorical data (Lei et al., 2019; Wang et al., 2020)
poses an NP-hard problem (Lee & Leyffer, 2011). Secondly,
adversarial training, a typical robustness enhancement strat-
egy that involves iterative generation of adversarial samples
for optimization, becomes computationally intensive when
transferred from continuous to categorical input. Besides,
due to the NP-hard nature of generating adversarial samples,
adversarial training can only cover a subset of adversarial
samples, leading to “robust overfitting” (Rice et al., 2020).
This leads us to our research questions:

Q1: How can the adversarial robustness of deep learning
models on categorical data be evaluated without performing
attacks?

Q2: How can such an attack-free robustness assessment be
utilized for robustness enhancement?

To answer these questions, we identify two primary fac-
tors affecting the adversarial robustness of one model on
categorical data. The first factor concerns the model’s over-
reliance on a limited subset of features. Such dependence
signifies that decisions within the model disproportionately
prioritize few features, leading to increased vulnerability
and a heightened risk of adversarial attacks (Grosse et al.,
2016). As shown in Fig.1(a), in models trained through stan-
dard methods (Std Train), only a few features are subjected
to attacks more frequently, e.g., the 30th to 32nd features
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(a) Attack frequency (IGSGreg vs Std Train)

(b) IG score distribution (IGSGreg vs Std Train)

Figure 1. Comparison of attack frequency and IG score for each
feature on Splice and PEDec Datasets

in the Splice dataset, and those around the 5000th in the
PEDec dataset. To quantify the impact of each feature on
the model’s adversarial robustness, we employ Integrated
Gradient (IG), a measure grounded in theoretical principles
(Sundararajan et al., 2017). As depicted in Fig. 1(b), for the
Std Train models, features that are more frequently targeted
by attacks correspondingly exhibit notably high IG scores.
Given that computing IG scores is less resource-intensive
compared to generating adversarial samples for categorical
data, we aim to address Q1 by exploring the feasibility of
using IG as an effective measure of adversarial robustness.

Regarding the second factor, we delve into the impact of
gradient magnitude on the model’s classification bound-
ary. The gradient magnitude, which indicates the curvature
of the classification boundary, reflects an essential aspect of
the model’s adversarial risk (Yang et al., 2021). A larger gra-
dient magnitude, indicating a steeper curvature, is associated
with reduced robustness. In the context of discrete domains,
it has been shown that gradient magnitude can reflect in-
cremental increases in adversarial risk (Wang et al., 2020).
Therefore, to address Q1, we further incorporate gradient
magnitude into our robustness measure. Specifically, we
utilize smoothed gradient (SG) magnitude (Smilkov et al.,
2017) to avoid the issue of obfuscated gradients (Athalye
et al., 2018), and combine it with IG to form a new ro-
bustness assessment metric, named Integrated Gradient-
Smoothed Gradient (IGSG). The theoretical exploration
of IGSG’s effectiveness in assessing adversarial robustness
is detailed in Section 3.2.

Given that IGSG offers an attack-free method for assess-
ing the adversarial robustness of a model, we explore using
IGSG to address Q2. Specifically, we integrate IGSG as
a regularization term during training to enhance a model’s
adversarial robustness. This novel approach, named IGSG-

based regularization (IGSGreg), significantly enhances the
model’s resilience to adversarial attacks. Fig.1 demonstrates
this improvement: compared to Std Train, models regular-
ized with IGSG show a more even distribution of IG scores
across different features and experience a lower frequency
of attacks on previously vulnerable features.

The contributions of our work are outlined as follows:
• As an echo to Q1, we employ Integrated Gradient (IG)

and Smoothed Gradient (SG) as two computationally ef-
ficient metrics to evaluate the adversarial robustness of
models on categorical data. Additionally, we formulate
an information-theoretic upper bound that underpins the
rationale for employing IGSG in robustness assessment.

• To further address Q2, we propose IGSG-based regular-
ization as a novel robustness enhancement to improve the
smoothness of feature contributions and decision bound-
aries on categorical data.

• Finally, we conduct extensive experimental evaluation in-
volving different model architectures and diverse datasets
to demonstrate the feasibility of IGSG as robustness eval-
uation (17-240 times faster than OMPGS) and the effec-
tiveness of using IGSG for robustness enhancement.

2. Related Works
Robustness evaluation. Typically, robustness evaluation
of models on continuous data is performed using the at-
tack success rate under various attack methods (Goodfellow
et al., 2014; Madry et al., 2017; Moosavi-Dezfooli et al.,
2016; Croce & Hein, 2020; Wang et al., 2020) or by mea-
suring certified accuracy within a specified perturbation
radius in certifiable robustness research (Lee et al., 2019;
Cohen et al., 2019; Zhai et al., 2020). However, evaluating
a model’s robustness with categorical inputs often relies on
computationally intensive greedy search techniques, like
FSGS (Elenberg et al., 2018). While OMPGS (Wang et al.,
2020) attempts to simplify the greedy search with gradients,
its attack performance degenerates, and its computational
expense remains significantly higher than that of continuous
domain methods like Projected Gradient Descent (PGD)
(Madry et al., 2017). Moreover, certifiable robustness meth-
ods predominantly target Lp or L∞ norm bounded pertur-
bations and do not offer guaranteed robustness against L0

norm bounded perturbations (Cohen et al., 2019; Salman
et al., 2019). To overcome these limitations, we focus on
analyzing adversarial risk with L0 norm bounded perturba-
tion for categorical data. We propose employing Integrated
Gradient (IG) and Smoothed Gradient (SG) as two efficient
metrics to evaluate the adversarial robustness.

Robustness enhancement. Adversarial training and ro-
bust regularization are two primary robustness enhancement
methods. Adversarial training is the most acknowledged
defense mechanism (Madry et al., 2017). It employs min-
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max optimization, generating adversarial samples via Fast
Gradient Sign Method (FGSM) (Goodfellow et al., 2014;
Wong et al., 2020; Andriushchenko & Flammarion, 2020;
Zhang et al., 2022; Huang et al., 2023) or PGD (Madry
et al., 2017; Zhang et al., 2019). These adversarial sam-
ples are subsequently utilized as training data to enhance
the robustness. Adversarial Feature Desensitization (AFD)
(Bashivan et al., 2021) leverages a GAN-like loss to learn
invariant features against adversarial perturbations. While
these methods, designed for continuous data, can handle L1-
norm bounded adversaries for relaxed categorical data, their
ability to deliver consistent performance remains uncertain.
For categorical data, adversarial training with search-based
attack methods (Lei et al., 2019; Wang et al., 2020) requires
significant time to generate adversarial samples. (Xu et al.,
2023) proposed adapting adversarial training from contin-
uous to discrete domains, but the MINLP nature of such
training presents challenges in generating a comprehensive
range of samples for robust defense. In the language domain,
FreeLB (Zhu et al., 2019; Li et al., 2021) applies multiple
PGD steps to word embeddings. Nevertheless, it relies on
language-specific constraints, limiting its broader applica-
bility. Furthermore, the challenge of “robust overfitting” in
adversarial training (Rice et al., 2020) is mitigated by (Chen
et al., 2020; Yu et al., 2022) in the continuous domain, but
our investigation reveals this overfitting issue persists in the
discrete feature space, unaddressed by existing continuous
domain methods. In comparison to adversarial training, our
approach is less computationally demanding. Moreover, it
avoids robust overfitting caused by insufficient coverage in
the exploration of the categorical adversarial space.

Regularization-based methods provide an alternative for
enhancing adversarial robustness by penalizing the com-
plexity of the target classifier. Prior studies (Ross & Doshi-
Velez, 2018; Finlay & Oberman, 2021) have suggested gra-
dient magnitude regularization, while others (Jakubovitz &
Giryes, 2018; Hoffman et al., 2019) have focused on pe-
nalizing the Frobenius norm of the Jacobian matrix. Some
research (Chen et al., 2019; Sarkar et al., 2021) has pro-
posed using IG to measure feature contributions and apply-
ing regularization over IG. However, these methods were
not specifically tailored to enhance adversarial robustness.
Our work highlights the efficacy of IGSGreg in the context
of adversarial robust training. Crucially, we demonstrate the
importance of concurrently regularizing both the gradient
magnitude and the IG distribution across different features
for a more comprehensive and effective defense strategy.

3. Robustness Evaluation Metric Development
Preliminary. Let’s assume that a random sample xi =
{xi,1, xi,2, . . . , xi,p} has p categorical features and a class
label yi. Each feature xi,j can choose one out of m possible
category values. Following the one-hot encoding scheme,

we can represent xi as a binary Rp∗m matrix b(xi). Each
row of b(xi) corresponds to the value chosen by feature
xi,j , i.e., b(xi)j,k∗ = 1 when xi,j selects the k∗-th category
value, and b(xi)j,k ̸=k∗ = 0 (k = 1, 2, ...,m). An adversar-
ial sample x̂i = {x̂i,j ,j=1,...,p } is generated by modifying
the categorical values of a few features of xi. The number
of changed features from xi to x̂i is noted as diff(xi, x̂i).
Given a classifier f and taking b(xi) as input to f , f(b(xi)),
simplified as f(xi), predicts its corresponding label yi.

Definition of adversarial risk. Before establishing our ro-
bustness evaluation metric, it is essential to firstly delineate
the concept of adversarial risk.
Definition 3.1. We consider a hypothesis space H and a
non-negative loss function ℓ: µz × H → R+. Following
(Xu & Raginsky, 2017; Asadi et al., 2018), given a training
dataset Sn composed of n i.i.d training samples zi ∼ µ, we
assume a randomized learning paradigm A mapping Sn to
a hypothesis f , i.e., f = A(Sn), according to a conditional
distribution Pf |Sn . The adversarial risk of f , noted asRadv

f ,
is given in Eq.1. It is defined as the expectation of the worst-
case risk of f on any data point z = (x, y) ∼ µz under the
L0-based attack budget diff(x, x̂) ≤ ϵ. The expectation is
taken over the distribution of the n training samples Sn and
the classifier f = A(Sn).

Radv
f = E

Sn,Pf|Sn
E

z=(x,y)∼µz ,
sup

diff(x,x̂)≤ϵ

ℓ(f(x̂), y). (1)

As defined, Radv
f measures the worst-case classification

risk over an adversarial input ẑ = (x̂, y) where the attacker
can modify at most ϵ categorical features. The empirical
adversarial risk of f is given in Eq.2. It is defined as the
expectation of the worst-case risk over adversarial samples
ẑ = (x̂, y) over the joint distribution of Sn and Pf |Sn .

R̂adv
f = E

Sn,Pf|Sn

1

n

∑
zi=(xi,yi)∈Sn

sup
diff(xi,x̂i)≤ϵ

ℓ(f(x̂i), yi),

(2)

Intuitively, the empirical adversarial risk is the average loss
under the strongest attack, which is exactly the attack suc-
cess rate (ASR) under the strongest attack with 0-1 loss.
However, considering that obtaining ASR via attacks is
computationally intensive for categorical data, we aim to
define the robustness evaluation without resorting to attacks.

3.1. IGSG: Robustness Evaluation without Attack

Feature-wise Integrated Gradient (IG). To measure the ex-
tent to which a model depends on specific features for mak-
ing predictions, we propose to use Integrated Gradient (IG)
as a metric. IG offers a theoretical guarantee for assessing
the contribution of individual features to the classification
output (Sundararajan et al., 2017). To adapt the computation
of IG scores for categorical features, we start by defining a
baseline input x′. This involves expanding the set of possi-
ble category values for each feature xi,j by introducing an
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additional dummy category, labeled as m+1 and embedded
as a zero vector. For this baseline input, each feature is set
to the dummy category value, such that b(x′)j,m+1 = 1,
b(x′)j,k = 0(k = 1, 2, . . . ,m). By inputting b(x′) into the
classifier, it transmits no useful information for classifica-
tion, rendering it an ideal non-informative baseline.

With this defined baseline input x′, the IG score for each
categorical feature xi,j can be approximated as follows:

IG(xi)j =

m∑
k=1

IG(xi)j,k =

m∑
k=1

[
(b(xi)j,k − b(x

′
)j,k)

×
1

T

T∑
t=1

∂f(b(x′) + t
T × [b(xi) − b(x′)])

∂b(xi)j,k

] (3)

where T is the number of steps in the Riemman approxima-
tion of the integral. We empirically choose T=20, which
provides consistently good measurement. IG(xi)j derived
along the trajectory between b(x′) and b(xi) hence repre-
sents the contribution of xi,j to the classifier’s output.

Integrated Gradient (IG) of a classifier. To quantify the
sensitivity of a classifier over all features, we first apply
a Total-Variance (TV) function over the feature-wise IG
scores: ℓTV IG(xi) =

∑p−1
j=1 |IG(xi)j − IG(xi)j+1|. This

definition follows the TV loss used in time series data anal-
ysis (Chambolle, 2004), and calculates the sum of the abso-
lute differences between the normalized IG scores of neigh-
boring features. The IG score of a classifier is defined as:

IG = E
(xi,yi)∼µz

ℓTV IG(xi) (4)

To eliminate the impact of feature ordering on the value of
IG, we consider all possible permutations of the feature or-
dering and compute the average of the Total Variation (TV)
loss across the IG scores for these permutations, denoted
as IGavg .

Smoothed Gradient (SG) of a classifier. We then measure
the gradient magnitude of the classifier’s decision boundary,
since it is relevant to the model’s adversarial risk (Wang
et al., 2020). We compute the gradient of the classification
loss with respect to the one-hot encoded representation of
b(xi), represented as ∇b(xi)ℓ(xi, yi; θ) ∈ Rp∗m. Each ele-
ment of∇b(xi)ℓ(xi, yi; θ) is defined as ∂

∂b(xi)j,k
ℓ(xi, yi; θ).

(Yang et al., 2021) highlighted that∇b(xi)ℓ(xi, yi; θ) mea-
sures the curvature of the decision boundary around the
input. A larger magnitude of this gradient indicates a more
twisted decision boundary, implying a less stable decision
around the input. In our work, to avoid the pitfalls of
obfuscated gradients, we define Smoothed Gradient (SG)
(Smilkov et al., 2017) for measuring the magnitude by:

SG = E
(xi,yi)∼µz

1

R

R∑
r=1

||Gr||q

where Gr,j,k =
∂

∂b(xr)j,k
ℓ(xr, yi; θ)−

∂

∂b(xr)j,k∗
ℓ(xr, yi; θ)

(5)

Here R is the number of sampled instances, e.g., R = 5.

Finally, the robustness metric IGSG is defined as:

IGSG = IGavg + α ∗ SG (6)

Here, α functions as a hyper-parameter, serving to balance
the two terms to ensure their magnitudes are comparable.

3.2. Theoretical Explanation for IGSG

In this section, we establish an information-theoretic frame-
work to elucidate the viability of employing IG and SG for
assessing the adversarial robustness of a classifier.

Theorem 3.2. Let ℓ(f(xi), yi) be L-Lipschitz continuous
for any zi = (xi, yi). Let Df be the diameter of the hy-
pothesis space H. For each xi, the categorical features
modified by the worst-case adversarial attacker and the rest
untouched features are noted as ωi and ωi, respectively.
Given an attack budget ϵ, the size of ωi is upper bounded
as |ωi| ≤ ϵ. The gap between the expected and empirical
adversarial risk in Eq.1 and Eq.2 is bounded from above, as
given in Eq.7.

Radv
f − R̂adv

f ≤

LDf√
2n

×
(

n∑
i=1

I(f ; zi) + 2

n∑
i=1

Ψ(xi,ωi
, xi,ωi

) +

n∑
i=1

Φ(xi,ωi
, x̂i,ωi

)

) 1
2

,

where Ψ(xi,ωi
, xi,ωi

) = |I(xi,ωi
; f) − I(xi,ωi

, yi; f)|,

Φ(xi,ωi
, x̂i,ωi

) = γ|I(x̂i,ωi
; xi,ωi

, yi, f) − I(xi,ωi
; xi,ωi

, yi, f)|,

γ = max
zi=(xi,yi)∈Sn,|ωi|≤ϵ

1 + σ,

σ =
|I(x̂i,ωi

; xi,ωi
, yi) − I(xi,ωi

; xi,ωi
, yi)|

|I(x̂i,ωi
; xi,ωi

, yi, f) − I(xi,ωi
; xi,ωi

, yi, f)|
,

(7)

where xi,ωi and x̂i,ωi are ωi features before and after inject-
ing adversarial modifications, and I(X;Y ) is the mutual
information between two random variables X and Y .

The proof and the discussion of the tightness of Eq.7 can be
found in App.A. Also, we demonstrate that when there are
no adversaries present, meaning ẑ = z, the bound presented
in Eq.7 converges to a tight characterization of generaliza-
tion error for a broad range of models, resonating with the
convergence unveiled in (Zhang et al., 2021; Bu et al., 2019).
We link Theorem 3.2 to the randomized learning paradigm
and the PAC-Bayes bound, with further details available in
App.C and D.

The information-theoretical adversarial risk bound estab-
lished in Eq.7 unveils two major factors influencing the
adversarial risk over categorical inputs, corresponding to
the consideration of SG and IG respectively. Detailed analy-
sis of the connection between Theorem 3.2 and IGSG can
be found in App.B.

Factor 1. Lower I(f ; zi) for each training sample zi
indicates lower the adversarial risk f . I(f, zi) in Eq.7
represents the mutual information between the classifier
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f and each training sample zi. Pioneering works (Xu &
Raginsky, 2017; Bu et al., 2019; Zhang et al., 2021) have
established that lower I(f, zi) corresponds to a diminishing
adversary-free generalization error. As widely acknowl-
edged in adversarial learning and emphasized in Eq.7, a
better-generalized classifier exhibits better resilience to ad-
versarial attacks, resulting in lower adversarial risk. SG, de-
fined in Eq.5, measures the decision boundary smoothness,
thereby assessing the model’s generalization capability.

Factor 2. Reducing Ψ(xi,ωi
, xi,ωi

) and Φ(xi,ωi
, x̂i,ωi

)
helps smooth the feature-wise impact to classification,
thus reducing the adversarial risk. This corresponds to
reducing the impact of excessively influential features, i.e.,
minimizing IG, for two reasons. First, in Ψ(xi,ωi

, xi,ωi
),

I(xi,ωi
; f) and I(xi,ωi

, yi; f) reflect the contribution of the
feature subset ωi and the rest features ωi to f . Features
with higher mutual information have more substantial in-
fluence on the decision output. Minimizing Ψ(xi,ωi , xi,ωi)
thus decreases the contribution gap between the attacked
and untouched features. It prompts the classifier to maintain
a more balanced reliance on different features, thereby mak-
ing it harder for adversaries to exploit influential features.
Second, Φ(xi,ωi , x̂i,ωi) measures the sensitivity of features
in ωi, in terms of how adversarial perturbations to this sub-
set of features affect both the classification output and the
correlation between ωi and ωi. Minimizing Φ(xi,ωi

, x̂i,ωi
)

makes the classifier’s output less sensitive to the perturba-
tions over input features, which limits the negative impact
of adversarial attacks. IG, defined in Eq.4, quantifies the
classifier’s sensitivity across all features, thereby indicating
its adversarial robustness.

Beyond the two factors, minimizing the empirical adver-
sarial risk R̂adv

f in Eq.7 may also reduce the adversarial
risk. This concept is synonymous with the principles of
adversarial training. Nevertheless, as analyzed in App.E,
the efficacy of adversarial training is restricted.

To empirically assess this bound, we conducted experiments
detailed in App.I.1. These experiments involve estimating
I(f ; zi), Ψ(xi,ωi

, xi,ωi
), and Φ(xi,ωi

, x̂i,ωi
) as specified in

the theoretical bound. Our findings suggest that models with
a lower upper bound exhibit enhanced adversarial robustness
against attacks.

4. IGSGreg: Attack-free Robust Training
Based on the above analysis, IGSG, an attack-free robust-
ness assessment method, can be employed for enhancing
robustness. It can be incorporated during the training phase
as a regularization term to minimize adversarial risk, i.e., by
adding to the classification loss as follows:

min
θ

E
(xi,yi)∈Sn

ℓ(xi, yi; θ) + β ∗ IGSG (8)

where β is a hyper-parameter controlling the degree of reg-
ularization. Incorporating SG into the loss function en-
forces the minimization of I(f ; zi), while including IG
aims to minimize both Ψ(xi,ωi

, xi,ωi) and Φ(xi,ωi
, x̂i,ωi).

In App.I.1, we demonstrate through empirical evidence that
IGSGreg can effectively reduce the estimated value of both
mutual information-based terms. Therefore, IGSGreg results
in a smoother decision boundary characterized by reduced
curvature, mitigates the model’s excessive dependency on
specific features, and ultimately enhancing its robustness
against adversarial attacks.

5. Experimental Evaluation
5.1. Experimental Settings

Summary of Used Datasets. We employ two categorical
datasets and one mixed dataset with both categorical and
numerical features, each from different applications and
varying in the number of samples and features.
Splice-junction Gene Sequences (Splice) (Noordewier
et al., 1990). The dataset includes 3190 gene sequences,
each with 60 categorical features from the set {A, G, C, T,
N}. Each sequence is labeled as intron/exon borders (IE),
exon/intron borders (EI), or neither.
Windows PE Malware Detection (PEDec) (Bao et al.,
2021). This dataset, used for PE malware detection, consists
of 21,790 Windows executable samples, each represented
by 5,000 binary features denoting the presence or absence
of corresponding malware signatures. The samples are
categorized as either benign or malicious.
Census-Income (KDD) Data (Census) (Lane & Kohavi,
2000). This dataset includes census data from surveys
conducted from 1994 to 1995, encompassing 299,285
samples. Each has 41 features related to demographics and
employment, with 32 categorical features and 9 numerical
features. The task is to determine whether subjects fall into
the low-income or high-income group.

For Splice and PEDec, we use 90% and 10% of the data
samples as the training and testing set to measure the adver-
sarial classification accuracy. For Census, we use the testing
and the training set given by (Lane & Kohavi, 2000), i.e.,
199,523 for training and 99,762 for testing.

Baseline Models. We involve one undefended model, seven
state-of-the-art robust training baseline models as victim
models. Specifically, we include five adversarial train-
ing baselines Adv Train (Madry et al., 2017), Fast-BAT
(Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD
(Bashivan et al., 2021) and PAdvT (Xu et al., 2023), and two
regularization-based baselines IGR (Ross & Doshi-Velez,
2018) and JR (Hoffman et al., 2019). To adapt these meth-
ods to our context, we relax the one-hot encoded represen-
tation of categorical training data except for PAdvT, which
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is originally designed for categorical data. For the other
four adversarial training baselines (Adv Train, Fast-BAT,
TRADES and AFD), we adopt L1-norm bounded adversary
in the inner maximization of the adversarial training pro-
cess. The details of the baselines can be found in App.H.2.
The hyperparameter settings can be found in App.H.3. We
employ Multi-Layer Perceptron (MLP) and Transformer
(Vaswani et al., 2017) in all experiments, each conducted
five times for consistency.

Robustness Evaluation Protocols. Five domain-agnostic
attack methods, FSGS (Elenberg et al., 2018), OMPGS
(Wang et al., 2020), PCAA (Xu et al., 2023), FEAT (Bao
et al., 2023) and GradAttack (Lei et al., 2019) designed
specifically for generating discrete adversarial perturbations
in categorical data, are employed to evaluate adversarial
robustness. Due to the discontinuous nature of categori-
cal data, traditional attacks like PGD and FGSM cannot
be directly applied. Further discussion is presented in
App.G. FSGS, OMPGS, PCAA, FEAT, and GradAttack,
with proven attack effectiveness across various real-world
applications, are suitable for comparing the effectiveness
of different robust model training methods on categorical
input.

5.2. IGSG for Robustness Evaluation

Implementation Details. To validate the effectiveness of
IGSG as a robustness metric, we compare it against es-
tablished metrics such as Attack Success Rate (ASR) and
mf (x), where mf (x) measures the difference between the
highest non-true class score and the true class score (Bao
et al., 2021). We assess IGSG’s correlation with these met-
rics by averaging ASR and mf scores for attack budgets
of 1, 3, and 5, and then calculating the Pearson correlation
coefficient with IGSG (Cohen et al., 2009). Additionally,
we evaluate the computational efficiency of IGSG (an attack-
free measure) in comparison to OMPGS (an attack-based
measure). Finally, we verify whether features with the high-
est IG scores are indeed the most sensitive by conducting
sensitivity analysis (Campbell et al., 2008), modifying one
feature at a time, and measuring the average change in the
classifier’s output. This approach helps confirm IGSG’s
ability to pinpoint critical sensitivities in models, thereby
highlighting areas of adversarial risk.

Robustness Evaluation Results: IGSG (attack-free) vs.
other attack-based metrics. Table 1 presents the robust-
ness evaluation results for MLP models across three datasets.
These models include those trained in a standard manner
without any defense (Undefended Std Train), models trained
using five adversarial training baselines, and two based on
regularization baselines. For all the models evaluated, their
ASR is calculated by averaging the ASR obtained through
three different attack methods: FSGS, OMPGS, and PCAA.

Similarly, the metric mf is computed by averaging its val-
ues across the same three attack methods. Although the
metrics used for evaluation are all designed with the prin-
ciple of “the smaller, the better,” their values span different
scales. Consequently, it is not practical to compare them
based on absolute values. A more useful approach is to
assess their agreement on the relative evaluation ranking.
Hence, we examine the Pearson correlation coefficient be-
tween IGSG and mf across all evaluated models, as well as
between IGSG and ASR, to determine their consistency in
evaluating model robustness. As shown in the bar plot to
the right of Table 1, all correlation coefficients are greater
than 0.65 (with their p-values being smaller than 0.05). This
significant correlation emphasizes IGSG’s effectiveness as
a metric for evaluating robustness.

Robustness Evaluation Efficiency: Computational cost
of IGSG (attack-free) vs. Attack-Based Methods. We
provide computational complexity analysis of these evalu-
ation methods in App.I.5. The computing time in Table 2
shows that IGSG is 17 to 240 times faster than OMPGS,
demonstrating its superior efficiency.

Table 3. Average overlap
(%) of top-5 IG-ranked and
sensitivity-ranked features.

Dataset Overlap
Splice 0.82
PEDec 0.36
Census 0.58

Overlap between High-IG
and High-Sensitivity Fea-
tures. Feature sensitivity is a
critical determinant of adver-
sarial risk in categorical data
(Bao et al., 2021). We thus
compare the high-IG features
with those identified as hav-
ing high sensitivity on average, as reported by MLP models
trained using all baseline models. Table 3 shows a signifi-
cant overlap between the top-5 IG-ranked and sensitivity-
ranked features. Specially, in the PEDec dataset, selecting
the top-5 out of 5000 features to achieve an overlap ratio of
0.36 is notably high. The results indicate that the feature-
wise IG score can serve as an effective measure of feature
sensitivity, directly reflecting adversarial risk.

5.3. IGSG-based Robustness Enhancement

Implementation Details. To assess the enhancement in
robustness provided by IGSGreg comparing other baselines,
we utilize five attack methods to challenge all models. Due
to the high computational complexity of FSGS (Bao et al.,
2021), we set a fixed attack budget of 5 on all three datasets.
For PCAA, FEAT, and GradAttack we also fix the attack
budget to be 5. For OMPGS, we traverse varied attack
budgets (the maximum number of modified features). Due
to space limitations, we provide detailed attack settings in
App.H.1 and App.H.4.

Performance metrics. The adversarial accuracy and accu-
racy are used for evaluating the performance of robustness
enhancement.
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Table 1. Robustness evaluation for MLP models trained in different ways. The consistency between IGSG (attack-free) and two other
attack-based evaluation metrics (mf -score and ASR) is shown by the Pearson correlation coefficients.

Dataset Metric Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv TrainL1 FastBATL1 TRADESL1 AFDL1 PAdvT IGR JR IGSGreg

Splice
mf ↓ 0.19 0.08 0.31 0.15 0.27 0.08 0.09 0.57 -0.01

ASR ↓ 0.53 0.47 0.6 0.51 0.59 0.51 0.47 0.77 0.43
IGSG ↓ 1.49 0.96 1.74 1.48 1.74 0.78 0.31 1.85 0.46

PEDec
mf ↓ -0.28 -0.6 -0.69 -0.49 -0.78 -0.64 -0.52 -0.75 -0.79

ASR ↓ 0.32 0.14 0.09 0.21 0.07 0.12 0.18 0.04 0.04
IGSG ↓ 0.11 0.09 0.07 0.1 0.1 0.09 0.09 0.05 0.04

Census
mf ↓ -0.56 -0.71 -0.7 0 -0.61 -0.51 -0.67 -0.62 -0.61

ASR ↓ 0.18 0.14 0.19 0.43 0.14 0.19 0.17 0.14 0.14
IGSG ↓ 0.08 0.07 0.07 0.15 0.09 0.12 0.09 0.06 0.06

Figure 2. Adversarial accuracy of MLP models trained by IGSGreg and baselines under OMPGS attack with varied budgets.

Table 2. Time cost (s) for robustness evaluation (IGSG vs OMPGS)
Dataset Models IGSG OMPGS Speed up (OMPGS / IGSG)

Splice MLP 0.6 18 30
Transformer 1.8 31 17

PEDec MLP 15 3600 240
Transformer 13 1140 88

Census MLP 32 1080 34
Transformer 90 2700 30

Robustness Enhancement Performance: IGSGreg vs.
Baseline Methods. Table 4 reports the performance of
IGSGreg on improving the adversarial robustness of MLP
models, compared to other baselines. Under FSGS attack,
we can see that the adversarial accuracy of IGSGreg sig-
nificantly outperforms the baseline methods. Especially,
on PEDec, IGSGreg can largely improve the adversarial ac-
curacy up to 86.5%. In comparison, the best baseline of
robust training, JR and AFD, only achieves an adversarial
accuracy score of 74.3%. In terms of adversarial accuracy
under PCAA attack, IGSGreg excels on the Splice dataset
and has the same level of adversarial accuracy on the PEDec
and Census datasets compared to the baselines. For the ad-
versarial accuracy under FEAT and GradAttack, IGSGreg
demonstrates significantly higher adversarial accuracy on
the Splice and PEDec datasets. It achieves comparable
adversarial accuracy on the Census dataset relative to the
baseline methods that perform best. Besides, when no
attack is applied, IGSGreg achieves comparable accuracy
with other baselines on the three datasets.

Fig.2 illustrates the adversarial accuracy of all the methods

tested under OMPGS attacks with varying attack budgets.
Higher attack budgets indicate stronger attacks against the
targeted classifier, resulting in lower adversarial accuracy
overall. Similar to the undefended model, most baseline
methods experience a decline in adversarial accuracy as the
attack strength increases. In contrast, the proposed IGSGreg
consistently achieves higher and more stable levels of ad-
versarial accuracy across all three datasets. Specifically, on
PEDec, IGSGreg maintains an adversarial accuracy above
88% regardless of the attack strength. On Splice, IGSGreg
consistently outperforms other baseline methods, exhibiting
a performance gain of over 10%. On Census, IGSGreg ini-
tially shows similar adversarial accuracy to other baselines
under small attack budgets but demonstrates a significantly
slower rate of decline as the attack budget increases. No-
tably, adversarial training methods like Adv Train perform
poorly on PEDec. This is because the feature space of
PEDec is extensive, causing adversarial training to suffer
from robust overfitting on categorical data. The attack can
only explore a small fraction of all possible adversarial per-
turbations, limiting the effectiveness of adversarial training,
while IGSGreg can provide consistently robust classification
regardless of the feature dimensionality. JR performs well
on PEDec, while the performance on Splice and Census is
constantly bad. Using regularization as well, IGSGreg has a
more stable performance on different datasets. It is worth
noting that Splice has a few particularly sensitive features.
Modifying these features can result in a change in whether
a sample crosses an intron/exon or exon/intron boundary, or
neither physically, which causes misclassification. Thus, all
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Table 4. Adversarial Accuracy (%) and Accuracy (%) of MLP models trained by different ways (baselines and IGSGreg) under FSGS,
PCAA, FEAT, and GradAttack attack methods, and without attack (Clean)

Dataset Attack Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv TrainL1 Fast-BATL1 TRADESL1 AFDL1 PAdvT IGR JR IGSGreg

Splice

FSGS 36.7±4.8 43.6±0.7 28.7±7.4 34.1±4.6 21.1±13.0 39.1±1.7 40.9±3.0 4.3±3.7 44.0±2.6
PCAA 37.2±4.0 42.6±1.9 28.7±7.4 41.3±5.2 25.8±2.4 23.2±4.0 42.5±6.0 3.5±4.0 44.9±2.0
FEAT 42.1±9.5 51.1±3.8 20.6±3.9 40.9±2.3 30.9±8.6 43.3±7.3 57.8±7.9 4.2±2.7 59.4±3.0

GradAttack 68.7±2.1 85.7±4.9 26.9±4.5 64.3±6.1 14.9±7.4 50.8±9.5 85.6±6.1 2.7±2.3 89.6±1.4
Clean 95.2±2.5 96.2±0.4 95.6±1.0 96.3±0.3 93.4±0.7 94.9±1.3 95.2±0.6 95.2±0.9 95.9±0.7

PEDec

FSGS 14.9±0.8 53.1±1.7 62.4±2.7 31.0±2.5 74.3±3.9 46.9±2.9 31.4±0.9 74.3±0.2 86.5±3.8
PCAA 94.4±0.2 94.8±0.2 95.6±0.2 95.8±0.2 94.7±0.2 94.9±0.1 95.6±0.2 95.1±0.2 94.7±0.3
FEAT 50.6±0.7 75.7±2.1 84.2±0.9 67.3±1.2 86.5±3.3 81.8±0.7 72.5±1.2 87.6±0.3 88.6±3.2

GradAttack 21.2±1.2 50.8±1.3 63.6±2.2 30.9±2.2 74.4±6.3 49.1±1.1 39.7±2.7 80.3±0.8 85.6±2.7
Clean 96.4±0.2 96.2±0.0 96.2±0.1 96.4±0.1 96.0±0.2 96.5±0.3 96.4±0.0 95.4±0.1 95.5±0.2

Census

FSGS 46.2±1.8 54.1±2.3 63.4±3.8 49.8±1.6 60.2±1.9 61.9±5.4 45.8±1.7 48.3±3.4 67.2±3.5
PCAA 92.0±0.7 93.9±0.1 93.1±0.7 88.8±0.8 93.2±0.1 93.4±0.4 93.6±0.0 93.4±0.1 93.8±0.0
FEAT 76.3±2.8 88.1±2.1 49.6±1.9 81.9±4.6 77.6±0.2 76.7±2.7 88.7±0.3 73.2±3.6 88.4±1.9

GradAttack 63.2±1.3 64.7±1.6 67.2±1.6 56.3±1.3 66.7±2.4 63.8±2.5 67.4±2.1 64.4±1.2 67.4±1.3
Clean 95.4±0.1 94.5±0.3 95.0±0.1 94.8±0.3 95.2±0.2 95.2±0.1 95.3±0.1 95.4±0.1 95.5±0.2

the defense methods involved in the test do not perform well
against attacks on Splice. In conclusion, IGSGreg demon-
strates resistance against a wide range of previously unseen
attacks, thereby achieving broad-spectrum robustness.

Robustness of models trained by IGSGreg VS. baselines,
measured by IGSG, ASR and mf . In Table 1, the robust-
ness of MLP models trained by IGSGreg is compared with
those trained by baselines based on attack-free (IGSG), and
attack-based metrics (ASR and mf ). The results show that
IGSGreg outperforms baseline methods across all three eval-
uated metrics. The mf -score quantifies the mean distance
between adversarial samples and the classification boundary,
where a lower mf score indicates a greater distance, imply-
ing enhanced robustness. For Splice and PEDec, IGSGreg
records the lowest mf scores, aligning with its superior per-
formance on other metrics. In the case of Census, although
IGSGreg exhibits a higher mf score compared to some base-
lines, it achieves the lowest ASR. Notably, IGSGreg signifi-
cantly lowers the IGSG scores, particularly in datasets with
highly sensitive features, like Splice.

Ablation Study. We include the following variants of the
proposed IGSGreg method in the ablation study. SGreg and
IGreg are designed to preserve only the smoothed gradient-
based (SGreg, see Eq.5) or the IG-based smoothness regular-
ization (IGreg, see Eq.4) respectively in the learning objec-
tive. We compare SGreg and IGreg to IGSGreg for demonstrat-
ing the advantage of simultaneously performing the IG and
SG regularization. In IGSG-VGreg: we replace SG given in
Eq.5 with the vanilla gradient of the one hot tensor. Another
four variants to provide additional validation for the design
of IGSGreg are presented in App.I.6.

Table 5 shows that IGSGreg consistently outperforms the
variants in adversarial accuracy against both FSGS and
OMPGS attacks, affirming the effectiveness of IGSGreg’s de-

Table 5. Ablation Study. Adversarial Accuracy and Accuracy (%)
for IGSGreg variants with an attack budget of 5.

Dataset Attack SGreg IGreg IGSG-VGreg IGSGreg

Splice
FSGS 43.3±3.0 40.3±5.0 39.7±2.4 44.0±2.6

OMPGS 59.9±6.5 54.9±4.9 59.4±5.3 63.8±4.2
Clean 95.7±0.5 94.7±1.0 95.2±1.1 95.9±0.7

PEDec
FSGS 12.7±1.8 84.2±2.9 81.6±3.8 86.5±3.8

OMPGS 28.6±1.1 83.4±7.6 82.3±3.5 88.0±4.0
Clean 96.4±0.1 94.8±0.3 95.2±0.2 95.5±0.2

Census
FSGS 47.9±2.1 57.8±0.8 54.1±1.6 67.2±3.5

OMPGS 71.4±7.8 65.9±2.7 69.3±6.4 71.3±9.0
Clean 95.1±0.3 95.5±0.1 95.4±0.0 95.5±0.2

Table 6. Performance comparison: gains of IGSGreg versus PGD-
based adversarial training in MLP

Dataset Attack Adv. Acc. Gain

Splice
PGD-1 95.6% 0.4% ∼

OMPGS 63.8% 12.1% ↑
FSGS 44.0% 0.4% ∼

PEDec
PGD-1 94.5% -1.5% ∼

OMPGS 88.0% 13.9% ↑
FSGS 86.5% 34.0% ↑

Census
PGD-1 93.0% -0.2% ∼

OMPGS 71.3% 8.6% ↑
FSGS 67.2% 13.1% ↑

sign in mitigating both types of greedy search-based attacks
simultaneously. SGreg does not employ IG-based regulariza-
tion, resulting in a classifier that may overly rely on a few
highly influential features contributing most to the classifica-
tion output. These sensitive features can be readily targeted
by both types of greedy search-based attacks, particularly on
PEDec. In comparison, IGreg lacks the classification bound-
ary smoothness, leading to a slight decrease in performance
compared to IGSGreg. The results with SG and IG show
that the two attributional smoothness regularization terms
employed by IGSGreg are complementary to each other in
improving the adversarial robustness of the built model.

IGSG-VGreg replaces the smoothed gradient-based regu-
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larization defined in Eq.5 with a vanilla gradient. Its di-
minished performance shows the merit of introducing the
smoothed gradient computing and the mean-field smoothing-
based technique in Eq.5.

Effectiveness of Avoiding Robust Overfitting. By uti-
lizing regularization, IGSGreg avoids the issue of “robust
overfitting” encountered in adversarial training. This leads
to improved performance, as demonstrated in Table 6, com-
pared to the adversarial accuracy of PGD-based adversarial
training. We conduct the comparison between IGSGreg and
two works mitigating robust overfitting in the continuous do-
main (Chen et al., 2020; Yu et al., 2022). IGSGreg achieves
consistently better adversarial robustness. The details are
presented in App.I.4.

Additional Experimental Results. Due to space con-
straints, several experiments are detailed in the appendix.
Classification boundary visualizations can be found in
App.5. Experimental results related to Transformers are
deferred to App.I.3. Time complexity analysis is available
in App.I.5. The hyper-parameter sensitivity analysis is con-
ducted in App.I.8. The adaptive attack is conducted in
App.I.7.

6. Conclusion
Our work proposes an attack-free robustness evaluation
method, namely IGSG, as a metric of the resilience of any
arbitrary deep learning model against adversarial attacks
on categorical data. The core idea is to integrate both the
integrated gradient and smoothed gradient of the model to
measure the adversarial risk level, yet avoiding the compu-
tationally intensive generation of adversarial samples with
categorical inputs. We provide both theoretical and empiri-
cal rationality behind this metric. Furthermore, we propose
to use the IGSG-based metric as an optimizable objective
of robust training. We demonstrate the domain-agnostic
use of IGSGreg across different real-world applications. In
our future study, we will extend the proposed method to
the text classification task and compare it with text-specific
robust training methods enhanced with semantic similarity
knowledge.

Impact Statement
This paper aims to advance the field of Adversarial Ma-
chine Learning by evaluating and enhancing adversarial
robustness for categorical data. The research introduces the
Integrated Gradient-Smoothed Gradient (IGSG) metric and
an IGSG-based regularization technique, providing an effi-
cient, attack-free method to evaluate and improve classifier
robustness. While IGSG is generally effective on real-world
datasets, its regularization may not be beneficial in certain
extreme cases. For instance, if a dataset relies solely on a

single feature with all other features being irrelevant, or if all
features contribute equally across the dataset, IGSG-based
regularization may not enhance model robustness for these
datasets. However, these cases hardly appear in real-world
applications.

For ethical concerns, this research enhances the security of
AI applications by improving adversarial robustness, partic-
ularly for safety-critical systems in fields like healthcare. It
aims to fortify machine learning models against attacks, en-
hancing reliability without introducing new vulnerabilities
or biases.
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A. Proof to Theorem 3.2
Definition A.1. Diameter of f : Assuming that the hypothesis spaceH is a bounded Banach space, the diameter of f ∈ H
is defined as:

Df = sup
f,f ′∈H

d(f, f ′) (9)

where d is the distance metric ofH.

Definition A.2. Lipschitz continuousity of ℓ: Assuming that ℓ(f(xi), yi) is L-Lipschitz for any zi = (xi, yi), the following
inequality holds for any f and f ′ inH:

|ℓ(f(xi), yi)− ℓ(f ′(xi), yi))| ≤ Ld(f, f ′) (10)

Proof to Eq.7: Given µz and a classifier f trained using Sn, we assume the distribution of the worst-case adversarial
samples of f as µ̂z , determined by µz and f jointly. Any worst-case adversarial sample ẑi derived by solving the loss
maximization problem arg

diff(ẑi,zi)≤ϵ

max ℓ(f(xi), yi) can be thus considered as a sample from µ̂ẑ . We can then extend the

Total Variation (TV) distance-based generalization bound of f , which is established by Theorem 2 in (Zhang et al., 2021) as
below:

Ef [Radv
f ] ≤ Ef [R̂adv

f ] + LDf TV(Pf × µ̂ẑ, Pf×ẑi) (11)

where TV(·, ·) denotes the Total Variation distance between two probabilistic distribution. Pf and µ̂ẑ are the marginal
distribution of f and the worst-case adversarial sample ẑi. Pf×ẑi denotes the joint distribution of f and ẑi.

Pinsker’s inequality in information theory (Cover & Thomas, 2005) gives further the upper bound of the Total-Variation

distance: TV(Pf × µ̂ẑ, Pf×ẑi) ≤
√

DKL(Pf,ẑi
,Pf×Pẑi

)

2 =
√

I(f,ẑi)
2 , where DKL is the KL divergence between the two

probabilistic distributions. Based on this, we can further formulate Eq.11 by letting z = zi (i=1,2,3,...,n) and using mutual
information between f and ẑi:

Ef [Radv
f ]≤ Ef [R̂adv

f ] +
LDf√
2n

√√√√ n∑
i=1

I(f ; ẑi)

≤ Ef [R̂adv
f ] +

LDf√
2n

√√√√ n∑
i=1

I(f ; zi) +

n∑
i=1

(I(f ; ẑi)− I(f ; zi))

(12)

where {zi = (xi, yi)} ∈ Sn are statistically independent training samples and ẑi the corresponding worst-case adversarial
sample. We can extend I(f ; ẑi)− I(f ; zi) as below. In this study, we only consider feature perturbation and exclude label-
flipping attacks from the proposed attack scenario. We first split ẑi = (x̂i, yi) and zi = (xi, yi) into ẑi = (x̂i,ωi

, xi,ωi
, yi)

and ẑi = (x̂i,ωi , xi,ωi , yi) respectively. Since features in ωi remain untouched in the attack, we use the same notation of
these unmodified features in ẑi and zi.
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I(f ; ẑi)− I(f ; zi)

= I(f ; x̂i,ωi , xi,ωi , yi)− I(f ;xi,ωi , xi,ωi , yi)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) + I(x̂i,ωi
; f |xi,ωi

, yi)− I(xi,ωi
, yi; f |xi,ωi

)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
|xi,ωi

, yi) +H(f |xi,ωi
, yi)−H(x̂i,ωi

, f |xi,ωi
, yi)

−H(xi,ωi
, yi|xi,ωi

)−H(f |xi,ωi
) +H(xi,ωi

, yi, f |xi,ωi
)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
)− I(x̂i,ωi

;xi,ωi
, yi) +H(f)− I(xi,ωi

, yi; f)

−H(xi,ωi
, yi) + I(xi,ωi

;xi,ωi
, yi)−H(f) + I(xi,ωi

; f)

−H(x̂i,ωi
, f |xi,ωi

, yi) +H(xi,ωi
, yi, f |xi,ωi

)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
)− I(x̂i,ωi

;xi,ωi
, yi) +H(f)− I(xi,ωi

, yi; f)

−H(xi,ωi
, yi) + I(xi,ωi

;xi,ωi
, yi)−H(f) + I(xi,ωi

; f)

−H(f |xi,ωi
)−H(x̂i,ωi

|xi,ωi
, f) +H(xi,ωi

, f |xi,ωi
)

≤ 2|I(xi,ωi
; f)− I(xi,ωi

, yi; f)|+ |I(x̂i,ωi
;xi,ωi

, yi, f)

− I(xi,ωi
;xi,ωi

, yi, f)|+ |I(x̂i,ωi
;xi,ωi

, yi)− I(xi,ωi
;xi,ωi

, yi)|

(13)

where H(X|Y ) and I(X;Y |Z) denotes the conditional entropy of a random variable X given the other random variable
Y and the conditional mutual information between X and Y given another random variable Z. By introducing α =

max
zi=(xi,yi)∈Sn

1 +
|I(x̂i,ωi

;xi,ωi
,yi)−I(xi,ωi

;xi,ωi
,yi)|

|I(x̂i,ωi
;xi,ωi

,yi,f)−I(xi,ωi
;xi,ωi

,yi,f)| to Eq.13, we can derive Eq.7.

We discuss about the tightness of the bound in Eq.7 from the following perspectives. First, we show this bound reduces
to an individual sample-based upper bound of the generalization error of f in the adversary-free case. It converges to zero
when n→∞ with the same speed as that established in Proposition.1 of (Bu et al., 2019). This bound enjoys a close level
of tightness in the adversary-free scenario as that proposed in (Bu et al., 2019).

We first give the definition of the expected and empirical risk under the adversary-free setting, following Definition.1.

Definition A.3. Following (Xu & Raginsky, 2017; Asadi et al., 2018), given a training dataset Sn composed of n i.i.d
training samples zi ∼ µ, we assume a randomized learning paradigm A mapping Sn to a hypothesis f , i.e., f = A(Sn),
according to a conditional distribution Pf |Sn . The expected classification risk of f under the adversary-free scenario,
noted asRf , given in Eq.14. The expectation is taken over the distribution of the n training samples Sn and the classifier
f = A(Sn).

Rf = E
Sn,Pf|Sn

E
z=(x,y)∼µz ,

ℓ(f(x), y). (14)

Similarly, we provide the empirical risk of f under the adversary-free scenario in Eq.15. It is taken as the expectation over
the distribution of the n training samples and the classifier.

R̂f = E
Sn,Pf|Sn

1

n

∑
zi=(xi,yi)∈Sn

ℓ(f(xi), yi) (15)

With the adversary-free setting, x̂ = x. This makes Φ(xi,ωi
, x̂i,ωi

) vanish as I(x̂i,ωi
;xi,ωi

, yi, f) = I(xi,ωi
;xi,ωi

, yi, f).
Similarly, Ψ(xi,ωi

, xi,ωi
) = |I(xi,ωi

; f)− I(xi,ωi
, yi; f)| is reduced to I(zi; f), since ωi = ∅ for each training sample zi.

As a result, the bound given in Eq.7 shrinks to the following form in Eq.16:

Rf − R̂f ≤
√
3LDf√
2n

√√√√ n∑
i=1

I(f ; zi). (16)

whereRf and R̂f are expected and empirical risk under the adversary-free setting. In comparison, Proposition.1 (Eq.19 and
20) in (Bu et al., 2019) provides the upper bound of the generalization error of f in a similar form:

Rf − R̂f ≤ 1

n

n∑
i=1

√
2R2I(f ; zi). (17)
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with the condition that the loss function ℓ(f, z) is R-sub-Gaussian under z ∼ µz for all f ∈ H. We can find that the two
adversary-free bounds in Eq.16 and Eq.17 only differ in the scaling constant. When n (the number of training samples)
goes to infinity, both bounds vanish with the same convergence speed. Compared to the training set mutual information
I(f ;Sn) based bound proposed Theorem.1 of (Xu & Raginsky, 2017), the individual sample mutual information-based
bound (Eq.16 and Eq.17) poses a tighter bound over the generalization error according to the theoretical and empirical
analysis conducted in (Bu et al., 2019). In (Xu & Raginsky, 2017), the information-theoretic bound is built by assuming
that the loss function ℓ(f, z) has a bounded cumulative generating function with z ∼ µz and f ∈ H. Nevertheless, this
assumption does not necessarily hold. Our study thus avoids this shortcoming and adopts the individual sample mutual
information to develop the adversarial risk analysis. In conclusion, we develop theoretical analysis under a more general
condition about the cumulative generating function of the loss function compared to (Xu & Raginsky, 2017), which makes
our work applicable to a broad range of problems.

Second, The value of Eq.7 is bounded. The possible value of Φ(xi,ωi , x̂i,ωi) = |I(x̂i,ωi ;xi,ωi , yi, f)− I(xi,ωi ;xi,ωi , yi, f)|
and Ψ(xi,ωi

, xi,ωi
) = |I(xi,ωi

; f)− I(xi,ωi
, yi; f)| follow the constraint that:

Φ(xi,ωi
, x̂i,ωi

) ≤ log(qϵ)

Ψ(xi,ωi
, xi,ωi

) ≤ I(zi; f)
(18)

where the maximum cardinality of any single feature in the feature subset ωi is denoted as q. ϵ is the maximum number of
features that the attacker may perturb, a.k.a the attack budget. the number of the features in ωi, noted as |ωi| is no more than
ϵ. With this constraint, the value of Eq.7 is bounded from above as:

Radv
f − R̂adv

f ≤LDf√
2n

√√√√ n∑
i=1

I(f ; zi) + 2

n∑
i=1

Ψ(xi,ωi , xi,ωi) +

n∑
i=1

Φ(xi,ωi , x̂i,ωi)

≤LDf√
2n

√√√√ n∑
i=1

3I(f ; zi) + n log(qϵ)

(19)

In Eq.19, the first term under the squared root symbol is
∑n

i=1 3I(f ; zi). It measures the generalization error under the
adversary-free setting according to Eq.16. The second term log(qϵ) measures the strength of the attack by considering the
cardinality of the feature subset ωi. A higher cardinality log(qϵ) implies a larger combinatorial set of possible categorical
feature values available to the attacker (more features that the attacker may perturb and/or more category values per feature
that the attacker may choose to replace the original feature value). The attacker selects one set of categorical values in this
combinatorial set to replace the original feature values within the feature subset ωi, in order to deliver the adversarial attack.
Consequently, a higher cardinality indicates greater flexibility to organize feature manipulation over ωi, which signifies a
stronger attack and thereby elevates the adversarial risk. Eq.19 gives a bounded but rough estimate of the adversarial risk, as
not all of the features are useful for the attack. Only the perturbation over influential features may effectively cause the rise
of adversarial risk. In this sense, Eq.7 provides a more accurate estimate of the actual adversarial risk than Eq.19.

B. The Connection between Theorem 3.2 and the Practical Design of the IGSG-based Robust
Training

With the proposed Theorem 3.2, we aim to find an algorithm that can minimize the upper bound defined in Eq.7. However,
directly optimizing the mutual information terms proves to be non-trivial given high-dimensional inputs (Brekelmans
et al., 2023). We thus pursue an approximation method to reach this objective in the algorithmic design. We find that SG
regularization is derived from minimizing I(f, zi) (one mutual information term in Eq.7 of Theorem 3.2.), and the SG
and IG regularization suppresses Ψ(xi,ωi

, xi,ωi
) and Φ(xi,ωi

, x̂i,ωi
), two other terms in Eq.7. We next discuss in detail the

questions regarding the connection between them and the rationale behind the design.

B.1. How Mutual Information Mathematically Connects with IG and SG?

The link of IG and SG with the mutual information is derived from the fact that the magnitude of the gradient of the classifier
f with respect to the input feature xi,ωi

, i.e. ∂ log(fyi (xi))

∂xi,ωi
, is proportional to the value of the mutual information between the
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feature xi,ωi
and the model’s classification output fyi

(xi) for a specific class yi, noted as I(xi,ωi
; f). Our analysis stems

from (Wei & Stocker, 2016), which shows that the Fisher information Ifisher serves as a close approximation to mutual
information.

Specifically in our case, we have the upper bound of the mutual information I(xi,ωi
; f) based on the gradient term

∂ log(fyi (xi))

∂xi,ωi
(Hannun et al., 2021) : I(xi,ωi ; f) ≈ Ifisher =

∫ (
∂ log(p(fyi (xi)|xi,ωi

))

∂xi,ωi

)2

p(fyi
(xi)|xi,ωi

)dfyi
(xi) ≤

supfyi (xi)(
∂ log(fyi (xi))

∂xi,ωi
)2

B.1.1. ENFORCING THE SG REGULARIZATION SUPPRESSES I(f, zi), THUS REDUCING THE ADVERSARIAL RISK
BOUND

Performing the SG regularization (as in Eq.5) penalizes the magnitude of the gradient term ∂ log(fyi )

∂xi
. With this revealed

relation between the mutual information term and the gradient, the SG regularization thus effectively suppresses the mutual
information I(f, zi = (xi, yi)). Consequently, with a diminishing mutual information value of I(f, zi), the adversarial risk
bound is reduced. As reported by previous works, reducing I(f, zi) improves the generalization capability of the classifier
in the adversary-free scenario and boosts its resilience to adversarial attacks.

B.1.2. ENFORCING THE SG AND IG REGULARIZATION SUPPRESSES Ψ(xi,ωi , xi,ωi) AND Φ(xi,ωi , x̂i,ωi), THUS
REDUCING THE ADVERSARIAL RISK BOUND

Building upon the insight above, we introduce Integrated Gradient (IG), defined based on the gradient term ∂ log(fyi (xi))

∂xi,ωi
, to

measure the contribution of the feature xi,ωi
to the model’s classification output fyi

(xi). In the discrete feature case, the
Integrated Gradient (IG) can be expressed as:

IG(ωi) =
∫ 1

bωi
=0

∂ log(fyi )

∂bωi
dbωi

Here, bωi
represents the binary indicator corresponding to the categorical feature xi,ωi

, as introduced in the preliminary of
Section 3. Performing the TV loss regularization over the IG of different categorical features (as in Eq.4) is to align the
gradient with respect to the feature ωi (noted as ∂ log(fyi )

∂bωi
) to that with respect to another feature ωi other than ωi (noted as

∂ log(fyi )

∂bωi
). Therefore, enforcing the TV loss regularization reduces the gap between the mutual information I(xi,ωi

; f) and
that of the other features I(xi,ωi

; f), which in turn reduces the value of Ψ(xi,ωi
, xi,ωi

).

Similarly, performing the SG-based regularization (as in Eq.5) penalizes the magnitude of the gradient term ∂ log(fyi )

∂bωi
. This

regularization thus effectively suppresses the value of I(xi,ωi ; f). Consequently, with a reduced mutual information value
of I(xi,ωi

; f), injecting adversarial perturbations to the feature ωi (modifying xi to x̂i) then does not trigger large difference
between I(xi,ωi

; f) and I(x̂i,ωi
; f). This in turn reduces the value of Φ(xi,ωi

, x̂i,ωi
).

In summary, the proposed IGSG method combines the TV loss and SG-based loss, as seen in Eq.6, to minimize Ψ(xi,ωi , xi,ωi)
and Φ(xi,ωi

, x̂i,ωi
), which suppresses the mutual information-based adversarial risk bound in Theorem 3.2.

C. Difference between PAC-Bayes Bounds and Our Study
Following (Xu & Raginsky, 2017; Bu et al., 2019), we don’t impose any prior distribution assumption over Pf |Sn .
This characterizes the major difference between our study and PAC-Bayes generalization bounds (McAllester, 1999).
Though PAC-Bayesian bounds also connect information-theoretic quantities to generalization and are similar to the mutual
information approach, these bounds are usually output-dependent. That is, they give a generalization bound for a particular
output hypothesis or hypothesis distribution, rather than uniformly bounding the expected error of the algorithm as in the
mutual-information-based bound in our study. We adopt the mutual-information-based technique to exploit the fact that the
generalization error depends strongly not only on the underlying true data-generating distribution but also on the correlation
between the collection of empirical risks of the available hypotheses and the final output of the learning algorithm.

D. Discussion about the Randomized Learning Mechanism
It is worth noting that our information-theoretic analysis is rooted in the research of mutual-information-based generalization
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error analysis in (Xu & Raginsky, 2017; Bu et al., 2019). This line of inquiry adopts an information-theoretic perspective to
enhance the generalization capabilities of machine learning algorithms. Within this theoretical framework, a model training
algorithm is conceptualized as a randomized mapping or an information-transmitting channel, employing the language
of information theory. This mapping or channel takes a training dataset as input and yields a hypothesis as output. The
randomness inherent in this mapping/channel manifests in two dimensions. First, the training dataset provided to the
channel is a sample selected from all possible combinations of n training data points. Second, the resulting hypothesis
from this channel is one sample chosen from the set of possible hypotheses within the hypothesis space. The mutual
information-based bound in Eq.7 thus determines the expected adversarial risk over all possible hypothesis functions in
the hypothesis space. In other words, we offer an averaged estimate of the potential adversarial risk, irrespective of the
hypothesis chosen as the output by the learning algorithm. In this sense, for a classifier used in a concrete learning task,
whether the parameters/decision outputs of this classifier are deterministic or randomized, our mutual-information-based
bound is applicable.

E. Limitations of Adversarial Training on Categorical Data

Table 7. MLP with PGD-based adversarial training
Dataset Attack Adv. Acc. Defend

Splice
PGD-1 95.2% ✓

OMPGS 51.7% ×
FSGS 43.6% ×

PEDec
PGD-1 96.0% ✓

OMPGS 74.1% ×
FSGS 52.5% ×

Census
PGD-1 93.2% ✓

OMPGS 62.7% ×
FSGS 54.1% ×

To evaluate the limitations of adversarial training on categorical data.
We implement f as a Multilayer Perceptron (MLP) and conduct PGD-
based adversarial training on it across three datasets. Subsequently, the
resistance of f to three evasion attacks is outlined in Table 7. With the
attack budget 5 (i.e., diff(xi, x̂i) ≤ 5), both Forward Stepwise Greedy
Search (FSGS) (Elenberg et al., 2018), and orthogonal matching pursuit
based greedy search (OMPGS) (Wang et al., 2020) can directly find attack
samples x̂i. PGD attack in the 1-norm setting (PGD-1) (Madry et al.,
2017) locates attack samples and subsequently discretizes them to yield
feasible adversarial samples x̂i. Table 7 shows that the adversarially
trained f is only resilient against the PGD-1-based attack (high adversarial accuracy), remaining vulnerable facing the
other two attacks (significantly lower adversarial accuracy). This suggests that the PGD-based adversarial training may not
account for all possible adversarial samples, causing the model to overfit to the samples discovered by the PGD method.

Similar observations can be made for f when using OMPGS-based adversarial training (see Fig.3 in App.F). For the first
200 epochs, the adversarial accuracy and clean accuracy on the test set mirrored those on the training set. However, with
further adversarial training, there is a notable increase in the adversarial accuracy and clean accuracy on the training set,
while those on the test set remain unchanged, which indicates robust overfitting. The findings in Table 7 and Fig.3 show that
the adversarial examples encountered during training do not generalize well to the test set. It suggests the presence of a
distribution gap between discrete adversarial samples generated by different attack methods, as well as a distribution gap
between adversarial samples generated during training and those encountered in the test set using the same attack method.

To provide further evidence of this distribution gap, we calculate the Wasserstein distance between the distributions of
adversarial samples generated by PGD-1 and OMPGS on PGD/OMPGS-based adversarially trained model respectively
(detailed in App.F). A greater Wasserstein distance suggests a larger discrepancy between the two distributions. Two main
observations are evident from Table 8. First, while PGD-based methods yield discrete adversarial samples with consistent
distributions during both training and testing phases, these samples present significantly disparate distributions compared to
those produced by OMPGS-based methods. This consistency in distribution with PGD-based methods is coherent with
the results in Table 7, revealing substantial accuracy against PGD-based attacks but a lack of substantial defense against
OMPGS-based attacks. Second, the adversarial samples derived via OMPGS exhibit a prominent distribution gap pre and
post adversarial training. This distinction is indicative of the declining adversarial accuracy of the retrained classifier, as
noted in Table 7 and Fig.3, through the course of the adversarial training.

Robust overfitting with categorical vs. continuous data. While robust overfitting in adversarial training with continuous
data has been extensively researched (Yu et al., 2022), the root causes differ when dealing with categorical data. Methods
based on adversarial training typically employ heuristic search techniques like PGD or OMPGS to discover discrete
adversarial samples for training. Due to the NP-hard nature of combinatorial search, these techniques can only explore
a subset of adversarial samples, leaving samples outside this range to be perceived as Out-of-Distribution (OOD) by
the classifier. This situation poses significant challenges for the model to generalize its robustness to unseen adversarial
samples during testing. Attempted solutions such as thresholding out small-loss adversarial samples (Yu et al., 2022) have
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proven inadequate on categorical data in App.I.4. Therefore, we opt for regularized learning-based paradigms for enhanced
robustness in training with categorical data, avoiding the necessity to generate discrete adversarial samples.

F. Empirical Study of the Robust Overfitting Issue
Let Ptr and Pte (Otr and Ote) denote the adversarial samples produced by the PGD-based attack P (OMPGS-based attack
O), which are used respectively for adversarial training (tr) and testing (te). The empirical evaluation of the distribution gap
is conducted by comparing the following 4 groups of Wasserstein distance scores.

Wasserstein distance between in-distribution samples (WDin): We first measure the Wasserstein distance between
samples within each of Ptr, Pte, Otr and Ote. For each set, we randomly shuffle twice the adversarial samples and select
90% of the samples from the set as the probe and gallery set. We then compute the Wasserstein distance between the probe
and gallery set. This process is repeated 20 times. We record all the Wasserstein distance scores to measure the distribution
gap between in-distribution adversarial samples within each set. WDin is considered as a baseline. We expect the Wasserstein
distance scores between adversarial samples from different distributions (Out-Of-Distribution) to be significantly larger than
the distance scores in WDin.

Wasserstein distance between the training and testing adversarial samples produced by the PGD-based method
(WDP

out): For Ptr and Pte, we randomly sample 90% of the adversarial samples from each set and compute the Wasserstein
distance between the selected subset from the training and testing set. We repeat this process for 20 times and obtain the
Wasserstein distance scores to measure the distribution gap between the training and testing adversarial samples generated
by the PGD-based method.

Table 8. Average and standard (AVG) deviation
(STD) of the Wasserstein distance scores

Group of
Wasserstein

distance
AVG STD

WDin 0.06 0.003
WDP

out 0.05 0.001
WDO

out 0.12 0.002
WDPO

out 0.18 0.002

Wasserstein distance between the training and testing adversarial
samples produced by the OMPGS-based method (WDO

out): For Otr and
Ote, we randomly sample 90% of the samples from each set and compute
the Wasserstein distance between the two selected subsets. This process
is repeated 20 times to obtain all the Wasserstein distance scores, assessing
the distribution difference between training and testing adversarial samples
generated by the OMPGS-based attack method.

Wasserstein distance between the training and testing adversarial sam-
ples produced by the PGD-based and OMPGS-based attack methods
(WDPO

out ): We conduct a cross-check in this part. We randomly sample 90% of the samples from Ptr and Ote respectively
and compute the Wasserstein distance between the selected subset of adversarial samples from the two sets. The same
distance computing operation is also conducted on the subsets from Otr and Pte. This process is repeated for 20 times and
obtain the Wasserstein distance scores to assess the distribution difference between training and testing adversarial samples
generated using different attack methods.

Figure 3. The “robust overfitting” of adversarially trained MLP on Splice.

In Table 8, the averaged Wasserstein scores of WDin
and WDP

out are the smallest among the four groups
of distance values. Conversely, WDPO

out and WDO
out

rank as the largest and second largest, respectively.
Our findings can be summarized from two perspec-
tives. First, we conduct a Mann-Whitney U test on the
distance scores of WDin and WDP

out. The test results
indicate no significant difference between the distance
scores in these two groups, yielding a p-value of 0.20.
This suggests that the PGD-based method generates
discrete adversarial samples with similar distributions
for both training and testing. Consequently, the PGD-
based adversarial training achieves high adversarial
accuracy, as observed in Table 7. Second, we conduct
Mann-Whitney U tests between WDin and WDO

out, as
well as between WDin and WDPO

out . The hypothesis
tests reveal that WDO

out and WDPO
out are significantly higher than WDin, with p-values of 0.02 and 0.01, respectively. This
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indicates that 1) the training and testing adversarial samples generated by the OMPGS-based adversarial training method
have different distributions and 2) the training adversarial samples generated by one method (either PGD-based or OMPGS-
based) have a different distribution from the testing adversarial samples generated by the other method. These results align
with the low adversarial accuracy of the PGD-based adversarial training method when facing the OMPGS-based attack, and
vice versa. Additionally, the observations confirm the occurrence of robust overfitting in the OMPGS-based adversarial
training method, as illustrated in Fig.3.

G. Distinctive Factors in Robustness with Categorical Data
G.1. Distinctive Factors in Assessing Robustness with Categorical Data

We emphasize three critical distinctions in characterizing and evaluating the adversarial robustness of categorical data
compared to continuous data. Firstly, categorical data exists in discrete space, where each feature represents a unique
category. Adversarial manipulation of categorical features involves switching from one feasible category to another,
rendering traditional LQ distance metrics inapplicable. Consequently, samples generated through PGD and FGSM attacks
are considered infeasible to use over discrete data directly (Lei et al., 2019; Bao et al., 2021; Wang et al., 2020). However,
PGD adversarial training and TRADES are both applicable to relaxed categorical data. Adversarial samples are generated
by relaxing b(xi) into continuous data, yielding float categorical values inRp∗m. While these samples are inappropriate for
directly evaluating model robustness in the discrete domain, they are effective for adversarial training, fostering improved
robustness, as discussed in the global response.

Secondly, attacking discrete data entails a complex NP-hard mixed-integer nonlinear programming challenge (Lee &
Leyffer, 2011). Moreover, the size of the adversarial space expands exponentially with the feature dimension. Although
transitioning the discrete problem to the continuous domain yields approximate solutions, the intricate combinatorial nature
impedes complete coverage of feasible discrete adversarial samples. Adversarial training, which depends on these relaxed
solutions, risks overfitting to these approximations. Our study confirms this limitation, where adversarial training struggles to
significantly bolster the robustness of discrete data—especially in high-dimensional settings with substantial attack budgets.

Finally, it is essential to recognize that certifiable adversarial robustness and adversarial risk bounds established for the image
domain do not hold for discrete data. These bounds are based on LQ distance (q ≥ 1) and do not adequately explain the
true factors influencing the adversarial risk of discrete data, as demonstrated in Theorem 1 of (Bao et al., 2021). Therefore,
applying these bounds to discrete data would yield inaccurate and unreliable results.

G.2. Distinctive Factors in L0 Robustness

(Tsipras et al., 2018) demonstrated that a model relying on multiple weakly correlated features with the label can make
high-confidence (low entropy) predictions, which appears to conflict with our proposed method for smoothing the impact
of different features. However, (Tsipras et al., 2018) primarily focused on the LQ attack scenario, where experiments
involve L2 and L∞ attacks. However, our focus is on enhancing the adversarial robustness of categorical data, When
perturbing categorical features, the concept of “modification magnitude” loses relevance. Instead, each feature undergoes a
transformation by switching between distinct category values (switching from its original category value to another one).
In this context, evaluating robustness using L∞ attacks is infeasible, as mentioned in our earlier responses. Therefore,
adversarial attacks on categorical data are framed within the L0 attack framework, rather than the L∞ attack scenario. It’s
important to underline that distinct attack scenarios can yield varying conclusions regarding adversarial robustness. However,
the fundamental concept driving adversarial robustness remains consistent for both L0 and LQ attacks — mitigating
overfitting on the training data is paramount.

For instance, in the context of L∞ attacks, overfitting often occurs with respect to the background. As every pixel can be
perturbed to some extent, classifiers that overfit to background elements become susceptible to adversarial attacks. This
concurs with the findings of (Tsipras et al., 2018). Standard models that utilize all features tend to be vulnerable, while
adversarially trained models tend to focus on influential features. This vulnerability arises from the classifier’s overfitting
to background features. This leads us to the insight that due to the permissible perturbation of any feature within certain
bounds, changing influential features to alternative patterns is notably more challenging than altering background features,
thus rendering background overfitting a significant adversarial vulnerability.

Nonetheless, in the context of an L0 norm bounded attack, the scenario differs. When weakly correlated features are
perturbed, highly influential features still remain untouched within the confines of the L0 norm constraint. Consequently,
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Algorithm 1 FSGS for general categorical data

Input: The candidate set H = {1, 2, ...p} of all categorical features, categorical attack budget ϵ
1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for each j ∈ H/S do
4: for each s ⊂ S, if |s| < ϵ do
5: x̂(j, s) = B(x, {j} ∪ s)
6: end for
7: mf (x(j)) = max

s⊂S,|s|<ϵ
mf (x̂(j, s))

8: end for
9: mf (x, S) = max

j∈H/S
mf (x(j))

10: j∗ = argmax
j∈H/S

mf (x(j))

11: S ← S ∪ {j∗}
12: if mf (x, S) ≥ 0 then attack successfully
13: if Time ≥ Γ then timeout
14: end for

targeting the most influential features becomes a pathway to a successful attack, which is a contrast to the L∞ attack
situation. As an echo, our defense thus aims to smooth the feature-wise contribution to the classifier, making the adversary
difficult to identify influential features. This fundamental discrepancy is at the root of the disparities between our findings
and those presented in (Tsipras et al., 2018).

H. Detailed Experimental Settings
H.1. The Settings of FSGS and OMPGS

To evaluate adversarial robustness, we employ the FSGS attack and OMPGS attack, shown in Algorithm.1 and 2. The
definition of the notations can be found in App.H.4. It’s also worth noting that, in terms of attack methods for discrete
data, while FSGS is a black-box attack and OMPGS is white-box, FSGS, with an extensive search, often encompasses
the search space of OMPGS under the same attack budget, yielding higher success rates, as demonstrated in (Bao et al.,
2021). For both methods, we impose a time constraint on each dataset. Specifically, we allocate 1s, 150s, and 2s for FSGS,
and 1s, 5s, and 1.2s for OMPGS, corresponding to Splice, PEDec, and Census datasets, respectively. Adversarial accuracy,
which measures the prediction accuracy on adversarial samples generated by FSGS or OMPGS, is used as the metric for
assessing robustness. These settings are consistently applied to all methods, including IGSGreg, the baseline methods, and
the ablation methods. In the case of mixed-type datasets like Census, we devise variations of FSGS and OMPGS to enhance
the effectiveness of the attack. Further details can be found in App.H.4.

H.2. Details of the Baseline Methods
1. Standard Training (Std Train) is the model trained with adversary-free data by cross-entropy.

2. PGD Adversarial Training (Adv Train) is the vanilla adversarial training (Madry et al., 2017).

3. Fast-BAT (Zhang et al., 2022) advances vanilla adversarial training from the perspective of bi-level optimization. It
achieves a better accuracy-robustness balance than Adv Train.

4. TRADES (Zhang et al., 2019) optimizes a regularized surrogate loss composed of empirical risk minimization and a
robustness regularization term.

5. Adversarial Feature Desensitization (AFD) (Bashivan et al., 2021) improves robustness by learning a feature space where
the adversary-free and adversarial instances share the same distribution.

6. Probabilistic Adversarial Training (PAdvT) (Xu et al., 2023) first use Probabilistic Categorical Adversarial Attack
(PCAA) proposed in the same paper to generate adversarial samples in discrete space and then uses these adversarial
samples for adversarial training.
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Algorithm 2 OMPGS for general categorical data

Input: The candidate set H = {1, 2, ...p} of all categorical features, categorical attack budget ϵ
1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for s ⊂ S, if |s| ≤ ϵ do
4: rs←∇fy(B(x, s))
5: if mf (B(x, s)) ≥ 0

then attack successfully
6: end for
7: for j ∈ H/S do
8: sj = argmax

sj⊂S,|sj |<ϵ

|rs[j]|, x̂j = B(x, {j} ∪ sj)

9: end for
10: j∗←argmax

j∈H/S

mf (x̂(j))

11: S←S ∪ {j∗}
12: if Time ≥ Γ then timeout
13: end for

7. Input Gradient Regularization (IGR) (Ross & Doshi-Velez, 2018) penalizes the magnitude of the vanilla gradient of the
classification loss with respect to the training data.

8. Jacobian Regularization (JR) (Hoffman et al., 2019) proposes to penalize the approximation of the Frobenius norm of the
Jacobian matrix.

The last seven baselines except the sixth baseline are all originally designed for continuous input. We relax the one-hot
encoded representation of categorical training data when adapting these baselines to our test except for PAdvT, which is
originally designed for categorical data. For four adversarial training baselines (Adv Train, Fast-BAT, TRADES and AFD),
we adopt L1-norm bounded adversary in the inner maximization of the adversarial training process. When a mixture of
categorical and numerical features presents (e.g., in Census dataset), the PGD-1 attack is applied for the categorical features,
and the PGD-∞ attack is used for numerical features. For two regularization-based baselines (IGR and JR), we compute
the gradient of the classifier’s output (JR) / the classification loss (IGR) with respect to the continuous relaxation of the
categorical data. The details about the hyper-parameters during training can be found in App.H.3.

H.3. The Settings of the Hyper-parameters in the Training Phase

First, we talk about the learning rate. We experiment with different learning rates for the MLP model. Specifically, we set
the learning rates to 0.07, 0.2, and 0.008 for Splice, PEDec, and Census datasets, respectively. All methods utilizing IG
regularization achieve the best performance using the same learning rate. For other methods, unless otherwise specified, we
use learning rates of 0.07, 0.00001, and 0.008 to achieve optimal performance for the MLP model. In the case of PEDec
using the IG-based training paradigm, we use a larger learning rate to achieve optimal solutions of the smoothness of IG
scores for each feature. It is important to note that large learning rates would decrease both robustness and accuracy in other
situations. For the Transformer model, we adopt learning rates of 0.003, 0.002, and 0.02 for Splice, PEDec, and Census,
respectively.

As for the hyper-parameter α in Eq.6, we select a value to make IG and SG in the same magnitude without tuning them.
Empirically, we choose 10, 0.01, and 0.1 for MLP and 0.001, 10, 0.001 for Transformer on Splice, PEDec and Cencus
respectively. For the hyper-parameters β of the proposed IGSGreg method in Eq.8, we empirically choose 0.01, 1, 10 for
MLP on the three datasets respectively and 100 for Transformer on all datasets to balance the two loss terms and ensure they
are of the same magnitude. Furthermore, we conduct a hyper-parameter sensitivity analysis in App.I.8.

In the case of the PGD-1 attack in the Adv Train, AFD, and TRADES methods, we set ϵ to be 5 for the three datasets. The
attack consists of 20 iterations, with the attack step size set to ϵ/10. Regarding Fast-BAT (Zhang et al., 2022), we also set ϵ
to be 5 for the three datasets. The attack step size is determined as ϵ/4.

In the IGR method, the parameter that weighs the importance of the norm of the input gradient is set to the same value as β
in Eq.8. For the MLP model, we use the values of 100, 0.1, and 3 for the three datasets, respectively. As for the Transformer
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model, the values are set as 1, 0.1, and 1 for the respective datasets.

In the JR method, the hyper-parameter that weighs the importance of the Frobenius norm of the Jacobian matrix is tuned to
achieve optimal robustness. For the MLP model, we set the values of 0.5, 1, and 0.02 for the three datasets, respectively. As
for the Transformer model, the values are set as 1, 0.05, and 0.1 for the respective datasets.

In the AFD method, Algorithm 1 in (Bashivan et al., 2021) includes three learning rates. For the MLP model, we set the
values of α to be 0.01, 0.00001, and 0.008, β to be 0.001, 0.0005, and 0.0001, and γ to be 0.001, 0.00005, and 0.0001 for the
three datasets, respectively. As for the Transformer model, we set α to be 0.001, 0.002, and 0.0001, β to be 0.001, 0.0001,
and 0.001, and γ to be 0.001, 0.0001, and 0.0001 for the three datasets, respectively.

In the TRADES method described in (Zhang et al., 2019), we set the parameter λ to balance accuracy and robustness.
Specifically, for the MLP model, we set λ = 1 for the Splice and Census datasets, and λ = 0.2 for the PEDec dataset. As
for the Transformer model, we set λ = 1 for all three datasets.

In Eq.13 of the Fast-BAT method (Zhang et al., 2022), we set the values of the parameters as follows: α1 = ϵ/4, λ = 1/α1,
α2 = 1 for the Splice dataset, and α2 = 0.1 for the PEDec and Census datasets.

For the training epochs, we execute 3000, 180, and 100 epochs on Splice, PEDec, and Census respectively. We perform 5
runs of all the methods and computed the average score and standard deviation. When evaluating the adversarial accuracy
under OMPGS attack of different methods on different attack budgets, we pick the best one among the 5 runs for each
method to draw Fig.2 and Fig.6.

H.4. Special Settings for Mixed-type Datasets

For mixed-type datasets that contain both categorical and numerical features, direct application of FSGS, OMPGS, or PGD
attacks is not suitable for evaluating the robustness of the classifier. This is because categorical data requires an L0 attack,
while numerical data typically necessitates an L2 or L∞ attack.

To address this challenge and evaluate the adversarial robustness of a mixed-type classifier, an iterative approach is employed.
This approach involves running FSGS or OMPGS along with PGD attacks iteratively to obtain a more effective adversary.
This combination allows for a comprehensive evaluation of the robustness of the mixed-type classifier.

Before talking about the details, we note that there are pcat categorical features and pnum numerical features. Each
categorical feature has m candidate values. For a sample x, the value of feature j is k∗. After perturbation, the value is k̂.
The ground truth label of x is y∗. During the attack, we maintain a greedy set S, showing the alterable features. Each feature
not in S cannot be changed, i.e. for j /∈ S, k̂ = k∗. For the features in S, it is possible to choose any of the m candidate
values, and it is also acceptable to remain unchanged. Here we introduce the notation in (Bao et al., 2021). Given a greedy
set S,

mf (x) = max
y ̸=y∗
{fy(x)} − fy∗(x)

mf (x, S) = max
diff(x,x̂)⊂S

mf (x̂)

where we denote diff(x, x̂) as the set of feature indices where k̂ ̸= k∗. The function mf (x) indicates whether the sample x
is misclassified. If mf (x) < 0, it means that x is classified correctly, while mf (x) ≥ 0 indicates misclassification. The
function mf (x, S) checks whether the attack is successful under the constraints of the feature set S. The notation B(x, s)
represents the adversarial sample x̂ obtained by modifying the features of x as indicated by the binary vector s. Algorithm.3
outlines the attack process using FSGS+PGD for mixed-type data, while Algorithm.4 describes the attack process using
OMPGS+PGD for mixed-type data. For general categorical data where there are no numerical features, the “PGD” step in
the algorithms can be ignored or ϵn can be set to 0.

During the experiment, each feature is normalized before applying the PGD attack. For PGD-∞ attack, we set ϵn = 0.2 for
the Census dataset, with a total of 20 attack steps. The attack step size is set to 0.02. During the training process of Adv
Train, AFD, TRADES, and Fast-BAT, we use a combination of PGD-1 attack for categorical features and PGD-∞ attack for
numerical features to generate adversarial samples for mixed-type data. The same attack settings are applied during the
training of Adv Train, AFD, and TRADES. For Fast-BAT, we also set ϵn = 0.2, but the attack step size is adjusted to 0.05.
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Algorithm 3 FSGS + PGD for mixed-type data

Input: The candidate set H = {1, 2, ...pcat} of all categorical features, PGD attack budget ϵn for numerical data, categorical
attack budget ϵc

1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for each j ∈ H/S do
4: for each s ⊂ S, if |s| < ϵc do
5: x̂(j, s) = B(x, {j} ∪ s)
6: δ(j, s) = PGD∞(x̂(j, s), ϵn)
7: x̂(j, s) = x̂(j, s) + δ(j, s)
8: end for
9: mf (x(j) + δ(j, S)) = max

s⊂S,|s|<ϵc
mf (x̂(j, s))

10: end for
11: mf (x+ δ, S) = max

j∈H/S
mf (x(j) + δ(j, S))

12: j∗ = argmax
j∈H/S

mf (x(j) + δ(j, S))

13: S ← S ∪ {j∗}
14: if mf (x+ δ, S) ≥ 0 then attack successfully
15: if Time ≥ Γ then timeout
16: end for

Algorithm 4 OMPGS + PGD for mixed-type data

Input: The candidate set H = {1, 2, ...pcat} of all categorical features, PGD attack budget ϵn for numerical data, categorical
attack budget ϵc

1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for s ⊂ S, if |s| ≤ ϵc do
4: rs←∇fy(B(x, s))
5: if mf (B(x, s) + PGD∞(B(x, s), ϵn)) ≥ 0

then attack successfully
6: end for
7: for j ∈ H/S do
8: sj = argmax

sj⊂S,|sj |<ϵc

|rs[j]|, x̂j = B(x, {j} ∪ sj)

9: end for
10: j∗←argmax

j∈H/S

mf (x̂(j) + PGD∞(x̂(j), ϵn))

11: S←S ∪ {j∗}
12: if Time ≥ Γ then timeout
13: end for

I. Additional Experimental Results
I.1. Approximation to the Mutual Information-based Adversarial Risk Bound

In this section, we evaluate the mutual information as delineated in the adversarial risk bound (Eq.7), comparing models
trained via Std Train and IGSG methods. Given the intricacies and potential inaccuracies in assessing an entire neural
network, we focus on a simplified model comprising a single fully connected layer, with softmax activation for multi-class
classification and sigmoid activation for binary classification. We utilize the Mutual Information Neural Estimation (MINE)
technique (Belghazi et al., 2018) to assess the terms and their weighted sum in Eq.7.

For training, we randomly selected 200 and 500 samples, 20 times each, from the training sets of Splice and PEDec datasets,
respectively. These samples undergo training using Std Train and IGSG approaches, with a learning rate of 0.001, over 200
and 1000 epochs, respectively. This process yields an approximate accuracy of 0.9 for both datasets. Subsequently, we
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(a) Splice (b) PEDec

Figure 4. Mutual Information Estimation for terms in Eq.7 for Splice and PEDec Datasets

evaluate the adversarial robustness of 20 models each from Std Train and IGSG, employing FSGS and OMPGS attacks.
Regarding the most sensitive features ωi in Eq.7, we predetermine them based on the top 5 features exhibiting the highest
attack frequency in Std Train models on MLP under OMPGS attacks. These features were fixed across all samples. For
Splice, ωi are [28, 29, 30, 31, 32], and for PEDec, [3592, 3755, 3808, 4390, 4918]. Using these predetermined ωi, we
calculate the four mutual information terms, as illustrated in Fig.4, based on the 20 sampled datasets and corresponding
model parameters, utilizing the MINE methodology. We also calculate the average adversarial accuracy on FSGS and
OMPGS, the result is shown in Table 9.

This experiment aims to demonstrate two key aspects. Firstly, IGSG-trained networks exhibit a reduction in the mutual
information terms in Eq.7, suggesting a lower adversarial risk bound. Secondly, beyond just a lower adversarial risk bound,
IGSG-trained networks also empirically manifest enhanced adversarial accuracy.

Table 9. Average Adversarial Accuracy on 20 logistic
regression models for PEDec and Splice datasets.

Dataset Attack IGSGreg Std Train

Splice FSGS 0.019 0.010
OMPGS 0.139 0.122

PEDec FSGS 0.709 0.648
OMPGS 0.748 0.668

The results displayed in Fig.4 encompass four mutual informa-
tion terms related to the adversarial risk bound. We first examine
“Sum”. “Sum” is defined as

∑n
i=1 I(f ; zi)+2

∑n
i=1 Ψ(xi,ωi

, xi,ωi
)+∑n

i=1 Φ(xi,ωi
, x̂i,ωi

), representing the adversarial risk bound in Eq.7.
We can refer to Table 9 for the average adversarial accuracy across 20
models trained on randomly sampled data under FSGS and OMPGS
attacks. For both Splice and PEDec datasets, the IGSG method typ-
ically yields lower “Sum” values and higher adversarial accuracy,
corroborating that IGSG effectively reduces the adversarial risk bound in Eq.7 and that this reduction positively correlates
with improved adversarial accuracy.

Focusing on the first three terms in Fig.4, we observe that
∑n

i=1 I(f, zi), indicative of adversary-free generalization
error, is lower after using SG regularization compared to Std Train, signifying a more generalized classifier. The term∑n

i=1 Ψ(xi,ωi
, xi,ωi

) quantifies the differential contribution of highly vulnerable features ωi and other features ωi. Here,
classifiers trained with IGSG typically exhibit lower values, suggesting a more balanced reliance on diverse features.
For

∑n
i=1 Φ(xi,ωi , x̂i,ωi), which measures the sensitivity of the most vulnerable features ωi to adversarial perturbations,

IGSG-trained classifiers generally show lower values, particularly in the Splice dataset. This trend is attributed to the
high vulnerability of certain features in ωi for Splice, as evident in Fig.1(a). Perturbations in a single feature often lead to
significant drops in prediction scores, resulting in larger values for Std Train, while IGSG effectively reduces this effect.
For PEDec, successful attacks are usually driven by a combinatorial search. The combination of features with high attack
frequency does not necessarily lead to successful attacks, hence the lower values for both Std Train and IGSG in this term.

In summary, we observe that the classifier trained with IGSG exhibits lower values for all the four mutual information
terms in the proposed upper bound in Eq.7 (thus a globally lower bound value) and higher adversarial accuracy across the
two datasets. This finding firstly indicates that enforcing IGSG regularization can reduce the mutual information-based
upper bound of the adversarial risk proposed in Eq.7. Furthermore, we consider adversarial accuracy as a measure of actual
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(a) IGSGreg (b) Std Train

Figure 5. 2D PCA Boundary Visualization on PEDec Dataset

adversarial risk. Higher adversarial accuracy indicates lower adversarial risk and vice versa. This quantitative evaluation
demonstrates the correlation between the upper bound and actual adversarial risk. Lower values of the mutual information
bound signify higher adversarial accuracy, thus indicating a reduced level of adversarial risk.

I.2. Visualization of the Classification Boundaries

In this section, we present a visualization of classification boundaries for classifiers trained using IGSG and Std Train
methods, specifically for the PEDec dataset. We employ Multi-Layer Perceptron (MLP) classifiers trained via both IGSG
and Std Train approaches. The visualization focuses on the features preceding the final fully connected layer within the
test set. These features are compressed into a 2-dimensional space using Principal Component Analysis (PCA) for clearer
representation.

Each sample in this visualization is labeled according to its predicted class by each respective classifier, offering an intuitive
depiction of the classification boundaries. The results, as illustrated in Fig.5, reveal distinct differences between the two
training methodologies. The IGSG-trained classifier exhibits an almost linear and distinct boundary between the two classes
in the PCA visualization. In contrast, the Std Train-trained classifier’s visualization does not present a clear demarcation.
There is considerable overlap between the two classes in the PCA visualization of features from the last layer, indicating a
twisted classification boundary.

This observation underscores that, compared to Std Train, IGSGreg facilitates a smoother and more discernible classification
boundary. Such a visualization not only highlights the distinctiveness of the IGSGreg method but also demonstrates its
efficacy in achieving clearer class separations.

I.3. Experimental Results on Transformer Models

In addition to implementing IGSGreg on the MLP model to demonstrate its effectiveness, we also conducted experiments on
a Transformer model. Table 10 presents the accuracy and adversarial accuracy against FSGS attack for each robust training
method used with the Transformer model. For the Splice dataset, we observe that none of the methods provide an effective
defense for the Transformer model. This could be attributed to the presence of particularly sensitive features in the Splice
dataset, as mentioned in Sec.5.3. The Transformer model amplifies this effect by focusing more attention on these features,
resulting in lower adversarial accuracy. However, IGSGreg achieves comparatively higher adversarial accuracy. Regarding
the PEDec dataset, IGSGreg demonstrates slight improvement compared to other methods, and the differences in adversarial
robustness among the different robust training methods are not significant. This may be due to the self-attention layer in the
Transformer model, which makes the relationships between different features less flexible compared to the MLP model. For
the Census dataset, most of the baseline methods do not exhibit substantial improvement over the baseline model. However,
IGSGreg shows a significant improvement of 10.2% compared to the undefended model.
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Table 10. Adversarial Accuracy under FSGS attack, PCAA attack and Accuracy (%) for IGSGreg and baseline models for the Transformer
model. Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD (Bashivan et al., 2021),
PAdvT (Xu et al., 2023), IGR (Ross & Doshi-Velez, 2018), JR (Hoffman et al., 2019)

Dataset Attack Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv TrainL1 Fast-BATL1 TRADESL1 AFDL1 PAdvT IGR JR IGSGreg

Splice
FSGS 0.9±0.9 0.4±0.5 1.0±1.1 0.0±0.0 0.2±0.4 0.2±0.4 0.4±0.3 0.1±0.1 2.3±1.4
PCAA 8.6±3.9 2.8±0.9 10.5±3.2 7.3±1.2 2.4±1.7 6.5±1.8 11.3±3.5 7.8±3.4 11.1±2.6
Clean 96.9±0.4 96.7±0.8 96.4±0.5 96.2±0.6 93.7±1.5 95.6±0.6 96.4±0.2 92.9±1.7 96.7±0.7

PEDec
FSGS 41.1±4.1 60.6±0.7 49.9±3.8 59.0±3.9 48.1±9.8 22.6±1.3 59.5±5.0 62.2±1.9 63.5±3.7
PCAA 87.1±2.4 75.5±1.2 87.8±0.9 90.8±0.6 86.7±3.3 87.4±1.2 89.7±2.3 90.6±1.0 89.2±1.3
Clean 96.2±0.5 96.0±0.2 96.1±0.1 96.7±0.1 96.1±0.4 96.2±0.1 95.5±0.1 93.1±1.8 95.7±0.3

Census
FSGS 27.6±4.3 34.1±2.7 33.1±6.1 32.2±8.0 32.2±1.0 30.4±3.4 25.1±5.3 32.7±0.4 37.8±4.3
PCAA 92.3±1.0 94.5±0.3 91.8±1.2 91.5±1.9 92.9±1.2 94.3±0.2 93.3±0.3 93.8±0.7 93.7±0.2
Clean 95.2±0.1 95.2±0.1 93.4±1.1 94.4±0.1 95.1±0.0 95.1±0.0 95.1±0.1 94.9±0.2 94.8±0.1

Figure 6. Adversarial accuracy for IGSGreg and baselines under OMPGS attack with varied attack budgets for the Transformer model.

In Fig.6, we present the adversarial accuracy of all the methods when subjected to OMPGS attacks with varying budgets
for the Transformer model. As discussed in Sec.5.3, higher adversarial accuracy and a lower decrease rate of adversarial
accuracy with increasing attack budgets indicate better model robustness. Similar to the results obtained with the MLP
model, we observe that IGSGreg outperforms the baseline models in terms of adversarial accuracy under OMPGS attacks.
Specifically, for the Splice dataset, IGSGreg exhibits a noticeably lower decrease rate of adversarial accuracy, although its
adversarial accuracy is similar to some baseline methods when the attack budget is small. For PEDEC, most methods
demonstrate very high adversarial accuracy compared to the MLP model. This may be because the multi-head paradigm in
the self-attention layer makes the gradient less informative compared to the MLP model. In this scenario, IGSGreg achieves
the highest adversarial accuracy, with almost no samples successfully attacked as the attack budget increases. The JR
method also maintains a constant adversarial accuracy as the attack budgets increase, but it is susceptible to attacks on a
few samples when the budget is small and its accuracy is inferior to IGSGreg. Regarding the Census dataset, we observe
that nearly all methods achieve an adversarial accuracy above 0.9 when modifying a single feature. As the attack budget
increases, IGSGreg exhibits a significantly lower decrease rate compared to other methods.

I.4. Comparison to Methods Targeting at Robust Overfitting

In this section, we give a comparison of the adversarial robustness between IGSGreg and proposed methods aiming to
address robust overfitting. We consider two works in this comparison. (Yu et al., 2022) found that small-loss adversarial
samples are the cause of robust overfitting. MLCAT was proposed to constrain the minimum loss. Loss scaling and weight
perturbation are used for two implementations, denoted as MLCATLS and MLCATWP respectively. (Chen et al., 2020) used
learned smoothing to mitigate robust overfitting. It introduced knowledge distillation to smooth the logits, and performed
stochastic weight averaging to smooth the weights (denoted as KD+SWA). We implement these two works on the original
PGD adversarial training (Adv Train (Madry et al., 2017)). The results are shown in Table 11. We can observe that IGSG
consistently outperforms both of the two methods when alleviating the robust overfitting issue on categorical data. Also,
KD+SWA has better performance than Adv Train on PEDec and Census datasets, but is inferior on Splice dataset. However,
MLCAT is inferior to Adv Train under both LS and WP implementations. This may demonstrate that the statement that
small-loss data cause robust overfitting may not be correct in the categorical domain.
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Table 11. Adversarial Accuracy and Accuracy over clean samples (%) for IGSGreg and other methods alleviating robust overfitting.

Dataset Adversary Adv Train KD+SWA MLCATLS MLCATWP IGSGreg

Splice
FSGS 43.6±0.7 36.8±1.9 25.4±2.8 24.6±1.7 44.0±2.6

OMPGS 51.7±1.4 41.2±2.3 30.3±2.7 29.9±2.0 63.8±4.2
Clean 96.2±0.4 94.0±1.5 94.4±0.8 94.6±1.2 95.9±0.7

PEDec
FSGS 53.1±1.7 62.5±3.5 45.8±3.2 52.8±4.5 86.5±3.8

OMPGS 74.1±2.1 80.2±2.0 67.9±2.4 68.8±4.7 88.0±4.0
Clean 96.2±0.0 96.6±0.1 96.8±0.1 95.3±0.2 95.5±0.2

Census
FSGS 54.1±2.3 65.4±4.4 53.2±3.7 52.6±2.9 67.2±3.5

OMPGS 62.7±3.3 66.5±5.6 67.5±1.9 66.5±3.5 71.3±9.0
Clean 94.5±0.3 95.3±0.1 94.6±0.0 94.8±0.2 95.5±0.2

I.5. Time Complexity Analysis

In this section, we first outline the time complexity of IGSG and compare its computational efficiency with the OMPGS
robustness evaluation method (Wang et al., 2020). OMPGS leverages gradients to streamline the greedy search process
used in FSGS (Elenberg et al., 2018), resulting in faster attack speeds and similar performance. The time complexity of
IGSG is denoted as O(N ∗ (T +R+ 1)), indicating its reliance on the number of samples N , the steps T in the Riemann
approximation for Integrated Gradient, and the R randomly sampled neighbors for smoothing. Contrastingly, the complexity
of OMPGS is O(N ∗ (2κ + p ∗ κ)), with κ indicating the attack iterations and p the feature count, showcasing its higher
computational demand.

Runtime comparisons between IGSG and OMPGS on MLP and Transformer models across three datasets are conducted
in Table 2. Here we choose κ = 5 for OMPGS, T = 20, and R = 5 for IGSG. It reveals that IGSG is significantly faster,
ranging from 17 to 240 times quicker than OMPGS.

Additionally, we examine the training time complexity of IGSGreg in relation to other baseline methods. The per-iteration
complexity for IGSGreg mirrors that of IGSG, at O(N ∗ (T + R + 1)). Conversely, the per-iteration complexity for
OMPGS-based adversarial training matches OMPGS’s own complexity: O(N ∗ (2κ + p ∗ κ)). This comparison underlines
the superior efficiency of IGSG-based methodologies.

Table 12. Time cost (min) for the training process for IGSGreg and baseline methods.

Model MLP Transformer
Dataset Splice PEDec Census Splice PEDec Census

Std Train 6 8 12 17 9 7
Adv Train 78 112 84 223 74 130
Fast-BAT 27 40 37 91 29 67
TRADES 114 108 210 307 81 197
AFD 276 126 316 285 101 231
IGR 9 11 19 25 13 10
JR 13 47 23 39 14 31
IGSGreg 39 117 82 124 71 89

We also measure the runtime cost of
IGSGreg with the other baselines in Ta-
ble 12. On Splice, IGSGreg requires sig-
nificantly less training time compared to
some adversarial training methods like
Adv Train, AFD and TRADES. On PEDec,
IGSGreg requires similar run-time, com-
pared to Adv Train, AFD and TRADES. On
Census, Fast-BAT, JR and IGR need less
time than IGSGreg, but there is a large gap
between the time cost of IGSGreg and that
of those methods.

All our implementations are conducted in the Python library PyTorch on a Linux server with a single GPU (NVIDIA V100).

I.6. Detailed Ablation Study

Here, we introduce another three variants of IGSGreg.

SGSGreg: We replace the TV loss of the IG scores with the TV loss defined over the smoothed gradient given in Eq.5.
IGIGreg: Instead of penalizing the lp norm of the smoothed gradient, we choose to penalize the norm of the IG score vector
of each instance x. We use SGSGreg and IGIGreg to verify the validity of the two robustness-enhancing regularization terms.
IGSG-VSGreg: We replace the difference of gradient computing given in Eq.8 with the standard smoothed gradient (Smilkov
et al., 2017). We introduce IGSG-VGreg and IGSG-VSGreg to demonstrate the necessity of introducing the mean field
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Table 13. Additional Ablation Study. Adversarial Accuracy and Accuracy over clean testing samples (%) for IGSGreg variants for the
MLP model.

Dataset Adversary IGSG-VSGreg SGSGreg IGIGreg L2-IGSGreg IGSGreg

Splice
FSGS 40.4±3.5 41.5±4.1 15.6±8.2 40.2±1.1 44.0±2.6

OMPGS 56.3±5.9 59.2±8.6 45.9±3.5 57.9±0.9 63.8±4.2
Clean 95.7±1.4 94.1±0.4 90.7±7.9 96.0±0.4 95.9±0.7

PEDec
FSGS 85.7±2.2 11.9±2.5 86.4±2.2 81.7±2.6 86.5±3.8

OMPGS 84.5±3.1 30.6±2.1 85.7±4.6 83.0±1.4 88.0±4.0
Clean 95.3±0.3 96.3±0.1 95.3±0.4 95.4±0.2 95.5±0.2

Census
FSGS 56.8±3.6 66.5±2.1 50.2±2.3 62.5±1.1 67.2±3.5

OMPGS 68.6±4.6 71.6±6.8 62.3±4.2 70.6±2.4 71.3±9.0
Clean 95.3±0.3 95.1±0.3 95.5±0.1 95.3±0.0 95.5±0.2

Table 14. Ablation Study. Adversarial Accuracy and Accuracy over clean testing samples (%) for IGSGreg variants for the Transformer
model.

Dataset Adversary SGreg IGreg IGSG-VGreg IGSG-VSGreg SGSGreg IGIGreg IGSGreg

Splice
FSGS 0.3±0.2 2.2±1.6 1.5±1.4 0.7±0.7 1.0±1.0 1.3±1.3 2.3±1.4

OMPGS 33.3±3.7 34.9±1.3 36.1±4.1 34.5±5.0 35.9±5.5 33.2±3.1 36.8±4.3
Clean 96.1±0.6 96.5±0.5 96.7±0.4 96.7±0.3 96.4±0.6 96.7±0.5 96.7±0.7

PEDec
FSGS 60.4±4.4 57.1±6.0 53.9±3.6 60.6±4.3 59.9±5.4 57.2±6.8 63.5±3.7

OMPGS 95.7±0.2 95.6±0.1 95.2±0.3 95.2±0.1 92.4±2.8 91.8±6.6 95.6±0.2
Clean 95.8±0.3 95.7±0.1 95.3±0.4 95.5±0.2 95.1±0.4 95.6±0.1 95.7±0.3

Census
FSGS 28.6±0.7 31.1±1.1 36.6±4.5 33.6±2.5 28.9±0.9 26.2±2.2 37.8±4.3

OMPGS 56.9±1.1 68.7±6.1 70.1±6.5 73.4±7.2 58.3±1.5 63.3±2.5 76.9±4.8
Clean 95.0±0.0 94.9±0.1 95.0±0.3 93.6±0.0 95.0±0.0 95.2±0.0 94.8±0.1

smoothing-driven smoothed gradient (given by Eq.5) into the gradient smoothing-based regularization term.

L2-IGSGreg: To achieve attribution smoothing, L2 norm regularization is also simple and widely used. We replace the TV
loss with an L2 norm of the IG score. We introduce it to further confirm the effectiveness of the TV loss design in IGSGreg.

In Table 13, we provide the adversarial accuracy of the four variants—IGSG-VSGreg, IGIGreg, SGSGreg and L2-IGSGreg
—under FSGS attack and OMPGS attack with a budget of 5 for the three datasets on an MLP model. We also compare their
performance with that of IGSGreg.

SGSGreg replaces the total variation (TV) loss of IGSGreg with the TV loss of the smoothed gradient. It exhibits slightly
inferior performance compared to IGSGreg on the Splice and Census datasets but performs poorly on the PEDec dataset.
This can be attributed to the fact that regularizing the TV loss of the smoothed gradient evenly distributes the sensitivity
of each feature. However, the gradient information only reflects local sensitivity and does not provide a comprehensive
understanding of feature contribution.

IGIGreg replaces the regularization of the smoothed gradient with the LQ norm of the IG score. Without the use of smoothed
sampling, the smoothness of the classifier is inferior to that of IGSGreg. Additionally, IG captures global information about
feature contributions but is not as explicit as the gradient in guiding the direction of attack for each category. Therefore,
minimizing the magnitude of IG is not as beneficial for the Splice and Census datasets.

L2-IGSGreg replaces the TV loss in the regularization of the integrated gradient with an L2 norm. Compared to SGreg,
L2-IGSGreg generally has better adversarial accuracy. However, the L2 norm-regulated IG term consistently yields a little
lower adversarial accuracy when subjected to FSGS and OMPGS attacks, showing the effectiveness of the TV loss.

In Table 14, we present the accuracy and adversarial accuracy under FSGS attack and OMPGS attack for the Transformer
model. The results are similar to those of the MLP model. Compared to the performance of IGR shown in Table 10 and Fig.6,
SGreg achieves slightly better adversarial robustness due to the smoothing. The only exception is the adversarial accuracy
under OMPGS attack for PEDec, where SGreg achieves much better robustness. This may be a result of the smoothness
of gradients among neighboring samples. Notably, most variants of IGSGreg achieve very high adversarial accuracy under
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Table 16. Adversarial Accuracy for the sensitivity analysis of α in IGSGreg

Dataset Attack α = 0.01 α = 0.1 α = 1 α = 10

Splice FSGS 42.5±1.5 41.3±1.4 40.6±2.6 39.4±1.6
OMPGS 61.3±5.7 59.9±5.4 59.1±3.7 58.3±6.7

PEDec FSGS 91.6±3.2 89.0±2.8 89.3±3.5 91.6±2.9
OMPGS 89.9±3.0 87.0±2.5 88.0±2.1 93.8±2.3

Census FSGS 55.4±0.8 67.5±3.6 / /
OMPGS 63.5±2.5 75.5±5.6 / /

Table 17. Adversarial Accuracy for the sensitivity analysis of β in IGSGreg

Dataset Attack β = 0.01 β = 0.1 β = 1 β = 10

Splice FSGS 45.8±1.1 44.3±2.1 42.9±1.8 44.0±2.6
OMPGS 64.4±3.1 62.7±1.4 66.3±0.7 63.8±4.2

PEDec FSGS 86.5±3.8 81.4±3.1 88.4±2.6 80.4±2.9
OMPGS 88.0±4.0 91.6±1.3 90.1±2.0 87.6±2.7

Census FSGS 62.7±1.4 59.8±2.4 67.2±3.5 68.2±2.8
OMPGS 67.4±3.8 72.1±2.6 71.3±9.0 74.3±3.7

OMPGS attack, suggesting that both IGreg and SGreg training can defend against OMPGS attack on PEDec. Regarding IGreg,
IGSG-VGreg, and IGSG-VSGreg, their performance varies across datasets, indicating instability. On the other hand, SGSGreg
and IGIGreg do not perform well on any dataset, suggesting that the roles of IG and SG cannot be effectively altered by each
other in the loss function.

I.7. Adaptive Attack

Table 15. Adversarial Accuracy of
IGSGreg under FSGS based adaptive
attack

Dataset Architecture Adv. Acc.

Splice MLP 73.0±1.3
Transformer 43.1±1.9

PEDec MLP 91.2±3.3
Transformer 68.4±1.6

Census MLP 84.0±3.2
Transformer 90.8±0.1

Leveraging IGSGreg, our strategy aims to diminish the impact of highly sensitive
features to achieve a more balanced feature contribution across the board. Since
IGSGreg focuses on reducing the influence of these sensitive features, it naturally
allows for other features to have an increased role in classification to preserve
accuracy. To adaptively tailor an attack method for IGSGreg-enhanced models,
we suggest focusing on less sensitive features, leaving the desensitized ones
unchanged. Specifically, we adjust the FSGS attack to exempt the top 5 features
with the highest IG scores identified in the Std Train model from being perturbed.
The outcomes, as detailed in Table 15, reveal that this adaptive attack strategy
underperforms compared to standard FSGS shown in Table 4 and 10. This indicates
that IGSGreg effectively reduces the sensitivity of targeted features without increasing the vulnerability of others, thereby
genuinely enhancing model robustness against adversarial threats in categorical data.

I.8. Hyper-parameter Sensitivity Analysis

In this section, we investigate the sensitivity of the hyper-parameters α and β in IGSGreg as defined in Eq.8, the number
of steps T in the Riemann approximation of the integral for IG score calculation as specified in Eq.3, and the number of
sampled instances R as defined in Eq.5. Our analysis focuses on the impact of these parameters on MLP models across three
datasets. We employ FSGS and OMPGS as the attack methods for this evaluation. For both FSGS and OMPGS attacks, we
maintain a consistent attack budget of 5 for each dataset and assess adversarial robustness for each setting. To evaluate the
sensitivity of the four parameters, we explore α and β values of 0.01, 0.1, 1, and 10, T values of 5, 10, 20, 50, 100, and R
values of 2, 5, 10, 20, 50.

The sensitivity analysis for α is presented in Table 16. Generally, tuning α has minimal impact on the adversarial robustness
for the Splice and PEDec datasets. For the Census dataset, an α value of 0.1 significantly improves performance. However,
for α values of 1 or 10, the model fails to converge, so adversarial accuracy is not reported for these settings.

Results for the sensitivity analysis of β are shown in Table 17. The analysis indicates that while β does influence adversarial
accuracy, the effect is not substantial. Generally, achieving a balance between α and β tends to yield satisfactory performance.
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Table 18. Adversarial Accuracy for the sensitivity analysis of T in Eq.3
Dataset Attack T=5 T=10 T=20 T=50 T=100

Splice FSGS 41.8±1.7 44.0±2.0 44.0±2.6 42.1±1.9 44.1±4.3
OMPGS 65.8±5.3 66.8±0.8 63.8±4.2 62.4±2.8 65.6±6.5

PEDec FSGS 87.0±6.0 86.3±6.2 86.5±3.8 86.8±4.4 86.3±2.9
OMPGS 90.2±5.1 87.9±4.5 88.0±4.0 90.0±4.6 86.9±2.7

Census FSGS 68.3±2.3 69.2±5.8 67.8±4.7 65.7±3.6 67.8±3.9
OMPGS 78.1±4.3 78.2±7.3 75.7±4.7 75.9±2.6 75.6±5.3

Table 19. Adversarial Accuracy for the sensitivity analysis of R in Eq.5
Dataset Attack R=2 R=5 R=10 R=20 R=50

Splice FSGS 42.8±2.8 44.0±2.6 43.0±1.2 42.1±1.3 43.7±3.2
OMPGS 67.9±2.9 63.8±4.2 65.3±4.9 63.1±0.8 65.4±2.5

PEDec FSGS 87.8±4.5 86.5±3.8 86.1±2.7 87.1±2.1 87.2±4.3
OMPGS 88.1±6.3 88.0±4.0 89.1±3.4 88.7±4.1 88.3±2.9

Census FSGS 68.4±3.1 67.8±4.7 67.4±3.8 67.1±3.4 66.8±3.8
OMPGS 77.1±2.9 75.7±4.7 74.9±4.2 75.6±2.8 76.3±3.1

Sensitivity analyses for T and R are displayed in Table 18 and Table 19, respectively. The results indicate that varying T
and R does not significantly affect adversarial robustness. Therefore, selecting smaller values for T and R is recommended
for time efficiency.
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